
Process control

CIS 2230 Linux System Administration

Lecture 14

Steve Ruegsegger

S. Ruegsegger

Review

⚫ What do these permissions represent for files or dir? r, w, x

⚫ What are the 3 types of users which can get their own

permissions?

⚫ What do these mean? What are the octals?

⚫ rw-rw-r--

⚫ rwx-r--r--

⚫ What do these do?

⚫ $ chmod g+X *.sh

⚫ $ chmod w=r *.lab

⚫ What is the command to change a user owner? Group owner?

⚫ Describe what the sticky bit does? When would you use it?

⚫ What does the umask do?

S. Ruegsegger

What is a Process?

⚫ The kernel considers each program running on your system to

be a process

⚫ A process lives as it executes, with a lifetime that may be short

or long

⚫ A process is said to ‘die’ when it terminates

⚫ The kernel identifies each process by a number known as a

process ID, or pid

⚫ The kernel keeps track of various properties of each process

S. Ruegsegger

Process Properties

⚫ A process has a user ID (uid) and a group ID (gid), which
together specify what permissions it has

⚫ A process has a parent process ID (ppid) — the pid of the
process that created it

⚫ The kernel starts an init process with pid 1 at boot-up

⚫ Every other process is a descendant of pid 1

⚫ Each process has its own working directory, initially inherited
from its parent process.

⚫ There is an environment for each process — a collection of
named environment variables and their associated values.

⚫ A process’s environment is usually inherited from its parent
process

S. Ruegsegger

Parent and Child Processes

⚫ The init process is the ancestor of all other processes

⚫ Note: Ubuntu has used systemd rather than init for a couple

of years.

(Apache starts many child processes so that they

can serve HTTP requests at the same time)

S. Ruegsegger

Job control

⚫ Most shells offer job control: The ability to stop, restart, and

background a running process

⚫ The shell lets you put & on the end of a command line to start it

in the background

⚫ Or you can hit Ctrl+Z to suspend a running foreground job

⚫ Suspended and backgrounded jobs are given “job numbers” by

the shell

⚫ These “job numbers” can be given to the shell’s job control built-

in commands

⚫ Job control commands include jobs, fg, and bg

⚫ jobs command displays jobs in the current shell

S. Ruegsegger

fg and bg

⚫ fg:

⚫ Brings a background job into the foreground

⚫ Re-starts a suspended job, running it in the foreground

⚫ fg %1 will foreground job number 1

⚫ fg with no arguments will operate on the current job

⚫ bg:

⚫ Re-starts a suspended job, running it in the background

⚫ bg %1 will background job number 1

⚫ bg with no arguments will operate on the current job

⚫ For example, after running gedit and suspending it with Ctrl+Z,
use bg to start it running again in the background

S. Ruegsegger

examples

steve-oneiric@oneiric-w500:~$ emacs
^Z
[1]+ Stopped emacs
steve-oneiric@oneiric-w500:~$ bg
[1]+ emacs &

steve-oneiric@oneiric-w500:~$ gedit
^Z
[2]+ Stopped gedit

steve-oneiric@oneiric-w500:~$ jobs
[1]- Running emacs &
[2]+ Stopped gedit
steve-oneiric@oneiric-w500:~$ bg %2
[2]+ gedit &

steve-oneiric@oneiric-w500:~$ jobs
[1]- Running emacs &
[2]+ Running gedit &
steve-oneiric@oneiric-w500:~$

S. Ruegsegger

Process Monitoring: ps

⚫ The ps command gives a snapshot of the processes running on a

system at a given moment in time

⚫ Defaults are limited

⚫ Normally shows a fairly brief summary of each process

⚫ Normally shows only processes that are both owned by the

current user and attached to the current shell terminal

⚫ 3 'sets' of options:

⚫ ps in Linux uses a mixture of options with one of three syntaxes:

1) Traditional BSD ps: a single letter with no hyphen

2) Unix98 ps: a single letter preceded by a hyphen

3) GNU: a word or phrase preceded by two hyphens

S. Ruegsegger

Ubuntu $ man ps

⚫ Ubuntu decides to give all 3 syntaxes

PS(1) Linux User's Manual PS(1)

NAME

 ps - report a snapshot of the current processes.

SYNOPSIS

 ps [options]

DESCRIPTION

 ps displays information about a selection of the active processes. If

 you want a repetitive update of the selection and the displayed

 information, use top(1) instead.

 This version of ps accepts several kinds of options:

 1 UNIX options, which may be grouped and must be preceded by a dash.

 2 BSD options, which may be grouped and must not be used with a dash.

 3 GNU long options, which are preceded by two dashes.

 Options of different types may be freely mixed, but conflicts can

 appear. There are some synonymous options, which are functionally

 identical, due to the many standards and ps implementations that this

 ps is compatible with.

S. Ruegsegger

ps Options

⚫ ps has many options

⚫ Some of the most commonly used are:

Option Description
a Show processes owned by other users
f Display process ancestors in a tree-like format
u Use the ‘user’ output format, showing usernames
 and process start times
w Use a wider output format. Normally, each line of
 output is truncated; each use of the w option makes
 the ‘window’ wider
x Include processes which have no controlling terminal

-e Show information on all processes
-l Use a ‘long’ output format
-f Use a ‘full’ output format
-C cmd Show only processes named cmd
-U user Show only processes owned by user BSD

System V

S. Ruegsegger

ps Unix (sys V) format

⚫ ps defaults to displaying only the processes with the same user ID as

the current user and associated with the same terminal as the

invoker.

⚫ I often use ps -ef or ps -elF

-f = full format

-F = 'really full' format

-l = long format

-e = everyone

$ ps -ef | grep steve

UID PID PPID C STIME TTY TIME CMD

steve 1832 1 0 14:40 ? 00:00:00 /usr/lib/gvfs//gvfs-

fuse-

steve 2769 1 0 14:45 ? 00:00:00 /bin/sh

/usr/bin/libreoff

steve 2770 2769 0 14:45 ? 00:00:00

/usr/lib/libreoffice/prog

steve 2783 2770 3 14:45 ? 00:04:51

/usr/lib/libreoffice/prog

S. Ruegsegger

ps BSD format

⚫ Alternatively, we can use BSD format ps aux

steve-oneiric@oneiric-w500:~$ ps aux | grep steve

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

steve 1832 0.0 0.0 31588 2296 ? Ssl 14:40 0:00 /usr/lib/gvfs//

steve 2769 0.0 0.0 2040 512 ? S 14:45 0:00 /bin/sh /usr/bi

steve 2770 0.0 0.0 33432 3040 ? Sl 14:45 0:00 /usr/lib/libreo

steve 2783 3.3 3.1 403864 125060 ? Sl 14:45 5:57 /usr/lib/libreo

steve 7733 90.0 0.0 2040 512 pts/3 R 19:39 0:16 /bin/sh ./forever

userid proc id %cpu mem virt. non- tty state start CPU command

 util % mem swap (running, time time
 size phys multithreaded
 Mem sleeping)

 (Resident set size)
 * VSZ includes RSS

Which one is taking the most CPU?

Which one is taking the most memory?

Know what these cols mean!

S. Ruegsegger

Here's a trick for grepping ps -elf and getting the header

⚫ If I use ps -elf a lot, which I do, and grep for keywords, which I do, then I

don't get the header. :(

⚫ Here's a trick using an alias

1) Edit or append to .bash_aliases

$ cat >> .bash_aliases

alias psef='ps -elf | head -1 && ps -elf'

1) Source

$. .bash_aliases

1) Use

$ psef | grep steve

S. Ruegsegger

Process Display: pstree

⚫ Displays a snapshot of running processes

⚫ Always uses a tree-like display (a little like ps f)

⚫ But by default, it shows only the name of each command

⚫ Normally shows all processes

⚫ Specify a pid as an argument to show a specific process and

its descendants.

⚫ Specify a username as an argument to show process trees

owned by that user

S. Ruegsegger

Process Monitoring: top

⚫ $ top shows full-screen, continuously-updated snapshots of

process activity

⚫ Waits a short period of time between each snapshot to give

the illusion of real-time monitoring

⚫ It's like running a sorted ps every sec.

⚫ Processes are displayed in descending order of how much

processor time they’re using

⚫ Also displays system uptime, load average, CPU status, and

memory information

⚫ Format: $ top -d[delay] -n [iterations] [process]

⚫ $ top -d1 -n5

⚫ Usually, I just type $ top until I hit 'q' or ^C' to quit.

S. Ruegsegger

Top cols

CPU % per state: User, system, nice, idle, IOwait, hardware IRQ, software interrupt, steal time

4Gb
6Gb

S. Ruegsegger

CPU utilizaiton

⚫us = User = working on user programs (good)

⚫sy = System = overhead (ok)

⚫ni = Nice = programs which are deliberately being 'nice' (good)

⚫id = Idle = CPUs waiting to be asked to do something (good)

⚫hi/si = interrupts (usually very low)

⚫st = stolen CPU time by virtual machines

⚫wa = IOwait = CPUs need something from the Hard Drive (bad)

Know what these CPU states mean!

S. Ruegsegger

Cols from bottom rows

Process id, user, priority (to run next), nice, virtual memory, status, %cpu, %mem, cpu_time,

command

Sorted by descending

%CPU

http://www.jonathanmoeller.com/screed/?p=76

2

PID: A process’s process ID number.

USER: The process’s owner.
PR: The process’s priority. The lower the number, the
higher the priority.

NI: The nice value of the process, which affects its
priority.

VIRT: How much virtual memory the process is using.
RES: How much physical RAM the process is using,
measured in kilobytes.

SHR: How much shared memory the process is using.
S: The current status of the process (zombied, sleeping,

running, uninterruptedly sleeping, or traced).
%CPU: The percentage of the processor time used by
the process.

%MEM: The percentage of physical RAM used by the
process.

TIME+: How much processor time the process has
used.
COMMAND: The name of the command that started the

process.

S. Ruegsegger

Another favorite → nmon

$ sudo apt-get install nmon

S. Ruegsegger

nmon on aix 32-way IBM Regatta server

S. Ruegsegger

tu5

S. Ruegsegger

Signaling Processes

⚫ A process can be sent a signal by the kernel or by another process

⚫ Each signal is a very simple message. There are two ways to identify

the message:

⚫ A small whole number

⚫ With a mnemonic name

⚫ Signal names are all-caps, like INT

⚫ They are often written with SIG as part of the name: SIGINT

⚫ Some signals are treated specially by the kernel; others have a

conventional meaning

⚫ There are about 30 signals available, not all of which are very useful

S. Ruegsegger

Common Signals for Interactive Use

⚫ The command $ kill -l lists all signals

⚫ The following are the most commonly used:

S. Ruegsegger

Sending Signals: kill

⚫ The kill command is used to send a signal to a process

⚫ Usually, I do $ kill -9 pid

⚫ However, kill is not just to terminate a running process!

⚫ It is a normal executable command, but many shells also

provide it as a built-in

⚫ Use kill -HUP pid or kill -s HUP pid to send a

SIGHUP to the process with that pid

⚫ If you miss out the signal name, kill will send a SIGTERM

⚫ You can specify more than one pid to signal all those processes

S. Ruegsegger

Typical scenario: Dæmons

⚫ On Unix systems, long-lived processes that provide some service are often

referred to as dæmons

⚫ Dæmons typically have a configuration file (usually under /etc) which affects

their behaviour

⚫ Many dæmons read their configuration file only at startup

⚫ If the configuration changes, you have to explicitly tell the dæmon by sending

it a SIGHUP signal

⚫ Typical use:

$ sudo kill -HUP $(pidof sshd)

S. Ruegsegger

⚫ Not all tasks require the same amount of execution time

⚫ Linux has the concept of execution priority to deal with this

⚫ The kernel dynamically alters process priority

⚫ You can view the current priority by looking at top or ps -l

and looking at the PRI column

⚫ The priority can be biased using nice

⚫ The current bias can be seen in the NI column in top

Share!

S. Ruegsegger

niceness

⚫ “niceness” is the inverse of CPU priority

⚫ The more “nice”, the less demanding of CPU attention you request

⚫ 40 niceness values:

⚫ integers from +19 (very nice) to −20 (not very nice (nasty?)).

⚫ Default is 0.

⚫ Non-root users can only specify new nice values >= 0

⚫ more nice

⚫ from 1 to 19

⚫ Only root can specify the full range of values

⚫ less nice, more demanding

⚫ negative niceness

CPU

Nice Pri

+19 low

0 nominal

-20 high

S. Ruegsegger

nice command

⚫ Just put “nice” before the normal command

$ nice tar -cvf etc.backup.tar /etc
$ nice gzip /tester/*.TEDS
⚫ Default niceness for nice is 10

⚫ (recall positive niceness is 0-19)

⚫ To run a command at increased niceness give a positive number after the

dash:

$ nice -9 long-running-command &

$ nice -n 5 long-running-command &

⚫ Only root can decrease the niceness with a negative number:

$ sudo nice --15 important-command &

$ sudo nice -n -15 important-command &

CPU

Nice Pri

+19 low

0 nominal

-20 high

S. Ruegsegger

renice

⚫ renice changes the niceness of existing processes

⚫ Typical format: $ renice pri pid

⚫ Rules for renice:

⚫ Non-root users are only permitted to increase a process’s niceness

⚫ And they can only change a process they own

⚫ The niceness priority is the absolute number: Not an increment

⚫ Root, of course, can change the prio of any process to any value

⚫ Examples:

⚫ To set the process with pid 2984 to the maximum niceness:

$ renice 20 2984

⚫ To set the process with pid 3598 to a lower niceness:

$ sudo renice -15 3598

⚫ Root can also change the niceness of all a user’s processes:

$ sudo renice 15 -u mikeb

S. Ruegsegger

ps -elf

⚫ To see a list of 'nice' values, use -l 'long' option

steve@cis2230a:~$ ps -elf | head -1 && ps -elf | grep steve

F S UID PID PPID C PRI NI ADDR SZ WCHAN STIME TTY TIME CMD

0 S steve 9361 1 0 80 0 - 510 wait 22:05 ? 00:00:00 /bin/sh /usr/

0 S steve 9362 9361 0 80 0 - 8358 futex_ 22:05 ? 00:00:00 /usr/lib/lib

0 S steve 9374 9362 2 80 0 - 59225 poll_s 22:05 ? 00:00:21 /usr/lib/lib

0 R steve 9447 4651 97 90 10 - 510 - 22:20 pts/3 00:01:22 /bin/sh bin/

0 R steve 9470 4651 94 90 10 - 24776 - 22:21 pts/3 00:00:02 /bin/bash bi

0 R steve 9471 2595 0 80 0 - 1253 - 22:21 pts/0 00:00:00 ps -efl

0 S steve 9472 2595 0 80 0 - 1112 pipe_w 22:21 pts/0 00:00:00 grep --color

Default is '0', but 2 are 'extra nice' at +10.

S. Ruegsegger

orphans

steve@cis2230a:~$ ps -elf | head -1 && ps -elf | grep steve

F S UID PID PPID C PRI NI ADDR SZ WCHAN STIME TTY TIME CMD

0 S steve 9361 1 0 80 0 - 510 wait 22:05 ? 00:00:00 /bin/sh /usr/

0 S steve 9362 9361 0 80 0 - 8358 futex_ 22:05 ? 00:00:00 /usr/lib/lib

0 S steve 9374 9362 2 80 0 - 59225 poll_s 22:05 ? 00:00:21 /usr/lib/lib

0 R steve 9447 4651 97 90 10 - 510 - 22:20 pts/3 00:01:22 /bin/sh bin/

0 R steve 9470 4651 94 90 10 - 24776 - 22:21 pts/3 00:00:02 /bin/bash bi

0 R steve 9471 2595 0 80 0 - 1253 - 22:21 pts/0 00:00:00 ps -efl

0 S steve 9472 2595 0 80 0 - 1112 pipe_w 22:21 pts/0 00:00:00 grep --color

⚫ What is ppid of 1?

⚫ What is pid #1?

⚫ A process with ppid #1 is often an “orphan”

⚫ You can kill the orphan! (Ack)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

