C++ Initialization Syntax

CIS-3012, C++ Programming
Vermont State University
Peter Chapin



Let’s Talk about C

* An object can be initialized as follows:

Type specifier — 1Nt xX = 42;
Declarator Initializer (optional)

* Without an initializer (“uninitialized”)...

* ... global variables are automatically initialized to 0, NULL, etc.
* (global variables can only have constant expressions as initializers)

e ... local variables have indeterminate initial values.



C Array Initialization

e Basic rules:

* Programmer provides an initializer list with one initializer for each element of
the array.

* Compiler can deduce the dimension of the array from the length of the
initializer list.

int array 1(10] = {( 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };
/ Compiler deduces the array’s size by counting initializers.

int array 2( 1 =¢{(2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };
/ Extra array elements (at the end) are always zero-initialized.

int array 3[15] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };



C Structure Initialization

e Basic Rules:

* Again, the programmer provides an initializer list, except this time the
initializer types might be different (to match the structure member types)

Structure definition (typically, but not necessarily, in a header file).
struct Example { int x; double y; const char *z; };

In C, you must prefix the name of a structure with “struct”. That isn’t necessary in C++.
struct Example x = {

42, 3.14159, “Hello, World”
}



Designated |nitializers

e Starting with C99 (and C++ 2020), you can use designated initializers.

struct Example { int x; double y; const char *z; };

struct Example x = { Notice that the initializers do not have to be in
.y = 3.14159, “declaration order.” More flexible, better documented.
X = 42,

.Z = “Hello, World”
I



Designated Initializers for Arrays

* It works for arrays too (as of C99 or C++ 2020):

[

'.I
o)
ct
)
H
H
V)
v
o
Il

Initializers need not be in order.
Any elements with missing initializers always get zero-initialized.

O

~

|_\
_ e

~

| R | I |
U J W N -
~

N W



Now C++...

* There are several different initialization syntaxes that can be used,
each with its own special features and rules.

1. C-style initialization (see previous slides). Note that designated initializers
are not part of C++ until C++ 2020.

2. Function-like initialization. This syntax is necessary for dealing with
constructors taking multiple parameters.

3. Uniform initialization syntax. Starting with C++ 2011, this syntax unifies C-
style initialization, constructor parameters, and initialization lists into a
single, unified syntax.



Why So Complicated?

e C++’s advanced features create situations where the C-style
initialization syntax just isn’t good enough.

* C++ 1998 added the function-like syntax to address some of the
issues, but some issues remained.

* C++ 2011 added the uniform syntax to address the remaining issues.

* A school of thought says, therefore, that in modern C++ code, you
should use the uniform syntax for all initializations.

* But that turns out not to work 100%. There are some ambiguities, there is C
compatibility, and sometimes the older syntaxes just look more natural.

* Thus, none of the syntaxes are deprecated. You should be familiar with all.




Function-Like Initialization

e Here is how it looks:

int x = 42; // Traditional (C-style) initialization.
int y( 42 ); // The same, but using function-like initialization.

* It’s called “function-like” because it looks sort-of like calling a
function.



Ambiguous?

e Consider this:

int x( 42 ); // The declaration of an object, initialized to 42.
int y( int ); // The declaration of a function returning int.

* The essential difference:

* |In a function declaration, the thing inside the parentheses is a list of
parameter declarations.

* In an object declaration, the thing inside the parentheses is a list of
expressions.

* This tends to be less confusing in practice than it sounds.



What’s the Point?

* Function-like initializations exist for constructors with multiple
parameters:

string separator (64, ‘*');

* This uses function-like initialization to call a two-parameter
constructor to create a string named separator consisting of 64
asterisk characters.

* The C-style initialization syntax using the = sign can’t do this. Some sort of
new syntax (relative to C) was needed.

* The function-like initialization syntax is part of C++98.



With Dynamic Allocation

* A similar syntax can be used for dynamically allocated objects:

string *separator = new string (64, ‘*');

* Here separator isaraw pointer that points at the dynamically
allocated object.

* This is similar to Java syntax for creating dynamically allocated objects and
initializing them (by calling a constructor).

e As an aside: using raw pointers in modern C++ is discouraged. That’s a subject
for another slide deck!



Explicit Constructor Call

* It is possible to do this:

int x; // A couple of ordinary looking declarations for context.
int v = 42;
string (64, ‘*'); // Explicitly construct an anonymous object of type string.

* Since the anonymous object has no name, this isn’t very useful.
* Although the string constructor and destructor still execute.

* But...



Using an Explicit Constructor Call, Part 1

* Passed as an argument:

// Declaration of a function (probably in a header file)
void do something( const string &text );

// Call that function using an explicitly constructed temporary.
do something( string( 64, ‘*" ) );

* It is important that the function takes its parameter as reference to
const.
* The compiler knows the function won’t try to change the temporary.
* The compiler will not bind a non-const reference to a temporary!




Using an Explicit Constructor Call, Part 2

* Returning a value:

string make string( int x, int y )
{
// ..

return string( 64, ‘*' );

}

* The function returns an explicitly constructed temporary.

* |In real life the constructor arguments would doubtless be the result of some
“interesting” computation inside the function.

* Note that the temporary is copied to the caller.



Temporaries?

* The compiler generates temporaries to hold explicitly constructed
objects (although sometimes they can be removed by optimizations).

void do something( const string &text );

// When you do:
// do_something( string( 64, ‘*’ ) );

// .. the compiler generates temporary with some internal name:

string t 103CF7( 64, ‘*' );
do something( t 103CFE7 );



Seems Complicated

* It isn’t. Compiler generated temporaries are common and normal.

Consider this example:

void do something( int value );

// You write this:
do somthing( x + y );

// The compiler does this:
int t 7A303C = x + y;
do something( t 7A303C );

// For simple types like integers,

the temporary is probably in a register



Copy Initialization

* If a class has a constructor that can be called with one argument...

e (the phrase “can be called with one argument” is intended to cover
constructors with multiple parameters but for which all but one have default
arguments).

* ... a C-style syntax can be used to initialize.
string name = “Jill”;

// This is the same as:
string t xyzzy( “Jill” ); // Construct string from const char * argument.
string name( t xyzzy ); // Copy the temporary string into the named string.

e Often the temporary can be “optimized away.”



Implicit Type Conversion

* This same idea allows you to do something like this:

// Declaration of a function (probably in a header file)
void do something( const string &text );

// Create a temporary string from a const char *, etc.
do something( “Jill” );

* A constructor that can be called with one argument serves as an
implicit type conversion from the type of the parameter to the type of
the class.



Implicit Type Conversion (and by the way...)

* This same idea allows you to do something like this:

// Declaration of a function (probably in a header file)
void do something( eeast string &text );

// Create a temporary string from a const char *, etc.
do something( “Jill” );

If you remove const here...

... this is an error!
The compiler won’t bind a reference to non-const to a temporary!



Where We Are

* Everything I've shown so far works in C++ 1998.

* But there is still an issue with initializer lists for aggregate objects.
Here is the C++ 1998 way to initialize a vector of 10 elements:

// The initial wvalues:
int initial_primes[lO] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };

// Create the vector and copy the initial wvalues into it.
vector<int> primes( 10 );
primes.insert( initilial primes, initial primes + 10 );

* Gross!
* (obviously)



C++ 2011 Initializer List Constructors

* In C++ 2011 this matter is fixed.
* A special “initializer list” class is defined in the library.

* Class designers can provide an “initializer list constructor” that takes an
instance of the initializer list class.

* When the compiler sees the programmer using an initializer list, it calls that
constructor (if the initializer list constructor does not exist, it is an error).

vector<int> primes = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };

* Ahhh... much better.
* All C++ 2011 standard containers do this. You can in your classes too!



There’s Morel

* Because of the previous rules, initializer list constructors can also do:

vector<int> special;
special = { 7, 42, 113 };
// The above i1s the same as:

vector<int> t xyzzy = { 7, 42, 113 };
special = t xyzzy;



And Still More!

* They can also do:

void do something( const vector<int> &numbers );
do something( { 7, 12, 113 } );
// The above is the same as:

vector<int> t xyzzy = { 7, 42, 113 };
do something( t xyzzy );



The Uniform Syntax

e C++ 2011 also introduced the Uniform Initialization Syntax
* Unifies all forms of initialization into a single syntax.
* Applies stronger (safer) type conversion rules.

* The uniform syntax is signaled using curly braces, but with no equal
sign.

* It is not at all ambiguous with the older initialization syntaxes.
* Personally, it took me some time to get used to the look!




The Uniform Syntax in Action

// Simple, scalar initialization (like in C).
int x{ 42 };

// Call constructor taking const char * parameter.
string name{ “Jill” };

// Call constructor taking two parameters.
string separator{ 64, ‘*’' };

// Call the initializer list constructor.
vector<int> primes{ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };



But There is This

* Ambiguities can still arise:

vector<int> numbers{ 10 };

e Is this...

... acall to the constructor that specifies the size of the vector or...
e ... aninitializer list with a single initializer?

* Answer:
* |tis aninitializer list with one initializer.
» To get the other interpretation, use the function-like syntax: numbers( 10 ).

* The problem only arises because it’s a vector of integers. A vector of strings
doesn’t have this ambiguity: strings{ 10 } can only be specifying the size.




Type Satety and the Unitorm Syntax

e C-style initialization can be unsafe.

// Apostrophes as digit separators start with C++ 2014
long large value = 10’00070007000; // Let’s assume 64-bit long integers.

// 1f plain integers are 32 bits, this initialization will fail.
int value = large value; // Not an error, although a compiler warning is likely.

e C++ uniform syntax is safer.

int value{ large value }; // Error! Programmer must explicitly cast.

* Everyone knows C’s rules are unsafe, but they can’t be changed
without massive legacy code breakage.

* The uniform syntax is (was) entirely new, so new rules could be made for it.



