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Characteristics

• Typical features of functional languages…
– Immutable data, side-effect free operations
– “First class” functions

• Anonymous function literals
• Functions can be stored in data structures (Lists, Arrays)
• Functions can be passed to functions
• Functions can be returned from functions

– Programs seen as “data transformers”
– Pattern matching



Side Effects

• Pure function only returns a result.
– No other “side effects” such as…

• Input/Output
• State change of hardware
• Modification of (global) memory state
• Modification of (object) memory state
• Modification of operating system state

– Network connections
– Open files



No I/O?

• Paradox…
– Programs must obtain input from and write 

output to the external universe.
– “Impossible” to do in a purely functional setting!

• Solution…
– Allow mixed paradigm programming (Scala)
– Abstract external universe into a value and thread 

it through the functions (Haskell, Mercury).
• Discuss more later.



Which?

• “The universe is imperative!”
– When we act we change the state of the universe.

• Our actions have side effects.
• The universe is modified by our actions (mutable)

• “The universe is functional!”
– Our actions are a function taking the past universe 

into the future universe.
• Past is not changed by our actions (immutable)
• The future depends only on the past.



Example

• “The universe is imperative”
– def blowUpBuilding() = {

placeBomb()
lightFuse()
runAway()

}

• “The universe is functional”
– def blowUpBuilding(old: Universe): Universe = {

val withBombPlaced = placeBomb(old)
val withFuselite = lightFuse(withBombPlaced)
runAway(withFuseLite)

}



Global Data

• You’ve heard “global data is bad.” Why?
– Modifications of global data hard to track.

• Confusing. Does doStuff(1, “Hello”) change 
the state of global variable x? Who knows?

• Problem is really side effects.
– Other side effects are just as hard to track.

• Confusing. Does doStuff(1, “Hello”) change 
the state of the network? Who knows?

• val newNetwork =
doStuff(1, “Hello”, oldNetwork)



Transformative

• Emphasis on transformations of data
– val page = getWebPage(“http://www.xyz.com”)
val errors = validate(page)
errors.length // Number of errors.

– The vals are just names for intermediate values.
• validate(

getWebPage(“http://www.xyz.com”)).length

– Output of one function feeds the next.
• Everything is just one expression.
• Program is a big function: takes input and produces 

output.



Referential Transparency

• Defn: An expression can be replaced by its 
result everywhere the expression occurs.

• Example:
– (a + b) / 2 – (a + b) / 3

– val sum = a + b
sum / 2 – sum / 3

– The expression a + b is referentially transparent.
– In a pure functional language, all expressions have 

this property.



Expressions and Side Effects

• Side effects wreck referential transparency
– readLine() + readLine()

– val aLine = readLine()
aLine + aLine

– The behavior is very different!

• Benefits of referential transparency
– Easier to reason about problem
– Easier to optimize program
– Easier to restructure (refactor) program



Type Unit

• Functions using Unit
– Functions taking no parameters either

• … always return the same thing (constants)
• … have side effects

– Functions returning Unit either
• … do nothing
• … have side effects



Side Effects in Scala

• Scala is a mixed paradigm language
– Allows pure functional programming
– Allows imperative programming with side effects

• Good?
– Use imperative style when appropriate

• I/O
• Interacting with external hardware
• Interfacing with imperative libraries



Imperative Programming

• You are doing imperative programming if…
1. You are using functions with no parameters (that do 

something other than return a constant)
2. You are using the type Unit
3. You are using vars (assignment is a side effect)
4. You are using while loops

• These things arise naturally in Scala when doing 
I/O, interfacing with Java, and similar things.



First Class Functions

• Functions can be treated as data
– “Functions are values”
– … can be written literally
– … can be stored in data structures
– … can be passed around the program



Function Types

• Syntax of function types
– ( parameter_type_list ) => result_type
– If only one parameter the parenthesis are optional

• Examples
– Int => Int (pronounced “Int to Int”)
– (Int, String) => Unit
– (Int, List[Cat]) => (Int, String)
– (Int, (Int, String)) => Cat
– (Int, String => Double) =>

List[Int => Int]



Lambda Terms

• Function expressions go by many names
– “Lambda term” or just “lambdas”

• Comes from the Lambda Calculus

– “Function literal”
– “Anonymous function”
– “Closure”

• A closure is actually something more. See later slides.



Scala Syntax

• Examples
– (x: Int, y: Int) => x + y

• Parameters declared as usual
• Result given by single expression after =>
• Type interference computes result type
• Function has no name (anonymous)
• Body can have any complexity (enclose in braces)

– ((x: Int, y: Int) => x + y)(1, 2)

• Applies anonymous function to argument list



Functions as Values

• Examples
– val f: Int => Int = (x: Int) => x + 1

• Type annotation not needed
• val f = (x: Int) => x + 1

– val myList = List(
(x: Int) => x + 1,
(x: Int) => x – 1,
(x: Int) => 2 * x )

• myList has type List[Int => Int].



Function Expressions

• Expressions can evaluate to functions
– val operator = if (x < y)

(x: Int, y: Int) => x + y
else
(x: Int, y: Int) => x – y

val result = operator(1, 2)

– Notice: x and y used in the functions are different than the 
x and y used in the condition

• The function parameters hide x and y from the outer scope.



Function Expressions

• Or even just…
– val result = 

(if (x < y)
(x: Int, y: Int) => x + y

else
(x: Int, y: Int) => x – y)(1, 2)



Type Aliases

• You can define short names for long types
– type CatProcessor = (Int, Cat) => Cat
val f: CatProcessor = …
def workWith(p: CatProcessor) = …

– Good for documentation
– Improves readability
– Does not introduce a new type

• Replacing the alias with the original type does not 
change the meaning of the program.



Functions? Methods?

• Scala distinguishes between them
– … but converts methods to functions by creating a 

closure (see future slides)
– def inc(x: Int) = x + 1

• Has type (Int)Int
– val inc = (x: Int) => x + 1

• Has type Int => Int

– Methods are always applied to an object and have 
access to the fields of that object.



Filter

• Selects elements that satisfy a predicate
– def filter[A](myList: List[A],

pred : A => Boolean): List[A] =
myList match {

case Nil => List()
case head :: tail =>

if (pred(head))
head :: filter(tail, pred)

else
filter(tail, pred)

}



Use of filter

• Example
– def isEven(x: Int) =

if (x % 2 == 0) true else false

val myList = List(1, 2, 3, 4)
val filteredList = filter(myList, isEven)

– The result: List(2, 4)
– val filteredList = filter(myList,

(x: Int) => if (x % 2 == 0) true else false)

– val filteredList = filter(myList, 
(x: Int) => x % 2 == 0)



Foreach

• Applies a function to each element of a list
– def foreach[A](myList: List[A], f: A => Unit):

Unit

• Example
– val myList = List(“Hello”, “World”)
foreach(myList, (s: String) => println(s))



Map

• Transforms elements
– def map[A, B](myList: List[A], trans: A => B):

List[B]

• Example
– val myList = List(1, 2, 3)
map(myList, (x: Int) => x + 1)

– Evaluates to List(2, 3, 4)



FlatMap

• Transform elements to lists and flattens result
– def flatMap[A, B](myList: List[A],

trans : A => List[B]):
List[B]

• Example
– def getWords(lines: List[String]) =

flatMap(
lines,
(line: String) => line.split(“\\W+”)

val words =
getWords(List(“Line One”, “Line Two”))

– Evaluates to List(“Line”, “One”, “Line”, “Two”)



Workhorses

• These higher order methods are essential
– filter
– foreach
– map
– flatMap

• Learn them well!
– Scala provides these methods with all the 

collections in the Scala library!



Example Transformations

• Let args be Array[String] command line.
– Each string starting with “-” is an option…
– val options = args.filter( (arg: String) =>

if (arg.charAt(0) == ‘-’) true else false )
val rawOptions = options.map( (opt: String) =>

opt.substring(1) )
rawOptions.foreach( (opt: String) =>

process(option) )

– No loops. No mutable data.
• … but process(option) must have side effects. (Why?)



Syntactic Abbreviations

• Together very powerful…
– Methods taking one parameter…

• The dot and parenthesis around argument optional
• The argument can be enclosed in braces

– Anonymous functions…
• Can use _ for the parameter name provided

– The parameter is used only once
– The parameters are used in the same order as declared
– The parameter declarations can be omitted in this case
– Type inference at the use site will infer parameter types



Example Abbreviations

• Consider
– val f = (x: Int) => x + 1
val f: Int => Int = (x: Int) => x + 1
val f: Int => Int = _ + 1

– The expression _ + 1 represents a function
• … taking one parameter we don’t name
• … and returning the result of adding one to that param
• The type of _ + 1 is inferred to be Int => Int

because of the context of where it is used.



More Typical Usage

• Abbreviations with higher order methods
– val myList = List(1, 2, 3, 4)
myList.filter( (x: Int) => x % 2 == 0 )
myList.filter( _ % 2 == 0 )
myList filter { _ % 2 == 0 }

– The last form is typical Scala.
• It is a syntactic sugar for the earlier forms.



Example Transformations

• Let args be Array[String] command line.
– Each string starting with “-” is an option…
– args filter  { _.charAt(0) == ‘-’ }

map     { _.substring(1)     }
foreach { process(_)         }

– Remember your workhorses
• Now we’re talking Scala!



Option Revisited

• Option represents optional data
– … but it can also be a collection of 0 or 1 items.
– Fully supports filter, map, foreach.
– getUser(ID) filter  { _.startsWith(“J”) }

map     { lookupAccount(_)  }
foreach { account =>

if (account.balance < 0) sendMail(account) }

• If getUser returns None, there is no effect.
• If the name doesn’t start with “J” filter returns None
• This is idiomatic Scala!
• Notice wildcard can’t be used in last function. (Why?)



FoldLeft

• Collapses a sequence into a single value
– def foldLeft[A, B](myList : List[A],

accum : B,
combiner: (B, A) => B) : B =

myList match {
case Nil => accum
case head :: tail =>

foldLeft(tail,
combiner(accum, head),
combiner)

}

– The code is elegant: simple, yet powerful



Maximum Length?

• Find the length of the longest string…
– def findLongest(lines: List[String]) =

foldLeft(lines, 0, (curMax, curString) =>
if (curString.length > curMax)

curString.length
else

curMax)

– Example
• findLongest(List(“Hi”, “There”)) evaluates to 5.



Wait, What?

• The previous example doesn’t work!
– Scala can’t infer the parameter types of the 

function from it’s context:
• foldLeft( List[String=A], Int=B, (?, ?) => ? )
• Compiler learns the type B too late to use it later in the 

same argument list
• Quirk/weakness of Scala type inference



Multiple Parameter Lists

• Methods can have multiple parameter lists
– def m(x: Int, y: Int)(s: String) = {

// Use x, y, and s
}

– val result = m(1, 2)(“Hello”)

– This feature has several uses.
• Right now: types inferred in one parameter list are 

known when analyzing the next parameter list.



FoldLeft Revisted

• Collapses a sequence into a single value
– def foldLeft[A, B](myList : List[A],

accum : B)
(combiner: (B, A) => B) : B =

myList match {
case Nil => accum
case head :: tail =>

foldLeft(tail,
combiner(accum, head))

(combiner)
}

– Note small change to two parameter lists.



Maximum Length Revisited

• Find the length of the longest string…
– def findLongest(lines: List[String]) =

foldLeft(lines, 0)( (curMax, curString) =>
if (curString.length > curMax)

curString.length
else

curMax)

– Example
• findLongest(List(“Hi”, “There”)) evaluates to 5.
• … and it works this time!



Adding a List of Integers

• Very simple application of foldLeft
– Fully desugared

• myList.foldLeft(0)((x: Int, y: Int) => x + y)

– Types can be inferred
• myList.foldLeft(0)( (x, y) => x + y )

– Wildcards can be used (Why?)
• myList.foldLeft(0)( _ + _ )

– Multiplying a list of integers
• myList.foldLeft(1)( _ * _ )



Exercise

1. Revise findLongest so that it returns a pair (Int, 
String) consisting of the length of the longest 
string and the text of the longest string.



Consider…

• Write a function associate that takes a String 
and a List[String]) and returns a 
List[(String, String)] where the first 
component of each pair in the result list is the first 
parameter.
– associate( “afile.txt”,

List(“Error: line 1”, “Error: line 2”) )

– Evaluates to List((“afile.txt”, “Error: line 
1”), (“afile.txt”, “Error: line 2”))



Implementation

• Associate uses a closure
– def associate[A, B](common: A, notes:List[B]) =

notes map { (common, _) }

– Inside function (x: B) => (common, x) where 
does common come from?



Free vs Bound

• Defn: Bound Variable is a name bound to a 
declaration
– (x: Int) => x + 1

• X is “bound” to the parameter declaration

• Defn: Free Variable is a name that is not 
bound
– (x: Int) => x + y

• y is “free” because there is declaration of y here



Closed Expressions

• Defn: A closed expression is one with no free 
variables
– (y: Int) => ((x: Int) => x + y)

• This expression is closed
– (y: Int) => common + y

• This expression is not closed because common is free

– All meaningful programs are closed expressions
• Free variables are “unresolved references” or 

“undefined identifiers.”



Closures

• Consider this example
– def makeAdder(x : Int) =

(v: Int) => x + v

• Returns a function that depends on parameter x
• The function returned is not, by itself closed
• Yet this compiles

– Compiler returns a closure: a function together 
with references to all the free variables required

• Can be used like any function



Examples

• How makeAdder might be used
– val f = makeAdder(5)
println( f(3) )  // prints 8

val g = makeAdder(10)
println( g(3) ) // prints 13

– Inside f and g, usages of “x” reference the object 
named x when the closure was created.



Closures and Mutability

• Consider…
– def makeArrayAccessor(a: Array[Int]) =

(index: Int) => a(index)

myArray = Array(1, 2, 3)
val accessor = makeArrayAccessor(myArray)
println( accessor(0) )  // prints 1
myArray(0) = 2
println( accessor(0) )  // prints 2!

– Lesson: Avoid mutable data.



Closures are Natural

• You don’t have to think about them
– def scaleList(myList: List[Int], factor: Int) =

myList map { factor * _ }

• Returns a new list where each element is scaled by 
factor

• The function factor * _ (which is syntactic sugar for 
(x: Int) => factor * x) is a closure. (Why?)

– scaleList( List(1, 2), 2 ) == List(2, 4)
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