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Goals

• Understand PL features in a general way
– Be able to understand and apply concepts

• Makes you a better programmer in any language

• Expand your horizons
– Learn two new languages
– Learn to think outside the C/Java box. You are 

limited by the languages you know.

• Learn new PLs quickly



Theory vs Practice

• 85% Practice
– Looking at languages with the view of writing 

programs that do useful things.
– How does feature X help me write a better 

program (for some definition of “better”).

• 15% Theory
– Puts PL features into perspective
– Formal syntax. Turing Machines. Lambda calculus.



Focus Language: Scala

• To make the concepts concrete we will focus 
on one particular language
– Scala (http://www.scala-lang.org)

• Functional/OO hybrid language
• Targets the JVM. Easily mixes with Java.
• Very rich with many interesting features from a PL 

theory perspective.
• Very practical. Large community. Relatively good tool 

support. Becoming an important language in general.

http://www.scala-lang.org/


Focus Language (continued)

• No language can illustrate all concepts
– Scala is not…

• A dynamic language
• A logic language
• A systems or embedded language [some might 

disagree]

• We will talk about these things as well
– This course is not “all Scala all the time.”

• … it is “mostly Scala most of the time.”



Scala Targets JVM

• Good
– Can access huge collection of Java libraries
– Can take advantage of advanced Java technology
– Can be deployed anywhere Java can

• Bad
– Tied to the Java ecosystem
– Suffers disadvantages of any VM based language



Language Categories

• Imperative (also Object Oriented)
– Program is a sequence of commands (imperatives)
– Each command modifies the state of memory

• Functional
– Program is a large expression that is evaluated
– All data is immutable (no state modified or side effects 

created during evaluation)
• Logic

– Program is a set of rules that describe the solution
– Program “execution” finds a result that obeys all the 

rules



Scala is Imperative
def sieve(max: Int): Array[Boolean] = {

// Create and initialize the array.
val flags = new Array[Boolean](max)
for (i <- 0 until max) flags(i) = true

// Zero and one are not prime.
flags(0) = false
flags(1) = false

// Sieve off the non-primes.
for (i <- 2 until max) {

if (flags(i) == true) {
for (j <- 2*i until max by i) flags(j) = false

}
}

// Return the result.
flags

}



Scala is Object Oriented
// Abstract superclass describes all animals.
abstract class Animal {

def weight: Double
}

// Subclass representing cats. Overrides abstract methods.
class Cat(w: Double) extends Animal {

if (w < 0.0) throw new BadWeightException

def weight = w
}

// Method to compute total weight of all animals in a list.
def totalWeight(zoo: List[Animal]) =

zoo.map(_.weight).foldLeft(0.0)(_ + _)

// Send a list of Cats to the totalWeight method.
val catFarm = List(new Cat(8.5), new Cat(5.2), new Cat(523.0))
val catWeight = totalWeight(catFarm)



Scala is Functional

// Return the total size of all files in the specified folder.
def folderSize(folderName: String) = {

// Java libraries are usable from Scala.
val folder = new java.io.File(folderName)

// Process list of files using “higher order” methods.
val fileLengths =

folder.listFiles filter { _.isFile } map { _.length }

// Collapse the resulting array of file lengths into a single value.
fileLengths.foldLeft(0L)(_ + _)

}



Scala Integrates OO and FP

// Class extends the type “function taking String returning Int”
class NameConverter extends String => Int {

// Method to use when instance is “called” as a function.
def apply(s: String) = { … }

// Some other method.
def configure(base: Int) = { … }

}

val converter = new NameConverter
converter.configure(16)             // It’s an object!
val result = converter(“Peter”)     // It’s a function!

// Method taking a function of type String => Int as a parameter.
def workWith(operation: String => Int) = { … }

// Can pass a NameConverter; it’s a subtype of String => Int
workWith(converter)



Domain Specific Languages

• A language designed for use in a specific 
application domain (by “domain experts”)
– Gnuplot
– PIC
– MATLAB/Octave
– LabView
– TeX
– Macro languages of various kinds
– Many others…

http://www.gnuplot.info/
http://en.wikipedia.org/wiki/Pic_language
http://www.mathworks.com/products/matlab/
http://www.gnu.org/software/octave/
http://sine.ni.com/np/app/flex/p/ap/global/lang/en/pg/1/docid/nav-77/
http://en.wikibooks.org/wiki/TeX


External vs Internal DSLs

• External
– DSL creator writes a program that processes the new 

language
– DSL processor can be in any language
– DSL processor uses compiler techniques
– Example: Gnuplot is written in C

• Internal
– DSL creator extends a “host” language to add new 

syntax for the DSL
– DSL user can drop to the host language at any time

http://www.gnuplot.info/


Scala and DSLs

• Scala has features to support internal DSLs
– Flexible syntax. You can (with limitations) add:

• New keywords
• New operators
• New control structures

• Enables “DSL oriented programming”
– Don’t write a program to solve your problem…
– Create a DSL that makes the problem easy to solve

• … and then easily solve it with your DSL



Example DSL: ScalaTest

import org.scalatest.FlatSpec
import org.scalatest.matchers.ShouldMatchers

class StackSpec extends FlatSpec with ShouldMatchers {
“A Stack” should “pop values in last-in-first-out order” in {
val stack = new Stack[Int]
stack.push(1)
stack.push(2)
stack.pop() should equal (2)
stack.pop() should equal (1)

}

it should “throw NoSuchElementException if an empty stack is popped” in {
val emptyStack = new Stack[String]
evaluating { emptyStack.pop() } should produce [NoSuchElementException]

}
}

This is Scala

From: http://www.scalatest.org

http://www.scalatest.org/


Example DSL: Parser Combinators

def inclusion_credential: Parser[RTInclusionCredential] =
role_definition ~ “<-” ~ role_definition ^^

{ case target ~ “<-” ~ source =>
RTInclusionCredential(target, source) }

def role_definition: Parser[(String, String)] =
entity ~ “.” ~ role_identifier ^^

{ case entityName ~ “.” ~ roleName =>
(entityName, roleName) }

def entity: Parser[String] =
ident

def role_identifier: Parser[String] =
ident

This is Scala

Can parse strings like “A.r <- B.s”



Example DSL: Telnet State Machine

override val transitions: Seq[Transition] =
(data, IAC) -> cmd ::
(data, 0) -> data ::
(data, 10) -> data ::
(data, 13) -> data + eatLine + echo ("") ::
(data, {_:Event=>true}) -> data + eatChar + echo ("") ::
(cmd, IAC) -> data ::
(cmd, Seq(WILL, WONT, DO, DONT)) -> neg + push ::
(neg, {_:Event=>last==SM(DO)}) -> data + mode(true) + pop ::
(neg, {_:Event=>last==SM(DONT)}) -> data + mode(false) + pop ::
(neg, AnyEvent) -> data + echo("interesting sequence...") + pop ::
(cmd, SB) -> subneg ::
(""".*""".r, CR) -> data ::
Nil

This is Scala

Posted on the Scala User’s mailing list. See also: http://blog.razie.com/search/label/dsl

http://blog.razie.com/search/label/dsl


Static vs Dynamic

• Static Languages
– Perform many program checks at compile time 

(before the program runs)
• e.g. Static type checking

– Generally require all code references to be 
resolved ahead of time

– Generally do not allow programs to execute data
• For example, read a string from the user containing 

program text and then execute that code.



Static vs Dynamic (continued)

• Dynamic Languages
– Postpone many language checks until run time

• e.g. Dynamic type checking

– Can easily load code at run time
– Often allow the execution of code stored in data 

objects



Static vs Dynamic (continued)

• Static Languages…
– Fast. Since checks are done by the compiler they need 

not be done while the program runs
– Robust. Many errors are found by the compiler.
– Less flexible. The program can’t as easily adapt to new 

conditions once compiled.
– Less interactive. It is difficult to modify the code of the 

program while it runs.
• Dynamic Languages…

– The opposite!



Python is Dynamic

def sum(x, y): return x + y

z = sum(1, 2)                # Computes 3
z = sum(1.0, 2.0)            # Computes 3.0
z = sum(“Hello”, “World”)    # Computes “HelloWorld”
z = sum(“Hello”, 2)          # Run time error

This is Python

The last line throws a TypeError exception…

“TypeError: Can’t convert ‘int’ object to str implicitly”



Scala is Static

def sum(x: Int, y: Int) = x + y

z1 = sum(1, 2)                 // Computes 3
z2 = sum(1.0, 2.0)             // Compile time error
z3 = sum(“Hello”, “World”)     // Compile time error
z4 = sum(“Hello”, 2)           // Compile time error

This is Scala

You can use a type class to generalize sum over all numeric types

def sum[A](x: A, y: A)(implicit n: Numeric[A]) = n.plus(x, y)

z1 = sum(1, 2)                 // Computes 3
z2 = sum(1.0, 2.0)             // Computes 3.0
z3 = sum(“Hello”, “World”)     // Compile time error (not numeric)
z4 = sum(“Hello”, 2)           // Compile time error



Class Organization

• Lecture driven by slides and demonstrations
• Handouts, slides, assignments on my web site: 

http://web.vtc.edu/users/pcc09070/cis-3030
– See web site for grading policy, late policy, etc
– Your first assignment has been posted!

• Homework submitted electronically
• Grades on Moodle

http://web.vtc.edu/users/pcc09070/cis-3030


Semester Project

• Research a programming language of your 
choice and…
– Write (at least) two programs using it
– Do a 15 minute oral presentation in front of class
– OR write a 3-5 page report about your language

• Details on class web site
– First due date: Choose your language by 

September 16.



Good Luck!

And don’t forget to have fun!
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