C++ Programming
Introduction

Peter Chapin
Vermont State University
CIS-3012, C++ Programming

The Language People Love to Hate

e C++is...

e ...old. The first standard was finished 1998, but the language dates from circa
1980 when it was originally called “C with Classes.”

... very large. C++ has many features. It has the dubious distinction of being
possibly the largest and most complex programming language ever created.

... quirky. C++ has multiple ways of doing the same thing (for legacy
compatibility with itself) and strives for C compatibility.

... hard to master. Because C++ is so large and quirky, it takes a lot of study to
learn it well. As a result, there is a lot of bad C++ out there.

... unsafe. Because the language supports the same low-level features as C, it
is possible to accidentally write programs that break themselves.

OTOH

e C++is...

e ... flexible. You can use multiple programming paradigms and many
programming techniques with C++. It gives wide design flexibility.

... powerful. C++ provides features for building easy-to-use abstractions that,
when written well, can make solving hard problems simple.

... fast. C++ programs are normally as fast as C programs, and sometimes even
faster. They are often far faster than programs written in other languages.

e ...modern. Yes, C++ has a bunch of cruft from its early days, but if you can
navigate around that, it is a very modern language with advanced abilities.

“Within C++ there is a much smaller and cleaner language struggling to get out.”
-- Bjarne Stroustrup (creator of C++)

https://www.stroustrup.com/quotes.html

C++ is Compatible with C

* In the following ways:

* You can (mostly) compile C programs using a C++ compiler. This is source code
compatibility.

* Not 100%. There are a few C features that produce errors with C++, but the errors are
usually easy to fix.

* You can call C functions from C++ if they were compiled with a compatible C
compiler (e.g., g++ and gcc).
* This allows you to use pre-compiled C libraries in C++ programs.
* You can use C++ as a “better C.”

* That is, you can use the same methods and designs as you would for C, and use C++
features here and there to improve the quality of what would otherwise be plain C code.

Yet C++is not C

. . *
* Thisis not C:
map<string, int> composers{ { “Bach”, 1685 }, { “Mozart”, 1756 }, { ”“Chopin”, 1810 } };

// Loop over the names of the first three composers born after 1700.

for(const auto &elem : composers
| vi:filter([] (const auto& y) { return y.second > 1700; })
| v::take (3)
| v:iikeys) {

// Print the names.
cout << elem << endl;

The technique of pipelining data through multiple transformative stages is like what
is done in advanced functional languages such as Haskell, Scala, OCaml, etc.

* Code adapted from C++20 The Complete Guide (version 2022-10-30) by Nicolai M. Josuttis, page 123

Modern C++

e Using C++ as a better Cis fine...
* ... especially if you are migrating an existing C program to C++

e ... but it leaves a lot of what C++ has to offer on the table!
* Modern C++ allows you to write programs almost as concisely as can be done
in scripting languages.
* Also, modern C++ is much, much safer than many people assume.
e Can automatically reclaim memory and other resources.
e Can use “smart” pointers.
* Has tools that help with thread safety and exception safety.

* Some of the haters think C++ is just C warmed over. It isn’t!

Standard C++

e C++ is standardized by the International Organization for
Standardization (I1SO)
* |t is not defined by a single reference implementation.
* |tis not defined by a proprietary standard.
* Anyone can use the name “C++” without paying fees or getting sued.

* The standard dictates what is and is not correct C++
* |f your compiler disagrees with the standard, your compiler is wrong by
definition.
* If you write programs that follow the standard they should work on all
conforming implementations of the language (i.e., compilers).

Standard C++: History

e C++ 1998 (aka “C++ 98")

* The original version, now very old, but still a rich and powerful language.

e C++ 2011

* A major update with many new features

e C++ 2014

* A minor update

e C++ 2017
* A minor update

e C++ 2020

* A very significant update with several important new features

e C++ 2023

* A minor update that smooths off some of the C++ 2020 features

Which Version?

* When working with C++ it is probably best to choose a version
* Then don’t use features from newer versions!

* This allows your code to work with older compilers (if desired). For example,
to support a legacy compiler, you might have to program against C++ 98
(worst case), or C++ 2011, and not have access to the newer features.

* We will use C++ 2020 in this class
* |t is modern and contains some important new features
* |tis old enough to have reasonable compiler support

e C++ 2023 is too new; compiler support is spotty
« g++ —std=c++20 myprog.cpp

Compilers? The Big Three

* There are three major, independent C++ compilers

e Microsoft Visual C++ (Windows)
* Closed source
e G++ (Unix-like)
* Open source
e Clang++ (Unix-like, especially macOS)

* Open source, sponsored by Apple (among others) as part of the LLVM effort, but
available widely

e All three are...
 Modern: follow the latest standards.
* Advanced: many sophisticated compiler features.

https://learn.microsoft.com/en-us/cpp/
https://gcc.gnu.org/
https://clang.llvm.org/
https://llvm.org/

Other Compilers?

* There are many other C++ compilers but...
 Some are re-packagings of one of the Big Three and not independent.

* Some are very old are not maintained or only “slightly” maintained (e.g.,
Open Watcom C++)

* Intel C++
e Uses LLVM technology, but | don’t think it uses the Clang front-end (unsure).

* Does not support Apple’s ARM processors (no surprise).

* |BM C++
* Also uses LLVM technology, but again without the Clang front-end (I think).

https://github.com/open-watcom/open-watcom-v2
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.ibm.com/products/c-and-c-plus-plus-compiler-family

Our Compiler

e Officially for this course we will use g++ on Lemuria (Ubuntu 22.04).

* Standardizing allows you to be sure | will see the same effects you see.
 If your program compiles and runs, it will for me also.

* If you have a problem with your program, | will see the same problem when | help you.
* We all have access to this compiler, and its environment is the same for all.

* But...

* I'm fine with you using something different most of the time. In fact, |
encourage it.

e Just be sure to check your programs using g++ on Lemuria before you submit!

* That’s the compiler | will use to test your programs.

http://lemuria.cis.vermontstate.edu/%7Epchapin/cis-3012/DevEnvironments.html

Recommended Development Environments

* | will support (to various degrees) the following:

e SSH access to Lemuria with a text editor (Nano, Emacs, Vim) and g++.

* Visual Studio Code with g++ on Linux, macOS, and Windows (via Cygwin).
Eclipse with the CDT with g++ on Linux, macQOS, and Windows (via Cygwin).
CLion from JetBrains with g++ on Linux, macOS, and Windows (via Cygwin).
Visual Studio. Windows only. Very powerful. No Makefiles.

Code::Blocks with g++ on Linux or Windows (macOS support is very old).

* The current official release of Code::Blocks (20.03) is somewhat old and has limited C++
2020 support. That may affect some assignments.

* I'm not sure if Code::Blocks has Makefile support; but | think it does.
e XCode? macOS only. No Makefiles?

Why Does It matter?

* If C++ is standardized, shouldn’t all compilers be the same?

* Yes, but only if you write programs that: make no use of platform-specific
libraries or compiler extensions, and don’t engage in any implementation-
defined, unspecified, or undefined behavior.

* In general, it is difficult to do this, so it is common for a program to work in
one environment and not in another

* Also, compilers have bugs and limitations, so even programs that should work
across all compilers might not

e Let’s examine each of the conditions mentioned above...

Platform-Specific Libraries

* The Least Common Denominator effect:
* The standard defines facilities that make sense on all platforms
* Most programs want to use specialized facilities available for their platform

* For example...

* The header <windows.h> declares Windows API functions. These functions
are not available on Unix-like systems.

e OTOH the header <unistd.h> declares Unix APl functions that are not
available on Windows.

* Quick!Is the header <fcntl.h> a platform-specific header?
* Now you are seeing the problem.

Compiler Extensions 1

* gcc accepts the following program:

int main()

{

// Nested function definition 1s not standard!
int increment (int number) {
return number + 1;

}

int x = 0;
X = 1lncrement(x);
printf ("The answer = %d\n", x);

return EXIT SUCCESS;

Compiler Extensions 2

* The standard allows compilers to implement extensions...
... if those extensions do not interfere with standard programs!

* The C standard does not allow nested functions...
* ... but the compiler vendor can implement it without changing the meaning of
a program that doesn’t try to use the feature.
* However, the previous program isn’t portable

* The --pedantic option on gcc warns about these things:

check.c:6:5: warning: ISO C forbids nested functions [-Wpedantic]
o | int increment (int number) {

| A

~ ~

Implementation Defined Behavior 1

* The standard allows compilers to do things differently.

* If something is implementation defined it means:

e Each implementation (... of the language, i.e., each compiler) is allowed to
make its own choices, generally within limits.

* AND... each implementation must document those choices

* If your program uses something that is implementation defined...

* ... it may behave differently with a different implementation (of the language),
and so it is not portable

* BUT your program is perfectly well behaved on the implementation that has
the documented behavior you need.

Implementation Defined Behavior 2

* The C++ 2020 standard states the range of type int is at least -32768
to +32767. The precise range is implementation defined.

* The following program is not portable:

int main()

{

// Code assumes 1’7000’000 can fit into int. That is not guaranteed.
int x = 170007000;

return O;

Implementation Defined Behavior 3

« Why???

* The C and C++ standards assume target systems might exist over a
huge range...
e ... from tiny, 16-bit microcontrollers with 4 KB or RAM (or less!)
 ...to huge supercomputers with 128-bit registers.

e ... and over highly exotic architectures...
* ... with memory segments and segmented addresses (32-bit x86 has this)
* ... with NUMA (non-uniform memory access)
e ... with 9-bit bytes
e ... etc!

Implementation Defined Behavior 4

* By allowing implementations to define certain aspects of the
language it is possible to implement the language effectively across a
broad range of machines.

* Contrast: Java
* Fixes the sizes of the primitive types
... thisis convenient for the programmer

* ... but means that Java can’t reasonably be implemented on a tiny system (16-
bit microcontroller with 4 KB RAM. Hal)

* ... and can’t take full advantage of a huge system. For example, in Java you
can’t create an array with more than 2,147,483,647 elements because int is
forced to be 32-bits.

An Aside...

* The Big Three compilers when targeting 64-bit systems are all LP64
implementations.
* L...64 longintegers are 64-bits
 ...P64 pointers (addresses) are 64-bits
* BUT plain integers are still 32 bits
» short integers (‘short int’) are 16 bits
* long long integers (‘long long int’) are also 64 bits

* Some people think C and C++ are always like this. Not so!

* Note that the standard requires ‘long long int’” to always be (at least) 64 bits
on all implementations, even on a tiny microcontroller.

Demonstration

e See the program types.cpp

* When compiled and run, it displays information about the range of all the
primitive types used by your particular compiler.

* |f you compile and run it on a different compiler, you might get different
results...

* ... but for any particular implementation, the results will be consistent and can
be relied upon.

Unspecified Behavior 1

* Certain aspects of the language are left unspecified by the standard...
... but are things correct programs still do.

* If your program’s output depends on unspecified behavior...
e ...your program is not portable
e ...it may even not do the same thing each time you run it!
 Computer science jargon: your program is nondeterministic.
* Compiler vendors are not required to document what their compiler does.

Unspecified Behavior 2

* Classic example: the order of evaluation of function arguments is
unspecified

do something(x + vy, z — w);

* Which is computed first: x + yorz — w?
* |t could go either way
* The compiler doesn’t have to document what it does.
* It could be different in each place where do something is called.
* It could be different each time the program runs (although that is very rare).

* In this example it doesn’t matter. That’s what you want!

Unspecified Behavior 3

* Now consider this example:

do something(£(), g());

* Suppose £ () outputs “Hello” and g () outputs “World”
* Does this output “HelloWorld” or “WorldHello”?
* You don’t know what you’ll get!

* If it happens to do what you want, you might think your program is
fine.

* Actually, your program is non-portable and unreliable.

Unspecified Behavior 4

. Why??

* By allowing compiler vendors the freedom to do certain things however they
see fit, and not documenting it...

 ...the optimizer can be more aggressive.

* There might be advantages with using different evaluation orders:
 Better register usage
* Fewer register/memory moves
* Reuse of previously computed values (which are effectively computed first)

* Sometimes a program will work in debug mode but fail in release.
e Often that’s because the program is engaging in unspecified behavior.

Undefined Behavior 1

* “Behavior for which this document imposes no requirements.”
 Section 3.57 of ISO/IEC 14882:2020(E), “Programming Languages — C++"

Anything Can Happen!

e Usually, the program crashes.

* But...
e ...the program might, say, reformat your hard drive.
e ...terminate with an easy-to-understand error message.

e ... fail to compile.
e ...work normally and do something sensible (i.e., some kind of extension).

Undefined Behavior 2

* Classic Example: Accessing an array out of bounds.
int array[128];

array[128] = 0; // Undefined behavior!

* The effect is usually a program crash, but it might...
* ... change the value of an unrelated variable
* ... cause the program to execute unrelated code when the function returns
e ...or do pretty much anything else!

e Undefined behavior is often called UB on internet forums.

Undefined Behavior 3

* Other examples of undefined behavior:
* Reading or writing out of bounds of an array.

Integer overflow.
* Most compilers just let integers wrap-around, but technically it is UB.
e A compiler could check for integer overflow and throw an exception as an extension.

Dereferencing a null pointer for reading or writing.

Computing the difference between two pointers that point into different
arrays.

Using a bit shift distance that is greater than the number of bits in the value
being shifted.

Many, many other things.

Undefined Behavior 4

e Why??
* Having undefined behavior gives the compiler a lot of room to maneuver

* More aggressive optimization is possible.
Space for experimental features while still conforming to the standard.

* For example, there was an experimental version of gcc that did check array bounds!
Space for future standards to define currently undefined things without breaking
backwards compatibility.

Avoid forcing compilers to implement hard things.

* That experimental version of gcc? It’s complicated and causes programs to have high
space/time overheads.

* Programmers want everything well-defined and well-specified.
* Compiler vendors want everything undefined and unspecified!

| Want Portability

* If you want to write a program that will work everywhere:
* Do not use any platform-specific features.
* Do not use any compiler extensions.
* Do not rely on any implementation defined aspects of the language.
* Do not depend on any unspecified behavior.
* And for God’s sake, don’t do anything undefined!

* Oh, and...

* Only use compilers that fully implement the standard and are bug-free.

Good luck with that!

Okay, It's Not That Bad

* To enhance portability:

* Well-written programs use a style that tends to avoid undefined and
unspecified behaviors.

* Many implementations on the same or similar platforms make the same
implementation-defined choices.

* For example, LP64 compilers for 64-bit targets.
* Programs with simple I/O requirements can often use the standard 1/0O library.
* Compiler bugs are relatively rare, especially on mundane code.
* Using an older standard increases the likelihood of a full implementation.

* Non-portable code can be partitioned into its own module.
* Thus, only a well-defined section of the program will need adjusting.

About Me

* | first learned C++ in the late 1980s.

* | participated on X3J16 in the early to mid 1990s.
e X3J16 was the ANSI committee charged with standardizing C++.
* [IOW, | worked on the C++ 98 standard.

* | wrote some C++ programs as a consultant (1990s)

* Taught C++ at Vermont Technical College to the CPE and CSE students.
* Our Algorithms and Data Structures course was once in in C++.

* Contributed to the Open Watcom project...

Open Watcom

* Open Watcom has a special place in my heart
* We used the commercial Watcom compiler at VTC in the 1990s.
* Compiler was taken off the market (couldn’t compete against Microsoft).
* Released as open source around 2000.

* | contributed to Open Watcom starting in the early 2000s
* | worked on updating the compiler to C++ 98 (the latest standard at the time).
* | wrote about half of the C++ standard template library for Open Watcom.
* | served as the project maintainer for a year or so.

And Now

* | took a hiatus from C++ for a while.

* | went back to school (2004) to get my PhD in computer science where | used
Scala extensively in my dissertation research (2004-2013).

| got involved the VTC’s CubeSat project which uses Ada and SPARK to write
ultra-reliable flight software for spacecraft (2008-2022).

* More recently...

* ... | started teaching this elective (CIS-3012) using C++ 2011.

* This year I’'m upgrading to C++ 2020. Spent time last summer studying the
new features and updating my notes, examples, and slides.

Enjoy!

	C++ Programming�Introduction
	The Language People Love to Hate
	OTOH
	C++ is Compatible with C
	Yet C++ is not C
	Modern C++
	Standard C++
	Standard C++: History
	Which Version?
	Compilers? The Big Three
	Other Compilers?
	Our Compiler
	Recommended Development Environments
	Why Does It matter?
	Platform-Specific Libraries
	Compiler Extensions 1
	Compiler Extensions 2
	Implementation Defined Behavior 1
	Implementation Defined Behavior 2
	Implementation Defined Behavior 3
	Implementation Defined Behavior 4
	An Aside…
	Demonstration
	Unspecified Behavior 1
	Unspecified Behavior 2
	Unspecified Behavior 3
	Unspecified Behavior 4
	Undefined Behavior 1
	Undefined Behavior 2
	Undefined Behavior 3
	Undefined Behavior 4
	I Want Portability
	Okay, It’s Not That Bad
	About Me
	Open Watcom
	And Now
	Slide Number 37

