

Language Implementation

Peter C. Chapin
CIS-3030, Vermont Technical College

Three Basic Methods

● Pure Compilation
● Program translated to machine code by compiler.
● Compilation time adds to development.
● Program typically runs faster.

● Pure Interpretation
● Program processed (interpreted) when it is run.
● No compilation step.
● Slower; interpretation adds overhead.

● Hybrid Approaches
● The best (or worst?) of both worlds.

Compilation

Source File

Object File

Executable File

Compiled
Library

Compiler

Linker

Library Source
(not available)

Compiler

Compilation Pros and Cons

● Entire program examined before executed.
● Syntax errors and (usually) type errors found.
● No language processing at run time (faster).
● All libraries resolved before needed

– Except... shared or dynamic libraries in systems that
support them.

● Less flexible:
● Not as much dynamic behavior.

● Longer development cycle.

Interpretation

Program Source

Interpreter

Data Storage

Library Source

Interpretation Pros and Cons

● Fast Development Cycle
● No compilation step; code executes directly.

● More Dynamic
● Libraries located when needed.
● Easy (easier) to extend application in the field.

● Slower
● Interpretation overhead can be considerable.

● Less Robust
● Detection of syntax and type errors postponed until

run time.

Hybrid System

Source File

Intermediate
Language

Intermediate
Language

Compiler

Interpreter

Library Source
(not available)

Compiler

Data Store

Charcteristics of Hybrid
● Compilation to Intermediate Language

● Faster than compiling to machine code.
– Some implementations don't bother saving the IL.

● Intermediate Language is Interpreted.
● Easier to interpret than raw source (faster)
● Still allows lots of nice dynamic behavior.
● Can sometimes be compiled to machine code "just

in time" (JIT compilation)

● Best of Both Worlds?
● Fast development time.
● Full program analysis.

Hybrid Systems Common

● Java
● Java bytecode is the IL
● JVM is the interpreter (and JIT compiler).

● .NET
● Common Intermediate Language (CIL)
● Common Language Runtime

● Python
● Internally defined IL.
● Can save the IL to *.pyc files.

Virtual Machines
● Common Implementation Strategy

● JVM, CLR, Parrot, etc.

● Advantages:
● Higher level services than raw hardware

– For example, garbage collection.
● Well specified semantics for "stock" data types.

– Well specified calling conventions, memory model, etc.
● Portable

– Programs run on all systems where the VM is supported.
● Security features.
● Often comes with a large library.

Virtual Machines (cont.)

● Disadvantages
● Potential performance issues.

– BUT... advanced techniques and JIT compilation can
mitigate many of these problems.

● Significant memory overhead.
– BUT... specialized "compact" versions of some virtual

machines have been produced for use in embedded
systems (for example).

● Language lock-in.
– "The JVM supports many languages as long as they are

all Java."

Language Interoperability
● Well defined semantics make it easy.

● JVM
– Java (The JVM was originally designed only for Java)
– Scala (A functional/OO hybrid language)
– Clojure (A modern Lisp dialect)
– Groovy (A dynamic language)

● CLR
– C# (Microsoft designed C# specifically for the CLR)
– F# (A functional/OO hybrid language)
– Cobra (A static/dynamic hybrid language)
– IronPython/IronRuby (Implementations for the CLR)

● Many others!

Implementation the Quick Way

● Compiler outputs IL for some virtual machine.
● For free you get...

– Interoperability with a host of other languages.
– Access to a huge library

● ... written in those other languages.

– Large community of users who can begin using your
language incrementally

● ... by incorporating it into their existing programs.

– Access to high quality infrastructure.
● Advanced garbage collector
● Advanced implementation support.
● Powerful tools (debuggers, profilers, etc)

The Down Side

● Alas...
● Virtual machines provide high level services.

– If you don't like the way they do it, you are stuck.
– Compiling to native code allows you to do special (and

potentially "unusual") things.
● Example:

– Virtual machines often provide advanced garbage
collectors.

– What if your language doesn't want garbage collection?
● Challenge: Show that your VM supports a wide

variety of architecturally different languages.

Low Level Virtual Machine

● Another Idea: LLVM
● Don't provide so many services: "Low Level"

– Gives language designers more flexibility.
● Still provide support for advanced optimizations.

– Allows all implementations to benefit.

● LLVM...
● Defines an assembly language.
● Provides "back end" tools (assembler, linker, whole

program optimizer, final code generator).
● Targets many real machine architectures.

http://llvm.org/

Example: C

● C is Difficult on a "Traditional" Virtual Machine
● C allows one to...

– Treat integers as memory addresses.
– Overlap data objects.
– Access individual bits in data objects of other types.
– Execute data (on purpose).

● JVM, CLR forbid some of these things as being too
dangerous for normal people to attempt.
– But C allows them by design!

● C can be implemented for LLVM
● clang & clang++

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

