
S. Ruegsegger

CIS 2230 Linux System Administration

Lecture 8a

Steve Ruegsegger

Piping and Text Processing

2016CIS2230 Linux Sys Admin1

S. Ruegsegger

Review

• What is the difference between /home and the “user's
home” dir?

• What is the “root” directory and how do we get there?

• What is in /etc?

• What are cwd and $ pwd?

• What are the . and .. directories?

• What is the difference between a relative path and an
absolute path?

• What are the 3 short-cuts “home”?

• What is the difference between hard link and soft link?

• What are the 2 main differences between locate and find?

• What is this asking for?
$ find ~ -name "*.txt" -mtime -10

2016 CIS2230 Linux Sys Admin 2

S. Ruegsegger

“Standard” Streams (3)

• Processes are connected to three (3) standard “streams”
• 1 in, 2 out

• stdin, stdout, stderr

2016 CIS2230 Linux Sys Admin 3

(default = screen)

(1) (2)

(default = keyboard)

S. Ruegsegger

Redirecting streams to files or other commands

• Rather than default of keyboard and screen, these
streams could be redirected

2016 CIS2230 Linux Sys Admin 4

STDIN could be a file ~/input.txt

or the output of $ ls -lrt *.txt

STDERR could be ~/errors.txt or /dev/null

STDOUT could be ~/output.txt or the input to “sort”

S. Ruegsegger

That darn cat

• cat = concatenate files together
• concatenate which files?

• if not specified... then default from stdin to stdout
• no args required
• Try this... $ cat

• We frequently redirect output from stdout (screen) to a file :
$ cat > lab02.txt

2016 CIS2230 Linux Sys Admin 5

S. Ruegsegger

Connecting Programs to Files

• Redirection connects a program to a named file

• The < symbol indicates redirect into stdin:
$ wc < thesis.txt

• The > symbol indicates the file to write stdout:
$ who > users.txt

• If the file already exists, it is overwritten

• Both can be used at the same time:
$ filter < input-file > output-file

2016 CIS2230 Linux Sys Admin 6

S. Ruegsegger

Redirecting multiple standard files

• Open files have numbers, called file descriptors

• These can be used with redirection

• The three standard files always have these numbers:
• stdin - 0

• stdout - 1

• stderr – 2

• formats:
• n> = redirect stream n to following location

• n>&m = point stream m to where n is now pointing

• &> = both stderr and stdin are redirected to new location

2016 CIS2230 Linux Sys Admin 7

S. Ruegsegger

Redirecting Multiple 'std' Files (cont)

• 2 things can follow the redirection:
1. Filename

2. “file descriptor” – a number

• Examples:
• To redirect the stderr to a file:

$ program 2> file

• To save both output streams to different files:

$ program > stdout.txt 2> stderr.txt

• To combine stderr with stdout into the same file

$ program > file 2>&1

$ program &> file

$ sas82 < analyze.sas 2>~/analyze.out 1>&2

• Note: order matters!

• The descriptors 3–9 can also be connected to normal files, and are
mainly used in shell scripts

2016 CIS2230 Linux Sys Admin 8

S. Ruegsegger

The bit bucket!

• Recall:
• everything in unix is a file

• even the devices, which are in /dev

• One device is /dev/null, which simply ignores all data
• a.k.a. the bit-bucket

• If a stream is giving lots of output you want to ignore,
then redirect to /dev/null

• e.g. permissions in find:
$ find / -name "*.txt" 2> /dev/null

2016 CIS2230 Linux Sys Admin 9

stderr goes to bit-bucket

S. Ruegsegger

Appending to Files

• Use >> to append to a file:
$ echo 'whoami' 'hostname' 'date' >> run.log

• Appends the stdout of the program to the end of an
existing file

• If the file doesn’t already exist, it is created

2016 CIS2230 Linux Sys Admin 10

S. Ruegsegger

Redirecting streams to another linux command

• The “streams” are connected by “pipes”

2016 CIS2230 Linux Sys Admin 11

p1 p2 p3 p4

P3 stdinP2 stdout

Program 1

P4 stdoutP1 stdin

S. Ruegsegger

Pipe connection

• A pipe (|) channels the output of one program to the input of
another

• Allows programs to be chained together

• Programs in the chain run immediately after each other

• The OS “channels the streams” – The actual programs don’t need to
“do” or even “know about” the pipe redirection

• For example, pipe the output of echo into the program rev:
$ echo Happy Birthday! | rev

!yadhtriB yppaH

$ cat thesis.txt | more

$ who | wc -l

• In these examples, the STDOUT of the 1st program is being sent to the
STDIN of the 2nd.

• The screen/terminal/user does not see the STDOUT of the 1st.

2016 CIS2230 Linux Sys Admin 12

S. Ruegsegger

more

• If a file is too long to fit in the terminal, page through it
with more
$ more <file>

• more displays one screen at a time and then pauses
• Waiting for space or enter

• Often used on the end of a pipe
$ cat README | more

$ find . -name '*.txt' | more

• It's a very 'primitive' and simple program
• Key commands:

• Searching: /<patt>, n
• :n, :p – next, prev files
• = – current line / %age
• h – help

2016 CIS2230 Linux Sys Admin 13

S. Ruegsegger

Less is more better

• less is the 'improved' version of more

• Here's what I love about less
• Clears the terminal of other things (helpful for small

files) and returns terminal back to previous state

• Goes 'backwards' (b)

• Doesn't need input stream to finish, so it starts faster

• Doesn’t choke on strange characters, so it won’t mess up
your terminal

• -N option adds line numbers

• Used in same way as more
$ wc *.txt | less

$ less userlog.log

2016 CIS2230 Linux Sys Admin 14

S. Ruegsegger

Reverse line order -- tac

• cat backwards :)

• Displays a file in reverse line order

• i.e. Prints the last line of the input first and then
goes back from there.

• Example:
• The last command shows a list of logins and logouts

• It puts the most recent ones at the top, so the most
important ones scroll off the terminal.

• With tac, we reverse the order and the most recent are
on the bottom.

$ last | tac

2016 CIS2230 Linux Sys Admin 15

S. Ruegsegger

head

• Prints the top lines of a file

• Defaults to ten lines

• -n or --lines to print different # lines

• Two main ways to use:
$ head <file>

$ cat <file> | head

2016 CIS2230 Linux Sys Admin 16

S. Ruegsegger

tail

• Similar to head, but prints the last lines of the
stream/file

• Very helpful for log files where most recent, pertinent
data is appended at the end of the file. (e.g. log files)

• The option -n is the same as in head (number of lines
to print)

• Very cool option:
• The -f option watches the file forever
• Continually updates the display as new entries are appended

to the end of the file
• Kill it with Ctrl+C

• Example: monitor HTTP requests on a webserver:
$ tail -f /var/log/httpd/access_log

2016 CIS2230 Linux Sys Admin 17

S. Ruegsegger

Counting with wc

• wc counts characters, words and lines in a file
• If used with multiple files, outputs counts for each file,

and a combined total
• Options:

• -c output character count
• -l output line count
• -w output word count

• Example
$ wc -l /usr/share/dict/words

• Display the total number of lines in several text files:
$ wc -l *.txt

• Often used in a pipe to summarize.
$ find . -name *.doc | wc -l

$ who | wc -l

2016 CIS2230 Linux Sys Admin 18

S. Ruegsegger

Selecting Parts of Lines (cols) with cut

• /usr/bin/cut is used to select columns or
fields from each line

• Two options for ‘cutting’ lines into cols by
1. -c = fixed Character range

2. -f = Fields

• Field separator (delimiter) is specified with -d
(defaults to tab)

• This is often used to get one column from a stdout

• Examples:
$ who | cut -d" " -f1

$ ls -l | cut -c 29-33

2016 CIS2230 Linux Sys Admin 19

S. Ruegsegger

Sorting Lines of Text with sort

• The sort filter reads lines of text and prints them in
order

• For example, to sort a list of words into dictionary
order:
$ sort words.txt > sorted-words.txt

• The -n option sorts numerically, rather than
lexicographically

• Sorts the entire line (i.e. first col)
• Often combined with cut or awk

• What do these do?
$ who | cut -d" " -f1 | sort

$ ls -l | cut -c 29-33 | sort -n | tac | head

2016 CIS2230 Linux Sys Admin 20

S. Ruegsegger

Sorting 'other' columns (-k)

• The default sort is the first col of the stream

• However, sort can sort on other columns as well

• It calls them “keys” (use the -k option)

• The column number follows the “k”
• Space-delimited, multiple spaces OK
• Numbering is 1-based
$ ls -l | sort -n -k5

• (Note: the KEYDEF is a fancier way with custom cols)

• This (sort –k) is especially helpful when you want to
keep other columns for future info or “xargs”

2016 CIS2230 Linux Sys Admin 21

S. Ruegsegger

Removing Duplicate Lines with uniq

• Use uniq to find unique lines in a file

• However – MUST REMEMBER
• $ uniq only removes consecutive duplicate lines

• Why do you think "consecutive" is a requirement?

• Therefore, unique is usually given a sorted input

• (I’ve been burned by this.)

• Example
$ who | cut -d" " -f1 | sort | uniq

• Note: sort has a -u option
$ who | cut -d" " -f1 | sort -u

2016 CIS2230 Linux Sys Admin 22

S. Ruegsegger

Translating Sets of Characters with tr

• tr translates one set of characters to another
• Usage: $ tr <start-set> <end-set>
• Replaces all characters in start-set with the

corresponding characters in end-set
• Example:

• Replace all uppercase characters in input-file with lowercase
characters:

$ cat input-file | tr A-Z a-z

$ tr A-Z a-z < input-file

• Use -d to delete characters only:
• Delete all occurrences of ‘*’ in story.txt
$ cat story.txt | tr -d ‘*’

• To convert a DOS text file to a unix file (real example):
(DOS files have extra ^M's)

$ tr -d \\015 < file.dos > file.txt

2016 CIS2230 Linux Sys Admin 23

S. Ruegsegger

Introduction to filtering -- grep

• grep filters a text stream (file or stdin) by line, and
only prints/outputs entire lines with the search
string somewhere in that line.

• A good resource...
https://help.ubuntu.com/community/grep

• Format: $ grep <pattern> [file(s)]
• Is Bob online?

$ who | grep bob

• What processes am I running?

$ ps -ef | grep steve

• List log entries with Mary

$ grep mary *.log

2016 CIS2230 Linux Sys Admin 24

S. Ruegsegger

4 types of pattern matching in grep

• grep
• 'basic' regexp PATTERN matching; the default (-G)

• fgrep = grep -F
• 'fixed string' (I always thought 'fast')

• i.e. 'no' regexp

• egrep = grep -e
• 'extended' regexp PATTERN matching

• grep -P

• 'Perl' regexp → experimental

2016 CIS2230 Linux Sys Admin 25

S. Ruegsegger

A,B,C's of grep

• Often, we want a few lines AROUND the matched
pattern to be printed: context

• -A – n lines after

• -B – n lines before

• -C – n lines on either side (context)

• Example:
$ ifconfig | grep -C2 eth0

• Used for scripting I need a line “near” a key word.

• Can you explain how this works?
IP=$(ifconfig | grep -C1 wlan0 | grep \

"inet addr" | cut -c 21-32)

echo IP=$IP

2016 CIS2230 Linux Sys Admin 26

S. Ruegsegger

tee

• The tee program makes a ‘T-junction’ in a pipeline

• It copies data from stdin to stdout, and also to a file

• It's like > (redirect) and | (pipe) combined into 1 step

• For example, to save details of everyone’s logins, and
save Bob’s logins in a separate file:
$ last | tee everyone.txt | grep bob > bob.txt

2016 CIS2230 Linux Sys Admin 27

S. Ruegsegger

'z' commands

• Recall gzip?

• You can view a compressed files without having to
uncompress to disk!

• i.e. we do not want to uncompress, process, recompress (yuck)

• The compressed file can be uncompressed to the STDOUT
stream where it can be processed as though it was not
compressed

• Know these commands:
$ gunzip -c

$ zcat

$ zmore

$ zgrep

• Example
$ zmore server.log.gz

$ zgrep steve server.log.gz

$ zcat server.log.gz | cut -f3 | sort | more

2016 CIS2230 Linux Sys Admin 28

	Slide 1: Piping and Text Processing
	Slide 2: Review
	Slide 3: “Standard” Streams (3)
	Slide 4: Redirecting streams to files or other commands
	Slide 5: That darn cat
	Slide 6: Connecting Programs to Files
	Slide 7: Redirecting multiple standard files
	Slide 8: Redirecting Multiple 'std' Files (cont)
	Slide 9: The bit bucket!
	Slide 10: Appending to Files
	Slide 11: Redirecting streams to another linux command
	Slide 12: Pipe connection
	Slide 13: more
	Slide 14: Less is more better
	Slide 15: Reverse line order -- tac
	Slide 16: head
	Slide 17: tail
	Slide 18: Counting with wc
	Slide 19: Selecting Parts of Lines (cols) with cut
	Slide 20: Sorting Lines of Text with sort
	Slide 21: Sorting 'other' columns (-k)
	Slide 22: Removing Duplicate Lines with uniq
	Slide 23: Translating Sets of Characters with tr
	Slide 24: Introduction to filtering -- grep
	Slide 25: 4 types of pattern matching in grep
	Slide 26: A,B,C's of grep
	Slide 27: tee
	Slide 28: 'z' commands

