
SQL:

Insert

Update

Delete

Before Inserting New Data

• Must know the structure of a table

before you can insert data into it.

• You could look at the schema (model):

But what if you

don’t have the

model?

Ways to Insert Data

• Use the SQL INSERT statement

• Use a utility program to load the data from

a text file:

– Oracle: SQL Loader

– Microsoft: Bulk Copy

– DB2: LOAD utility

– MySQL: “LOAD DATA INFILE …”

– Access: Import function

– PHPMyAdmin: Import tab

Every database has a "loader",

but the name, syntax, and details

will always be different.

INSERT: Syntax

INSERT INTO table_name [(column-list)]

VALUES (value-list);

General rules:

• Insert one row at a time

• You should know the order and data type of all

the columns before you try to insert data.

• The syntax allows you to include data for some

or ALL columns

• If you do not provide data for ALL columns, you

must list the column name as well as the value.

Insert Command – General Rules

INSERT INTO l_foods VALUES

('ASP', 'FS', 1, 'FRESH SALAD', 2, 0.25);

• Remember to use single quotes around TEXT

and DATES.

• Numbers are left unquoted.

• Dollar signs are not stored in the database and

not included in the INSERT statement.

• Notice that this format does not list column

names and we have supplied data for every

column.

Insert Command – Two Formats

1) A data value must be supplied (or null) for
every column if columns are not named:

INSERT INTO l_foods -- notice no column names here

VALUES (‘ARR’, ‘AP’, 11, ‘APPLE PIE’, 1.50, null);

2) If columns are named, only the values for the
named columns need to appear in the “values”
clause.
INSERT INTO l_foods

(product_code, description, supplier_id, price)

VALUES(‘AP’, ‘APPLE PIE’, ‘ARR’, 1.60);

INSERT INTO…SELECT FROM

• It is also possible to insert rows of data into a
table by running a SELECT command to get
those rows. Two methods:
(1) First Method:

INSERT INTO table_name

{select statement};

INSERT INTO l_foods_copy -- This table has 6 columns

SELECT ‘ARR’, product_code, menu_item, description,
null, null - - so SELECT stmt must have 6 columns

FROM l_foods

WHERE supplier_id = ‘ASP’;

Number of columns SELECTED must match number of columns INSERTED

What’s going on with ‘ARR’?

Before you can use this

command, you must first

create the l_foods_copy

table.

Copy Data
create table l_foods_new (

supplier_id varchar(3) not null,

product_code varchar(3) not null,

menu_item integer not null,

description varchar(24) not null,

price decimal(5,2) null,

price_increase decimal(5,2) null);l_foods

INSERT INTO l_foods_new

SELECT 'ARR', product_code, menu_item, description, null, null

FROM l_foods

WHERE supplier_id = 'ASP';

l_foods_new

INSERT - Safest Way

• You will get the most reliable results if you

actually name all the columns you are

inserting into. Why?

– Sometimes the backend will actually

rearrange the order of columns and you won't

realize this until you can't insert data.

– You can actually skip some columns like

autoincrementing key, or columns with null

value.

– You can insert the columns in any order you

like.

INSERT INTO…SELECT FROM

(2) Second Method

INSERT INTO table_name {list_of_columns}

{select_statement};

-- 4 columns to INSERT

INSERT INTO l_foods_copy (supplier_id,

product_code, menu_item, description)

SELECT ‘ARR’, product_code, menu_item,

description -- 4 columns SELECTED

FROM l_foods

WHERE supplier_id = ‘ASP’;

Multi-row INSERT ???

• MySQL, PostgreSQL, MSSQL, and DB2 have a

feature that allows multiple rows of data to be

inserted in one statement:
INSERT INTO l_suppliers VALUES

(900, ‘Hannafords’),

(901, ‘Shaws’),

(902, ‘Price Chopper’);

• Oracle can sort of do this: (not as nice)
INSERT ALL

INTO l_suppliers VALUES (900, 'Hannafords')

INTO l_suppliers VALUES (901, 'Shaws')

INTO l_suppliers VALUES (902, 'Price Chopper')

SELECT * FROM dual;

Updating Columns – SET clause

UPDATE table_name UPDATE l_foods

SET col1 = value1, SET price = price * 1.10

col2 = value2, WHERE supplier_id in (‘JBR’, ‘FRV’);

column_n = value_n

WHERE condition;

• BE CAREFUL, without WHERE clause, you will be
updating EVERY row in the table!!

• To update a single row, specify primary key in
WHERE clause.

• Values can be fixed value, a function, an
expression, even a subquery.

Update with a Subquery

UPDATE l_foods

SET price =

(SELECT price from l_foods

WHERE supplier_id = ‘ASP’ AND

product_code = ‘SW’)

WHERE description = 'FRESH SALAD';

What does this query do?

FYI: Sandwich has supplier_id = ‘ASP’ & product_code = ‘SW’

Deleting Rows

• Syntax:

DELETE FROM table_name

WHERE {condition};

• Example:

DELETE l_foods

WHERE supplier_id in (‘CBC’,’JBR’);

• As with Update, WHERE clause is

critical!!!

Deleting Rows

• What does this command do?

DELETE FROM l_employees;

• Delete can get a little more complicated……

DELETE FROM

(SELECT d.*

FROM l_departments d

LEFT OUTER JOIN l_employees e

ON d.dept_code = e.dept_code

WHERE e.dept_code IS NULL;);

Don’t worry about the details of this

query. We will revisit deletes again

when we study JOINS.

Constraints on Update, Insert, Delete

• These actions may fail due to constraints.

For example:

– Data Type may not match

– May be inserting a value that is a foreign key,

but the parent key does not yet exist.

– No nulls in primary key

– Primary key must be unique

– MANY, MANY more constraints possible

– We will discuss this more when we study

referential integrity.

What can we do if we

accidentally change

or delete data?

SQL Transactions: the short story

• In a transaction, all statements are executed

as a single “Unit of Work”.

• Use transactions when all statements must

either succeed or none succeed.

• We typically don’t use transactions for

SELECT statements. They are used when

we are inserting, updating, or deleting data

and we need to execute a group of changes

simultaneously.

Commit, Rollback, Autocommit

• Initially changes to a table are temporary.

• Commit = save changes

• Rollback = restore table (undo changes)

• Commit is automatic (autocommit) when:
– exiting Oracle

– when creating a new table or database object.

– The checkbox is set in Application Express.

– By default in MySQL.

• Also possible to set the autocommit value:

Oracle MySQL
Set autocommit on; set autocommit = 1;
Set autocommit off; set autocommit = 0;

Autocommit in Oracle XE

Notice the Autocommit check box at

the top of the SQL pane.

Oracle Transaction Example

COMMIT; -- end prior transaction; start a new one.

UPDATE checking_act

SET balance = balance + 200

WHERE account_num = 812384;

UPDATE savings_act

SET balance = balance – 200

WHERE account_num = 812385;

COMMIT; -- transaction ends here

Transaction Example - Rollback

COMMIT; -- transaction starts here

UPDATE checking_act

SETbalance = balance + 200

WHERE account_num = 812384;

UPDATE savings_act

SET balance = balance – 200

WHRE account_num = 812385;

ROLLBACK; -- changes are not saved,

transaction is complete

Autocommit in MySQL

• Set autocommit = 1 means commit every

statement. This is default for INNODB tables.

• Set autocommit = 0 means that you will be using

transaction mode.

• However, most people don’t set the value of

autocommit. Instead, they break out of

autocommit by issuing a:

• START TRANSACTION command

• Then they end the transaction with COMMIT or

ROLLBACK.

MySQLTransaction Example

START TRANSACTION;

UPDATE checking_act

SET balance = balance + 200

WHERE account_num = 812384;

UPDATE savings_act

SET balance = balance – 200

WHERE account_num = 812385;

COMMIT; (or ROLLBACK)

