S. Ruegsegger

Shell scripting

CIS 2230 Linux System Administration
Lecture 11

Steve Ruegsegger

2016 C1S2230 Linux Sys Admin 1

S. Ruegsegger

Review

 Name 3 'popular’ linux text (non-gui) editors

* What are the 4 modes of vi?

* How do you move between them?

* How do you exit vi with and without saving a file?
* What does S emacs -nw do?

* How do you exit emacs?

 What is keystroke for the “undo” command in
emacs?

* What is the default GUI editor in Ubuntu?

CIS2230 Linux Sys Admin

S. Ruegsegger

What Are Shell Scripts?

* In the simplest terms, a shell script is a file
containing a series of commands.

* The shell reads this file and carries out the
commands as though they have been entered
directly on the command line.

REVIEWY

CIS2230 Linux Sys Admin

S. Ruegsegger

Script File Format

e Simplest example:
#!/bin/bash
This is super simple
echo 'Hello world'

* The first line of our script is a little mysterious.
* |t looks like it should be a comment

* The #! character sequence is, in fact, a special construct
called a shebang. (Slang for “hash-bang”)

* The shebang is used to tell the system the name of the
interpreter (shell) that should be used to execute the
script that follows.

* Every shell script should include this as its first line.

REVIEWY

CIS2230 Linux Sys Admin

S. Ruegsegger

How To Write A Shell Script

* Write the script in an editor
e Shell scripts are ordinary text

e “Execute” it

o

emacs@steveprecise

File Edit Options Buffers Tools Sh-Script Help
ol m % - F A0 BEQ=EXO

#!' /bin/sh

HOST=sassrvl.btv.ibm.com

PORT=11

echo " ----> " SHOST:$PORT " =----

fusr/bin/vncviewer -passwd "/home/steve-precise/.vnc/passwd” $HOST:$PORT 2>/dev/null &

--:1--- sassrvl ALl L6 (Shell-script[shl)

CIS2230 Linux Sys Admin

S. Ruegsegger

How to 'execute’ the script

e 2 methods

1.

Method #1

 Just put commands in a file
* The file is argument to a shell

Method #2

* Change file permissions to be executable by user

e (We'll cover this in detail later)
S chmod u+x <file>

* Run your script file from the command prompt
e Understand: Explicit vs Implicit :)

REVIEWY

CIS2230 Linux Sys Admin

S. Ruegsegger

Getting help on bash programming

® tldp.org — The Linux Documentation Project

e

3 Google Voice & goo.gl sewD = RL CL #Scorecard [EGroups waDiagswiki Wwa22nm Char wiki BBB H STmeetings @LLI moodle course W3Bugzilla @iNotes

2012-10-1T7

LDP Worldwide
The

Mirrors .
Non-English info Linux R
Translation effort D ocumentation
Translated Guides P ro ject
Translated HOWTOs

Printed books

Main site

B 0 Francais

U italian
/@ Korean
Portugués do Brasil

Workshop

LDP Information

FAQ LDP Wiki: The LDP Wiki is the entry point for any work in progress
Manifesto / license Members | Authors | Visitors

History Documents
Volunteers/Staff

Job Descriptions HOWTOs: subject-specific help Search / Resources
Mailing lists latest updates | main index | browse by catego

LDP Weekly News epth books

Archives RSS feed ates / main index

IRC : uently Asked Questions

Feedback latest updates / main index

Apparel man pages: help on individual commands (20060810)

Linux Gazette: online magazine

| Author / Contribute

CIS2230 Linux Sys Admin

S. Ruegsegger

tldp.org/LDP/abs/html

ABS = Advanced Bash-scripting guide

Advanced Bash-Scripting Guide - abs-guide.pdF - Mozilla Firefox Advanced Bash-Scripting Guide - abs-guide.pdf - Mozilla Firefox

T~ Advanced Bash-Scripting Guid... | T Advanced Bash-Scripting Guid...
£ ﬂ E @ @ tldp.org s d B- @| |©~v webste Q & @ B~ § E E @ tldp.org [=D

B voice *§goo.gl Brecoll Fbtvcam [Home-VermontTech... [EJgb

q & & a-

» Bvoice *§goo.gl Elrecoll “7btvcam Home-Vermont Tech... [Egb {gb+ [i22nmDiagSignals S nesug {STGIT »

— + Automatic Zoom * s - 3] Il — + Automatic Zoom *

Advanced Bash-Scripting Guide

Table of Contents

Chapter 1. Shell Programming!

Advanced Bash-Scripting Guide

2.1. Invoking the script.

2.2, Prel 'mmau Exercises.

An in-depth exploration of the art of shell scripting B
Chapter 3. Special Characters.

Mendel Cooper i i
Chapter 4. Introduction to Variables and Parameters.
4.1, Variable Substitution
2 i i L
4.3, Bash Variables Are Untyped.
4.4, Special Variable Type

<thegrendel .abs@gmail.com>

6.6

Chapter 5. Quoting.
27 Nov 2012 5.1, Quoting Variable

Revision History

Revision 6.4 30 Aug 2011 Revised by: mc
'VORTEXBERRY ' release

Revision 6.5 05 Apr 2012 Revised by: mc 7.1. Test Construct:
'TUNGSTENBERRY release 1.2, File test operator:

7.3. Other Comparison Operator:
Revision 6.6 27 Nov 2012 Revised by: me 2 Nested ithen Conition Teat
'YTTERBIUMBERRY' release

1.5, Testing Your Knowledge of Test

Chapter 6. Exit and Exit Status.

This tutorial assumes no previous knowledge of scripting or programming, but progresses rapidly toward an Chapter 8. Operations and Related Topics.
intermediate/advanced level of instruction. . . all the while sneaking in litile nuggets of UNIX® wisdom and 8.1. Operator
lore. It serves as a textbook, a manual for self-study, and as a reference and source of knowledge on shell 8.2, Numerical Constant:
scripting techniques. The exercises and heavily-commented examples invite active reader participation, under 8.3, The Double-Parentheses Construct
the premise thatthe only way to really learn scripting is to write scripts. 8.4. Operator Precedence.

This book is suitable for classroom use as a general introduction to programming concepts. Part 3. Beyond the Basics.

. - | Chapter 9. Another Look at Variables
D(-'.‘dlcatlon 9.1. Internal Variable:

H or typeset.
For Anita, the source of all the magic 9.2.1. Another use for declare.

9.3, SRANDOM: generate random inte ger.

Chapter 10. Manipulating Variables

CIS2230 Linux Sys Admin

S. Ruegsegger

Another good resource

Linux’ Command Line
and Shell Scripting

SIBLE

THE COMPREHENSIVE, TUTORIAL RESOURCE

CREATE PROFESSICNAL USE THE COMMAND LINE AUTOMATE
REAL-WORLD SCRPTS AND BYPASS THE G LONMON TA5KS

WILEY

CIS2230 Linux Sys Admin

Customer Reviews

O P B P

4.8 out of 5 stars -

5star [| 85%

astar [15%
3 star 0%
2 star 0%
1 star 0%

See all 13 customer reviews

S. Ruegsegger

The first edition is a 'free' PDF

Linux Command Line and Shell Scripting Bible

Author:

Isbn:

Linux

Command Line and

¢ .6 ~ Pages:
Shell Scripting 9 g
- o :
. anguage:
¥ ‘\
": File size:
A e
D = 'll File format:
Bkl
- Category:

CIS2230 Linux Sys Admin

Richard Blum

978-0-470-25128-7

2008

809

English

19.9 MB

PDF

Linux & Unix

S. Ruegsegger

Contents of first edition

Part | The Linux Command Line

Chapter 1: Starting with Linux Shells ...
Clapter 2 Gefting o the Shell ..ovvssssnmemmmorsnmsnmmsmmrsmanssnmresmsmes 25
Chapter 3: Basic bash Shell Commandscccooiiiiii e, 59
Chapter4; More bash Shell Commands .ouuusmsssusnmusmnsmmmmsemrpmeismsnssss s o1
Chapter 5: Using Linux Environment Variables ... 123
Chapter6; TUnderstanding Tinws File Permissions .uasswmusmsnsmmmssmmmssnnusssnsssim 147
Chapter 7: Working with EdItOrs ... &l
Part 11 Shell Scripting Basics
Chapter 8: Basic Script BUIldingccoooiiiiiiiiiiii e, 201
Chapter'9; Using Structured Conmuamils ooeumsmsmss s s amissnssa s 229
Chiapter 10t Mote Stiictited (COMPARAScccomssmsssssmwmsmsmssssssmmnmmsssssawssmmisa ssssom sunsmsasssssmsisss 255
Chapter 11: Pemidling User Inpul oo ommmmomasmnmsmsssmmims s s s sy s s 285
Cliaprer .25 PReSERIEE IIATE ..o cnsmamssmmnssimmmmomsasomstosonsimsssmmson v s st s o aossassiiss oo Ao
Choapter 13z Seript Control o.cmmmummmmemmussmmasssmonsem s emeRsEse 355
Part 111 Advanced Shell Scripting
Chapter 14: Creating FUNCHONSc..coiiiriiiiniiiniiirieine e 363
Chapier 157 Addiig Colot 6 Belfils ...uuwmmunsimmemionimmmmmssss s s 385
Chapter 16: Introducing sed and gawk ... 419
Chaier 17 SEoinlal Biieifiois oo anonimsmarm s i B de s R e s e 4T
Chapter' | 8: AOEEEd B0, e i s e e s s R ST 473
Chapter' 19t ALAVAREEA AWK .c.vwsmmmmmimonammsnsssswenmsssssesssussssias sosss swssssen cosiors saniessse voswis os s codvsnssseds 501

} Lecture 5

Lecture 6
Lecture 13

Lecture 10 — vi,
nano,emacs

” Lecture 11

Lecture 9

CIS2230 Linux Sys Admin

S. Ruegsegger

7 Key programming concepts

1. Assigning variables (ch 8)

e 1) string, 2) command substitution, 3) arithmetic

If-then-else
. (ch 9)
test expressions

While looping }
_ . (ch 10)
~or looping

Dassing arguments }
(ch 11)
Reading keyboard input /

Chapter numbers from 'free PDF” book on page 10
“Linux Command Line and Scripting Bible” 15t ed.

N o U s W N

CIS2230 Linux Sys Admin

S. Ruegsegger

1. Assigning Variables — strings

* Simply:

e variable=value

* No spaces around the =. (try it)

* The shell does not care about the type of data
assigned to a variable. It treats them all as strings

* Examples

a=>5
a=foo.bar

c="a string and S$b"

f="\t\ta string\n"
newlines.

b="a string" # Embedded spaces must be within quotes.

Other expansions such as

variables can be expanded into the assignment.

Escape sequences such as tabs and

CIS2230 Linux Sys Admin

S. Ruegsegger

Assigning Variables — strings

* Use quotes for strings

S z=this 1s a test
1s: command not found

S z="this is a test"
S echo $z
this 1s a test

CIS2230 Linux Sys Admin

S. Ruegsegger

Assigning Variables — command substitution

e Capture command substitution
* S() or backticks
* We've used this inside commands before
e But it works the same to assign a var value

d=S (date "+S%F") # d = 2012-10-17
cp fstab fstab.$d

CIS2230 Linux Sys Admin

S. Ruegsegger

Assigning Variables — Integer Math

* 4 ways to do integer math:

1.

2.

3
4

symbols to keep from the shell

S[] - shortcutand no escaping symbols
. let —this command includes the assighment
. S(()) -integerarithmetic expansion (like let)

* Examples: (How many minutes in 4 hours?)

S

Ur Uy O Ur

hrs=4

min="expr Shrs * 60°
min=S[Shrs * 60]
let "min = $hrs * 60"
min=$((Shrs * 60))

CIS2230 Linux Sys Admin

expr —the original and the trickiest. Use inside
command substitution. No quotes. Must escape

S. Ruegsegger

Assigning Variables — Floating pt Math

 Float Math!

* bc — built-in bash calculator command
* Build the expression in a string
e echo the string and pipe to bc
e Scale = 0 by default for division (not sure why)

* Example (convert feet to meters)

S ft=5.8
S m=S$(echo "scale=2; Sft * 12 * 2.54 / 100" | bc)

CIS2230 Linux Sys Admin

S. Ruegsegger

Assigning Variables - arrays

* Arrays

* |nitalize with parens OR brackets
e Dereference (“use”) with ${ }

MYARRAY= (
r=SRANDOM
let "n =

s=S{MYARRAY [Sn]}
echo r=$r n=Sn myarray=$s

—» r=20399 n=3 myarray=3050

4027 1749 1713 3050 — |

)
n="expr $r % 4

CIS2230 Linux Sys Admin

> array

Same as:

n=$((Sr % 4))

N

S. Ruegsegger

Variable names

* Where does a variable name end?
* e.g. | want to rename a file to one ending with a “1”

$ fn="foobar"
$ mv $fn Sfnl
mv: missing destination file operand after "foobar'

Try mv —--help' for more information.

S echo mv Sfn Sfnl
mv foobar

* Solution = put curly brackets {} around var name
S mv Sfilename S$S{filename}l

CIS2230 Linux Sys Admin

S. Ruegsegger

Here Documents or heredoc

* When there is a large text:

* A here document (a.k.a. heredoc) is a form of I/0
redirection in which we embed a body of text into
our script and feed it into the standard input of a
command.

e |t works like this:
command << token

text
token

* “token” is any unique string you want, which simply
does not exist in the “text”

* | like EOP, which | always consider End-Of-Print.

CIS2230 Linux Sys Admin

S. Ruegsegger

Examples

#!/bin/bash
Script to retrieve a file via FTP

FTP_SERVER=ftp.nl.debian.org
FTP PATH=/debian/dists/images/cdrom
REMOTE_FILE=debian—Cd_info.tar.gz

-

ftp(}n <<:>EOF_

open S$FTP SERVER

user anonymous me@linuxbox
cd SFTP PATH

hash

get $REMOTE_FILE

bye

_EOF

1ls -1 $REMOTE_FILE

~

#!/bin/bash
Script to write a new script

cé} >> “new script.sh” <<EOP
#/bin/sh

find . —mtime +30 -delete
EOP

CIS2230 Linux Sys Admin

S. Ruegsegger

Heredoc's are not really used for env. vars

text=$ (cat <<EOT
here 1s some text
lots of lines

now I'm done

EOT

)

vV V.V V V »n

S echo "Stext"
here 1s some text
lots of lines

now I'm done

CIS2230 Linux Sys Admin

S. Ruegsegger

Shell Functions

* There are two different formats for defining
functions:
function name {
commands
return

}

* and
name () {
commands
return

}

 Called simply by the function name

CIS2230 Linux Sys Admin

S. Ruegsegger

2. Flow Control: branching with if

* You all understand:
1f <expression> then <command>
else <command>

* The shell script format is:
1f evalcmd; then

commands

[ell1f expr; then
commands. ..]
[else

commands]

fi1

CIS2230 Linux Sys Admin

S. Ruegsegger

syntax

* Memorize that the semi (;) acts the same as a new
line.

* Both newline and ; separate commands
 Therefore, the 3 codes below are the same

* | will use both ; and newline interchangeably.

1f <eval> ; then 1f <eval>
commandl then commandl
command? command?Z
fi1 fi1

S if <eval> ; then commandl; command?2; fi

CIS2230 Linux Sys Admin

S. Ruegsegger

Linux shell exit status

* The evalcmd in an if-then is the exit status from any
linux command

e An exit status is define to be O for “success” and
any other number for an error.

* Notice, that exit status is O for good, anything else is
bad.

* Most T/F flags are O for F and anything else for T

* Therefore if/then construct tests whether the exit
status of a list of commands is O, and if so, executes
one or more commands

 The exit status is stored in the $? env variable from
“all’” commands

CIS2230 Linux Sys Admin

S. Ruegsegger

Example “if” statements right from prompt

* Try these academic example :
1f pwd ; then echo yes; else echo no; f1
1f xxx ; then echo yes; else echo no; f1i

1

Any “command” to be evaluated
The “if” checks the return code for any ERROR. “0” is means “no error”

e Or this:

#/bin/bash
username=jimbob

if grep Susername fetc/passwd
then
echo "username Susername found"”
echo "the .b* files are”
1ls -a fhome/Susernamef.b*
else
| echo "the username Susername was not found”
fi

CIS2230 Linux Sys Admin

S. Ruegsegger

3. Most used evaluation command — test

e By far, the command used most frequently with “if” is
test.

* The test command performs a variety of checks and
comparisons.

* |t has two equivalent forms:
test expression

* and the more popular format:> Samel!

[expression |

" Termini
File Edit WView Terminal Tabs Help

steve@xerus:~% which test

jusr/bin/test
steve@xerus:~$ which [Both_test anc_l | are executable
/usr/bin/[files in /usr/bin

steve@xerus:~$ |}

CIS2230 Linux Sys Admin

S. Ruegsegger

The test command evaluates an 'exit' error

e Remember! The test command returns an “exit
status”

 an exit status of zero (0) when the expression is true

* an exit status of anything other than zero when the
expression is false.

e Huh?
* | think it’s kinda strange
* It's opposite of T/F
* Think of it as an “error” code. 0 = no error (= true)

CIS2230 Linux Sys Admin

S. Ruegsegger

3 types of test expressions

* There are 3 classes of test conditions:
1. Numeric

2. String

3. File

 Each class above has it's own set of commands!

CIS2230 Linux Sys Admin

S. Ruegsegger

1. Numeric expressions for test

TABLE 9-1

The test Numeric Comparisons

Comparison Description

nl -eq né Check if n1 is equal to nZ.

nl -ge nZ Check if n1 is greater than or equal to n2.
nl -gt né Check if n1 is greater than nZ.

nl ~le ne Check if n1 is less than or equal to nZ.

nl =1t g2 Check if n1 is less than nZ.

nl -ne n2 Check if nl is not equal to nZ.

“numeric” test get the 2 |etter version

n= who | wc -1°

if [$Sn -gt 3] ; then
echo "who else i1is on?"
who

fi

CIS2230 Linux Sys Admin

S. Ruegsegger

2. String expressions for test command

The test Command String Comparisons

Comparison Description
_8§tril= stre Check if strl is the same as string StrZ.
gerl l=stre Check if strl is not the same as strZ.
gtrl < sEr2 Check if strlis less than str2. ‘
§Erl = SLIrZ Check if stril is greater than strZ.
i SEr1 Check if strl has a length greater than zero.
“Z 5Erl Check if strl has a length of zero.

“string” test get the symbol version

top=S$(top -d4 -nl | head -8 | tail -1 | awk '{print $13}"'")
if [Stop = 'firefox']; then
echo "Lots of firefox here"
elif [S$Stop = 'compiz']; then
echo "the GUI is the biggest hog!"
fi

CIS2230 Linux Sys Admin

S. Ruegsegger

Warnings on strings in []

String order

Trying to determine if one string is less than or greater than another is where things start get-
ting tricky. There are two problems that often plague shell programmers when trying to use the

greater-than or less-than features of the test command:

B The greater-than and less-than symbols must be escaped, or the shell will use them as

redirection symbols, with the string values as filenames.

B The greater-than and less-than order is not the same as that used with the sort

command.

P

$ cat test9b

##!1/bin/bash

testing string sort order
vall=Testing

valZ=testing

<

Linux Command Line and Shell Scripting Bible v2 (pg 309)

— escape, else > is redirect to a file.

if [$vall \> $val2] “
then
echo "$vall is greater than $val2”
else
echo "$vall is less than $val2"
fi

CIS2230 Linux Sys Admin

S. Ruegsegger

More warnings on strings in | |

* Don’t get burned by using string compare operators
(>,=,<) for numbers! (Il have...)

e Understand this output:

steve@xerus:~$% a=5

steve@xerus:~$%$ b=11

steve@xerus:~$% if [%a \> $b]; then echo "%a is > $b, really"; fi
5 1is > 11, really

steve@xerus:~$ [

CIS2230 Linux Sys Admin

S. Ruegsegger

3. File expression for test command

TABLE 9-3

Comparison

The test Command File Comparisons

Description

-d 71]e Check if f77e exists and is a directory.
=@ §4E Checks if 7 17e exists.
o -f file Checks if f77e exists and is a file.
E‘ - §T1lé Checks if f71e exists and is readable.
g -8 Fie Checks if f77e exists and is not empty.
GEJ -w file Checks if 7 1e exists and is writable.
o BV Checks if 7 7e exists and is executable.
-4 T11E Checks if f7Te exists and is owned by the current user.
-G file Checks if f7Te exists and the default group is the same as the current
user.
Frfed -ng File2 Checks if filel is newer than fileZ.
el -0y o« nled Checks if filel is older than fileZ.

“file” test get the dash-letter version

CIS2230 Linux Sys Admin

S. Ruegsegger

example

2016

#!/bin/bash
test-file: Evaluate the status of a file
FILE=-/.bashrc

if [-e "$FILE"]; then
if [-f "$FILE"]; then
echo "$FILE is a regular file.™
fi
if [-d "$FILE"]; then
echo "$FILE is a directory."
fi
if [-r "$FILE"]; then
echo "$FILE is readable.”
fi
if [-w "$FILE"]; then
echo "$FILE is writable."
fi
if [-x "$FILE"]; then
echo "$FILE is executable/searchable.™

fi

else
echo "$FILE does not exist"
exit 1

fi

exit

CIS2230 Linux Sys Admin

36

VERMONT

S. Ruegsegger TECH

An improved version of the test command: [[]]

e Of course, someone improved on test

e Recent versions of bash include a compound command
that acts as an enhanced replacement for test.

* |t is a bash symbol and not an executable command

* |t uses the following syntax:
[[expression]] <

* where, like test, expression is the exit status of a
linux command.

*The [[1] command isvery similarto test (it
supports all of its expressions)

Notice the “spaces!”

e Benefits:

* You don’t have to escape the string compare: > or <.
* |t adds 2 cool new operators ‘

CIS2230 Linux Sys Admin

S. Ruegsegger

Regex in test [[|] using ="~

1. regex pattern matching for strings!
stringl =~ regex
e which returns 0 (no error) if stringl is matched by
the extended regular expression regex.

* Extended regex pattern definition
* No quotes around the regex (seems odd to me)

* Example:

A="steve steven mary Stephen Joe Steve"
for name in SA; do
if [[Sname =~ [Ss]te(v|ph)en?]] ; then
echo "name=Sname"
fi
done

CIS2230 Linux Sys Admin

S. Ruegsegger

Globbing in test [[]] using ==

2. File globbing!

 Another added feature of [[]] is that the == operator
supports filename matching the same way as shell
'globbing'

* This makes [[]] very useful for evaluating file and path
names

* No quotes around the glob (still seems odd to me)

* Don't confuse with regex, they are similar, but globbing
is different

* Example
if [[S$file == 1*.txt]] ; then
mv $file /nfs/backup
fi

CIS2230 Linux Sys Admin

S. Ruegsegger

(()) - Improved integer arithmetics

* bash also provides improved integer math with the
(()) command

* It supports a full set of arithmetic evaluations:
* > <, == symbols rather than -gt, -It, -eq from ()

* Pre and post-increment and -decrement:
var++, var—--, --var, ++var

e Logical AND an OR: &&, || rather than -a and -o from (
)

e Examples
port=5901
if ((S$Sport > 5900)) ; then

vncserver :S$port
fi

CIS2230 Linux Sys Admin

S. Ruegsegger

Combining Expressions

* It’s also possible to combine expressions to create
more complex evaluations.

Operation test [[11and (())
AND -a &é&

OR -0 | |

NOT !

How to test if an integer is within a range.

if [$INT -ge $MIN_VAL -a $INT -le $MAX_VAL]; then

pchu "HINT is within $MIN_ VAL to $MAX _VAL."
else

echo "$INT is out of range."
fi

CIS2230 Linux Sys Admin

S. Ruegsegger

Summary of Brackets

e S () -command substitution
e 5[] -same as expr, original integer math

e S(()) -integer math expansion, like 1et. An

improvementon $[] and expr
e if [] -sameas test command
e if () -original integer math
eif [[1] -improved][] or test command
eif (()) -improved () integer math

A nice summary of brackets and test [] expressions!
http://tldp.org/LDP/abs/html/refcards.html

CIS2230 Linux Sys Admin

http://tldp.org/LDP/abs/html/refcards.html

S. Ruegsegger

4. Looping

* While looping:
while <condition 1s true>; do
commands
done

e Same <condition> as if-then.
The S? exit status is tested
* You can use test or [[]] in the while condition

#!1/bin/bash

while-count: display a series of numbers

count=1 / Original test []

while [$count -le 5]; do
echo $count
count=%((count + 1)) <

T Improved Int. Math|s (())

echo "Finished."

CIS2230 Linux Sys Admin

S. Ruegsegger

Looping

e Until looping:
until <expression 1s false>; do
commands

done

 Example
#!/bin/bash
until-count: display a series of numbers
count=1
until [[$Scount > 5]]; do

echo Scount $\\\\

let "count=Scount+1"

done “\\\\

echo "Finished."

Improved test [[1]

Improved Int. Math 1et

Be sure to compare this script to the previous one

CIS2230 Linux Sys Admin

S. Ruegsegger

Breaking the loop

e break command

* You can break-out of a loop at any iteration

e Stops the loop right then. Continues after the “done”
* Works with while and until

* |f nested, then it “breaks out of” the inner most loop

for ((a=1; a<l1l0,; a++)) ,; do
echo "** $Sa *x*x"
if [Sa -eqg 6]; then
break
fi
done

CIS2230 Linux Sys Admin

S. Ruegsegger

Skipping in the loop

e continue command
* Just skips to the next “iterator”
e Doesn't finish that one loop, and jumps to the next loop
e “stays in” the loop, just skips one “beat”

for ((a=1; a<l1l0,; a++)) ,; do
if [Sa -eqg 6]; then
continue
fi
echo "** $Sa *x*x"

done

CIS2230 Linux Sys Admin

S. Ruegsegger

5. Flow Control: Looping With for

* Syntax:
for <var> 1n <list>; do
commands

done

* Typical sources of <list>:

for
for
for
for

s 1n
n 1in
1 1n
file

fr so jr sr; do
"seq 1 20 ; do
{A..D}; do

in ~/labs/lab*.txt;

do

Manual list
Numeric list
Char list
File glob

* Note: in order for “for” to use the file glob, it must see a
glob wildcard: * or ?.

CIS2230 Linux Sys Admin

S. Ruegsegger

More for syntax examples

for f 1n filel file2 file3 file5s

. . do
Alist of files echo "Processing $f"
do something on $f
done
You can also use shell variables:
FILES="Tilel
fpath/tosfile2
. . fetc/resolv.conf”
Shell variable list for £ 1n SFILES
do
echo "Processing $f"
done
You can loop through all files such as *.c, enter:
G|Ob| $ for f 1in *.c; do echo "Processing $f file..

CIS2230 Linux Sys Admin

: done

S. Ruegsegger

More on that for list:

* Reading from a command
for product in $(cat /usr/inventory.txt);
do
echo "product S$product"
done

* The command might get complicated! You can separate
out if you want to.

dirs=$(cat /etc/passwd | awk -F: '($3 >= 1000) {print $6})
for dir in $dirs; do
echo "** Sdir **" iﬁz A new favorite
ls Sdir technique of

done mine

CIS2230 Linux Sys Admin

S. Ruegsegger

More on that for <list>: IFS

 What if the list is not space-separated?

* You can change what does separate a list.
* |t'sthe IF'S envvar - Internal Field Separator |

* Thedefaultis $' \t\n' which means space, tab
and newline.
* Note: S'somestring' is a 'string' of literals

* e.g. if you are looping on names which could contain
spaces, then remove the space from IFS
IFS=$'\n\t'
for student in $(cat /usr/students.txt); do
echo "** Sstudent **"

done

CIS2230 Linux Sys Admin

S. Ruegsegger

IFS

* Don’t break on spaces; break on colon!
IFS=:
A="New York:New Hampshire:Vermont:South Carolina"
for state in $A; do
echo state=$state
done

TOTT TT=UT T

steve@xerus:~$
steve@xerus:~$% IFS=:

steve@xerus:~$% A="New York:New Hampshire:Vermont:South Carolina”
steve@xerus:~$% for state in $A; do

> echo state=%$state

> done

state=New York

state=New Hampshire

state=Vermont

state=South Carolina

steve@xerus:~$ |

TS TTE=TEr

Run without IFS to see what happens
ResetIFSby: $ IFS=$' \n\t'

CIS2230 Linux Sys Admin

S. Ruegsegger

C-type for loops allowed in bash

* Another format for for
* Looks like a loop from C or perl

for ((a=1; a < 10; a ++))
do

echo ** a = Sa **
done

CIS2230 Linux Sys Admin

S. Ruegsegger

6. Passing arguments

e So far, all our variables have been 'hard-coded' in
the script.

e A program can get 'live' data in several ways:
* Read from the keyboard “interactively”
* Pass to the program when it is executed as “arguments”

CIS2230 Linux Sys Admin

S. Ruegsegger

Positional Variables or Shell Arguments

* The arguments are passed to a program are
positional variables.

* The first argument passed to the script is assigned to the
variable $1

* the second argument is $2,
* and so on up to S9.

* Notice that the names of the variables are actually
the digits 1 through 9

* The positional variable SO always contains the
filename of the script.

* Ex: S myscript.sh steve /home/steve 30
$0 $1 $2 $3

CIS2230 Linux Sys Admin

S. Ruegsegger

example

#!/bin/bash

traveltime - a program to calculate how long it will
take to travel a fixed distance

syntax: traveltime miles mph
$ traveltime 90 40
The trip will take 2 hours and 15 minutes

TOTMINUTES=S$((($1 / $2) * 60)) # miles / mph * 60
HOURS=$ (($TOTMINUTES / 60))
MINUTES=$ ((STOTMINUTES % 60))

echo "The trip of $1 miles at $2 mph will take SHOURS hours and
SMINUTES minutes"

$./traveltime 90 40
The trip of 90 miles at 40 mph will take 2 hours and 15 minutes

CIS2230 Linux Sys Admin

S. Ruegsegger

Additional positional variables

e S# is the number of variables *
e S* and $@ are a list of all positional variables

e Ex: ./script “word” “words with spaces”

e "S*" produces a one string result of all args:
e.g. "word words with spaces”

* "SQ" produces a two string result:
e.g. "word" "words with spaces”

Parameter Description

$* Expands into the list of positional parameters, starting with 1.
When surrounded by double quotes, it expands into a double
quoted string containing all of the positional parameters, each
separated by the first character of the IF5 shell variable (by defanlt
a space character).

i@ Expands into the list of positional parameters, starting with 1.
When surrounded by double quotes, it expands each positional
parameter into a separate word surrounded by double quotes.

CIS2230 Linux Sys Admin

S. Ruegsegger

More than $97

* The first 9 are easy: S1to S9
then use curly brackets: ${10}, S{11}

* Args are space-delimited. Use quotes to group
together

* S checkname steve ruegsegger new hampshire
$0 $1 $2 $3 $4

* S checkname "steve ruegsegger" "new hampshire"
$0 $1 $2

* The shift command moves each arg “down one”.

* |t's like shift @ARGV; in C or perl
o After a shift, S2 becomes S1, S3 becomes S2, etc.

CIS2230 Linux Sys Admin

S. Ruegsegger

=)

/. Reading Keyboard Input

#!/bin/bash
read-integer: evaluate the wvalue of an integer.

echo —-n "Please enter an integer -> "
read 1nt

if [["Sint" =~ *=-2[0-9]+$ 1]; then

echo "Input value 1s i1ndeed an integer." >&Z
else

echo "Input value 1s not an 1nteger." >§&2

exit 1

fi

CIS2230 Linux Sys Admin

VERMONT

S. Ruegsegger TECH

Example — this amount of formatting should be memorized

#!/bin/bash

if [$# -eq 0]; then

echo "./afs [start|restart|stop]"
exit 1;
fi
if ["S$1" == "start"]; then
echo "starting openafs-client service"
sudo /etc/init.d/openafs-client force-start
echo "klog ruegsegs (using getpw)"
klog ruegsegs -pipe "~/getpw -id ruegsegs -key afs get’
fi
if ["$1" == "stop"]; then
echo "stopping openafs-client service"
sudo service openafs-client stop
fi
if ["$1" == "restart"]; then
echo "RE-starting openafs-client service"
sudo /etc/init.d/openafs-client restart
fi
exit

CIS2230 Linux Sys Admin

S. Ruegsegger

Skill: Editing a string variable

* We use piped commands to 'edit' a string variable
e use echo to 'print' out the variable to stdout
* use sed to edit the variable (stdin to stdout)
* Put that in command substitution to set to a new, editted variable

* e.g.

oldname=year2014

newname=S$ (echo Soldname | sed 's/2014/2015") jﬁ(
cp /home/steve/Soldname /home/steve/Snewname

* What if you had a comma separated file and wanted to loop on the
fields? The loop below doesn't work. One way to fix is with IFS.
However, you can also fix it using sed.

line=a,b,c,d
for element in $line; do

echo one element is: Selement
done

CIS2230 Linux Sys Admin

