
Rene Descartes
1596-1650



SQL: 
Overview of ANSI Joins

 Cross joins
 Equi-Join
 Natural Joins
 Condition Joins
 Column name Joins
 Inner Joins
 Outer Joins

You may not use 
all of these but 
you should be 
familiar with the 
terms. 



Special Note
 Just about all the information you 

need for writing INNER JOINS is in 
the first set of slides on joins. 

 These slides are presented here so 
that you will get the background on 
all the "Flavors" of joins. 

 We will also be discussing the 
important concept of CROSS JOINS 
and introducing OUTER JOINS  



In Third Grade…
You may have done a Cross Join

How many possible outfits
can you make from 3 pair 
of pants and 3 shirts? 

http://images.google.com/imgres?imgurl=http://www.watchingamerica.com/images/superman_pic.jpeg&imgrefurl=http://www.watchingamerica.com/thenationpk000025.shtml&usg=__Kjs-8iJCG1KuWSyoewit5navKVo=&h=800&w=792&sz=378&hl=en&start=3&tbnid=KftiUs6dNxizLM:&tbnh=143&tbnw=142&prev=/images%3Fq%3DSuperman%26gbv%3D2%26hl%3Den


Name Address phone

Jones 111 Maple 555-1111 

Smith 222 Elm 555-2222

Walters 333 Birch 555-3333

Name Salary

Jones 30000

Smith 20000

Walters 40000

Name Address Phone Name Salary

Jones 111 Maple 555-1111 Jones 30000

Jones 111 Maple 555-1111 Smith 20000

Jones 111 Maple 555-1111 Walters 40000

Smith 222 Elm 555-2222 Jones 30000

Smith 222 Elm 555-2222 Smith 20000

Smith 222 Elm 555-2222 Walters 40000

Walters 333 Birch 555-3333 Jones 30000

Walters 333 Birch 555-3333 Smith 20000

Walters 333 Birch 555-3333 Walters 40000

Result = table1 x table2 

(the results of a cross join are 
sometimes meaningless!)

A Cross Join is the Cartesian Product

Table1

Table 2

SELECT table1.*, table2.*
FROM table1, table2;



Cross Join continued
 Another standard syntax is: 

SELECT * 
FROM table 1 CROSS JOIN table 2;

 Both forms of the join have no JOIN 
CONDITION. (via ON or WHERE)

 The result is always a Cartesian product. 
 The number of rows in the result will be 

the product of the rows in the base tables. 
e.g. 3 rows X 3 rows = 9 rows.



Cross Join – All possibilities
Color
Red

Blue

Silver

Engine
Hybrid

Gas

Option_pkg
Standard

Deluxe

Color Engine Option_pkg
Red Hybrid Standard

Red Hybrid Deluxe

Red Gas Standard

Red Gas Deluxe

Blue Hybrid Standard

Blue Hybrid Deluxe

Blue Gas Standard

Blue Gas Deluxe

Silver Hybrid Standard

Silver Hybrid Deluxe

Silver Gas Standard

Silver Gas Deluxe

X X

Result

SELECT color, 
engine, option_pkg
FROM 
Colors 

CROSS JOIN
Engines 

CROSS JOIN
Options;

Colors: Engines: Options:

The results of this cross join 
are more meaningful!



Another Example of Cross Join –
Table of Constants
 Constants can be used to store same value 

in every row. 
 Don’t want to store this data in a base table. 
 Options: 

• Place a literal value in SELECT clause
(not good practice or flexible)

• Use a table of constants
 Best to see an example…..



Constants- literal value in SELECT

 We can create virtual column(s) and 
insert a literal as a constant. 
SELECT employee_id, last_name, 
'15-DEC-2006' AS eval_date
'15-DEC-2007' AS next_eval
FROM l_employees; 

 But this may not be the best coding 
practice. 



Using a Table of Constants
 Better to use a table of constants
 Benefits: 

• Flexibility in SQL, easy to change 
constants

• Guarantees consistency
 Example, base table and table of 

constants can be combined: 
SELECT employee_id, last_name, eval_date, next_eval
FROM l_employees CROSS JOIN sec0306_constants 
ORDER BY 1; 



Using the Table of Constants 
 This is actually a join with no WHERE 

condition. So, it’s a cross-product. 

201 Susan Brown

202 Jim Kern

203 Martha Woods

L_employees

Eval_date Next_eval
15-dec-2011 15-dec-2012

Sec0306_constants

ID First_name Last_name Eval_date Next_eval
201 Susan Brown 15_dec-2011 15-dec-2012
202 Jim Kern 15-dec-2011 15-dec-2012
203 Martha Woods 15-dec-2011 15-dec-2012

Results

SELECT employee_id, last_name, eval_date, next_eval
FROM l_employees CROSS JOIN sec0306_constants ORDER BY 1; 



Cross Join - Summary
 Use CROSS JOIN to see all possible 

combinations of rows from two or 
more tables. 

 If you really intend to do a cross join, 
be explicit and spell it out. Don’t just 
list two tables without the WHERE 
clause. 

 Normally, AVOID cross joins. They 
may be costly and meaningless!



Equi-Join contains a WHERE clause
SELECT t1.*, t2.*
FROM table1 t1, table2 t2
WHERE t1.name = t2.name;
T1.Name T1.Address T1.Phone T2.Name T2.Salary

Jones 111 Maple 555-1111 Jones 30000

Jones 111 Maple 555-1111 Smith 20000

Jones 111 Maple 555-1111 Walters 40000

Smith 222 Elm 555-2222 Jones 30000

Smith 222 Elm 555-2222 Smith 20000

Smith 222 Elm 555-2222 Walters 40000

Walters 333 Birch 555-3333 Jones 30000

Walters 333 Birch 555-3333 Smith 20000

Walters 333 Birch 555-3333 Walters 40000

“Equi” pertains to the = sign in the join condition. 

From the cross join, we have eliminated 
all the rows that do not match the join 
condition (i.e. the grey rows). 



Natural Join
 Example: 
SELECT e.last_name, e.first_name, d.department_name 
FROM l_employees e NATURAL JOIN l_departments d;

 No WHERE clause is specified, BUT the join 
is executed by matching values in columns 
with the same name. 

 Result is same as equi-join
 Can be good in testing when you don’t 

know what the join columns are OR for 
comparison of results.  



Condition Join
 Here’s a join where the column 

names are NOT the same. 
Example: 

SELECT *
FROM l_employees e JOIN vacation_days v
ON e.empid = substr(v.empid, 1,3);

 The Join condition can be any valid 
SQL expression. 

This type of join might suffer from performance problems in a large database.



Column Name Join – "USING"
 Same as natural join, but column names are 

explicitly named

Example: 
SELECT e.last_name, e.first_name, 

d.department_name 
FROM l_employees e JOIN l_departments d
USING (dept_code);

 USING clause is valid when join columns 
have the same name.  



Inner Join
 Natural Joins, Condition Joins, Column-Name 

Joins are all INNER JOINS
 Inner join syntax is: 

SELECT [column-list]
FROM Table1 [INNER JOIN] Table2
USING ([column-list]) | ON [column-conditions];

 Notice: Join condition is specified with  "Using" 
or "ON", not both! "On" is MUCH more 
common. 

 Whenever you specify "JOIN" alone, it’s an 
inner join. 



Outer Join
 Inner join throws out rows that don’t 

match. 
 Outer join puts back some or all of 

the unmatched rows: 
• Left Outer Join
• Right Outer Join
• Full Outer Join



Left Outer Join
 Preserves unmatched rows from the left 

table (the one before keyword join)
 Example: 
SELECT  e.last_name, d.dept_code, d.department_name 
FROM l_employees e LEFT OUTER JOIN l_departments d
ON  e.dept_code = d.dept_code;

 Translation: Display employees and their 
departments.  Show all employees, even if 
they have not yet been assigned to a 
department. 



Left 
Outer Join

Lname Dept_code

BROWN MKT

WOODS -

Dept_code Dept_name

MKT MARKETING

SAL SALES

Lname Dept_code Dept_name

BROWN MKT MARKETING

WOODS - -

ALL rows from l_employees 
are included in result. When 
there is no match for 
dept_code, a null value is 
inserted in the result. 

L_employees L_departments

SELECT  e.lname, e. dept_code, d.dept_name 
FROM l_employees 

LEFT OUTER JOIN l_departments
ON  e.dept_code = d.dept_code;

Result

In an inner join, Woods would not appear in the result. 



Right Outer Join
 All rows from the right table (the one after 

the join keyword) are preserved. 
 Example:
SELECT  e.last_name, d.dept_code, d.department_name 
FROM l_employees e RIGHT OUTER JOIN l_departments d
ON  e.dept_code = d.dept_code;

 Translation: Display employees and their 
departments. Include all departments, even 
if there is no one assigned to the dept. 



Right 
Outer Join

Both rows from l_departments
are included in result. Even 
though there are no employees 
in the SALES department, null 
values are inserted in the 
result. 

SELECT  e.last_name, d.dept_code, d.dept_name 
FROM l_employees e

RIGHT OUTER JOIN l_departments d
ON  e.dept_code = d.dept_code;

Lname Dept_code

BROWN MKT

WOODS -

L_employees
Dept_code Dept_name

MKT MARKETING

SAL SALES

L_departments

Lname Dept_code Dept_name
BROWN MKT MARKETING

- SAL SALES

Result



Full Outer Join
 Combination of RIGHT and LEFT outer join. 
 Example: 

SELECT  e.last_name, d.dept_code, 
d.department_name 

FROM l_employees e
FULL OUTER JOIN l_departments d

ON  e.dept_code = d.dept_code;
 Translation: Show me all employees, even if 

they do not have department assignment AND 
show me all departments even if there are no 
employees in the department. 



Full 
Outer Join

Result set includes rows that
satisfy join condition as well
as those that don’t. 

SELECT  e.last_name, d.dept_code, d.dept_name 
FROM l_employees e

FULL OUTER JOIN l_departments d
ON  e.dept_code = d.dept_code;

Lname Dept_code

BROWN MKT

WOODS -

Dept_code Dept_name

MKT MARKETING

SAL SALES

L_employees L_departments

Lname Dept_code Dept_name
BROWN MKT MARKETING

WOODS - -

- SAL SALES

Result



Outer Joins – More Detail



Oracle Outer Joins – Older Syntax
 Left outer join example:
SELECT  e.last_name, d.dept_code, d.department_name 
FROM l_employees e, l_departments d
ON  e.dept_code = d.dept_code (+);

 Right outer join example: 
SELECT  e.last_name, d.dept_code, d.department_name 
FROM l_employees e, l_departments d
ON  e.dept_code (+) = d.dept_code;

 Note: the plus sign in parens is not standard SQL. 
Plus sign appears on the side where nulls are added.

I would NOT recommend this syntax. It’s here so that you will 
recognize it if you ever see it!



MySQL: Full Outer Join
 In a system that does not support full outer 

join, you can simulate it:
SELECT  e.last_name, d.dept_code, d.dept_name
FROM l_employees e LEFT OUTER JOIN l_departments d
ON  e.dept_code = d.dept_code
UNION
SELECT  e.last_name, d.dept_code, d.dept_name
FROM l_employees e RIGHT OUTER JOIN l_departments d
ON  e.dept_code = d.dept_code;
 Oracle, DB2, Microsoft support full outer join. 
 MySQL does not support Full Outer Join; must 

simulate it. 



Applications for Outer Joins - 1
 Find all employees and the number of 

lunches they will attend. 
 Traditional (inner) join of l_employees and 

l_lunches will give us result set including 
employees who have attended 1 or more 
lunches. 

 Must use an outer join to get those 
employees who have attended 0 lunches. 

 This is the “counting to zero” problem. 



The Code – Inner Join
SELECT e.employee_id, e.last_name, 

e.first_name, count (l.lunch_id)
FROM l_employees e 
INNER JOIN l_lunches l 
ON (e.employee_id = l.employee_id)
GROUP BY  e.employee_id, 

e.last_name, e.first_name ;



Results of Inner Join
EMPLOYEE_ID LAST_NAME FIRST_NAME COUNT(L.LUNCH_ID)

204 OWENS ELLEN 2

205 PERKINS HENRY 2

207 SMITH DAN 2

203 WOODS MARTHA 2

202 KERN JIM 1

201 BROWN SUSAN 3

208 CAMPBELL FRED 2

210 HOFFMAN NANCY 2

8 employees have attended at least one lunch. 



The Code – with Outer Join
SELECT e.employee_id, e.last_name, 

e.first_name, count (l.lunch_id)
FROM l_employees e 
LEFT OUTER JOIN l_lunches l 
ON (e.employee_id = l.employee_id)
GROUP BY  e.employee_id, 

e.last_name, e.first_name ;



Results – Outer Join
EMPLOYEE_ID LAST_NAME FIRST_NAME COUNT(L.LUNCH_ID)

206 ROSE CAROL 0

204 OWENS ELLEN 2

205 PERKINS HENRY 2

209 JACOBS PAULA 0

202 KERN JIM 1

203 WOODS MARTHA 2

207 SMITH DAN 2

201 BROWN SUSAN 3

208 CAMPBELL FRED 2

210 HOFFMAN NANCY 2

Now we see all 
employees, even 
those who have not 
attended any lunches. 



Applications for Outer Joins - 2
 Finding defects in a pattern.
 Create a table that contains the 

“perfect” pattern, i.e. some sequence 
of numbers. 

 Then do an outer join to see if you 
have breaks in the pattern. The nulls 
will show you where the problems 
are. 



Defects in a Pattern

1
2
3
3
5
6
7
8
9
9
10
11
11

1
2
3
4
5
6
7
8
9
10
11
12

testperfect

num num
SELECT p.num AS NUM, count(t.num) AS CNT
FROM perfect p LEFT OUTER JOIN  test t

ON (p.num = t.num)
GROUP BY p.num 
HAVING count(t.num) != 1
ORDER BY p.num;

NUM CNT
3 2
4 0
9 2
11 2
12 0



Applications for outer join
 When do we want to include missing 

rows? 
 It may be especially important when 

a certain action has not yet occurred.
 For example, a part exists in 

inventory, but there are no orders for 
that part yet. If we join parts and 
orders tables, the unordered parts do 
not show up. Must use an outer join 
to display these parts. 



Outer Join – Rule of Thumb
 If you are joining two tables and 

using a summarization function, 
consider the need for an outer join. 

 Do you need to see rows/groups with 
count or sum = 0? 



Drawbacks to Full Outer Join
 Full outer join might cause problems 

when there are LOTS of rows in both 
tables that do not match. 

 Save the full outer join for those 
cases when you suspect that just a 
few rows are not matching up or 
when the base tables are quite small.  



References: Head First SQL
 Inner Joins: Chapter 8
 Outer Joins: Chapter 10 
 How do I get to Head First SQL? 

• From vtc.edu, click on the library link. 
• Click on the tab for “Find Books & 

Videos”
• Click on the link for Safari Tech eBooks. 
• In the search box, enter ‘SQL’ ; results 

should display ‘Head First SQL’. 


	Slide Number 1
	SQL: �Overview of ANSI Joins
	Special Note
	In Third Grade…�You may have done a Cross Join
	Slide Number 5
	Cross Join continued
	Cross Join – All possibilities
	Another Example of Cross Join – Table of Constants				
	Constants- literal value in SELECT
	Using a Table of Constants	
	Using the Table of Constants 
	Cross Join - Summary
	Equi-Join contains a WHERE clause
	Natural Join
	Condition Join
	Column Name Join – "USING"
	Inner Join
	Outer Join
	Left Outer Join
	Left �Outer Join
	Right Outer Join
	Slide Number 22
	Full Outer Join
	Slide Number 24
	Outer Joins – More Detail
	Oracle Outer Joins – Older Syntax
	MySQL: Full Outer Join
	Applications for Outer Joins - 1
	The Code – Inner Join
	Results of Inner Join
	The Code – with Outer Join
	Results – Outer Join
	Applications for Outer Joins - 2
	Defects in a Pattern
	Applications for outer join
	Outer Join – Rule of Thumb
	Drawbacks to Full Outer Join
	References: Head First SQL

