
S. Ruegsegger

CIS 2230 Linux System Administration

Lecture 11

Steve Ruegsegger

Shell scripting

2016 CIS2230 Linux Sys Admin 1

S. Ruegsegger

Review

• Name 3 'popular' linux text (non-gui) editors

• What are the 4 modes of vi?

• How do you move between them?

• How do you exit vi with and without saving a file?

• What does $ emacs -nw do?

• How do you exit emacs?

• What is keystroke for the “undo” command in
emacs?

• What is the default GUI editor in Ubuntu?

2016 CIS2230 Linux Sys Admin 2

S. Ruegsegger

What Are Shell Scripts?

• In the simplest terms, a shell script is a file
containing a series of commands.

• The shell reads this file and carries out the
commands as though they have been entered
directly on the command line.

2016 CIS2230 Linux Sys Admin 3

S. Ruegsegger

Script File Format

• Simplest example:
#!/bin/bash

This is super simple

echo 'Hello world'

• The first line of our script is a little mysterious.
• It looks like it should be a comment
• The #! character sequence is, in fact, a special construct

called a shebang. (Slang for “hash-bang”)
• The shebang is used to tell the system the name of the

interpreter (shell) that should be used to execute the
script that follows.

• Every shell script should include this as its first line.

2016 CIS2230 Linux Sys Admin 4

S. Ruegsegger

How To Write A Shell Script

• Write the script in an editor
• Shell scripts are ordinary text

• “Execute” it

2016 CIS2230 Linux Sys Admin 5

S. Ruegsegger

How to 'execute' the script

• 2 methods

1. Method #1
• Just put commands in a file

• The file is argument to a shell

2. Method #2
• Change file permissions to be executable by user

• (We'll cover this in detail later)

$ chmod u+x <file>

• Run your script file from the command prompt
• Understand: Explicit vs Implicit :)

2016 CIS2230 Linux Sys Admin 6

S. Ruegsegger

Getting help on bash programming

● tldp.org – The Linux Documentation Project

2016 CIS2230 Linux Sys Admin 7

S. Ruegsegger

tldp.org/LDP/abs/html

2016 CIS2230 Linux Sys Admin 8

ABS = Advanced Bash-scripting guide

S. Ruegsegger

Another good resource

2016 CIS2230 Linux Sys Admin 9

S. Ruegsegger

The first edition is a 'free' PDF

2016 CIS2230 Linux Sys Admin 10

S. Ruegsegger

Contents of first edition

2016 CIS2230 Linux Sys Admin 11

Lecture 10 – vi,
nano,emacs

Lecture 5

Lecture 9

Lecture 6
Lecture 13

Lecture 11

S. Ruegsegger

7 Key programming concepts

1. Assigning variables
• 1) string, 2) command substitution, 3) arithmetic

2. If-then-else

3. test expressions

4. While looping

5. For looping

6. Passing arguments

7. Reading keyboard input

2016 CIS2230 Linux Sys Admin 12

(ch 9)

(ch 11)

(ch 10)

Chapter numbers from 'free PDF” book on page 10
“Linux Command Line and Scripting Bible” 1st ed.

(ch 8)

S. Ruegsegger

1. Assigning Variables – strings

• Simply:
• variable=value

• No spaces around the =. (try it)

• The shell does not care about the type of data
assigned to a variable. It treats them all as strings

• Examples

2016 CIS2230 Linux Sys Admin 13

a=5

a=foo.bar

b="a string" # Embedded spaces must be within quotes.

c="a string and $b" # Other expansions such as

variables can be expanded into the assignment.

f="\t\ta string\n" # Escape sequences such as tabs and

newlines.

S. Ruegsegger

Assigning Variables – strings

• Use quotes for strings

2016 CIS2230 Linux Sys Admin 14

$ z=this is a test

is: command not found

$ z="this is a test"

$ echo $z

this is a test

S. Ruegsegger

Assigning Variables – command substitution

• Capture command substitution
• $() or backticks

• We've used this inside commands before

• But it works the same to assign a var value

d=$(date "+%F") # d = 2012-10-17

cp fstab fstab.$d

2016 CIS2230 Linux Sys Admin 15

S. Ruegsegger

Assigning Variables – Integer Math

• 4 ways to do integer math:
1. expr – the original and the trickiest. Use inside

command substitution. No quotes. Must escape

symbols to keep from the shell

2. $[] – short cut and no escaping symbols

3. let – this command includes the assignment

4. $(()) - integer arithmetic expansion (like let)

• Examples: (How many minutes in 4 hours?)

$ hrs=4

$ min=`expr $hrs * 60`

$ min=$[$hrs * 60]

$ let "min = $hrs * 60"

$ min=$(($hrs * 60))

2016 CIS2230 Linux Sys Admin 16

S. Ruegsegger

Assigning Variables – Floating pt Math

• Float Math!

• bc – built-in bash calculator command
• Build the expression in a string

• echo the string and pipe to bc

• Scale = 0 by default for division (not sure why)

• Example (convert feet to meters)

$ ft=5.8

$ m=$(echo "scale=2; $ft * 12 * 2.54 / 100" | bc)

2016 CIS2230 Linux Sys Admin 17

S. Ruegsegger

Assigning Variables - arrays

• Arrays
• Initalize with parens OR brackets

• Dereference (“use”) with ${}

2016 CIS2230 Linux Sys Admin 18

MYARRAY=(4027 1749 1713 3050)

r=$RANDOM

let "n = ($r % 4)"

s=${MYARRAY[$n]}

echo r=$r n=$n myarray=$s

→ r=20399 n=3 myarray=3050

Same as:
n=$(($r % 4))

n=`expr $r % 4`

array

S. Ruegsegger

Variable names

• Where does a variable name end?

• e.g. I want to rename a file to one ending with a “1”
$ fn="foobar"

$ mv $fn $fn1

mv: missing destination file operand after `foobar'

Try `mv --help' for more information.

$ echo mv $fn $fn1

mv foobar

• Solution → put curly brackets {} around var name
$ mv $filename ${filename}1

2016 CIS2230 Linux Sys Admin 19

S. Ruegsegger

Here Documents or heredoc

• When there is a large text:

• A here document (a.k.a. heredoc) is a form of I/O
redirection in which we embed a body of text into
our script and feed it into the standard input of a
command.

• It works like this:
command << token

text

token

• “token” is any unique string you want, which simply
does not exist in the “text”

• I like EOP, which I always consider End-Of-Print.

2016 CIS2230 Linux Sys Admin 20

S. Ruegsegger

2016 CIS2230 Linux Sys Admin 21

Examples
#!/bin/bash

Script to retrieve a file via FTP

FTP_SERVER=ftp.nl.debian.org

FTP_PATH=/debian/dists/images/cdrom

REMOTE_FILE=debian-cd_info.tar.gz

ftp -n << _EOF_

open $FTP_SERVER

user anonymous me@linuxbox

cd $FTP_PATH

hash

get $REMOTE_FILE

bye

EOF

ls -l $REMOTE_FILE

#!/bin/bash

Script to write a new script

cat >> “new_script.sh” <<EOP

#/bin/sh

find . -mtime +30 -delete

EOP

S. Ruegsegger

Heredoc's are not really used for env. vars

2016 CIS2230 Linux Sys Admin 22

$ text=$(cat <<EOT

> here is some text

> lots of lines

> now I'm done

> EOT

>)

$ echo "$text"

here is some text

lots of lines

now I'm done

S. Ruegsegger

Shell Functions

• There are two different formats for defining
functions:

function name {
commands
return
}

• and
name () {
commands
return
}

• Called simply by the function name

2016 CIS2230 Linux Sys Admin 23

S. Ruegsegger

2. Flow Control: branching with if

• You all understand:
if <expression> then <command>
else <command>

• The shell script format is:
if evalcmd; then

commands

[elif expr; then

commands...]

[else

commands]

fi

2016 CIS2230 Linux Sys Admin 24

S. Ruegsegger

syntax

• Memorize that the semi (;) acts the same as a new
line.

• Both newline and ; separate commands

• Therefore, the 3 codes below are the same

• I will use both ; and newline interchangeably.

if <eval> ; then

command1

command2

fi

if <eval>

then command1

command2

fi

$ if <eval> ; then command1; command2; fi

2016 CIS2230 Linux Sys Admin 25

S. Ruegsegger

Linux shell exit status

• The evalcmd in an if-then is the exit status from any
linux command

• An exit status is define to be 0 for “success” and
any other number for an error.

• Notice, that exit status is 0 for good, anything else is
bad.

• Most T/F flags are 0 for F and anything else for T

• Therefore if/then construct tests whether the exit
status of a list of commands is 0, and if so, executes
one or more commands

• The exit status is stored in the $? env variable from
“all” commands

2016 CIS2230 Linux Sys Admin 26

S. Ruegsegger

Example “if” statements right from prompt

• Try these academic example :
if pwd ; then echo yes; else echo no; fi

if xxx ; then echo yes; else echo no; fi

• Or this:

2016 CIS2230 Linux Sys Admin 27

Any “command” to be evaluated
The “if” checks the return code for any ERROR. “0” is means “no error”

S. Ruegsegger

3. Most used evaluation command → test

• By far, the command used most frequently with “if” is
test.

• The test command performs a variety of checks and
comparisons.

• It has two equivalent forms:
test expression

• and the more popular format:
[expression]

2016 CIS2230 Linux Sys Admin 28

Same!

Both test and [are executable
files in /usr/bin

S. Ruegsegger

The test command evaluates an 'exit' error

• Remember! The test command returns an “exit
status”

• an exit status of zero (0) when the expression is true

• an exit status of anything other than zero when the
expression is false.

• Huh?
• I think it’s kinda strange

• It's opposite of T/F

• Think of it as an “error” code. 0 = no error (= true)

2016 CIS2230 Linux Sys Admin 29

S. Ruegsegger

3 types of test expressions

• There are 3 classes of test conditions:

1. Numeric

2. String

3. File

• Each class above has it's own set of commands!

2016 CIS2230 Linux Sys Admin 30

S. Ruegsegger

1. Numeric expressions for test

2016 CIS2230 Linux Sys Admin 31

n=`who | wc -l`

if [$n -gt 3] ; then

echo "who else is on?"

who

fi

“numeric” test get the 2 letter version

S. Ruegsegger

2. String expressions for test command

2016 CIS2230 Linux Sys Admin 32

“string” test get the symbol version

top=$(top -d4 -n1 | head -8 | tail -1 | awk '{print $13}')

if [$top = 'firefox']; then

echo "Lots of firefox here"

elif [$top = 'compiz']; then

echo "the GUI is the biggest hog!"

fi

S. Ruegsegger

Warnings on strings in []

2016 CIS2230 Linux Sys Admin 33

Linux Command Line and Shell Scripting Bible v2 (pg 309)

escape, else > is redirect to a file.

S. Ruegsegger

More warnings on strings in []

• Don’t get burned by using string compare operators
(>,=,<) for numbers! (I have...)

• Understand this output:

2016 CIS2230 Linux Sys Admin 34

S. Ruegsegger

3. File expression for test command

2016 CIS2230 Linux Sys Admin 35

“file” test get the dash-letter version

m
e
m

o
ri
z
e

S. Ruegsegger

example

2016 CIS2230 Linux Sys Admin 36

S. Ruegsegger

An improved version of the test command: [[]]

• Of course, someone improved on test

• Recent versions of bash include a compound command
that acts as an enhanced replacement for test.

• It is a bash symbol and not an executable command

• It uses the following syntax:
[[expression]]

• where, like test, expression is the exit status of a
linux command.

• The [[]] command is very similar to test (it
supports all of its expressions)

• Benefits:
• You don’t have to escape the string compare: > or <.
• It adds 2 cool new operators

2016 CIS2230 Linux Sys Admin 37

Notice the “spaces!”

S. Ruegsegger

Regex in test [[]] using =~

1. regex pattern matching for strings!
string1 =~ regex

• which returns 0 (no error) if string1 is matched by
the extended regular expression regex.

• Extended regex pattern definition

• No quotes around the regex (seems odd to me)

• Example:

A="steve steven mary Stephen Joe Steve"

for name in $A; do

if [[$name =~ [Ss]te(v|ph)en?]] ; then

echo "name=$name"

fi

done

2016 CIS2230 Linux Sys Admin 38

S. Ruegsegger

Globbing in test [[]] using ==

2. File globbing!

• Another added feature of [[]] is that the == operator
supports filename matching the same way as shell
'globbing'

• This makes [[]] very useful for evaluating file and path
names

• No quotes around the glob (still seems odd to me)

• Don't confuse with regex, they are similar, but globbing
is different

• Example
if [[$file == l*.txt]] ; then

mv $file /nfs/backup

fi

2016 CIS2230 Linux Sys Admin 39

S. Ruegsegger

(()) - Improved integer arithmetics

• bash also provides improved integer math with the
(()) command

• It supports a full set of arithmetic evaluations:
• >, <, == symbols rather than -gt, -lt, -eq from ()
• Pre and post-increment and -decrement:
var++, var--, --var, ++var

• Logical AND an OR: &&, || rather than -a and -o from (
)

• Examples
port=5901

if (($port > 5900)) ; then

vncserver :$port

fi

2016 CIS2230 Linux Sys Admin 40

S. Ruegsegger

Combining Expressions

• It’s also possible to combine expressions to create
more complex evaluations.

2016 CIS2230 Linux Sys Admin 41

How to test if an integer is within a range.

S. Ruegsegger

Summary of Brackets

● $() - command substitution

● $[] - same as expr, original integer math

● $(()) - integer math expansion, like let. An
improvement on $[] and expr

● if [] - same as test command

● if () - original integer math

● if [[]] - improved [] or test command

● if (()) - improved () integer math

2016 CIS2230 Linux Sys Admin 42

A nice summary of brackets and test [] expressions!
http://tldp.org/LDP/abs/html/refcards.html

http://tldp.org/LDP/abs/html/refcards.html

S. Ruegsegger

4. Looping
• While looping:

while <condition is true>; do

commands

done

• Same <condition> as if-then.

• The $? exit status is tested

• You can use test or [[]] in the while condition

2016 CIS2230 Linux Sys Admin 43

Original test []

Improved Int. Math $(())

S. Ruegsegger

Looping

• Until looping:
until <expression is false>; do

commands

done

• Example
#!/bin/bash

until-count: display a series of numbers

count=1

until [[$count > 5]]; do

echo $count

let "count=$count+1"

done

echo "Finished."

2016 CIS2230 Linux Sys Admin

44

Improved test [[]]

Improved Int. Math let

Be sure to compare this script to the previous one

S. Ruegsegger

Breaking the loop

• break command
• You can break-out of a loop at any iteration

• Stops the loop right then. Continues after the “done”

• Works with while and until

• If nested, then it “breaks out of” the inner most loop

for ((a=1; a<10; a++)) ; do

echo "** $a **"

if [$a -eq 6]; then

break

fi

done

2016 CIS2230 Linux Sys Admin 45

S. Ruegsegger

Skipping in the loop

• continue command
• Just skips to the next “iterator”

• Doesn't finish that one loop, and jumps to the next loop

• “stays in” the loop, just skips one “beat”

for ((a=1; a<10; a++)) ; do

if [$a -eq 6]; then

continue

fi

echo "** $a **"

done

2016 CIS2230 Linux Sys Admin 46

S. Ruegsegger

5. Flow Control: Looping With for

• Syntax:
for <var> in <list>; do

commands

done

• Typical sources of <list> :
for s in fr so jr sr; do

for n in `seq 1 20`; do

for i in {A..D}; do

for file in ~/labs/lab*.txt; do

• Note: in order for “for” to use the file glob, it must see a
glob wildcard: * or ?.

2016 CIS2230 Linux Sys Admin 47

Manual list

Numeric list

Char list

File glob

S. Ruegsegger

More for syntax examples

2016 CIS2230 Linux Sys Admin 48

A list of files

Shell variable list

Glob!

S. Ruegsegger

More on that for list:

• Reading from a command
for product in $(cat /usr/inventory.txt);

do

echo "product $product"

done

• The command might get complicated! You can separate
out if you want to.

dirs=$(cat /etc/passwd | awk -F: '($3 >= 1000){print $6})

for dir in $dirs; do

echo "** $dir **"

ls $dir

done

2016 CIS2230 Linux Sys Admin 49

A new favorite
technique of
mine

S. Ruegsegger

More on that for <list>: IFS

• What if the list is not space-separated?

• You can change what does separate a list.

• It's the IFS env var - Internal Field Separator !

• The default is $' \t\n' which means space, tab
and newline.

• Note: $'somestring' is a 'string' of literals

• e.g. if you are looping on names which could contain
spaces, then remove the space from IFS
IFS=$'\n\t'

for student in $(cat /usr/students.txt); do

echo "** $student **"

done

2016 CIS2230 Linux Sys Admin 50

S. Ruegsegger

IFS

• Don’t break on spaces; break on colon!
IFS=:

A="New York:New Hampshire:Vermont:South Carolina"

for state in $A; do

echo state=$state

done

2016 CIS2230 Linux Sys Admin 51

Run without IFS to see what happens
Reset IFS by: $ IFS=$' \n\t'

S. Ruegsegger

C-type for loops allowed in bash

• Another format for for

• Looks like a loop from C or perl

for ((a=1; a < 10; a ++))

do

echo ** a = $a **

done

2016 CIS2230 Linux Sys Admin 52

S. Ruegsegger

6. Passing arguments

• So far, all our variables have been 'hard-coded' in
the script.

• A program can get 'live' data in several ways:
• Read from the keyboard “interactively”

• Pass to the program when it is executed as “arguments”

2016 CIS2230 Linux Sys Admin 53

S. Ruegsegger

Positional Variables or Shell Arguments

• The arguments are passed to a program are
positional variables.

• The first argument passed to the script is assigned to the
variable $1

• the second argument is $2,

• and so on up to $9.

• Notice that the names of the variables are actually
the digits 1 through 9

• The positional variable $0 always contains the
filename of the script.

• Ex: $ myscript.sh steve /home/steve 30

2016 CIS2230 Linux Sys Admin 54

$0 $1 $2 $3

S. Ruegsegger

example
#!/bin/bash

traveltime - a program to calculate how long it will

take to travel a fixed distance

syntax: traveltime miles mph

$ traveltime 90 40

The trip will take 2 hours and 15 minutes

TOTMINUTES=$((($1 / $2) * 60)) # miles / mph * 60

HOURS=$(($TOTMINUTES / 60))

MINUTES=$(($TOTMINUTES % 60))

echo "The trip of $1 miles at $2 mph will take $HOURS hours and

$MINUTES minutes"

$./traveltime 90 40

The trip of 90 miles at 40 mph will take 2 hours and 15 minutes

2016 CIS2230 Linux Sys Admin 55

S. Ruegsegger

Additional positional variables

• $# is the number of variables

• $* and $@ are a list of all positional variables

• Ex: ./script “word” “words with spaces”

• "$*" produces a one string result of all args:
e.g. "word words with spaces"

• "$@" produces a two string result:
e.g. "word" "words with spaces"

2016 CIS2230 Linux Sys Admin 56

S. Ruegsegger

More than $9?

• The first 9 are easy: $1 to $9
then use curly brackets: ${10}, ${11}

• Args are space-delimited. Use quotes to group
together

• $ checkname steve ruegsegger new hampshire

• $ checkname "steve ruegsegger" "new hampshire"

• The shift command moves each arg “down one”.
• It's like shift @ARGV; in C or perl

• After a shift, $2 becomes $1, $3 becomes $2, etc.

2016 CIS2230 Linux Sys Admin 57

$0 $1 $2 $3 $4

$0
$1

$2

S. Ruegsegger

7. Reading Keyboard Input

#!/bin/bash

read-integer: evaluate the value of an integer.

echo -n "Please enter an integer -> "

read int

if [["$int" =~ ^-?[0-9]+$]]; then

echo "Input value is indeed an integer." >&2

else

echo "Input value is not an integer." >&2

exit 1

fi

2016 CIS2230 Linux Sys Admin 58

S. Ruegsegger

Example – this amount of formatting should be memorized
#!/bin/bash

if [$# -eq 0]; then

echo "./afs [start|restart|stop]"

exit 1;

fi

if ["$1" == "start"]; then

echo "starting openafs-client service"

sudo /etc/init.d/openafs-client force-start

echo "klog ruegsegs (using getpw)"

klog ruegsegs -pipe `~/getpw -id ruegsegs -key afs get`

fi

if ["$1" == "stop"]; then

echo "stopping openafs-client service"

sudo service openafs-client stop

fi

if ["$1" == "restart"]; then

echo "RE-starting openafs-client service"

sudo /etc/init.d/openafs-client restart

fi

exit

2016 CIS2230 Linux Sys Admin 59

S. Ruegsegger

Skill: Editing a string variable
• We use piped commands to 'edit' a string variable

• use echo to 'print' out the variable to stdout
• use sed to edit the variable (stdin to stdout)
• Put that in command substitution to set to a new, editted variable

• e.g.
oldname=year2014

newname=$(echo $oldname | sed 's/2014/2015')

cp /home/steve/$oldname /home/steve/$newname

• What if you had a comma separated file and wanted to loop on the
fields? The loop below doesn't work. One way to fix is with IFS.
However, you can also fix it using sed.

line=a,b,c,d

for element in $line; do

echo one element is: $element

done

2016 CIS2230 Linux Sys Admin 60

