
S. Ruegsegger

Shell Environment

CIS 2230 Linux System Administration

Lecture 6

Steve Ruegsegger

Modified (with permission) by Peter Chapin

S. Ruegsegger

Review

• Describe the purpose of the shell program.

• Name three popular shells.

• Describe implicit vs explicit command calling

• How does the OS know which command program to run?

• How many arguments can a command have?

• What does $ ls –lrt do?

• What does $!! do? (How do you say that?)

• Most Linux commands are shell built-ins or files?

• What is the env var that has the list of executable directories?

• What are the three ways to combine commands on 1 line?

• How do you start a program in the background?

• How do you put an already running program in the

background?

2016CIS2235 Linux Sys Admin2

S. Ruegsegger

Hello World

• The shell is a program, trying to interpret what you
are telling it

• Obviously, it runs programs:
$ firefox

• We can see what it sees through the echo
command:
• A string: $ echo Hello World

2016CIS2235 Linux Sys Admin3

S. Ruegsegger

Environment vars

• User Defined:
$ A=4

$ PORT=5904

• The key → NO SPACES

• Predefined:
$USER, $PATH, $SHELL, $HOME

• To see them all:
 $ env

 $ printenv

• Use env vars in echo
$ echo You are $USER

2016CIS2235 Linux Sys Admin4

S. Ruegsegger

Arithmetic

• Simple math is $(()) in bash
$ echo $((1 + 5))

• ONLY integers

2016CIS2235 Linux Sys Admin5

S. Ruegsegger

2016CIS2235 Linux Sys Admin6

Only integers...

$ echo Five divided by two equals $((5/2))
Five divided by two equals 2

$ echo with $((5%2)) left over.
with one left over.

$ echo -n “I'm working...” ; sleep 3 ; echo “done”

Options

S. Ruegsegger

Command substitution

• The $() operator completes the command, then
puts the results in its place
$ echo The date is $(date)

$ ls -l $(which cp)

• A 2nd format for the same thing: back-tick
$ echo The date is `date`

• My favorite:
$ cp /etc/fstab /etc/fstab.`date +%F:%T`

(What does that do?)

• Other cool examples:
$ echo I am `whoami` on $(hostname).

$ echo `whoami` `hostname` `date +%F:%T` >> userlog.log

2016CIS2235 Linux Sys Admin7

S. Ruegsegger

Globbing

• One of the things the shell does most is deal with
filenames.

• So, there are some tricks the shell uses to help us
with them

• Patterns used to match filenames are called globs
• Process of expanding them is called globbing

• A glob has 3 types of wildcard characters:
 ? , * , []

2016CIS2235 Linux Sys Admin8

S. Ruegsegger

Globbing

1) '*' (“splat”) matches any number of characters: 0, 1 or
more:

$ ls *.txt

accounts.txt letter.txt report.txt

• Therefore, a '*' by itself matches all files in the current
directory

2) '?' matches exactly one character:
$ rm -v data?.log

removing data1.log

removing data2.log

removing data3.log

2016CIS2235 Linux Sys Admin9

S. Ruegsegger

3) Globbing with brackets, []

There are a couple of ways to interpret brackets:
• Character classes – allowed possibilities

$ ls data_2012_[789]_*.txt

• Ranges
$ ls drive_[b-f].log

• Complement – the next, single character cannot be
in this set
$ ls /home/[!a-m]*

$ ls -d /home/[!ds]*

2016CIS2235 Linux Sys Admin10

S. Ruegsegger

Absolutely crucial to use globs on file copying, moving & removing

• Move all *.txt files to backup dir
$ mv *.txt /data/backup

• Copy all *.doc files to another user
$ cp ~/docs/*.doc /home/susie/documents

• What is the last argument to both commands
above? Why?

• Delete all *.bak files
$ rm ~/projects/*.bak

2016CIS2235 Linux Sys Admin11

S. Ruegsegger

Who gets the glob?

1. The shell tries to match the glob first.
2. If a match is found, the shell 'expands' it.
3. If a match is not found, the glob remains and is

passed to the command.
• Example:

$ echo *

$ echo *.txt

$ echo *.zzzz

$ echo [a-z].txt

$ echo [a-z].zzzz

• You can quote the glob to give it to the command
and 'protect' it from the shell
$ echo “*”

2016CIS2235 Linux Sys Admin12

S. Ruegsegger

Quoting in the shell

What if we don't want the shell to process some tech:
• e.g., try this:
$ echo you owe * me *: $100.

• Double Quotes:

• Everything ignored by the shell except three things: $, \,
and '

• Mostly used for spaces in filenames
$ mv "two words.txt" two_words.txt

• Single quotes:

• Ignores everything – all special characters are ignored by
bash

2016CIS2235 Linux Sys Admin13

S. Ruegsegger

Escaping

Quoting is helpful for including special characters in filenames
$ ls 'paris trip (may)'

• Escaping is used to tell the shell that the next character is actually in
the filename and not to be interpreted as a shell function

• spaces, parens, brackets, quotes, $ | & # * ? < >

$ ls steve\'s\ files \(1\)

$ rm a*\?

• Play with Tab auto-completion

$ cd paris\ trip\ \(may\)/

$ cd 'paris trip (may)'/

• Simplified: double quotes interpret $VARs and single quotes do not.

2016CIS2235 Linux Sys Admin14

S. Ruegsegger

Shell Completion

• The shell can complete filenames for you! It's
wonderful – use it!
• Tab for Linux

• (Esc-Esc for AIX)

• This also works with command names
• If non-unique (file or command), then Tab does

'nothing'
• Double tab will list all possibilities

2016CIS2235 Linux Sys Admin15

S. Ruegsegger

Command History Interaction

• As expected, the shell keeps a command history
• Use the Up and Down arrow keys to scroll through the list

of previous commands

• Press Enter to execute the displayed command

• Commands can also be edited/modified before
being run
• Particularly useful for fixing a typo in the previous

command

2016CIS2235 Linux Sys Admin16

S. Ruegsegger

Shell start-up / config scripts

• There are “many” config files
• They are 'sourced' at different times
• They are sourced in a particular order
• Sometimes the change carries on to new shells and

sometimes not
• Confusing...?

2016CIS2235 Linux Sys Admin17

S. Ruegsegger

Shell Configuration Files

• 1) Login shell:

• Log in at the console or a new SSH connection

• Once per connection to the computer

• Config files:
• First, it reads the global configuration from /etc/profile

• Then only one of these, in this order:
• ~/.bash_profile, ~/.bash_login or ~/.profile

• Login shells also source ̃/.bash_logout when the
user exits

2016CIS2235 Linux Sys Admin18

S. Ruegsegger

Shell Configuration Files

• 2) Interactive shell:
• When you open a new window in a GUI
• Once per shell (terminal)
• Config files:

• global: /etc/bash.bashrc
• local: ~/.bashrc

• Hint! Notice the “rc” text as a file name ending... Stand for
“remote command' files from yester-year

• Comments:
• The 'distro' usually sets up the global rc's. (That's what a

'distro' does.)
• If I need 'all my users' to have the same setup, I can easily do

that through the 'global' rc's.
• The default (Ubuntu) setup is to have the login shell source

the interactive shell's rc too (note ~/.profile)

2016CIS2235 Linux Sys Admin19

S. Ruegsegger

What kind of 'stuff' goes into the 2 types of shell startup rc's?

• ~/.profile is for things executed once:
• PATH variables

• umask

• graphical desktop session variables

• one time security/token items

• application setup (db2)

• ~/.bashrc is for the configuring each Bash shell
• aliases

• setting your favorite editor

• setting the Bash prompt

2016CIS2235 Linux Sys Admin20

S. Ruegsegger

“source” as a linux verb

• When you execute a program (“run a script”) a new
shell is created

• It (the program) does not affect the original, parent
shell

• How do we change the current shell?
We “source” a shell script.

• The command is: . (dot)
$. .profile

$. .bash_aliases

2016CIS2235 Linux Sys Admin21

S. Ruegsegger

Review:

• 2 shell types:
• login shell --> think "profile"

• interactive shell --> think "rc"

• but the "profile" should also source the 'rc'

2016CIS2235 Linux Sys Admin22

S. Ruegsegger

• The alias command
with no arguments will
show a list of currently
defined aliases

Aliases

• It is often useful to have bash aliases for common
commands with preferred options

• An 'alias' is a shortcut or custom command
• Ubuntu is already set up to include the aliases in
~/.bash_aliases

• This is 'sourced' from ~/.bashrc
• Note the syntax: “no spaces” around the “=“

2016CIS2235 Linux Sys Admin23

$ alias

alias egrep='egrep --color=auto'

alias fgrep='fgrep --color=auto'

alias grep='grep --color=auto'

alias l='ls -CF'

alias la='ls -A'

alias ll='ls -alF'

alias ls='ls -F'

alias m='more'

alias rm='rm -i'

S. Ruegsegger

How to NOT use an alias

• If you want the shell to 'ignore' or not use an alias,
you have 2 options: temporarily, or permanently.

1. Temporarily
• use a "\" to escape the command
$ \ls

• More useful example:
alias rm='rm -i'

• to delete without 'interaction': $ \rm *.txt

• (note I could use rm –f in this example)

2016CIS2235 Linux Sys Admin24

S. Ruegsegger

How to NOT use an alias

2. Permanently remove an alias:
• Use the unalias command

2016CIS2235 Linux Sys Admin25

$ alias foo='echo foobar'

$ foo

foobar

$ \foo

Unknown command

$ foo

foobar

$ unalias foo

$ foo

Unknown command

Do you understand this?

S. Ruegsegger

Finding an alias: type vs which

• which only looks at the $PATH
• type looks "into the shell"

• no man page for type because it's a shell command

2016CIS2235 Linux Sys Admin26

$ type rm

rm is aliased to `rm -i'

$ which rm

/bin/rm

$ type cat

cat is hashed (/bin/cat)

$ type -a rm

rm is aliased to `rm -i'

rm is /bin/rm

“all”

S. Ruegsegger

shell vs env variables

2016CIS2235 Linux Sys Admin27

S. Ruegsegger

Shell Variables vs Environment Variables

• We've used shell variables in our scripting:
• By default, they are private to the shell

• However, environment variables are passed to all
programs run from the shell
• This is called “the environment” of the session

• In Bash, use export to push a shell variable from
being 'private' to the shell into the environment:
$ files="notes.txt report.txt"

$ export files

• Or combine those into one line:

$ export files="notes.txt report.txt"

• The env command lists all environment variables

2016CIS2235 Linux Sys Admin28

S. Ruegsegger

2016CIS2235 Linux Sys Admin29

export example

$ foobar="this is foobar text"

$ echo $foobar

this is foobar text

$ env | grep foo

$ export foobar

$ env | grep foo

foobar=this is foobar text

shell vars
$eggs
$ham
$foobar

bash

ENV vars
$foobar

ENV vars
$foobar

another program

call a new program

only the ENV vars

go over

'forks'

Only the “env” vars are
copied/available to new
processes

export

S. Ruegsegger

(review) execute vs source

1. Execute a command:
• fork a new process/shell

• Only ENV vars are copied over (inherited)

• run the script

• maybe new shell variables created → they don't affect the
parent

• exit that child process/shell

• the child did not change anything in the parent shell

2. Source a file (dot command):
• does not fork off a new shell/environment

• environment var changes affects the current shell
$. <script_file>

2016CIS2235 Linux Sys Admin30

S. Ruegsegger

misc

2016CIS2235 Linux Sys Admin31

S. Ruegsegger

Always fun to change the prompt

• The variable called $PS1 (Prompt String 1)
specifies how to display the shell prompt

• It's cryptic!
$ echo $PS1

[\u@\h \W]\$

• The default Ubuntu PS1 (complicated...):
$ echo $PS1 \[\e]0;\u@\h:

\w\a\]${debian_chroot:+($debian_chroot)}\u@\h:\w\$

• The special characters:
• \u, \h, and \W represent your user/login name, the

machine’s hostname, and the current working directory

• $USER, $HOSTNAME, $PWD

• Google “Prompt string $PS1” to learn more

2016CIS2235 Linux Sys Admin32

S. Ruegsegger

BASH Prompt String Settings

• There is lots of help for prompt string settings
• The following list shows the meanings of the special

characters used to define the $PS1 prompt strings.
• \t - time

• \d - date

• \n - newline

• \s - Shell name

• \W - The current working directory

• \w - The full path of the current working directory.

• \u - The username

• \h - Hostname

• \# - The command number of this command.

• \! - The history number of the current command

2016CIS2235 Linux Sys Admin33

Have fun and be creative!

S. Ruegsegger

byobu

• “text window manager”
• Just a way to have multiple shells in one (ssh)

window
• Japanese word for the screen to change behind – a

separator
• Written by a Ubuntu programmer. why?
• How I remember this: byob, u (cheesy)
• another, similar program is screen, but byobu is

'fancier'
• Key key-bindings:

• F2 - new window
• F3 - prev shell window
• F4 - next shell window

2016CIS2235 Linux Sys Admin34

	Slide 1: Shell Environment
	Slide 2: Review
	Slide 3: Hello World
	Slide 4: Environment vars
	Slide 5: Arithmetic
	Slide 6: Only integers...
	Slide 7: Command substitution
	Slide 8: Globbing
	Slide 9: Globbing
	Slide 10: 3) Globbing with brackets, []
	Slide 11: Absolutely crucial to use globs on file copying, moving & removing
	Slide 12: Who gets the glob?
	Slide 13: Quoting in the shell
	Slide 14: Escaping
	Slide 15: Shell Completion
	Slide 16: Command History Interaction
	Slide 17: Shell start-up / config scripts
	Slide 18: Shell Configuration Files
	Slide 19: Shell Configuration Files
	Slide 20: What kind of 'stuff' goes into the 2 types of shell startup rc's?
	Slide 21: “source” as a linux verb
	Slide 22: Review:
	Slide 23: Aliases
	Slide 24: How to NOT use an alias
	Slide 25: How to NOT use an alias
	Slide 26: Finding an alias: type vs which
	Slide 27: shell vs env variables
	Slide 28: Shell Variables vs Environment Variables
	Slide 29: export example
	Slide 30: (review) execute vs source
	Slide 31: misc
	Slide 32: Always fun to change the prompt
	Slide 33: BASH Prompt String Settings
	Slide 34: byobu

