Standard Template Library

CIS-3012, C++ Programming
Vermont State University
Peter Chapin

C++ Standard Library

* Every compiler is required by the standard to include a library
* The standard library includes features for doing 1/O, math, string
manipulation, regular expressions, and many other things.
* In C++ most of the standard library is templates
e That portion is called the Standard Template Library (STL).

* The STL is maybe 80% of the standard library?

* What is and is not part of the STL is informal. The standard doesn’t talk about
the STL, per se. However, people do.

Three Main Parts of the STL (pre-2020)

Containers Iterators Algorithms

A means to specify which
subset of objects is to be
operated on by an algorithm
Class templates for class Function templates for
that hold other objects functions that implement
various algorithms

Sequence Containers
Name [Deseripon

std: :vector<T> An array-like collection of T that has a fully dynamic size. It provides high speed
random access but O(n) insertion and erasure.

std: :deque<T> Like vector except with high-speed access to both ends (deque stands for
double-ended queue and is pronounced “deck”).

std::1ist<T> A doubly-linked list with highly efficient insertion and erasure, but O(n) random
access. There are also high-speed splicing methods.

std::forward 1ist<T> Asingly-linked list which is more limited than list, but also uses less memory
per item. This can be important in constrained systems.

Assoclative Contaliners
Name |Description

std: :set<kK> A collection of keys where the keys are stored in sorted order. Normally sets are
implemented as Red-Black trees, although that is not formally required.

std: :multiset<K> A collection of keys where the keys are stored in sorted order. Multisets differ
from ordinary sets in that they allow multiple, equivalent keys.

std: :map<K, V> A collection of (key, value) pairs stored in key-sorted order. Normally maps are
implemented as Red-Black trees of pairs, although that is not formally required.

std: :multimap<K, V> A collection of (key, value) pairs stored in key-sorted order. Multimaps differ
from ordinary maps in that they allow multiple, equivalent keys (with possibly
different corresponding values).

Unordered Associative Containers
I

std: :unordered set<K> A collection of keys where the keys are typically stored in a hash
table. Hashing can be faster in some situations, but not others.

std: :unordered multiset<Kk> Similar in concept to multiset, except using hash tables.

std: :unordered map<K, V> A collection of (key, value) pairs where the keys are typically
stored in a hash table.

std: :unordered multimap<K, V> Similarin concept to multimap, except using hash tables.

Container Adaptors
Name lpeserpion

std: :queue<T> A container for storing items in FIFO order.
std::priority queue<T> Like a queue except items are retrieved in priority order.

std: :stack<T> A container for storing items in LIFO order.

* Container adaptors are not containers themselves
* Instead, they wrap an existing container

* However, they have defaults so they can be used easily
* For example, stack<T> wraps a deque<T> by default.
* You can wrap a different kind of container if you have the need.

Container Adapters in Action

#include <list>
#include <stack>

stack<int> my stackl; // Uses deque<int> internally (default).
my stackl.push(42); // Push onto the stack.

int top item = my stackl.top(); // Get a copy of top item.

my stackl.pop(); // Remove top item.

stack<int, list<int>> my stack2; // Uses list<int> internally.
// etc., same as above.

Ilterators

* An iterator is a pointer-like object...
e ...in the sense that it supports similar operations as do pointers.

* lterator is not a type!

* Every container has a separate iterator type that can be used to
“point into” that container...

e ... and thus access the elements of that container.

* Every container has begin and end methods
* begin() returns an iterator that points at the first element
 end() returns an iterator that points just past the last element

Example: Vector Iterators

#include <vector>
vector<int> vec = { 2, 3, 5, 7, 11, 13, 17, 19 };

vector<int>::iterator it = vec.begin();

cout << *it << endl; // Prints 2

cout << *(it + 3) << endl; // Prints 7; vector iterators allow pointer-like arithmetic
++it; // Vector iterators allow pointer-like increment

cout << *it << endl; // Prints 3

it = vec.end();

cout << *it << endl; // UNDEFINED! The end iterator points off the end!
--it;

cout << *it << endl; // Prints 19

lterator Types

#include <list>
#include <vector>

vector<int> vec =42, 3, 5, 7, 11, 13, 17, 19 };
vector<double> dvec = { 3.14, 2.78, 1.62 };

list<int> 1st = {2, 3, 5, 7, 11, 13, 17, 19 };
vector<int>::iterator it 1 = vec.begin();
vector<double>::iterator it 2 = dvec.begin();
list<int>::iterator. it 3 = lst.begin();

it 1 = it 2; // Error! Type mismatch!
// vector<double>::iterator is a different type than vector<int>::iterator.

it 1 = it 3; // Error! Type mismatch!
// list<int>::iterator is a different type than vector<int>::iterator.

[terator Categories

* In this diagram, the arrows point in the direction of increasing
capability. This is not a UML class diagram! Iterator categories are not

types!

Random Access

Bidirectional

Forward

Random Access lterators

* Operations:
* Increment and decrement
 All six relational operators (1t 1 < it 2isa sensible expression)
* Pointer arithmetic (it 1 + 10 s a sensible expression)
* Multi-pass (can pass over collection multiple times)

* Provided By:
* Vector
* Deque

Bidirectional Iterators

* Operations:
* Increment and decrement
* Only == and = supported
* No pointer arithmetic
* Multi-pass (can pass over collection multiple times)

* Provided By:
* List
e Set/Multiset
* Map/Multimap

Forward lterators

* Operations:
* Increment only
* Only == and = supported
* No pointer arithmetic
* Multi-pass (can pass over collection multiple times), but only one way

* Provided By:
e Forward List
* Unordered Set/Multiset
e Unordered Map/Multimap

Input/Output Iterators

* Operations:
* Increment only
* Only == and = supported
* No pointer arithmetic
 Single-pass (can only pass over collection once)
* Input Iterators provide read-only access to collection elements
* Output Iterators provide write-only access to collection elements

* Provided By:
* |streams (input)
e Ostreams (output)

Pointers?

* Ordinary pointers have all the operations of random access iterators
* Thus, pointers are a kind of iterator

* This unifies pointers (and therefor arrays) with the other containers in the
standard template library.

* That s, an ordinary C-style array is a kind of container and can be treated
largely the same way as the other containers.

#include <iterator>
int array[128];
int *pl = std::begin(array); // Points at the first element.

int *p2 = std::end(array); // Points just past the last element.
// std::begin and std::end can also be used with the STL containers.

lterators and Range-Based For Loops

vector<int> my vector = { .. };
for(int x : my vector) { .. }

list<int> my list = { .. };
for(int x : my list) { .. }

set<int> my set = { .. };
for(int x : my set) { .. }

string my string = .. ;
for(char x : my string) { .. }

int my array[128] = { .. };
for(int x : my _array) { ..}

// Any container type that provides appropriate iterators can be used this way.
// Including your own classes!

Algorithms!

