
C++ Initialization Syntax
CIS-3012, C++ Programming

Vermont State University
Peter Chapin

Let’s Talk about C

• An object can be initialized as follows:

• Without an initializer (“uninitialized”)…
• … global variables are automatically initialized to 0, NULL, etc.

• (global variables can only have constant expressions as initializers)
• … local variables have indeterminate initial values.

int x = 42;

Declarator Initializer (optional)

Type specifier

C Array Initialization

• Basic rules:
• Programmer provides an initializer list with one initializer for each element of

the array.
• Compiler can deduce the dimension of the array from the length of the

initializer list.

int array_1[10] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };

int array_2[] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };

int array_3[15] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };

Compiler deduces the array’s size by counting initializers.

Extra array elements (at the end) are always zero-initialized.

C Structure Initialization

• Basic Rules:
• Again, the programmer provides an initializer list, except this time the

initializer types might be different (to match the structure member types)

struct Example { int x; double y; const char *z; };

struct Example x = {
 42, 3.14159, “Hello, World”
};

Structure definition (typically, but not necessarily, in a header file).

In C, you must prefix the name of a structure with “struct”. That isn’t necessary in C++.

Designated Initializers

• Starting with C99 (and C++ 2020), you can use designated initializers.

struct Example { int x; double y; const char *z; };

struct Example x = {
 .y = 3.14159,
 .x = 42,
 .z = “Hello, World”
};

Notice that the initializers do not have to be in
“declaration order.” More flexible, better documented.

Designated Initializers for Arrays

• It works for arrays too (as of C99 or C++ 2020):

int array[10] = {
 [0] = 2,
 [1] = 3,
 [3] = 7,
 [2] = 5
};

Initializers need not be in order.
Any elements with missing initializers always get zero-initialized.

Now C++…

• There are several different initialization syntaxes that can be used,
each with its own special features and rules.

1. C-style initialization (see previous slides). Note that designated initializers
are not part of C++ until C++ 2020.

2. Function-like initialization. This syntax is necessary for dealing with
constructors taking multiple parameters.

3. Uniform initialization syntax. Starting with C++ 2011, this syntax unifies C-
style initialization, constructor parameters, and initialization lists into a
single, unified syntax.

Why So Complicated?

• C++’s advanced features create situations where the C-style
initialization syntax just isn’t good enough.
• C++ 1998 added the function-like syntax to address some of the

issues, but some issues remained.
• C++ 2011 added the uniform syntax to address the remaining issues.
• A school of thought says, therefore, that in modern C++ code, you

should use the uniform syntax for all initializations.
• But that turns out not to work 100%. There are some ambiguities, there is C

compatibility, and sometimes the older syntaxes just look more natural.
• Thus, none of the syntaxes are deprecated. You should be familiar with all.

Function-Like Initialization

• Here is how it looks:

• It’s called “function-like” because it looks sort-of like calling a
function.

int x = 42; // Traditional (C-style) initialization.
int y(42); // The same, but using function-like initialization.

Ambiguous?

• Consider this:

• The essential difference:
• In a function declaration, the thing inside the parentheses is a list of

parameter declarations.
• In an object declaration, the thing inside the parentheses is a list of

expressions.

• This tends to be less confusing in practice than it sounds.

int x(42); // The declaration of an object, initialized to 42.
int y(int); // The declaration of a function returning int.

What’s the Point?

• Function-like initializations exist for constructors with multiple
parameters:

• This uses function-like initialization to call a two-parameter
constructor to create a string named separator consisting of 64
asterisk characters.
• The C-style initialization syntax using the = sign can’t do this. Some sort of

new syntax (relative to C) was needed.
• The function-like initialization syntax is part of C++98.

string separator(64, ‘*’);

With Dynamic Allocation

• A similar syntax can be used for dynamically allocated objects:

• Here separator is a raw pointer that points at the dynamically
allocated object.
• This is similar to Java syntax for creating dynamically allocated objects and

initializing them (by calling a constructor).
• As an aside: using raw pointers in modern C++ is discouraged. That’s a subject

for another slide deck!

string *separator = new string(64, ‘*’);

Explicit Constructor Call

• It is possible to do this:

• Since the anonymous object has no name, this isn’t very useful.
• Although the string constructor and destructor still execute.

• But…

int x; // A couple of ordinary looking declarations for context.
int y = 42;
string(64, ‘*’); // Explicitly construct an anonymous object of type string.

Using an Explicit Constructor Call, Part 1

• Passed as an argument:

• It is important that the function takes its parameter as reference to
const.
• The compiler knows the function won’t try to change the temporary.
• The compiler will not bind a non-const reference to a temporary!

// Declaration of a function (probably in a header file)
void do_something(const string &text);

// Call that function using an explicitly constructed temporary.
do_something(string(64, ‘*’));

Using an Explicit Constructor Call, Part 2

• Returning a value:

• The function returns an explicitly constructed temporary.
• In real life the constructor arguments would doubtless be the result of some

“interesting” computation inside the function.
• Note that the temporary is copied to the caller.

string make_string(int x, int y)
{
 // …

 return string(64, ‘*’);
}

Temporaries?

• The compiler generates temporaries to hold explicitly constructed
objects (although sometimes they can be removed by optimizations).

void do_something(const string &text);

// When you do:
// do_something(string(64, ‘*’));

// … the compiler generates temporary with some internal name:

string t__103CF7(64, ‘*’);
do_something(t__103CF7);

Seems Complicated

• It isn’t. Compiler generated temporaries are common and normal.
Consider this example:

void do_something(int value);

// You write this:
do_somthing(x + y);

// The compiler does this:
int t__7A303C = x + y;
do_something(t__7A303C);

// For simple types like integers, the temporary is probably in a register

Copy Initialization

• If a class has a constructor that can be called with one argument…
• (the phrase “can be called with one argument” is intended to cover

constructors with multiple parameters but for which all but one have default
arguments).

• … a C-style syntax can be used to initialize.

• Often the temporary can be “optimized away.”

string name = “Jill”;

// This is the same as:
string t__xyzzy(“Jill”); // Construct string from const char * argument.
string name(t_xyzzy); // Copy the temporary string into the named string.

Implicit Type Conversion

• This same idea allows you to do something like this:

• A constructor that can be called with one argument serves as an
implicit type conversion from the type of the parameter to the type of
the class.

// Declaration of a function (probably in a header file)
void do_something(const string &text);

// Create a temporary string from a const char *, etc.
do_something(“Jill”);

Implicit Type Conversion (and by the way…)

• This same idea allows you to do something like this:

// Declaration of a function (probably in a header file)
void do_something(const string &text);

// Create a temporary string from a const char *, etc.
do_something(“Jill”);

If you remove const here…

… this is an error!
The compiler won’t bind a reference to non-const to a temporary!

Where We Are

• Everything I’ve shown so far works in C++ 1998.
• But there is still an issue with initializer lists for aggregate objects.

Here is the C++ 1998 way to initialize a vector of 10 elements:

• Gross!
• (obviously)

// The initial values:
int initial_primes[10] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };

// Create the vector and copy the initial values into it.
vector<int> primes(10);
primes.insert(initial_primes, initial_primes + 10);

C++ 2011 Initializer List Constructors

• In C++ 2011 this matter is fixed.
• A special “initializer list” class is defined in the library.
• Class designers can provide an “initializer list constructor” that takes an

instance of the initializer list class.
• When the compiler sees the programmer using an initializer list, it calls that

constructor (if the initializer list constructor does not exist, it is an error).

• Ahhh… much better.
• All C++ 2011 standard containers do this. You can in your classes too!

vector<int> primes = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };

There’s More!

• Because of the previous rules, initializer list constructors can also do:

vector<int> special;

special = { 7, 42, 113 };

// The above is the same as:
vector<int> t__xyzzy = { 7, 42, 113 };
special = t__xyzzy;

And Still More!

• They can also do:

void do_something(const vector<int> &numbers);

do_something({ 7, 12, 113 });

// The above is the same as:
vector<int> t__xyzzy = { 7, 42, 113 };
do_something(t__xyzzy);

The Uniform Syntax

• C++ 2011 also introduced the Uniform Initialization Syntax
• Unifies all forms of initialization into a single syntax.
• Applies stronger (safer) type conversion rules.

• The uniform syntax is signaled using curly braces, but with no equal
sign.
• It is not at all ambiguous with the older initialization syntaxes.
• Personally, it took me some time to get used to the look!

The Uniform Syntax in Action
// Simple, scalar initialization (like in C).
int x{ 42 };

// Call constructor taking const char * parameter.
string name{ “Jill” };

// Call constructor taking two parameters.
string separator{ 64, ‘*’ };

// Call the initializer list constructor.
vector<int> primes{ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };

But There is This

• Ambiguities can still arise:

• Is this…
• … a call to the constructor that specifies the size of the vector or…
• … an initializer list with a single initializer?

• Answer:
• It is an initializer list with one initializer.
• To get the other interpretation, use the function-like syntax: numbers(10).
• The problem only arises because it’s a vector of integers. A vector of strings

doesn’t have this ambiguity: strings{ 10 } can only be specifying the size.

vector<int> numbers{ 10 };

Type Safety and the Uniform Syntax

• C-style initialization can be unsafe.

• C++ uniform syntax is safer.

• Everyone knows C’s rules are unsafe, but they can’t be changed
without massive legacy code breakage.
• The uniform syntax is (was) entirely new, so new rules could be made for it.

// Apostrophes as digit separators start with C++ 2014
long large_value = 10’000’000’000; // Let’s assume 64-bit long integers.

// If plain integers are 32 bits, this initialization will fail.
int value = large_value; // Not an error, although a compiler warning is likely.

int value{ large_value }; // Error! Programmer must explicitly cast.

