
SQL: Introduction to Joins

Basics of an Inner Join

▪ How do we display information from more
than one table? i.e.
• How do we show the department name for an

employee?

• How do we show the supplier name for a food?

▪ With a subquery? With a join?

▪ There are several ways to do a join –
traditional syntax and newer ANSI syntax.

▪ Both work and you should become
comfortable with both.

Another Model:
Suppliers, Parts, Shipments

▪ This is a VERY simple database!

▪ The primary and foreign keys are the columns
we can use to JOIN tables.

Primary Keys

Foreign Keys
Source: CJ Date, An Introduction to Database Systems

sid sname status city

S1 Smith 20 London

S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London

S5 Adams 30 Athens

pid pname color weight city

P1 Nut Red 12 London

P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London

P5 Cam Blue 12 Paris

Sp_suppliers

sid pid qty

S1 P1 300

S1 P2 200

S1 P3 400

S1 P4 200

S1 P5 100

S2 P1 300

S3 P2 200

S4 P2 200

S4 P4 300

S4 P5 400

Sp_shipments

Sp_parts

Suppliers and Parts Data

Inner Join - Traditional Syntax

▪ Example (from suppliers and parts)
SELECT sh.sid, sh.pid, p.pname, p.weight, sh.qty

FROM sp_shipments sh, sp_parts p

WHERE sh.pid = p.pid;

▪ Notice that the FROM clause now contains

TWO tables.
▪ Join condition is specified in the WHERE

clause. Must list the matching columns from
each table.

▪ ‘sh’ and ‘b’ are alias names for shipment and
parts tables. They simplify the rest of the SQL.

Join Result

sh.sid sh.pid p.pname p.weight sh.qty

S1 P1 Nut 12 300

S1 P2 Bolt 17 200

S1 P3 Screw 17 400

S1 P4 Screw 14 200

S1 P5 Cam 12 100

S2 P1 Nut 12 300

S3 P2 Bolt 17 200

S4 P2 Bolt 17 200

S4 P4 Screw 14 300

S4 P5 Screw 12 400

SELECT sh.sid, sh.pid, p.pname, p.weight, sh.qty
FROM sp_shipments sh, sp_parts p
WHERE sh.pid = p.pid;

Basically, this query shows all columns from the shipments table and then
and adds the details of part name and weight from the parts table.

Variations on Join Condition

▪ Single column from each table matches

• WHERE a.col1 = b.col1

▪ Two or more columns match

• WHERE a.col1 = b.col1 AND a.col2 = b.col2

▪ Row function applied to one of columns

• WHERE a.col1 = substr(b.col1, 1,4)

• This allows you to join data which may be similar, but
formatted differently. The data should have the same
logical meaning.

3 Ways to Write an Inner Join

▪ “Long hand” - using complete table-name.column-name
SELECT shipments.sid, shipments.pid,

parts.pname, parts.weight, shipments.qty
FROM shipments, parts
WHERE shipments.pid = parts.pid;

▪ Using table alias names:

SELECT sh.sid, sh.pid, p.pname, p.weight, sh.qty
FROM shipments sh, parts p
WHERE sh.pid = p.pid;

▪ Using * to list all columns:

SELECT sh.*, p.*
FROM shipments sh, parts p
WHERE sh.pid = p.pid;

BUT…. These are ALL older, more traditional syntax

“Newer” ANSI Join Syntax

▪ New syntax:
SELECT sh.sid, p.pname, sh.pid, sh.qty

FROM sp_shipments sh INNER JOIN sp_parts p

ON sh.pid= p.pid

WHERE p.pname = 'NUT';

▪ Join condition listed in the FROM
clause after the keyword ON

▪ The join condition is no longer placed
in the WHERE clause.

Old v. New Join Syntax

▪ Which is better?

▪ Try both, you’ll find one that you prefer.

▪ Just remember that using JOIN with ON
is the more modern way.

▪ !!! Be familiar with both

▪ Lots of advantages to new syntax:

• Clarity, join is stated explicitly.

• ANSI syntax does not mix join conditions
with other WHERE conditions.

Applications for Joins

▪ A look-up table is one that only stores a
code and perhaps a description or name
that belongs to the code.

▪ Stop now and look at the lunches
database schema. Find the look up
tables.

▪ Some tables only store codes (keys). We
then join with the correct "look up" table
to get the descriptive information we
need.

Look Up Tables

▪ The raw data is here.

▪ We can run a query
that will populate the
drop down list box.

▪ In a front-end
application, we often
hide the codes and
show just the
descriptive
information.

▪ The codes are always
available to the
application.

SUPPLIER_ID SUPPLIER_NAME

ARR ALICE & RAY'S RESTAURANT

ASP A SOUP PLACE

CBC CERTIFIED BEEF COMPANY

FRV FRANK REED'S VEGETABLES

FSN FRANK & SONS

JBR JUST BEVERAGES

JPS JIM PARKER'S SHOP

More Applications for Joins

▪ Put data back together when it has been
stored in separate tables (normalized).

▪ The basic rule for joins is:

• Use a join when you need columns of data that
exist in different tables.

• A join is possible if there is a "path" between the
tables.

• If you look at the database diagram, there must
be relationship lines connecting the tables.

More on Joins

▪ What does this query do?

SELECT

e.employee_id, e.first_name,

e.last_name, e.dept_code,

d.department_name

FROM l_employees e JOIN
l_departments d

ON e.dept_code = d.dept_code

WHERE e.employee_id < 206;

Discussion

▪ ON clause: sets up the join condition
between 2 tables. Result set will only
include data which has matching keys
from both tables.

▪ WHERE Clause: Restricts result set to
certain employees

▪ After you establish the join condition,
you can add many more conditions in
the WHERE clause.

Join
Example

SELECT e.employee_id,
e.first_name,
e.last_name,
COUNT(*) AS number_of_lunches

FROM l_employees e JOIN l_lunches l
ON e.employee_id = l.employee_id
WHERE e.employee_id != 208
GROUP BY e.employee_id, e.first_name,

e.last_name
HAVING COUNT(*) > 1
ORDER BY e.employee_id;

List all employees who are
attending more than one lunch,
but exclude employee 208.

Joining > 2 Tables

SELECT e.employee_id,

e.first_name, e.last_name,

l.lunch_date,

f.description, i.quantity

FROM l_employees e , l_lunches l,

l_lunch_items i, l_foods f

WHERE e.employee_id = l.employee_id

AND l.lunch_id = i.lunch_id

AND i.product_code = f.product_code

AND i.supplier_id = f.supplier_id

AND e.dept_code = 'SHP'

ORDER BY e.employee_id, l.lunch_date;

What’s this query doing?

notice the older
syntax here

These are the
join conditions

-- This is just a filter

Answer

▪ Show all information about the
lunches ordered by employees in the
shipping department.

▪ Show the employee ID, names of the
employees, the lunch date, and the
descriptions and quantities of the
foods they will eat.

▪ Sort the result by the employee_id
and the lunch_date.

Query Results
ID FIRST_NAME LAST_NAME LUNCH_DATE DESCRIPTION QTY

203 MARTHA WOODS 16-NOV-11 FRENCH FRIES 1

203 MARTHA WOODS 16-NOV-11 DESSERT 1

203 MARTHA WOODS 16-NOV-11 COFFEE 1

203 MARTHA WOODS 16-NOV-11 SODA 1

203 MARTHA WOODS 16-NOV-11 GRILLED
STEAK

1

203 MARTHA WOODS 16-NOV-11 FRESH SALAD 1

203 MARTHA WOODS 05-DEC-11 SOUP OF THE
DAY

1

203 MARTHA WOODS 05-DEC-11 DESSERT 1

203 MARTHA WOODS 05-DEC-11 SODA 1

203 MARTHA WOODS 05-DEC-11 COFFEE 2

203 MARTHA WOODS 05-DEC-11
GRILLED
STEAK

1

Output returns 28 rows,
but is truncated to fit on
slide.

To Do

▪ Now try writing the same query using
ANSI join syntax.

Solution with ANSI Join

SELECT e.employee_id, e.first_name, e.last_name,

l.lunch_date, f.description, i.quantity

FROM l_employees e

JOIN l_lunches l ON e.employee_id = l.employee_id

JOIN l_lunch_items i ON l.lunch_id = i.lunch_id

JOIN l_foods f ON (i.product_code = f.product_code
AND i.supplier_id = f.supplier_id)

WHERE e.dept_code = 'SHP'

ORDER BY e.employee_id, l.lunch_date;

Can you join a table with itself?

▪ YES!! This is a SELF JOIN. For example,

SELECT [the columns you want]

FROM l_employees e join l_employees m

ON e.manager_id = m.employee_id;

▪ Notice that the table must have two aliases.

▪ Notice that columns in the join condition do not
have the same name, but both columns
contain employee ids.

