
Functional Programming

CIS-3030, Vermont Technical College
Peter C. Chapin

Characteristics

• Typical features of functional languages…
– Immutable data, side-effect free operations
– “First class” functions

• Anonymous function literals
• Functions can be stored in data structures (Lists, Arrays)
• Functions can be passed to functions
• Functions can be returned from functions

– Programs seen as “data transformers”
– Pattern matching

Side Effects

• Pure function only returns a result.
– No other “side effects” such as…

• Input/Output
• State change of hardware
• Modification of (global) memory state
• Modification of (object) memory state
• Modification of operating system state

– Network connections
– Open files

No I/O?

• Paradox…
– Programs must obtain input from and write

output to the external universe.
– “Impossible” to do in a purely functional setting!

• Solution…
– Allow mixed paradigm programming (Scala)
– Abstract external universe into a value and thread

it through the functions (Haskell, Mercury).
• Discuss more later.

Which?

• “The universe is imperative!”
– When we act we change the state of the universe.

• Our actions have side effects.
• The universe is modified by our actions (mutable)

• “The universe is functional!”
– Our actions are a function taking the past universe

into the future universe.
• Past is not changed by our actions (immutable)
• The future depends only on the past.

Example

• “The universe is imperative”
– def blowUpBuilding() = {

placeBomb()
lightFuse()
runAway()

}

• “The universe is functional”
– def blowUpBuilding(old: Universe): Universe = {

val withBombPlaced = placeBomb(old)
val withFuselite = lightFuse(withBombPlaced)
runAway(withFuseLite)

}

Global Data

• You’ve heard “global data is bad.” Why?
– Modifications of global data hard to track.

• Confusing. Does doStuff(1, “Hello”) change
the state of global variable x? Who knows?

• Problem is really side effects.
– Other side effects are just as hard to track.

• Confusing. Does doStuff(1, “Hello”) change
the state of the network? Who knows?

• val newNetwork =
doStuff(1, “Hello”, oldNetwork)

Transformative

• Emphasis on transformations of data
– val page = getWebPage(“http://www.xyz.com”)
val errors = validate(page)
errors.length // Number of errors.

– The vals are just names for intermediate values.
• validate(

getWebPage(“http://www.xyz.com”)).length

– Output of one function feeds the next.
• Everything is just one expression.
• Program is a big function: takes input and produces

output.

Referential Transparency

• Defn: An expression can be replaced by its
result everywhere the expression occurs.

• Example:
– (a + b) / 2 – (a + b) / 3

– val sum = a + b
sum / 2 – sum / 3

– The expression a + b is referentially transparent.
– In a pure functional language, all expressions have

this property.

Expressions and Side Effects

• Side effects wreck referential transparency
– readLine() + readLine()

– val aLine = readLine()
aLine + aLine

– The behavior is very different!

• Benefits of referential transparency
– Easier to reason about problem
– Easier to optimize program
– Easier to restructure (refactor) program

Type Unit

• Functions using Unit
– Functions taking no parameters either

• … always return the same thing (constants)
• … have side effects

– Functions returning Unit either
• … do nothing
• … have side effects

Side Effects in Scala

• Scala is a mixed paradigm language
– Allows pure functional programming
– Allows imperative programming with side effects

• Good?
– Use imperative style when appropriate

• I/O
• Interacting with external hardware
• Interfacing with imperative libraries

Imperative Programming

• You are doing imperative programming if…
1. You are using functions with no parameters (that do

something other than return a constant)
2. You are using the type Unit
3. You are using vars (assignment is a side effect)
4. You are using while loops

• These things arise naturally in Scala when doing
I/O, interfacing with Java, and similar things.

First Class Functions

• Functions can be treated as data
– “Functions are values”
– … can be written literally
– … can be stored in data structures
– … can be passed around the program

Function Types

• Syntax of function types
– (parameter_type_list) => result_type
– If only one parameter the parenthesis are optional

• Examples
– Int => Int (pronounced “Int to Int”)
– (Int, String) => Unit
– (Int, List[Cat]) => (Int, String)
– (Int, (Int, String)) => Cat
– (Int, String => Double) =>

List[Int => Int]

Lambda Terms

• Function expressions go by many names
– “Lambda term” or just “lambdas”

• Comes from the Lambda Calculus

– “Function literal”
– “Anonymous function”
– “Closure”

• A closure is actually something more. See later slides.

Scala Syntax

• Examples
– (x: Int, y: Int) => x + y

• Parameters declared as usual
• Result given by single expression after =>
• Type interference computes result type
• Function has no name (anonymous)
• Body can have any complexity (enclose in braces)

– ((x: Int, y: Int) => x + y)(1, 2)

• Applies anonymous function to argument list

Functions as Values

• Examples
– val f: Int => Int = (x: Int) => x + 1

• Type annotation not needed
• val f = (x: Int) => x + 1

– val myList = List(
(x: Int) => x + 1,
(x: Int) => x – 1,
(x: Int) => 2 * x)

• myList has type List[Int => Int].

Function Expressions

• Expressions can evaluate to functions
– val operator = if (x < y)

(x: Int, y: Int) => x + y
else
(x: Int, y: Int) => x – y

val result = operator(1, 2)

– Notice: x and y used in the functions are different than the
x and y used in the condition

• The function parameters hide x and y from the outer scope.

Function Expressions

• Or even just…
– val result =

(if (x < y)
(x: Int, y: Int) => x + y

else
(x: Int, y: Int) => x – y)(1, 2)

Type Aliases

• You can define short names for long types
– type CatProcessor = (Int, Cat) => Cat
val f: CatProcessor = …
def workWith(p: CatProcessor) = …

– Good for documentation
– Improves readability
– Does not introduce a new type

• Replacing the alias with the original type does not
change the meaning of the program.

Functions? Methods?

• Scala distinguishes between them
– … but converts methods to functions by creating a

closure (see future slides)
– def inc(x: Int) = x + 1

• Has type (Int)Int
– val inc = (x: Int) => x + 1

• Has type Int => Int

– Methods are always applied to an object and have
access to the fields of that object.

Filter

• Selects elements that satisfy a predicate
– def filter[A](myList: List[A],

pred : A => Boolean): List[A] =
myList match {

case Nil => List()
case head :: tail =>

if (pred(head))
head :: filter(tail, pred)

else
filter(tail, pred)

}

Use of filter

• Example
– def isEven(x: Int) =

if (x % 2 == 0) true else false

val myList = List(1, 2, 3, 4)
val filteredList = filter(myList, isEven)

– The result: List(2, 4)
– val filteredList = filter(myList,

(x: Int) => if (x % 2 == 0) true else false)

– val filteredList = filter(myList,
(x: Int) => x % 2 == 0)

Foreach

• Applies a function to each element of a list
– def foreach[A](myList: List[A], f: A => Unit):

Unit

• Example
– val myList = List(“Hello”, “World”)
foreach(myList, (s: String) => println(s))

Map

• Transforms elements
– def map[A, B](myList: List[A], trans: A => B):

List[B]

• Example
– val myList = List(1, 2, 3)
map(myList, (x: Int) => x + 1)

– Evaluates to List(2, 3, 4)

FlatMap

• Transform elements to lists and flattens result
– def flatMap[A, B](myList: List[A],

trans : A => List[B]):
List[B]

• Example
– def getWords(lines: List[String]) =

flatMap(
lines,
(line: String) => line.split(“\\W+”)

val words =
getWords(List(“Line One”, “Line Two”))

– Evaluates to List(“Line”, “One”, “Line”, “Two”)

Workhorses

• These higher order methods are essential
– filter
– foreach
– map
– flatMap

• Learn them well!
– Scala provides these methods with all the

collections in the Scala library!

Example Transformations

• Let args be Array[String] command line.
– Each string starting with “-” is an option…
– val options = args.filter((arg: String) =>

if (arg.charAt(0) == ‘-’) true else false)
val rawOptions = options.map((opt: String) =>

opt.substring(1))
rawOptions.foreach((opt: String) =>

process(option))

– No loops. No mutable data.
• … but process(option) must have side effects. (Why?)

Syntactic Abbreviations

• Together very powerful…
– Methods taking one parameter…

• The dot and parenthesis around argument optional
• The argument can be enclosed in braces

– Anonymous functions…
• Can use _ for the parameter name provided

– The parameter is used only once
– The parameters are used in the same order as declared
– The parameter declarations can be omitted in this case
– Type inference at the use site will infer parameter types

Example Abbreviations

• Consider
– val f = (x: Int) => x + 1
val f: Int => Int = (x: Int) => x + 1
val f: Int => Int = _ + 1

– The expression _ + 1 represents a function
• … taking one parameter we don’t name
• … and returning the result of adding one to that param
• The type of _ + 1 is inferred to be Int => Int

because of the context of where it is used.

More Typical Usage

• Abbreviations with higher order methods
– val myList = List(1, 2, 3, 4)
myList.filter((x: Int) => x % 2 == 0)
myList.filter(_ % 2 == 0)
myList filter { _ % 2 == 0 }

– The last form is typical Scala.
• It is a syntactic sugar for the earlier forms.

Example Transformations

• Let args be Array[String] command line.
– Each string starting with “-” is an option…
– args filter { _.charAt(0) == ‘-’ }

map { _.substring(1) }
foreach { process(_) }

– Remember your workhorses
• Now we’re talking Scala!

Option Revisited

• Option represents optional data
– … but it can also be a collection of 0 or 1 items.
– Fully supports filter, map, foreach.
– getUser(ID) filter { _.startsWith(“J”) }

map { lookupAccount(_) }
foreach { account =>

if (account.balance < 0) sendMail(account) }

• If getUser returns None, there is no effect.
• If the name doesn’t start with “J” filter returns None
• This is idiomatic Scala!
• Notice wildcard can’t be used in last function. (Why?)

FoldLeft

• Collapses a sequence into a single value
– def foldLeft[A, B](myList : List[A],

accum : B,
combiner: (B, A) => B) : B =

myList match {
case Nil => accum
case head :: tail =>

foldLeft(tail,
combiner(accum, head),
combiner)

}

– The code is elegant: simple, yet powerful

Maximum Length?

• Find the length of the longest string…
– def findLongest(lines: List[String]) =

foldLeft(lines, 0, (curMax, curString) =>
if (curString.length > curMax)

curString.length
else

curMax)

– Example
• findLongest(List(“Hi”, “There”)) evaluates to 5.

Wait, What?

• The previous example doesn’t work!
– Scala can’t infer the parameter types of the

function from it’s context:
• foldLeft(List[String=A], Int=B, (?, ?) => ?)
• Compiler learns the type B too late to use it later in the

same argument list
• Quirk/weakness of Scala type inference

Multiple Parameter Lists

• Methods can have multiple parameter lists
– def m(x: Int, y: Int)(s: String) = {

// Use x, y, and s
}

– val result = m(1, 2)(“Hello”)

– This feature has several uses.
• Right now: types inferred in one parameter list are

known when analyzing the next parameter list.

FoldLeft Revisted

• Collapses a sequence into a single value
– def foldLeft[A, B](myList : List[A],

accum : B)
(combiner: (B, A) => B) : B =

myList match {
case Nil => accum
case head :: tail =>

foldLeft(tail,
combiner(accum, head))

(combiner)
}

– Note small change to two parameter lists.

Maximum Length Revisited

• Find the length of the longest string…
– def findLongest(lines: List[String]) =

foldLeft(lines, 0)((curMax, curString) =>
if (curString.length > curMax)

curString.length
else

curMax)

– Example
• findLongest(List(“Hi”, “There”)) evaluates to 5.
• … and it works this time!

Adding a List of Integers

• Very simple application of foldLeft
– Fully desugared

• myList.foldLeft(0)((x: Int, y: Int) => x + y)

– Types can be inferred
• myList.foldLeft(0)((x, y) => x + y)

– Wildcards can be used (Why?)
• myList.foldLeft(0)(_ + _)

– Multiplying a list of integers
• myList.foldLeft(1)(_ * _)

Exercise

1. Revise findLongest so that it returns a pair (Int,
String) consisting of the length of the longest
string and the text of the longest string.

Consider…

• Write a function associate that takes a String
and a List[String]) and returns a
List[(String, String)] where the first
component of each pair in the result list is the first
parameter.
– associate(“afile.txt”,

List(“Error: line 1”, “Error: line 2”))

– Evaluates to List((“afile.txt”, “Error: line
1”), (“afile.txt”, “Error: line 2”))

Implementation

• Associate uses a closure
– def associate[A, B](common: A, notes:List[B]) =

notes map { (common, _) }

– Inside function (x: B) => (common, x) where
does common come from?

Free vs Bound

• Defn: Bound Variable is a name bound to a
declaration
– (x: Int) => x + 1

• X is “bound” to the parameter declaration

• Defn: Free Variable is a name that is not
bound
– (x: Int) => x + y

• y is “free” because there is declaration of y here

Closed Expressions

• Defn: A closed expression is one with no free
variables
– (y: Int) => ((x: Int) => x + y)

• This expression is closed
– (y: Int) => common + y

• This expression is not closed because common is free

– All meaningful programs are closed expressions
• Free variables are “unresolved references” or

“undefined identifiers.”

Closures

• Consider this example
– def makeAdder(x : Int) =

(v: Int) => x + v

• Returns a function that depends on parameter x
• The function returned is not, by itself closed
• Yet this compiles

– Compiler returns a closure: a function together
with references to all the free variables required

• Can be used like any function

Examples

• How makeAdder might be used
– val f = makeAdder(5)
println(f(3)) // prints 8

val g = makeAdder(10)
println(g(3)) // prints 13

– Inside f and g, usages of “x” reference the object
named x when the closure was created.

Closures and Mutability

• Consider…
– def makeArrayAccessor(a: Array[Int]) =

(index: Int) => a(index)

myArray = Array(1, 2, 3)
val accessor = makeArrayAccessor(myArray)
println(accessor(0)) // prints 1
myArray(0) = 2
println(accessor(0)) // prints 2!

– Lesson: Avoid mutable data.

Closures are Natural

• You don’t have to think about them
– def scaleList(myList: List[Int], factor: Int) =

myList map { factor * _ }

• Returns a new list where each element is scaled by
factor

• The function factor * _ (which is syntactic sugar for
(x: Int) => factor * x) is a closure. (Why?)

– scaleList(List(1, 2), 2) == List(2, 4)

	Functional Programming
	Characteristics
	Side Effects
	No I/O?
	Which?
	Example
	Global Data
	Transformative
	Referential Transparency
	Expressions and Side Effects
	Type Unit
	Side Effects in Scala
	Imperative Programming
	First Class Functions
	Function Types
	Lambda Terms
	Scala Syntax
	Functions as Values
	Function Expressions
	Function Expressions
	Type Aliases
	Functions? Methods?
	Filter
	Use of filter
	Foreach
	Map
	FlatMap
	Workhorses
	Example Transformations
	Syntactic Abbreviations
	Example Abbreviations
	More Typical Usage
	Example Transformations
	Option Revisited
	FoldLeft
	Maximum Length?
	Wait, What?
	Multiple Parameter Lists
	FoldLeft Revisted
	Maximum Length Revisited
	Adding a List of Integers
	Exercise
	Consider…
	Implementation
	Free vs Bound
	Closed Expressions
	Closures
	Examples
	Closures and Mutability
	Closures are Natural

