
S. Ruegsegger

CIS 2230 Linux System Administration

Lecture 9

Steve Ruegsegger

Advanced text processing:
regex sed awk

2015CIS2230 Linux Sys Admin1

S. Ruegsegger

Review

• What are the 3 standard streams?

• What are their numbers?

• Explain what this command does?
$ echo 'whoami' 'hostname' 'date' >> run.log

• What is /dev/null?

• Explain head & tail?

• Explain more & less?

• What does $ tail -f <file> do?

• What must precede uniq? Why?

• What are the 4 types of pattern matching for grep?

• What do zcat and zmore do?

2015 CIS2230 Linux Sys Admin 2

S. Ruegsegger

What is a Regular Expression (regex)?

• A regular expression is a set of characters that specify a
pattern.

• Regular expressions are used when you want to search
lines of text containing a particular pattern.

• regex looks character-by-character for the pattern
anywhere in the line of text

• grep comes from g/re/p
• g/re/p is the “ed” command: “global regular expression print”

• It runs regex pattern search for each line in a text file or stream

• Examples:
$ grep PATT files...

$ cat file | grep PATT

2015 CIS2230 Linux Sys Admin 3

S. Ruegsegger

How regex pattern matching works

http://docstore.mik.ua/orelly/unix/sedawk/ch03_01.htm

S. Ruegsegger

Simple regex example

2015 CIS2230 Linux Sys Admin 5

$ grep OH foobar.txt

$ cat foobar.txt | grep OH

foobar.txt

Centerville, OH 45459

I'm driving to Ohio

Oh, that puppy is cute

The OHIO STATE BUCKEYES lost to Michigan again.

John is a friend of mine

Regex /OH/ match?

same

Now, try the -i option:

$ grep -i OH foobar.txt

Run grep “interactively” by simply using stdin

$ grep “ing”

S. Ruegsegger

Rules for matching

• There are three (3) important "parts" to a regular
expression

1. Anchors – specify the position of the pattern in
relation to a line of text.

2. Character Sets – match one or more characters in a
single position. (wildcards)

3. Modifiers – specify how many times the previous
character set is repeated.

2015 CIS2230 Linux Sys Admin 6

S. Ruegsegger

Rules for matching

• Let's start with a simple example regex:

^# *[Ss]teve

• ^ is an anchor that indicates the beginning of the line.

• # is a simple character (shell comment)

• “ *” is a modifier, specifying that the previous character (space)
can appear any number of times, including zero.

• [Ss] is a character set of next characters

• These lines all return T These do NOT.
Why?

2015 CIS2230 Linux Sys Admin 7

#Steve wrote this

steve ruegsegger

steve@yahoo.com

Steve was here

Steve #1

written by steve

- steve rueg

S. Ruegsegger

The Anchor Characters: ^ and $

• ^ at the very beginning of the regex means the pattern
must match at the beginning of the line

• $ at the end of the regex means the pattern must
match at the end of the line

• Ex:
$ ps –ef | grep '^bob' # will not match jimbob

$ ps –ef | grep 'firefox$' # only ending in firefox

2015 CIS2230 Linux Sys Admin 8

S. Ruegsegger

Character sets

1. Specific string
$ who | grep "steve"

2. Match "any character" with "." (dot), i.e. single character
wildcard = .
$ ps | grep "sas.."

• TRUE for these strings: sas80, sas81, sas91, sas92

3. Specifying a Set or Range of Characters with []
Common ranges:

^[0123456789]$

^[0-9]$

[A-Za-z0-9_]

• Complex example:
Line starts with “VTC” then has at least one space
followed by a C and 2 more cap. letters then 1 number

^VTC *C[A-Z][A-Z][0-9]

2015 CIS2230 Linux Sys Admin 9

Note: these are 'character' ranges, not numeric

S. Ruegsegger

Numeric ranges in regex (not)

• Regex is character pattern matching

• Regex is character pattern matching

• What if I want all the 400's (400 – 499)
/4[0-9][0-9]/

• There is no [400-499] numeric range

2015 CIS2230 Linux Sys Admin 10

S. Ruegsegger

Exceptions in a character set

• If the “carat” or “hat” (^) is the first character in a []
range, then it means "everything except this set"!

• Example

• Match upper-class courses (3000 & 4000 level)

$ grep 'CIS[^12][0-9][0-9] '

2015 CIS2230 Linux Sys Admin 11

S. Ruegsegger

Repeating character sets with *
• The 3rd part of a regular expression is the modifier.

• It is used to specify how may times you expect to see the previous
character set.

• The special character "*" matches zero or more copies.

• Example:
“who logged into “pts/0” on M-W this week (9/2 – 9/4)”

2015 CIS2230 Linux Sys Admin 12

$ last | grep “pts/0 .*Sep [234]”

S. Ruegsegger

Matching a specific number of sets with \{ and \}

• There is a special pattern you can use to specify the minimum and
maximum number of repeats.

• This is done by putting those two numbers between "\{" and "\}".
• For grep, a { } in the regex means you are searching for those characters.

• But placing a backslash before {}’s or ()’s turns on a special meaning.

• So, the escaped curley brackets mean that the character before is to be
repeated

• Examples:
• Find words 4 to 8 chars in length: [a-z]\{4,8\}

• Find numbers in pairs: [0-9]\{2\}

• Who's been online for > 9 days?

$ w | grep '[1-9]\{2\}days'

steve tty1 - 28Aug11 19days 0.28s 0.18s -bash

steve tty7 :0 26Aug11 21days 18:31m 38.51s gnome-session

2015 CIS2230 Linux Sys Admin 13

S. Ruegsegger

OR

• Use pipe | to mean a logical “or”
• The pipe must be escaped to mean “or”

• Use parens () to group the OR options
• The parens must be escaped too

• Ex:
grep '^\(From\|Subject\): ' /spool/mail/$USER

ps –ef | grep '\(root\|steve\)'

ls -l | grep '\(aug\|sep\).*foo.*txt$'

S. Ruegsegger

Sets of Versions of Regular Expression

• Regexp also has more
powerful rules

• There are several 'sets' or
'types' or 'versions' of the
regexp definition

• Why do you think?

• All the previous regexp
discussion has been for the
Basic set.

2015 CIS2230 Linux Sys Admin 15

“command”

S. Ruegsegger

Extended Regular Expressions

• There is an extended regular expression definition

• It tried to make regex ‘better’ – but it couldn’t just
replace the basic, established regex.

• So, this definition is called teh ‘extended’ definition

• Used by egrep and awk.
• Note: egrep same as $ grep –E

2015 CIS2230 Linux Sys Admin 16

S. Ruegsegger

What’s new in extended regex

1. egrep “switched” the meaning of escaping { }’s and ()’ .
Therefore, { }’s and ()’s have the ‘special meaning’.
If you want to actually search for a { } character, now you
escape it.

2. OR also doesn’t have to be escaped

3. Special escaped sets
• \w = [a-zA-Z0-9_] “word characters: numbers, letters and underscore”

• \W = [^a-zA-Z0-9_] “the opposite of \w”

4. The special character "+" matches one or more copies.
$ ps -ef | egrep 'tty[0-9]+'

5. The special character "?" matches zero or one.
$ cat apache.log | egrep

'https?:\/\/(www\.)?cnn\.com'

$ w | egrep 'days?'

2015 CIS2230 Linux Sys Admin 17

S. Ruegsegger

Regex Summary

Syntax: /regex/modifiers
Ex:
/# +steve/i # will match Steve and steve and STEVE

http://www.w3schools.com/jsref/jsref_obj_regexp.asp

S. Ruegsegger

Regex Summary

S. Ruegsegger

Regex Summary

S. Ruegsegger

Regex Summary

S. Ruegsegger

Basic vs Extended Summary

task Basic Extended

Look for 2 numbers [0-9]\{2\} [0-9]{2}

Look for the string “{foobar}” {foobar} \{foobar\}

Look for zipcodes
05465 or 05111

05\(465\|111\) 05(465|111)

Look for “CIS” and 1 or more
numbers

CIS[0-9][0-9]* CIS[0-9]+

Look for “http:” or “https:” https\{0,1\}: https?:

S. Ruegsegger

Regex strategies

• e.g. look for email addresses
1. Usually, start pattern with an “anchor”

• Example below: @, \.com

2. Use wildcards where the pattern needs them
3. Use “head” and “more” to (spot) check work

2015 CIS2230 Linux Sys Admin 23

$ grep -E 'Univ\w*.?(of)? Mich'

Text anchors

Text file

I'm vacationing in Michigan

She's at University of Michigan

He graduated from Univ. Mich.

After University of Dayton, she moved to Michigan

Regex match?

S. Ruegsegger

Numeric ranges in regex

• Regex is “pattern matching”

• Regex does not know what a “number” is

• Regex does not understand place value (1’s, 10’s,
100’s)

• How to match 400-559?
/(4[0-9][0-9]|5[0-5][0-9])/

• What about 400-560?
/4[0-9][0-9]|5[0-5][0-9]|560/

2015 CIS2230 Linux Sys Admin 24

S. Ruegsegger

Examples

• Do all these make sense?
• Typical City, State Zip

^(\w)+, [A-Z]{2} \d{5}(-\d{4})?

• match a date between 1900-01-01 and 2099-12-31:

^(19|20)\d\d[- /.](0[1-9]|1[012])[- /.](0[1-9]|[12][0-9]|3[01])$

• valid email:

\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b

• Valid MC number:
All MasterCard numbers start with the numbers 51 through 55. All have 16 digits
^5[1-5][0-9]{14}$

• Valid Visa cc number: All Visa card numbers start with a 4. New cards have 16
digits.
Old cards have 13.

^4[0-9]{12}([0-9]{3})?$

• Write a regex to match VTC CIS course numbers. For example,
“CIS2230” or “cis 2235”.

2015 CIS2230 Linux Sys Admin 25

S. Ruegsegger

sed

2015 CIS2230 Linux Sys Admin 26

S. Ruegsegger

The Awful Truth about sed

• Sed is the ultimate stream editor.

• Most people never learn its real power.

• The language is very simple, but the documentation
is terrible.

• man won't really help

• I have a sed and awk book
which I often have to reference
when using sed or awk

2015 CIS2230 Linux Sys Admin 27

S. Ruegsegger

The one and only – essential command

• format: sed <commands> [FILE]

• sed has several commands, but most people only learn one --
the substitute command: s

• The substitute command changes all occurrences of the
regular expression into a new value.

• A simple example is changing "day" in the "old" file to "night"
in the "new" file:
sed 's/Fall 2015/Spring 2016/' old > new

2015 CIS2230 Linux Sys Admin 28

Ex
$ echo “Good day.” | sed 's/day/night/'

$ sed 's/ MA/, Massachusetts/' list.txt

substitute this text into this Always 3
delimiters

S. Ruegsegger

The slash as a delimiter

• The character immediately after the s is the delimiter.
• It is conventionally a slash : /

• But, alas, it can be anything you want, however.

• If you want to change a pathname that contains a slash - say
/usr/local/bin to /common/bin :

sed 's/\/usr\/local\/bin/\/common\/bin/' < old >new

• Gulp. Some call this a 'Picket Fence' and it's ugly. It is easier
to read if you use an underline instead of a slash as a
delimiter:
sed 's_/usr/local/bin_/common/bin_' < old >new

• Some people use colons:
sed 's:/usr/local/bin:/common/bin:' < old >new

• Others use the "|" character.
sed 's|/usr/local/bin|/common/bin|' < old >new

2015 CIS2230 Linux Sys Admin 29

S. Ruegsegger

Replace Patterns

• The 'search term' can be a regex pattern!

• Eg
sed 's/[aA]uthor/Steve/' book.txt

sed 's/<H[23]>/<H4>/' index.html

sed '/[uU]niv.*[mM]ich[^]*/U of M (Go Blue!) /' foo.txt

2015 CIS2230 Linux Sys Admin 30

S. Ruegsegger

Remember the match

• Put parens around patterns to match and
'remember'

• During substitution, "\n" is the remembered
pattern

• sed has up to \9 remembered patterns.

• Examples:
• If you wanted to keep the first word of a line, and delete

the rest of the line:
sed 's/\([a-z]*\).*/\1/'

• What will these do?
$ echo cis2230 | sed 's/[a-z]*\([0-9]*\)/CIS\1/'

$ echo 'Steve Ruegsegger' | \
sed 's/\([a-zA-Z]*\) \([a-zA-Z]*\)/\2, \1/'

2015 CIS2230 Linux Sys Admin 31

S. Ruegsegger

-r option for 'regex-extended'

• Now, the parens are not escaped! (Whew)

• What will these do?
$ echo cis2230 | sed -r 's/[a-z]*([0-9]*)/CIS\1/'

$ sed -r 's/file([0-9]*)\.doc/myfile\1.bak/'

$ sed -r 's/var([0-9])/variable0\1/' *.c

2015 CIS2230 Linux Sys Admin 32

S. Ruegsegger

sed -f scriptname

• If you have a large number of sed commands, you
can put them into a file and use
sed -f sedscript <old >new

where sedscript could look like this (one sed
command per line):
comment

s/Disk A/Disk B/

s/2230/2235/g

s/EECS\([0-9\)/ECE\1/

2015 CIS2230 Linux Sys Admin 33

S. Ruegsegger

2015 CIS2230 Linux Sys Admin 34

AWK

S. Ruegsegger

awk

• There are three variations of AWK:
1. AWK - the original from AT&T
2. NAWK - A newer, improved version from AT&T
3. GAWK - The Free Software foundation's version
• In Ubuntu, check out $ man awk

• Purposes
• It is an excellent filter and report writer.
• AWK is an excellent tool for processing rows and

columns for text files
• Within each column, you can do a numeric search, a

string match, or a regex search. (cool!)
• As you know, many UNIX utilities generates rows and

columns of information

2015 CIS2230 Linux Sys Admin 35

S. Ruegsegger

Basic Structure

• The essential organization of an AWK program follows
the form:

$ awk '(pattern) { action }' [files...]

• The quotes define the first argument to awk

• The second arg is a list of files
• Optional, of course

• We often STREAM into an awk:

$ cat <file> | grep <something> | sort <this> | \

head <that> | awk '(pattern) { action }'

2015 CIS2230 Linux Sys Admin 36

S. Ruegsegger

awk pattern

• Recall

$ awk '(pattern) { action }'

• The pattern specifies on which lines the action is
performed

• i.e. a grep pre-filter

• Like most UNIX utilities, AWK is line oriented.
• That is, the pattern specifies a test that is performed with

each line read as input.

• If the condition is true, then the action is taken.

• The default pattern is something that matches every line.

2015 CIS2230 Linux Sys Admin 37

S. Ruegsegger

awk pattern types

• There are 3 main pattern types:
1. Numeric: $1 > 3

2. String: $4 eq 'steve'

3. Regex: $6 ~ /^foo.*[6-8]/

• They can be combined in any combination!
$ ps –ef | awk '($2 > 100 && $1 eq 'steve‘ \

&& $8 ~ /firefox/)'

2015 CIS2230 Linux Sys Admin 38

S. Ruegsegger

awk action

• The most simple action is to print

• Each column is a numbered variable
• col 1 = $1

• col 2 = $2

• etc.

• $0 is all cols in the lines

• Build a string to print out with quotes and column
numers ($1, $2, etc).

• Separate into output columns with a “,” if you want

• Often we use awk to simply print select cols.
$ ls -l | awk '{print "fn="$8, "owner=$3"}'

2015 CIS2230 Linux Sys Admin 39

S. Ruegsegger

FS - The Input Field Separator Variable

• To specify a specific field separator
• -F option from the command line

• FS= in a shell program

• Examples
$ awk -F: '{if ($2 == "") print $1 ": no password!"}' </etc/passwd

$ awk -F: '($3 >= 1000) {print "user: " $1}' /etc/passwd

2015 CIS2230 Linux Sys Admin 40

S. Ruegsegger

awk example

2015 CIS2230 Linux Sys Admin 41

$ ls -l | awk '($1!~/^d/ && $5 > 2000){print $5,$3,$9}' | sort -n

2576 xorg.conf.new root

10817 getpw* steve

18390 wiki.txt.old steve

18390 wiki.txt steve

671350041 rao0.mp4 steve

S. Ruegsegger

Special awk Actions

• Two other important patterns are specified by the
keywords "BEGIN" and "END."

• As you might expect, these two words specify actions to be
taken before any lines are read, and after the last line is read.

• format for "action":
BEGIN { print "START" }

{ print }

END { print "STOP" }

• Example:
ls -l | awk \

'BEGIN { print "File\tOwner" }\

{ print $8, "\t", $3} \

END { print " - DONE -" }'

2015 CIS2230 Linux Sys Admin 42

