
CIS-3030
Programming Languages

Peter C. Chapin
Vermont Technical College

Goals

• Understand PL features in a general way
– Be able to understand and apply concepts

• Makes you a better programmer in any language

• Expand your horizons
– Learn two new languages
– Learn to think outside the C/Java box. You are

limited by the languages you know.

• Learn new PLs quickly

Theory vs Practice

• 85% Practice
– Looking at languages with the view of writing

programs that do useful things.
– How does feature X help me write a better

program (for some definition of “better”).

• 15% Theory
– Puts PL features into perspective
– Formal syntax. Turing Machines. Lambda calculus.

Focus Language: Scala

• To make the concepts concrete we will focus
on one particular language
– Scala (http://www.scala-lang.org)

• Functional/OO hybrid language
• Targets the JVM. Easily mixes with Java.
• Very rich with many interesting features from a PL

theory perspective.
• Very practical. Large community. Relatively good tool

support. Becoming an important language in general.

http://www.scala-lang.org/

Focus Language (continued)

• No language can illustrate all concepts
– Scala is not…

• A dynamic language
• A logic language
• A systems or embedded language [some might

disagree]

• We will talk about these things as well
– This course is not “all Scala all the time.”

• … it is “mostly Scala most of the time.”

Scala Targets JVM

• Good
– Can access huge collection of Java libraries
– Can take advantage of advanced Java technology
– Can be deployed anywhere Java can

• Bad
– Tied to the Java ecosystem
– Suffers disadvantages of any VM based language

Language Categories

• Imperative (also Object Oriented)
– Program is a sequence of commands (imperatives)
– Each command modifies the state of memory

• Functional
– Program is a large expression that is evaluated
– All data is immutable (no state modified or side effects

created during evaluation)
• Logic

– Program is a set of rules that describe the solution
– Program “execution” finds a result that obeys all the

rules

Scala is Imperative
def sieve(max: Int): Array[Boolean] = {

// Create and initialize the array.
val flags = new Array[Boolean](max)
for (i <- 0 until max) flags(i) = true

// Zero and one are not prime.
flags(0) = false
flags(1) = false

// Sieve off the non-primes.
for (i <- 2 until max) {

if (flags(i) == true) {
for (j <- 2*i until max by i) flags(j) = false

}
}

// Return the result.
flags

}

Scala is Object Oriented
// Abstract superclass describes all animals.
abstract class Animal {

def weight: Double
}

// Subclass representing cats. Overrides abstract methods.
class Cat(w: Double) extends Animal {

if (w < 0.0) throw new BadWeightException

def weight = w
}

// Method to compute total weight of all animals in a list.
def totalWeight(zoo: List[Animal]) =

zoo.map(_.weight).foldLeft(0.0)(_ + _)

// Send a list of Cats to the totalWeight method.
val catFarm = List(new Cat(8.5), new Cat(5.2), new Cat(523.0))
val catWeight = totalWeight(catFarm)

Scala is Functional

// Return the total size of all files in the specified folder.
def folderSize(folderName: String) = {

// Java libraries are usable from Scala.
val folder = new java.io.File(folderName)

// Process list of files using “higher order” methods.
val fileLengths =

folder.listFiles filter { _.isFile } map { _.length }

// Collapse the resulting array of file lengths into a single value.
fileLengths.foldLeft(0L)(_ + _)

}

Scala Integrates OO and FP

// Class extends the type “function taking String returning Int”
class NameConverter extends String => Int {

// Method to use when instance is “called” as a function.
def apply(s: String) = { … }

// Some other method.
def configure(base: Int) = { … }

}

val converter = new NameConverter
converter.configure(16) // It’s an object!
val result = converter(“Peter”) // It’s a function!

// Method taking a function of type String => Int as a parameter.
def workWith(operation: String => Int) = { … }

// Can pass a NameConverter; it’s a subtype of String => Int
workWith(converter)

Domain Specific Languages

• A language designed for use in a specific
application domain (by “domain experts”)
– Gnuplot
– PIC
– MATLAB/Octave
– LabView
– TeX
– Macro languages of various kinds
– Many others…

http://www.gnuplot.info/
http://en.wikipedia.org/wiki/Pic_language
http://www.mathworks.com/products/matlab/
http://www.gnu.org/software/octave/
http://sine.ni.com/np/app/flex/p/ap/global/lang/en/pg/1/docid/nav-77/
http://en.wikibooks.org/wiki/TeX

External vs Internal DSLs

• External
– DSL creator writes a program that processes the new

language
– DSL processor can be in any language
– DSL processor uses compiler techniques
– Example: Gnuplot is written in C

• Internal
– DSL creator extends a “host” language to add new

syntax for the DSL
– DSL user can drop to the host language at any time

http://www.gnuplot.info/

Scala and DSLs

• Scala has features to support internal DSLs
– Flexible syntax. You can (with limitations) add:

• New keywords
• New operators
• New control structures

• Enables “DSL oriented programming”
– Don’t write a program to solve your problem…
– Create a DSL that makes the problem easy to solve

• … and then easily solve it with your DSL

Example DSL: ScalaTest

import org.scalatest.FlatSpec
import org.scalatest.matchers.ShouldMatchers

class StackSpec extends FlatSpec with ShouldMatchers {
“A Stack” should “pop values in last-in-first-out order” in {
val stack = new Stack[Int]
stack.push(1)
stack.push(2)
stack.pop() should equal (2)
stack.pop() should equal (1)

}

it should “throw NoSuchElementException if an empty stack is popped” in {
val emptyStack = new Stack[String]
evaluating { emptyStack.pop() } should produce [NoSuchElementException]

}
}

This is Scala

From: http://www.scalatest.org

http://www.scalatest.org/

Example DSL: Parser Combinators

def inclusion_credential: Parser[RTInclusionCredential] =
role_definition ~ “<-” ~ role_definition ^^

{ case target ~ “<-” ~ source =>
RTInclusionCredential(target, source) }

def role_definition: Parser[(String, String)] =
entity ~ “.” ~ role_identifier ^^

{ case entityName ~ “.” ~ roleName =>
(entityName, roleName) }

def entity: Parser[String] =
ident

def role_identifier: Parser[String] =
ident

This is Scala

Can parse strings like “A.r <- B.s”

Example DSL: Telnet State Machine

override val transitions: Seq[Transition] =
(data, IAC) -> cmd ::
(data, 0) -> data ::
(data, 10) -> data ::
(data, 13) -> data + eatLine + echo ("") ::
(data, {_:Event=>true}) -> data + eatChar + echo ("") ::
(cmd, IAC) -> data ::
(cmd, Seq(WILL, WONT, DO, DONT)) -> neg + push ::
(neg, {_:Event=>last==SM(DO)}) -> data + mode(true) + pop ::
(neg, {_:Event=>last==SM(DONT)}) -> data + mode(false) + pop ::
(neg, AnyEvent) -> data + echo("interesting sequence...") + pop ::
(cmd, SB) -> subneg ::
(""".*""".r, CR) -> data ::
Nil

This is Scala

Posted on the Scala User’s mailing list. See also: http://blog.razie.com/search/label/dsl

http://blog.razie.com/search/label/dsl

Static vs Dynamic

• Static Languages
– Perform many program checks at compile time

(before the program runs)
• e.g. Static type checking

– Generally require all code references to be
resolved ahead of time

– Generally do not allow programs to execute data
• For example, read a string from the user containing

program text and then execute that code.

Static vs Dynamic (continued)

• Dynamic Languages
– Postpone many language checks until run time

• e.g. Dynamic type checking

– Can easily load code at run time
– Often allow the execution of code stored in data

objects

Static vs Dynamic (continued)

• Static Languages…
– Fast. Since checks are done by the compiler they need

not be done while the program runs
– Robust. Many errors are found by the compiler.
– Less flexible. The program can’t as easily adapt to new

conditions once compiled.
– Less interactive. It is difficult to modify the code of the

program while it runs.
• Dynamic Languages…

– The opposite!

Python is Dynamic

def sum(x, y): return x + y

z = sum(1, 2) # Computes 3
z = sum(1.0, 2.0) # Computes 3.0
z = sum(“Hello”, “World”) # Computes “HelloWorld”
z = sum(“Hello”, 2) # Run time error

This is Python

The last line throws a TypeError exception…

“TypeError: Can’t convert ‘int’ object to str implicitly”

Scala is Static

def sum(x: Int, y: Int) = x + y

z1 = sum(1, 2) // Computes 3
z2 = sum(1.0, 2.0) // Compile time error
z3 = sum(“Hello”, “World”) // Compile time error
z4 = sum(“Hello”, 2) // Compile time error

This is Scala

You can use a type class to generalize sum over all numeric types

def sum[A](x: A, y: A)(implicit n: Numeric[A]) = n.plus(x, y)

z1 = sum(1, 2) // Computes 3
z2 = sum(1.0, 2.0) // Computes 3.0
z3 = sum(“Hello”, “World”) // Compile time error (not numeric)
z4 = sum(“Hello”, 2) // Compile time error

Class Organization

• Lecture driven by slides and demonstrations
• Handouts, slides, assignments on my web site:

http://web.vtc.edu/users/pcc09070/cis-3030
– See web site for grading policy, late policy, etc
– Your first assignment has been posted!

• Homework submitted electronically
• Grades on Moodle

http://web.vtc.edu/users/pcc09070/cis-3030

Semester Project

• Research a programming language of your
choice and…
– Write (at least) two programs using it
– Do a 15 minute oral presentation in front of class
– OR write a 3-5 page report about your language

• Details on class web site
– First due date: Choose your language by

September 16.

Good Luck!

And don’t forget to have fun!

	CIS-3030�Programming Languages
	Goals
	Theory vs Practice
	Focus Language: Scala
	Focus Language (continued)
	Scala Targets JVM
	Language Categories
	Scala is Imperative
	Scala is Object Oriented
	Scala is Functional
	Scala Integrates OO and FP
	Domain Specific Languages
	External vs Internal DSLs
	Scala and DSLs
	Example DSL: ScalaTest
	Example DSL: Parser Combinators
	Example DSL: Telnet State Machine
	Static vs Dynamic
	Static vs Dynamic (continued)
	Static vs Dynamic (continued)
	Python is Dynamic
	Scala is Static
	Class Organization
	Semester Project
	Good Luck!

