Single Sign On

CIS 2235 Adv System Administration

Overview

Once upon a time, all users shared the same machine ("time-shared" computing)

Now, every user has their own machine some services run locally on the desktop others are accessed remotely many require some form of authentication

The problem?

too many user names and passwords ideally, would like to be able to authenticate once but how?

Answer? Single Sign On (SSO)

Identity, Authentication, and Authorization

- Concepts
 - User Identity an abstract representation of an individual.
 - for example, a username represents a single user
 - Authentication proving that you are the person represented by the abstract identity
 - How do we know that you are you in a safe, secure way?
- Authorization determining level of access permitted for a given identity

Core elements for SSO

Centralized directory store of user identity and authorization information and method of accessing it
Windows Active Directory (AD)
LDAP

Tool for managing information in the directory phpLDAPadmin or Apache Directory Studio for LDAP appropriate Windows tool for AD

A way to authenticate user identities via PAM to either LDAP or Kerberos (AD)

Tools that will use centralized identity lookup methods to authenticate

SSO flow

Directory Store

A directory store is just a place to information usernames, phone numbers, addresses, etc X.500 was a definition of such a directory store MS Active Directory is a directory store LDAP

"Lightweight" Directory Access Protocol originally just a description of how to talk to an X.500 directory X.500 is obsolete, but LDAP still persists can be used to interact with AD

Organizational units

LDAP compliant directories

have entries

just property lists

organized in a hierarchy

based on organizational units and distinguished names

dn: uid=ldamon,dc=cis,dc=vtc,dc=vsc,dc=edu

Attribute	Stands for	What it is
0	Organization	Often identifies a site's top-level entry a
ou	Organizational unit	A logical subdivision, e.g., "marketing"
cn	Common name	The most natural name to represent the entry
dc	Domain component	Used at sites that model their hierarchy on DNS
objectClass	Object class	Schema to which this entry's attributes conform

Typically not used by sites that model their LDAP hierarchy on DNS

LDAP choices

In addition to AD as a directory store, there are several LDAP native choices

OpenLDAP - traditional server

389 Directory Server - Fedora maintained server

better overall documentation

more active community

Both are from the same original code base, so they are administered much the same way

Configuring LDAP is beyond the scope of what we are doing in this course, but look on Canvas for some additional resources

Using directory services

- Once you have a directory service, you have to configure services to use it
- First, setup sssd
- System Security Service Daemon
- centralized daemon for authentication and account management
- not strictly required, but provides additional features and centralized
- administration
- supports authentication through both LDAP and AD (via Kerberos)

Using directory services

Lastly, let's switch to use ssd /etc/nsswitch.conf

the name service switch

lists types of lookups and sources

passwd: compat sss group: compat sss shadow: compat sss

gshadow: files

hosts: files dns

networks: files

protocols: db files
services: db files
ethers: db files
rpc: db files

netgroup: nis

Recap

Alternatives

As described, SSO is a big hammer worthy of being used for big problems

Smaller organizations have smaller problems might not be worth the effort can instead do a "roll your own" syncing of files using tools like rsync or modern configuration management tools like ansible to copy files between systems.

PAM - Pluggable Authentication Modules

"PAM is a framework that assists applications in performing ... "authentication-related activities." The core pieces of PAM are a library (libpam) and a collection of PAM modules, which are dynamically linked libraries (.so) files in the folder / lib/security.

Each module performs one specific task, and a "PAM-aware" application typically uses a stack of several modules to accomplish its goals.

PAM - Pluggable Authentication Modules

PAM - types of modules

auth

proving who you are by providing appropriate credentials username/password, biometric, etc

account

are you allowed to log in? Time of day restrictions, for example

password

password updates (as discussed last class)

session

resources needed for this session. Mount of home directory, for example

PAM

Configured as a stack Example:

```
auth required pam_securetty.so auth required pam_unix.so nullok auth required pam_nologin.so
```

pam_securetty.so - only allow root logins from secure terminals listed in /etc/securitytty

pam_unix.so - standard unix module. Does usual unix account login checks - account not expired, etc. nullok says it is okay to login without a password (gulp!)

pam_nologin.so - if the file /etc/nologin exists, and the user is not root, login will fail.

PAM control flags

Flag	Stop on failure?	Stop on success?	Comments
include			Includes another file at this point in the stack
optional	No	No	Significant only if this is the lone module
required	No	No	Failure eventually causes the stack to fail
requisite	Yes	No	Same as required, but fails stack immediately
sufficient	No	Yes	The name is kind of a lie; see comments below

- Control flags tell PAM what to do if a module returns false
 - can be used to hide elements of the stack from a probing application
- The success of a sufficient module stops processing, but not always with a success. It doesn't override a previous failure.

Configuring PAM

PAM is configured via files /etc/pam.d

- Each PAM-aware app places its own file in the directory
 - login uses /etc/pam.d/login, for example

```
[ldamon@ubuntuLTS:/etc/pam.d$ ls
              common-auth
atd
                                         login
                                                           sudo
                                                  runuser
chfn
                                                  runuser-l
                                                           systemd-user
             common-password
                                         newusers
chpasswd common-session
                                                           vmtoolsd
                                         other
                                                  samba
       common-session-noninteractive passwd
                                                  sshd
                                                           vsftpd
chsh
                                         polkit-1
common-account cron
                                                  su
```

Additional configuration in /etc/security/*.conf files