
Object Oriented Programming

Peter C. Chapin

CIS-3030, Vermont Technical College

Subtypes

• Recall…

– A type is a set of values and a set of operations.

• Defn

– A is a subtype of B (written A <: B in Scala)
means

• A’s values are a subset of B’s values.

• A’s operations are a superset of B’s operations.

– Cat <: Animal

• All Cats are Animals. Cats may have extra operations.

LSP

• Liskov Substitution Principle

– A <: B means an object of type A can be used
where an object of type B is expected without
changing program correctness.
• def feed(a: Animal) = …

feed(new Cat)

• val a: Animal = new Cat

• def addCreature(zoo: List[Anima]) =

(new Cat) :: zoo

• Every Cat is an Animal. Animal operations apply to Cat

Scala Notation

• Scala uses extends to define a subtype.
– class Animal

class Cat extends Animal

class Dog extends Animal

class Tiger extends Cat

– Tiger <: Cat <: Animal and Dog <: Animal

– Subtypes can:

• Add new fields and operations (“extends”)

• Override existing fields and operations

Abstract Classes

• Supertype used to name a concept

– … but it makes no sense to create an instance.

– … declare the class abstract
– abstract class Animal

• new Animal is now an error.

• … but references to Animal are allowed… must refer to
a subtype instance (Cat, Dog, Tiger, etc).

Abstract Methods

• An abstract class can have abstract methods
– abstract class Animal {

def vocalize

def getWeight = …

}

– No implementation for vocalize

• Does not make sense in the general case.

– Can have normal methods also

• Operations for which general implementation ok.

Concrete Classes

• Concrete classes

– Must define inherited abstract methods

– May override inherited concrete methods
– class Cat extends Animal {

def vocalize = println(“Meow”)

override def getWeight = 10.0

}

– Here we assume all cats weight 10 pounds.

• What about Tigers?

super Calls

• Sometimes you want to “add value”
– class Cat extends Animal {

override def getWeight = {

val animalWeight = super.getWeight

animalWeight + furWeight

}

}

– Cat’s getWeight invokes superclass method

• … and then does some additional things.

Constructors

• Superclass constructors called automatically
– class Animal {

println(“Assembling protoplasm”)

}

class Cat extends Animal {

println(“Meow”)

}

new Cat

– Outputs “Assembling protoplasm… Meow”

Constructors with Parameters

• Provide constructor arguments up front
– class Animal(w: Double) {

println(“Assembling protoplasm”)

}

class Cat(w: Double) extends Animal(w) {

println(“Meow”)

}

new Cat(10.0)

– Outputs “Assembling protoplasm… Meow”

Flaw in Scala?

• Consider…
– abstract class Animal {

println(“Assembling protoplasm”)

vocalize

def vocalize

}

class Cat extends Animal {

val loud = 10

def vocalize = println(s“Meow $loud”)

}

– What’s the problem?

C++ Fix

• C++ turns off dynamic dispatch in constructors
– class Animal {

Animal() {

printf(“Assembling protoplasm\n”);

vocalize();

}

virtual void vocalize() = 0;

};

– C++ class with constructor attempting to call a
pure virtual method.

C++ Fix continued

• The corresponding Cat class
– class Cat : public Animal {

int loud;

Cat() {

loud = 10;

}

void vocalize() {

printf(“Meow %d\n”, loud);

}

};

– The program fails!

Compiler Reactions

• clang++ (v3.1)
– Compile Time: warning: call to pure virtual member

function 'vocalize'; overrides of 'vocalize‘ in subclasses are
not available in the constructor of 'Animal‘

– Run Time: pure virtual method called (program aborted)

• g++ (v4.5.2)
– Compile Time: warning: abstract virtual ‘virtual void

Animal::vocalize()’ called from constructor
– Link Time: undefined reference to `Animal::vocalize()‘

• MSVC++ (v11.0)
– Link Time: unresolved external symbol "public: virtual void

Animal::vocalize(void)"

