

Erlang

CIS-3030 Programming Languages
Vermont Technical College

Presented By
Peter C. Chapin

Outline

Origins and History

Overview of Features

Sequential Programming

Concurrent Programming

Conclusions

Origins

Research project of the Ericsson telecommuni-
cations company.

“How can one build reliable software systems
from components that might contain errors?”

No existing language found to be suitable.

Ericsson develops a new functional language:
Erlang.

1998: Ericsson stops in-house software
development. Erlang goes open source
http://www.erlang.org.

Success Story

In 1998 Ericsson delivers the AXD301 switch.

Probably the largest system ever written in a
functional language.

1.7 million lines of Erlang.

Considered the most reliable product Ericsson
ever produced.

Feature Overview

Functional with a high degree of purity.

Dynamic Typing

Language level support for concurrency:
encourages the use of a large number of
simultaneous threads.

Language level support for distributed processing
and “hot swapping” of code.

Originally a concurrent dialect of Prolog.

Sequential Erlang

-module(geometry).
-export([areas/1]).
-import(lists, [map/2]).

areas(L) ->
 lists:sum(
 map(fun(I) -> area(I) end, L)).

area({square, X}) -> X*X;
area({rectangle, X, Y}) -> X*Y.

Interesting Tidbits

Has a “binary” type for holding raw binary data
(such as packet headers, etc).

Variables only bound once:

X = 5; X1 = X + 6

X = X + 6 not allowed; X can not be rebound.

“Atoms” are raw names meaningful to the
programmer.

Tuples { tcp, “lemuria.cis.vtc.edu”, 9000 } and
lists [1, 3, 4, 5] are fundamental.

Strings and records are syntactic sugar.

Quicksort

qsort([]) -> [];

qsort([Pivot|T]) ->
 qsort([X||X <- T, X =< Pivot]) ++
 [Pivot] ++
 qsort([X||X <- T, X > Pivot]).

Philosophy of Erlang

Each thread in an isolated address space.

No shared variables, no complicated synchronization.

If one thread malfunctions, it can't affect any other
thread. Failures contained!

Threads communicate by message passing.

Thread creation extremely lightweight.

Very large number of threads feasible (thousands).

No OS support needed (or desired). Erlang runtime is
like an OS.

Generic Erlang Server
-module(server1).
-export([start/3, stop/1, rpc/2]).

start(Name, F, State) ->
 register(Name,
 spawn(fun() -> loop(Name, F, State) end)).

stop(Name) -> Name ! stop.

rpc(Name, Query) ->
 Name ! {self(), Query},
 receive
 {Name, Reply} -> Reply
 end.

loop(Name, F, State) ->
 receive
 stop -> void;
 {Pid, Query} ->
 {Reply, State1} = F(Query, State),
 Pid ! {Name, Reply},
 loop(Name, F, State1)
 end.

Conclusions

Commercially viable functional language. Proven
in the real world.

High level abstractions as well as low level
access.

Makes concurrent programming straight forward
by providing language support for message
passing and multiple threads.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

