
C++ Programming
Introduction

Peter Chapin
Vermont State University

CIS-3012, C++ Programming

The Language People Love to Hate

• C++ is…
• … old. The first standard was finished 1998, but the language dates from circa

1980 when it was originally called “C with Classes.”
• … very large. C++ has many features. It has the dubious distinction of being

possibly the largest and most complex programming language ever created.
• … quirky. C++ has multiple ways of doing the same thing (for legacy

compatibility with itself) and strives for C compatibility.
• … hard to master. Because C++ is so large and quirky, it takes a lot of study to

learn it well. As a result, there is a lot of bad C++ out there.
• … unsafe. Because the language supports the same low-level features as C, it

is possible to accidentally write programs that break themselves.

OTOH

• C++ is…
• … flexible. You can use multiple programming paradigms and many

programming techniques with C++. It gives wide design flexibility.
• … powerful. C++ provides features for building easy-to-use abstractions that,

when written well, can make solving hard problems simple.
• … fast. C++ programs are normally as fast as C programs, and sometimes even

faster. They are often far faster than programs written in other languages.
• … modern. Yes, C++ has a bunch of cruft from its early days, but if you can

navigate around that, it is a very modern language with advanced abilities.

“Within C++ there is a much smaller and cleaner language struggling to get out.”
-- Bjarne Stroustrup (creator of C++)

https://www.stroustrup.com/quotes.html

C++ is Compatible with C

• In the following ways:
• You can (mostly) compile C programs using a C++ compiler. This is source code

compatibility.
• Not 100%. There are a few C features that produce errors with C++, but the errors are

usually easy to fix.
• You can call C functions from C++ if they were compiled with a compatible C

compiler (e.g., g++ and gcc).
• This allows you to use pre-compiled C libraries in C++ programs.

• You can use C++ as a “better C.”
• That is, you can use the same methods and designs as you would for C, and use C++

features here and there to improve the quality of what would otherwise be plain C code.

Yet C++ is not C

• This is not C*:
map<string, int> composers{ { “Bach”, 1685 }, { “Mozart”, 1756 }, { ”Chopin”, 1810 } };

// Loop over the names of the first three composers born after 1700.
for(const auto &elem : composers

| v::filter([](const auto& y) { return y.second > 1700; })
| v::take(3)
| v::keys) {

// Print the names.
cout << elem << endl;

}

* Code adapted from C++20 The Complete Guide (version 2022-10-30) by Nicolai M. Josuttis, page 123

The technique of pipelining data through multiple transformative stages is like what
is done in advanced functional languages such as Haskell, Scala, OCaml, etc.

Modern C++

• Using C++ as a better C is fine…
• … especially if you are migrating an existing C program to C++

• … but it leaves a lot of what C++ has to offer on the table!
• Modern C++ allows you to write programs almost as concisely as can be done

in scripting languages.

• Also, modern C++ is much, much safer than many people assume.
• Can automatically reclaim memory and other resources.
• Can use “smart” pointers.
• Has tools that help with thread safety and exception safety.

• Some of the haters think C++ is just C warmed over. It isn’t!

Standard C++

• C++ is standardized by the International Organization for
Standardization (ISO)

• It is not defined by a single reference implementation.
• It is not defined by a proprietary standard.
• Anyone can use the name “C++” without paying fees or getting sued.

• The standard dictates what is and is not correct C++
• If your compiler disagrees with the standard, your compiler is wrong by

definition.
• If you write programs that follow the standard they should work on all

conforming implementations of the language (i.e., compilers).

Standard C++: History

• C++ 1998 (aka “C++ 98”)
• The original version, now very old, but still a rich and powerful language.

• C++ 2011
• A major update with many new features

• C++ 2014
• A minor update

• C++ 2017
• A minor update

• C++ 2020
• A very significant update with several important new features

• C++ 2023
• A minor update that smooths off some of the C++ 2020 features

Which Version?

• When working with C++ it is probably best to choose a version
• Then don’t use features from newer versions!
• This allows your code to work with older compilers (if desired). For example,

to support a legacy compiler, you might have to program against C++ 98
(worst case), or C++ 2011, and not have access to the newer features.

• We will use C++ 2020 in this class
• It is modern and contains some important new features
• It is old enough to have reasonable compiler support
• C++ 2023 is too new; compiler support is spotty
• g++ -std=c++20 myprog.cpp

Compilers? The Big Three

• There are three major, independent C++ compilers
• Microsoft Visual C++ (Windows)

• Closed source
• G++ (Unix-like)

• Open source
• Clang++ (Unix-like, especially macOS)

• Open source, sponsored by Apple (among others) as part of the LLVM effort, but
available widely

• All three are…
• Modern: follow the latest standards.
• Advanced: many sophisticated compiler features.

https://learn.microsoft.com/en-us/cpp/
https://gcc.gnu.org/
https://clang.llvm.org/
https://llvm.org/

Other Compilers?

• There are many other C++ compilers but…
• Some are re-packagings of one of the Big Three and not independent.
• Some are very old are not maintained or only “slightly” maintained (e.g.,

Open Watcom C++)
• Intel C++

• Uses LLVM technology, but I don’t think it uses the Clang front-end (unsure).
• Does not support Apple’s ARM processors (no surprise).

• IBM C++
• Also uses LLVM technology, but again without the Clang front-end (I think).

https://github.com/open-watcom/open-watcom-v2
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.ibm.com/products/c-and-c-plus-plus-compiler-family

Our Compiler

• Officially for this course we will use g++ on Lemuria (Ubuntu 22.04).
• Standardizing allows you to be sure I will see the same effects you see.

• If your program compiles and runs, it will for me also.
• If you have a problem with your program, I will see the same problem when I help you.

• We all have access to this compiler, and its environment is the same for all.

• But…
• I’m fine with you using something different most of the time. In fact, I

encourage it.
• Just be sure to check your programs using g++ on Lemuria before you submit!
• That’s the compiler I will use to test your programs.

http://lemuria.cis.vermontstate.edu/%7Epchapin/cis-3012/DevEnvironments.html

Recommended Development Environments

• I will support (to various degrees) the following:
• SSH access to Lemuria with a text editor (Nano, Emacs, Vim) and g++.
• Visual Studio Code with g++ on Linux, macOS, and Windows (via Cygwin).
• Eclipse with the CDT with g++ on Linux, macOS, and Windows (via Cygwin).
• CLion from JetBrains with g++ on Linux, macOS, and Windows (via Cygwin).
• Visual Studio. Windows only. Very powerful. No Makefiles.
• Code::Blocks with g++ on Linux or Windows (macOS support is very old).

• The current official release of Code::Blocks (20.03) is somewhat old and has limited C++
2020 support. That may affect some assignments.

• I’m not sure if Code::Blocks has Makefile support; but I think it does.
• XCode? macOS only. No Makefiles?

Why Does It matter?

• If C++ is standardized, shouldn’t all compilers be the same?
• Yes, but only if you write programs that: make no use of platform-specific

libraries or compiler extensions, and don’t engage in any implementation-
defined, unspecified, or undefined behavior.

• In general, it is difficult to do this, so it is common for a program to work in
one environment and not in another

• Also, compilers have bugs and limitations, so even programs that should work
across all compilers might not

• Let’s examine each of the conditions mentioned above…

Platform-Specific Libraries

• The Least Common Denominator effect:
• The standard defines facilities that make sense on all platforms
• Most programs want to use specialized facilities available for their platform

• For example…
• The header <windows.h> declares Windows API functions. These functions

are not available on Unix-like systems.
• OTOH the header <unistd.h> declares Unix API functions that are not

available on Windows.

• Quick! Is the header <fcntl.h> a platform-specific header?
• Now you are seeing the problem.

Compiler Extensions 1

• gcc accepts the following program:

int main()
{

// Nested function definition is not standard!
int increment(int number) {

return number + 1;
}
int x = 0;

x = increment(x);
printf("The answer = %d\n", x);

return EXIT_SUCCESS;
}

Compiler Extensions 2

• The standard allows compilers to implement extensions…
• … if those extensions do not interfere with standard programs!

• The C standard does not allow nested functions…
• … but the compiler vendor can implement it without changing the meaning of

a program that doesn’t try to use the feature.

• However, the previous program isn’t portable
• The --pedantic option on gcc warns about these things:

check.c:6:5: warning: ISO C forbids nested functions [-Wpedantic]
6 | int increment(int number) {

| ^~~

Implementation Defined Behavior 1

• The standard allows compilers to do things differently.
• If something is implementation defined it means:

• Each implementation (… of the language, i.e., each compiler) is allowed to
make its own choices, generally within limits.

• AND… each implementation must document those choices

• If your program uses something that is implementation defined…
• … it may behave differently with a different implementation (of the language),

and so it is not portable
• BUT your program is perfectly well behaved on the implementation that has

the documented behavior you need.

Implementation Defined Behavior 2

• The C++ 2020 standard states the range of type int is at least -32768
to +32767. The precise range is implementation defined.

• The following program is not portable:

int main()
{

// Code assumes 1’000’000 can fit into int. That is not guaranteed.
int x = 1’000’000;
…
return 0;

}

Implementation Defined Behavior 3

• Why???
• The C and C++ standards assume target systems might exist over a

huge range…
• … from tiny, 16-bit microcontrollers with 4 KB or RAM (or less!)
• … to huge supercomputers with 128-bit registers.

• … and over highly exotic architectures…
• … with memory segments and segmented addresses (32-bit x86 has this)
• … with NUMA (non-uniform memory access)
• … with 9-bit bytes
• … etc!

Implementation Defined Behavior 4

• By allowing implementations to define certain aspects of the
language it is possible to implement the language effectively across a
broad range of machines.

• Contrast: Java
• Fixes the sizes of the primitive types
• … this is convenient for the programmer
• … but means that Java can’t reasonably be implemented on a tiny system (16-

bit microcontroller with 4 KB RAM. Ha!)
• … and can’t take full advantage of a huge system. For example, in Java you

can’t create an array with more than 2,147,483,647 elements because int is
forced to be 32-bits.

An Aside…

• The Big Three compilers when targeting 64-bit systems are all LP64
implementations.

• L…64 long integers are 64-bits
• …P64 pointers (addresses) are 64-bits
• BUT plain integers are still 32 bits
• short integers (‘short int’) are 16 bits
• long long integers (‘long long int’) are also 64 bits

• Some people think C and C++ are always like this. Not so!
• Note that the standard requires ‘long long int’ to always be (at least) 64 bits

on all implementations, even on a tiny microcontroller.

Demonstration

• See the program types.cpp
• When compiled and run, it displays information about the range of all the

primitive types used by your particular compiler.
• If you compile and run it on a different compiler, you might get different

results…
• … but for any particular implementation, the results will be consistent and can

be relied upon.

Unspecified Behavior 1

• Certain aspects of the language are left unspecified by the standard…
• … but are things correct programs still do.

• If your program’s output depends on unspecified behavior…
• … your program is not portable
• … it may even not do the same thing each time you run it!
• Computer science jargon: your program is nondeterministic.
• Compiler vendors are not required to document what their compiler does.

Unspecified Behavior 2

• Classic example: the order of evaluation of function arguments is
unspecified

• Which is computed first: x + y or z – w?
• It could go either way
• The compiler doesn’t have to document what it does.
• It could be different in each place where do_something is called.
• It could be different each time the program runs (although that is very rare).

• In this example it doesn’t matter. That’s what you want!

do_something(x + y, z – w);

Unspecified Behavior 3

• Now consider this example:

• Suppose f() outputs “Hello” and g() outputs “World”
• Does this output “HelloWorld” or “WorldHello”?
• You don’t know what you’ll get!

• If it happens to do what you want, you might think your program is
fine.

• Actually, your program is non-portable and unreliable.

do_something(f(), g());

Unspecified Behavior 4

• Why??
• By allowing compiler vendors the freedom to do certain things however they

see fit, and not documenting it…
• ... the optimizer can be more aggressive.

• There might be advantages with using different evaluation orders:
• Better register usage
• Fewer register/memory moves
• Reuse of previously computed values (which are effectively computed first)

• Sometimes a program will work in debug mode but fail in release.
• Often that’s because the program is engaging in unspecified behavior.

Undefined Behavior 1

• “Behavior for which this document imposes no requirements.”
• Section 3.57 of ISO/IEC 14882:2020(E), “Programming Languages – C++”

• Usually, the program crashes.
• But…

• ... the program might, say, reformat your hard drive.
• … terminate with an easy-to-understand error message.
• … fail to compile.
• … work normally and do something sensible (i.e., some kind of extension).

Anything Can Happen!

Undefined Behavior 2

• Classic Example: Accessing an array out of bounds.

• The effect is usually a program crash, but it might…
• … change the value of an unrelated variable
• … cause the program to execute unrelated code when the function returns
• … or do pretty much anything else!

• Undefined behavior is often called UB on internet forums.

int array[128];

array[128] = 0; // Undefined behavior!

Undefined Behavior 3

• Other examples of undefined behavior:
• Reading or writing out of bounds of an array.
• Integer overflow.

• Most compilers just let integers wrap-around, but technically it is UB.
• A compiler could check for integer overflow and throw an exception as an extension.

• Dereferencing a null pointer for reading or writing.
• Computing the difference between two pointers that point into different

arrays.
• Using a bit shift distance that is greater than the number of bits in the value

being shifted.
• Many, many other things.

Undefined Behavior 4

• Why??
• Having undefined behavior gives the compiler a lot of room to maneuver

• More aggressive optimization is possible.
• Space for experimental features while still conforming to the standard.

• For example, there was an experimental version of gcc that did check array bounds!
• Space for future standards to define currently undefined things without breaking

backwards compatibility.
• Avoid forcing compilers to implement hard things.

• That experimental version of gcc? It’s complicated and causes programs to have high
space/time overheads.

• Programmers want everything well-defined and well-specified.
• Compiler vendors want everything undefined and unspecified!

I Want Portability

• If you want to write a program that will work everywhere:
• Do not use any platform-specific features.
• Do not use any compiler extensions.
• Do not rely on any implementation defined aspects of the language.
• Do not depend on any unspecified behavior.
• And for God’s sake, don’t do anything undefined!

• Oh, and…
• Only use compilers that fully implement the standard and are bug-free.

Good luck with that!

Okay, It’s Not That Bad

• To enhance portability:
• Well-written programs use a style that tends to avoid undefined and

unspecified behaviors.
• Many implementations on the same or similar platforms make the same

implementation-defined choices.
• For example, LP64 compilers for 64-bit targets.

• Programs with simple I/O requirements can often use the standard I/O library.
• Compiler bugs are relatively rare, especially on mundane code.
• Using an older standard increases the likelihood of a full implementation.
• Non-portable code can be partitioned into its own module.

• Thus, only a well-defined section of the program will need adjusting.

About Me

• I first learned C++ in the late 1980s.
• I participated on X3J16 in the early to mid 1990s.

• X3J16 was the ANSI committee charged with standardizing C++.
• IOW, I worked on the C++ 98 standard.

• I wrote some C++ programs as a consultant (1990s)
• Taught C++ at Vermont Technical College to the CPE and CSE students.

• Our Algorithms and Data Structures course was once in in C++.

• Contributed to the Open Watcom project…

Open Watcom

• Open Watcom has a special place in my heart
• We used the commercial Watcom compiler at VTC in the 1990s.
• Compiler was taken off the market (couldn’t compete against Microsoft).
• Released as open source around 2000.

• I contributed to Open Watcom starting in the early 2000s
• I worked on updating the compiler to C++ 98 (the latest standard at the time).
• I wrote about half of the C++ standard template library for Open Watcom.
• I served as the project maintainer for a year or so.

And Now

• I took a hiatus from C++ for a while.
• I went back to school (2004) to get my PhD in computer science where I used

Scala extensively in my dissertation research (2004-2013).
• I got involved the VTC’s CubeSat project which uses Ada and SPARK to write

ultra-reliable flight software for spacecraft (2008-2022).

• More recently…
• … I started teaching this elective (CIS-3012) using C++ 2011.
• This year I’m upgrading to C++ 2020. Spent time last summer studying the

new features and updating my notes, examples, and slides.

Enjoy!

	C++ Programming�Introduction
	The Language People Love to Hate
	OTOH
	C++ is Compatible with C
	Yet C++ is not C
	Modern C++
	Standard C++
	Standard C++: History
	Which Version?
	Compilers? The Big Three
	Other Compilers?
	Our Compiler
	Recommended Development Environments
	Why Does It matter?
	Platform-Specific Libraries
	Compiler Extensions 1
	Compiler Extensions 2
	Implementation Defined Behavior 1
	Implementation Defined Behavior 2
	Implementation Defined Behavior 3
	Implementation Defined Behavior 4
	An Aside…
	Demonstration
	Unspecified Behavior 1
	Unspecified Behavior 2
	Unspecified Behavior 3
	Unspecified Behavior 4
	Undefined Behavior 1
	Undefined Behavior 2
	Undefined Behavior 3
	Undefined Behavior 4
	I Want Portability
	Okay, It’s Not That Bad
	About Me
	Open Watcom
	And Now
	Slide Number 37

