Life Cycle Methods

CIS-3012, C++ Programming
Vermont State University
Peter Chapin

External Resources

* Many classes manages resources that exist outside the class objects
themselves...
* ... memory is the most common such resource, but...
 ...open file handles...
e ... open network connections...
* ... handles to graphical contexts...
 ...open hardware devices (serial ports, printers, etc.)...
* There are other examples.

Garbage Collection

* Many languages automatically reclaim dynamically allocated memory
that can no longer be reached or used.

* The runtime system (i.e., “garbage collector”) automatically locates and
recycles that unreachable memory (i.e., “garbage”).

* C++ implementations typically do not include garbage collectors.
*).

* Garbage collection is great, but there are two problems with it...

Problems with Garbage Collection

* It greatly complicates the runtime system.

* For example, in Java garbage collection is done by the Java Virtual Machine,
which is a huge body of software.

* For some small-scale, highly constrained embedded devices, there just aren’t
the resources (memory, processor power) to run a garbage collector.

* Classic garbage collection is great for memory, but it does nothing
about all the other resources the program is using!
* You might not be leaking memory, but are you leaking open file handles??
* Some programming languages have glued-on features to deal with this.
* C++ has a comprehensive solution.

The Destructor

* A class’s destructor is a method that releases any external resources
held by the object.

* It is automatically called by the compiler when appropriate.
* ...when a local variable disappears at the end of its scope.
* ... when a function parameter disappears when a function returns.
* ... when a global variable disappears when the program ends.

* It is possible, but exceedingly rare to call the destructor manually.

Class Biglnteger

class BigInteger { / In general, there can be many constructors with various parameters

// The default constructor.
BigInteger();

// The destructor.
~BigInteger ();

¥ \

There is only one destructor, and it is always parameter-less

Destructor Definition

No return type, like constructors
/ / No parameters

BigInteger::~BiglInteger ()
{
delete [] digits;

} '\

Release the dynamically allocated array

lnvariants?

* Since the destructor is only called (by the compiler) when the object
is disappearing, it need not leave the object in a sensible state.
* Destructors only must worry about releasing external resources.
* |t is okay for invariants to be violated.
* |t is #poessible difficult to even access an object after destruction.

Constant-ness?

* During construction, the members of a const object are not
considered to be const.
* Objects are changing during their initialization even if they are ultimately
constants after that point.

* Also... during destruction, the members of a const object are again
not considered to be const.

* Even constant objects need to have their resources released!

Resource Management

* Objects acquire resources during construction
 ...or during their lifetimes.

* Objects release resource during destruction.

e Examples:
 Allocate memory in constructor / free memory in destructor.
* Open file in constructor / close file in destructor.
* Connect to server in constructor / disconnect from server in destructor.

* Configure serial port in constructor / restore port to original configuration in
destructor.

e Open window in constructor / close window in destructor.

Exceptions and Destructors

void f()
{

string some string{ etc };

bad thing();

} \ The function bad thing () throws an exception...

The dynamic memory held by some stringis still reclaimed!

Exceptions and Destructors

* When an exception propagates to the callers...

* The destructors of all fully constructed local objects in each abandoned
context are automatically called.

* Thus, as an exception unwinds the call stack looking for a handler...
* Memory is automatically reclaimed...
* Files are automatically closed...
* Network connections are automatically disconnected...
* Hardware configurations are automatically restored...

* All provided you write destructors appropriately!

RAI

e Resource Acquisition is Initialization
* An idiom whereby resources are acquired in constructors (during
initialization)
 ...and then released in destructors.

* RAl is extremely common in C++ class design. You will see it

everywhere.

* This is why you don’t have to worry about deallocating the memory held by
std: :string objectsor std: :vector objects. Their destructors do it.

* It is also used for locking in multi-threaded applications (constructor acquires
lock, destructor releases lock... even when an exception is thrown).

* |tis used by iostreams to ensure files always get closed.

What About Copying?

Biginteger Object
Copying the object creates two objects that point at the same storage!

size t digit count;

storage type *digilts;

Storage Area

Dynamically allocated space on the heap for the digits

The Problem With Copying

* Changes to one object are seen by the
other. This violates expected value semantics.

* If one object reallocates, the other object
size t digit count; can’t find the new allocation.
storage type *digilts;

* If one object deletes the allocation (i.e.,
is destroyed), the other object is left
pointing at unallocated memory.

\ 4

Storage Area

a

size t digit count;

storage type *digilts;

Copy Management

// Copy constructor
BigInteger (const BiglInteger &other);

// Copy-assignment operator
BigInteger &operator=(const BiglInteger &other);

* Normally these are automatically generated by the compiler.
* You can define them yourself to “do the right thing.”
* Why two?

* The copy constructor is used to initialize an object with a copy of other.

* The copy-assignment operator is used to assign a copy of other to an
already existing (and already initialized) object.

Copy Constructor

* The copy constructor is an ordinary constructor that can be called
using a single argument of the class.

* So, additional parameters with default values would be okay.

* It is used automatically by the compiler whenever you try to initialize
an object by copying some other object of the same type.
* Indeclarations: BigInteger x; BigInteger vy{ X };

 When passing a function argument by value: void f (BigInteger
value); f£(x).Notice herethat £ is declared as takinga BigInteger
by value, not by reference (as might often be the case).

* When returning from a function: BigInteger g(); x = vy + g().
The return value is copy-constructed to a temporary that is added to v.

Biginteger Copy Constructor

BigInteger::Biglnteger (const BigInteger &other)

{
// Allocate a new storage area to hold the copy of the digits.

digits = new storage type[other.digit count];

// Copy the digits from the other object using C’s memcpy for speed.
memcpy (digits, other.digits, other.digit count * sizeof(storage type));

// Don’t forget to make a copy of the other object’s digit count!

digit count = other.digit count;

This implementation isn’t quite right because it doesn’t deal with the case when other is zero
I’'m ignoring that for now to avoid distraction

Copy-Assignment: Why?

* |f copy constructors can copy, why do we need a separate copy
assighment operator?

 |nitialization and assignment are not the same!

* |nitialization gives an object its first value.
* Assignment overwrites an existing value with a new value.

* Thus...
* When doing copy construction, there is no need to clean up the target object.
* When doing assignment there is such a need.
* Assignment is somewhat like destruction + copy construction...
 ...the compiler does not automatically generate that, however!

Initialization vs Assignment

* People are sometimes confused about the distinction because for
simple types there is no effective difference.

* Also, in languages that only handle complicated types by reference (e.g.,
Java), the matter doesn’t come up because the references themselves are

simple.
int x; < default construct” x int x = 42;
(which does nothing for type int) '\
x = 42; “copy construct” x
\ (there is no "old value” to remove.
Assign to x. The old value is removed
by simply overwriting it with the new int x{ 42 };
value. T

Same as above using uniform initialization syntax

Initialization vs Assignment

* For complicated types, there is a big difference!

Default construct x
.~ (which is non-trivial)

BigInteger x;

x = 42;

e

Assign to x. This first requires that
the storage previously allocated for
X be removed. Then, new storage is
allocated for the copy.

BigInteger x{ 42 };

"

Copy construct x. Storage is allocated
To hold a copy of the initializer.
(there is no “old value” to remove.

Initialization is potentially faster!
This is because there is no need to clean up the target object first
... and no need to execute a pointless default constructor.

C++ Allows Declarations Anywhere

* This is not just a convenience feature.

e BP: Always initialize (i.e., call an appropriate constructor on) an object when it
is declared. Instead of declaring it first and assigning to it later.

* If you don’t know the initializer (i.e., constructor arguments) yet, move the
declaration to a place where you do.

* Consider declaring the object const if possible.

* This is normal for functional languages where objects are all
immutable and can’t be assigned a value after initialization (i.e.,
construction).

* There are places where exceptions to this idea are appropriate.

BigInteger Copy-Assignment Operator (v1)

BigInteger &BiglInteger::operator=(const BigInteger &other)

{
// Clean up target object (*this).

delete [] digits;

// Copy ~other” wvalue.

digits = new storage type[other.digit count];

memcpy (digits, other.digits, other.digit count * sizeof(storage type));
digit count = other.digit count;

// Return a reference to the target object.
return *this;

This implementation has some problems
(other than the fact that it also doesn’t handle zero properly)

Problem #1: Exception Safety

* If an exception is thrown during the execution of a method, in what
state will that leave the object?

» Strong Safety: The object retains its original value and continues to work
properly. Any effect the method had before the exception is thrown is undone.

» Basic Safety: The object’s value may have been changed, but the object
continues to work properly (all invariants remain satisfied).

* No Safety: The object is corrupted and unusable. However, the object remains
destructible (meaning, the destructor will execute without crashing and
recover all resources as usual)

* There Be Dragons: The object is no longer destructible. Do not go there!!

Evaluating Exception Safety

* First... which operations in the method might throw?
* For Biglnteger’s copy-assignment operator (v1)...
* ...the only operation that might throw is the dynamic memory allocation.
* It might throw std: :bad alloc if thereis insufficient memory.

* Now, suppose it does throw. Where does that leave the object?

 The digits array has just been deleted (deallocated)
* Thedigit count member continues to have its original value.

 The invariant is violated!

* [t's worse
* The object is not destructible! The digits array will be double-deleted.

BigInteger Copy-Assignment Operator (v2)

BigInteger &BiglInteger::operator=(const BiglInteger &other)

{
// Try the allocation first. If this throws there is no other effect.

storage type *temp = new storage type[other.digit count];
// Nothing below this point can throw.

// Clean up target object (*this).
delete [] digits;

// Copy " other’ wvalue.

digits = temp;

memcpy (digits, other.digits, other.digit count * sizeof(storage type));
digit count = other.digit count;

// Return a reference to the target object.
return *this;

Exception Safety?

* In version 2, the allocation (that might throw) is done first.

* If an exception is thrown, the object is unchanged: we have strong exception
safety!

e The downside:

* For a short time, we need enough memory to make a copy of the other
object’s digits while at the same time hold on to the memory for the target

object’s digits.
* Thus, the exception safety has memory costs
* No big deal if the numbers have only a few digits. What if they have billions?

e Conclusion: You can’t have it all!

Problem #2: Self-Assignment

* Normally the copy-assignment operator needs to protect itself from
the possibility that an object is being assigned to itself.

* The BigIinteger copy-assignment operator v1 fails spectacularly in that
case.

* It deletes digits beforeit copies other.digits. If other isthe same
object, it will be trying to copy a deleted array.

 What about v2?
* Hint: It has the same problem.

* We could rearrange the code to deal with this too, but first... why
should we even care about this?

Self-Assignment

e Self-assignment looks like this (for integers):

int x;
int *p = &x; // p points at x

X = *p; // Assigns x to itself.

* Here is a more compelling example:

int array[128];

// Copy element at position k to every array location.
for(int i = 0; 1 < 128; ++1) {
array[i] = arrayl[k]; // When 1 == k this assigns array[k] to itself.

}

BigInteger Copy-Assignment Operator (v3)

BigInteger &BiglInteger::operator=(const BigInteger &other)
{

// Boiler plate for avoiding self-assignment.

if (this != &other) {

storage type *temp = new storage type[other.digit count];

// Clean up target object (*this).
delete [] digits;

// Copy ~other® wvalue.
digits = temp;
memcpy (digits, other.digits, other.digit count * sizeof(storage type));
digit count = other.digit count;
}

return *this;

return *this??

* In C and C++, assignment is an operator, and we have assignment
expressions.
* This is unusual. In many languages assignment is a statement form.

* C has what are called expression statements that are made by adding
a semicolon to the end of an expression.
* Most languages don’t do this unless they are based on C semantics.

int x, vy, z;

X + v // Legal. An expression statement from an add expr.
z = x + vy; // Legal. An expression statement from an assignment expr.

Say What?

e Consider:

* x + vy; isavalid statement, but it has no effect since addition changes
neither operand and nothing is done with the result.

e x = y; isavalid statement, bit it does have an effect since assignment
changes its left operand.

* In any event, = is an operator in C/C++ and, in C++, it can be overloaded.

e Assignment normally returns the left operand after the assignment
(and any implicit type conversions) has happened.

e Thus:x = yv + (a = Db); islegal. It puts the value of b into a, returning

the new a (i.e., the value of b after implicit type conversions), adds that result
to v and puts the final answer into x.

s It Useful?

* Sometimes
* One semi-common usage is to chain assignments

int x, vy, z;
X=y=Z=O;

* Because assignment associates from right to left, the above is the same as

int x, vy, z;
x = (y = (z =20));

This has the effect of assigning zero to z. Then since z = 0 returns O, that
zero gets assigned to vy, etc. You might want to do this with your own classes
too!

User-Defined Copy-Assignment

* You could declare your operator=() toreturn void.
* Most of the time nobody would notice and it’s less quirky.
* But it will prevent chaining assignments.

* Thus, it is normal to declare operator=() toreturn a reference to
the class (BigInteger &).
* Then, as the last statement of the implementation:
* return *this;

Copy Construction vs Copy-Assignment

* Copy constructors are much simpler than copy-assignment operators.
* There is no existing value to clean up.

* Exception safety is easier
* No existing value to worry about preserving.

* No need to maintain invariants or destructibility because the destructor will not run on

objects that fail to construct*. Also, such objects are impeossible difficult to access so the
programmer can’t touch/use them.

* No need to worry about self-assignment
e Constructors don’t return anything, so the return type is not relevant

* The copy constructor is likely faster and/or consumes fewer resources
 |nitialize objects when they are declared. Avoid assigning to objects!

* If you throw in a constructor, be sure to release resources already acquired before the throw!

The Triad (Life Cycle Methods)

* The following three methods go together:

~BigInteger ()
BigInteger (const BigInteger &other);
BigInteger &operator=(const BiglInteger &other);

* If you have one, you probably need all three.
* Some compilers will warn if you are missing one or two.

* Classes that manage external resources need...
... a destructor to release those resources AND

* ... a copy constructor and copy assignment operator to manage copying those
resources.

| Don’t Want To Copy

 Certain classes don’t make sense to copy.
* The std: :thread class manages a thread of execution. What would it even
mean to copy an executing thread?

* However, if you don’t define your own copy constructor and copy-
assignment operator, the compiler will generate one that copy
(constructs/assigns) the members.

* You can suppress this:

BigInteger (const BigInteger &other) = delete;
BigInteger &operator=(const BigInteger &other) = delete;

Deleting the methods tells the compiler to not generate them.
Also, you don’t implement them.
Attempts to copy objects become compile-time errors.

But Wait! There’s move... er... more!

* FINISH ME!

