
Lazy Evaluation

CIS-3030, Vermont Technical College
Peter C. Chapin

Eager Evaluation

• Consider
– def checkValue(x: Int) =

if (x < 0)
println(s”The value $x is negative”)

checkValue(a + f())

– In an eager language the expression a + f() is
evaluated and the result sent to checkValue.

• That value is used twice in this example.
• Side effects of f() only happen once.

Lazy Evaluation

• Consider
– def checkValue(x: Int) =

if (x < 0)
println(s”The value $x is negative”)

checkValue(a + f())

– In a lazy language the expression a + f() is
passed to checkValue unevaluated.

• Parameter is evaluated twice in this example (maybe).
• Side effects of f() happen twice (maybe).

Lazy Evaluation More Expressive

• Some programs work
– def computeBase(x: Int) =

if (someCondition) x + 1 else 0

computeBase(a/b)

– What if b == 0?
• In an eager language a/b throws an exception
• In a lazy language it works if someCondition is always

false when b == 0 is true.
– The parameter x is not needed in that case!

Which is Faster?

• Eager Evaluation
– Function arguments evaluated only once

• … even if used multiple times in the function body.

• Lazy Evaluation
– Function arguments not evaluated at all

• … if never used in a particular run of the function.

• Conclusion…
– A wash. Depends on program and compiler.

With Side Effects?

• Eager Evaluation
– Side effects occur when arguments evaluated

• … easy to understand and reason about.

• Lazy Evaluation
– Side effects occur “later.”

• … confusing (especially when debugging).

• Conclusion
– Lazy evaluation works better in functional setting.

Popularity?

• Eager Evaluation
– Overwhelmingly more popular

• All imperative languages. Many functional languages.

• Lazy Evaluation
– Haskell

• … and its dialects and followers.

• Why?
– Eager evaluation is easier to implement.

What about Scala?

• Eager by default… allows lazy as an option.
– Simulating lazy evaluation is fairly easy.

• def maybeDoOperation(op: () => Unit) =
if (someCondition) op() else ()

maybeDoOperation(() => println(a/b))

• Parameter function from Unit => Unit
– Compiler makes closure out of println(a/b)

• Function only invoked if someCondition true.
– That’s when side effects of evaluating println(a/b) happen

By-Name Parameters

• Scala offers syntactic sugar
– def maybeDoOperation(op: => Unit) =

if (someCondition) op else ()

maybeDoOperation(println(a/b))

– Compiler understands parameter is function
taking Unit and returning Unit (in this case).

– Reduces syntactic burden at call site.

General Usage

• Allows expressions to be passed unevaluated
– def requiring[A](

condition: => Boolean,
action : => A) = {

Controller.preconditionsActive match {
case false => action
case true =>
if (!condition)
throw new ContractFailureException(
"Failed precondition“)

else
action

}

Expression evaluating to Boolean

Contract Usage

• The previous method can be called like this
– val result =

requiring(x > 0, doStuff(myArray(x)))

– If precondition checks are off…
• … the condition is not evaluated
• … the other expression is evaluated once

– If precondition checks are on…
• … the condition is evaluated
• … the other expression is not evaluated if the condition

is false.

Use Two Parameter Lists

• Allows expressions to be passed unevaluated
– def requiring[A](

condition: => Boolean)
(action : => A) = {

Controller.preconditionsActive match {
case false => action
case true =>
if (!condition)
throw new ContractFailureException(
"Failed precondition“)

else
action

}

This is Scala!

• Now requiring looks like a control structure
– val result = requiring(x > 0) {

val temp = …
// Code of arbitrary complexity
myArray(temp + x/2)

}

– Second parameter list enclosed in { … }
– … passed unevaluated into requiring.
– … evaluated inside requiring on demand

Domain Specific Languages

• Scala is good for internal DSLs because
– You can define new operators

• Operators are just method names with funny letters

– You can define new control structures
• As methods taking by-name parameters
• … together with Scala’s syntactic abbreviations

Lazy Vals

• A Lazy val is one where the initializer is
evaluated only if needed.
– lazy val x = f()
if (someCondition) x + 1 else 0

– Here f() is called only if someCondition is true.
• Avoids side effects when not wanted/needed.
• Can be faster.

Compare

• Three different ways to compute a value
– val x = f()
def y = f()
lazy val z = f()

– The val…
• Intialized exactly once (needed or not).

– The def…
• Called each time it is used (but not when defined).

– The lazy val
• Initialized exactly once but deferred until it is used.

	Lazy Evaluation
	Eager Evaluation
	Lazy Evaluation
	Lazy Evaluation More Expressive
	Which is Faster?
	With Side Effects?
	Popularity?
	What about Scala?
	By-Name Parameters
	General Usage
	Contract Usage
	Use Two Parameter Lists
	This is Scala!
	Domain Specific Languages
	Lazy Vals
	Compare

