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Review

• What is the difference between /home and the “user's 
home” dir?

• What is the “root” directory and how do we get there?

• What is in /etc?

• What are cwd and $ pwd?

• What are the . and .. directories?

• What is the difference between a relative path and an 
absolute path?

• What are the 3 short-cuts “home”?  

• What is the difference between hard link and soft link?

• What are the 2 main differences between locate and find?

• What is this asking for?
$ find ~ -name "*.txt" -mtime -10
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“Standard” Streams (3)

• Processes are connected to three (3) standard “streams”
• 1 in, 2 out

• stdin, stdout, stderr
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(default = screen)

(1) (2)

(default = keyboard)
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Redirecting streams to files or other commands

• Rather than default of keyboard and screen, these 
streams could be redirected
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STDIN could be a file ~/input.txt

or the output of $ ls -lrt *.txt

STDERR could be ~/errors.txt or /dev/null

STDOUT could be ~/output.txt  or the input to “sort”
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That darn cat

• cat = concatenate files together
• concatenate which files?  

• if not specified... then default from stdin to stdout
• no args required
• Try this...  $ cat

• We frequently redirect output from stdout (screen) to a file :
$ cat > lab02.txt
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Connecting Programs to Files

• Redirection connects a program to a named file

• The < symbol indicates redirect into stdin:
$ wc < thesis.txt

• The > symbol indicates the file to write stdout:
$ who > users.txt

• If the file already exists, it is overwritten

• Both can be used at the same time:
$ filter < input-file > output-file
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Redirecting multiple standard files

• Open files have numbers, called file descriptors

• These can be used with redirection

• The three standard files always have these numbers:
• stdin - 0

• stdout - 1

• stderr – 2

• formats: 
• n> = redirect stream n to following location 

• n>&m = point stream m to where n is now pointing

• &> = both stderr and stdin are redirected to new location
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Redirecting Multiple 'std' Files (cont)

• 2 things can follow the redirection:
1. Filename

2. “file descriptor” – a number 

• Examples:
• To redirect the stderr to a file:

$ program 2> file

• To save both output streams to different files:

$ program > stdout.txt 2> stderr.txt

• To combine stderr with stdout into the same file 

$ program > file 2>&1

$ program &> file    

$ sas82 < analyze.sas 2>~/analyze.out 1>&2 

• Note: order matters!

• The descriptors 3–9 can also be connected to normal files, and are 
mainly used in shell scripts
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The bit bucket!

• Recall:
• everything in unix is a file

• even the devices, which are in /dev

• One device is /dev/null, which simply ignores all data
• a.k.a. the bit-bucket

• If a stream is giving lots of output you want to ignore, 
then redirect to /dev/null

• e.g. permissions in find:
$ find / -name "*.txt"  2> /dev/null
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stderr goes to bit-bucket
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Appending to Files

• Use >> to append to a file:
$ echo 'whoami' 'hostname' 'date' >> run.log

• Appends the stdout of the program to the end of an 
existing file

• If the file doesn’t already exist, it is created
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Redirecting streams to another linux command

• The “streams” are connected by “pipes”
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p1 p2 p3 p4

P3 stdinP2 stdout

Program 1

P4 stdoutP1 stdin
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Pipe connection

• A pipe (|)  channels the output of one program to the input of 
another

• Allows programs to be chained together

• Programs in the chain run immediately after each other

• The OS “channels the streams” – The actual programs don’t need to 
“do” or even “know about” the pipe redirection

• For example, pipe the output of echo into the program rev:
$ echo Happy Birthday! | rev

!yadhtriB yppaH

$ cat thesis.txt | more

$ who | wc -l

• In these examples, the STDOUT of the 1st program is being sent to the 
STDIN of the 2nd.  

• The screen/terminal/user does not see the STDOUT of the 1st.
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more

• If a file is too long to fit in the terminal, page through it 
with more
$ more <file>

• more displays one screen at a time and then pauses
• Waiting for space or enter

• Often used on the end of a pipe
$ cat README | more

$ find . -name '*.txt' | more

• It's a very 'primitive' and simple program
• Key commands:

• Searching: /<patt>, n
• :n, :p – next, prev files
• = – current line / %age
• h – help
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Less is more better

• less is the 'improved' version of more

• Here's what I love about less
• Clears the terminal of other things (helpful for small 

files) and returns terminal back to previous state

• Goes 'backwards' (b)

• Doesn't need input stream to finish, so it starts faster

• Doesn’t choke on strange characters, so it won’t mess up 
your terminal

• -N option adds line numbers

• Used in same way as more
$ wc *.txt | less

$ less userlog.log
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Reverse line order -- tac

• cat backwards :)

• Displays a file in reverse line order

• i.e. Prints the last line of the input first and then 
goes back from there.

• Example:
• The last command shows a list of logins and logouts

• It puts the most recent ones at the top, so the most 
important ones scroll off the terminal.

• With tac, we reverse the order and the most recent are 
on the bottom.

$ last | tac
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head

• Prints the top lines of a file

• Defaults to ten lines

• -n or --lines to print different # lines

• Two main ways to use:
$ head <file>

$ cat <file> | head
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tail

• Similar to head, but prints the last lines of the 
stream/file

• Very helpful for log files where most recent, pertinent 
data is appended at the end of the file.  (e.g. log files)

• The option -n is the same as in head (number of lines 
to print)

• Very cool option:
• The -f option watches the file forever
• Continually updates the display as new entries are appended 

to the end of the file
• Kill it with Ctrl+C

• Example: monitor HTTP requests on a webserver:
$ tail -f /var/log/httpd/access_log
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Counting with wc

• wc counts characters, words and lines in a file
• If used with multiple files, outputs counts for each file, 

and a combined total
• Options:

• -c output character count
• -l output line count
• -w output word count

• Example
$ wc -l /usr/share/dict/words

• Display the total number of lines in several text files:
$ wc -l *.txt

• Often used in a pipe to summarize.
$ find . -name *.doc | wc -l

$ who | wc -l  
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Selecting Parts of Lines (cols) with cut

• /usr/bin/cut is used to select columns or 
fields from each line

• Two options for ‘cutting’ lines into cols by
1. -c = fixed Character range

2. -f = Fields

• Field separator (delimiter) is specified with -d 
(defaults to tab)

• This is often used to get one column from a stdout

• Examples:
$ who | cut -d" " -f1

$ ls -l | cut -c 29-33
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Sorting Lines of Text with sort

• The sort filter reads lines of text and prints them in 
order

• For example, to sort a list of words into dictionary 
order:
$ sort words.txt > sorted-words.txt

• The -n option sorts numerically, rather than 
lexicographically

• Sorts the entire line (i.e. first col)
• Often combined with cut or awk

• What do these do?
$ who | cut -d" " -f1 | sort

$ ls -l | cut -c 29-33 | sort -n | tac | head
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Sorting 'other' columns (-k)

• The default sort is the first col of the stream

• However, sort can sort on other columns as well

• It calls them “keys”   (use the -k option)

• The column number follows the “k”
• Space-delimited, multiple spaces OK
• Numbering is 1-based
$ ls -l | sort -n -k5

• (Note: the KEYDEF is a fancier way with custom cols)

• This (sort –k) is especially helpful when you want to 
keep other columns for future info or “xargs” 
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Removing Duplicate Lines with uniq

• Use uniq to find unique lines in a file

• However – MUST REMEMBER
• $ uniq only removes consecutive duplicate lines

• Why do you think "consecutive" is a requirement?

• Therefore, unique is usually given a sorted input

• (I’ve been burned by this.) 

• Example
$ who | cut -d" " -f1 | sort | uniq

• Note: sort has a -u option
$ who | cut -d" " -f1 | sort -u
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Translating Sets of Characters with tr

• tr translates one set of characters to another
• Usage: $ tr <start-set> <end-set>
• Replaces all characters in start-set with the 

corresponding characters in end-set
• Example:

• Replace all uppercase characters in input-file with lowercase 
characters:

$ cat input-file | tr A-Z a-z

$ tr A-Z a-z < input-file

• Use -d to delete characters only:
• Delete all occurrences of ‘*’ in story.txt 
$ cat story.txt | tr -d ‘*’

• To convert a DOS text file to a unix file (real example):
(DOS files have extra ^M's)

$ tr -d \\015 < file.dos > file.txt
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Introduction to filtering -- grep

• grep filters a text stream (file or stdin) by line, and 
only prints/outputs entire lines with the search 
string somewhere in that line.

• A good resource...  
https://help.ubuntu.com/community/grep

• Format: $ grep <pattern> [file(s)]
• Is Bob online?

$ who | grep bob

• What processes am I running?

$ ps -ef | grep steve

• List log entries with Mary

$ grep mary *.log
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4 types of pattern matching in grep

• grep
• 'basic' regexp PATTERN matching; the default (-G)

• fgrep = grep -F
• 'fixed string' (I always thought 'fast')

• i.e. 'no' regexp

• egrep = grep -e
• 'extended' regexp PATTERN matching

• grep -P

• 'Perl' regexp → experimental
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A,B,C's of grep

• Often, we want a few lines AROUND the matched 
pattern to be printed: context

• -A – n lines after

• -B – n lines before

• -C – n lines on either side (context)

• Example:
$ ifconfig | grep -C2 eth0

• Used for scripting I need a line “near” a key word.  

• Can you explain how this works?
IP=$(ifconfig | grep -C1 wlan0 | grep \ 

"inet addr" | cut -c 21-32)

echo IP=$IP
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tee

• The tee program makes a ‘T-junction’ in a pipeline

• It copies data from stdin to stdout, and also to a file

• It's like > (redirect) and | (pipe) combined into 1 step

• For example, to save details of everyone’s logins, and 
save Bob’s logins in a separate file:
$ last | tee everyone.txt | grep bob > bob.txt
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'z' commands

• Recall gzip?

• You can view a compressed files without having to 
uncompress to disk!

• i.e. we do not want to uncompress, process, recompress (yuck)

• The compressed file can be uncompressed to the STDOUT 
stream where it can be processed as though it was not 
compressed

• Know these commands:
$ gunzip -c

$ zcat

$ zmore

$ zgrep

• Example
$ zmore server.log.gz

$ zgrep steve server.log.gz

$ zcat server.log.gz | cut -f3 | sort | more
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