
Command Line
CIS 2230 Linux System Administration

Lecture 5

Steve Ruegsegger

S. Ruegsegger

Review

• What is the primary command for help on a
command?

• What do these do? apropos, info, whereis,
whatis, which

2017CIS2230 Linux Sys Admin -- Command Line2

S. Ruegsegger

Shells (review)

• A shell provides an interface between the user and the
operating system kernel

• A shell accepts your instruction or commands in “English”
(mostly) and passes it to kernel.

• It's a program which aids the user in communicating with the
kernel – the kernel talks in binary/assembly and you don't.

• Elements of a shell:
• programming language, env. variables, history, cursor editing, path

display, etc.

2017CIS2230 Linux Sys Admin -- Command Line3

User commands
How?

S. Ruegsegger

Shells

• There are many different user shells
• The original shell is /bin/sh
• Ubuntu and Fedora uses bash as the default. AIX

uses ksh.
• Each has a programming/scripting language. You

need to know it!
• Each has it's own +'s and -'s and unique idiosyncrasies

2017CIS2230 Linux Sys Admin -- Command Line4

sh – 'bare-bones', very basic, used for simple scripting

S. Ruegsegger

How do I communicate with the shell?

• Shell commands have 3 “parts”:
• 1) a command, 2) options, 3) arguments
• Separated by spaces
• Format: $ command <options> <arguments>
• Examples?

1. Command
• The first word is the command to run
• Most commands are a small binary program in a specific

directory
• Few commands are built into the shell itself – called “built-ins”

2. Options
• Start with dash (-) or double dash (--)

3. Arguments
• Limited or unlimited; optional or required
• Extra information from the user for the program to use

2017CIS2230 Linux Sys Admin -- Command Line5

ORDER is important

S. Ruegsegger

Examples of Command-Line Options

• Default – list files in current directory
$ ls

• With option – list the files in the ‘long format’:
$ ls -l

• Option and args – List full information about some
specific files:
$ ls -l notes.txt report.txt
$ command <option> [list of arguments]

• Use a wildcard – List full information about all the .txt
files:
$ ls -l *.txt

• Multiple options – List all files in long format, even the
hidden ones:
$ ls -l -a
$ ls -la

2017CIS2230 Linux Sys Admin -- Command Line6

S. Ruegsegger

Key ls options
There are many options listed in $ man ls. Here are some key ones
you should know.
$ ls
$ ls -a
$ ls -l
$ ls -la
$ ls -lrt
$ ls -lrS
$ ls -d <dir>
$ ls -F

2017CIS2230 Linux Sys Admin -- Command Line7

permissions

filetype Link count

user group

File size

Last access dttmpermissions

File name

S. Ruegsegger

Calling a command

• Explicitly – giving the exact path (absolute or relative)
• What do these do?
$ /bin/ls
$ /home/steve/cleanup.pl
$./backup_files.sh
$../../bob/scripts/runme.sh

• Implicitly – no path, letting the shell “find” the command
$ firefox
$ calculator
• Sounds 'scary'
• How could this be 'bad'?

2017CIS2230 Linux Sys Admin -- Command Line8

S. Ruegsegger

Which command to run implicitly?

• If not explicit (i.e. implicit or no path), the shell must
“looks for” the proper program
• “firefox, you say; I wonder which one?”

• The environment variable $PATH lists the directories
in which to search

• Directory names are separated by colon, for example:
$ echo $PATH
/bin:/usr/bin:/usr/local/bin

• e.g. Running $ whoami
• will look for /bin/whoami or /usr/bin/whoami

or /usr/local/bin/whoami
• In the order the directories exist in the path
• $ which whoami tells you “which one”

2017CIS2230 Linux Sys Admin -- Command Line9

S. Ruegsegger

Security thoughts about $PATH

• How important is $PATH?
• Why is it not good to have "." (cwd) in the path?

• BAD --> $PATH = .:/bin:/usr/bin: ...
• e.g. 'bad guy' ~/bin/ls

• Note: Ubuntu changed default $PATH around 14.04.
• I don’t like this change.

2017CIS2230 Linux Sys Admin -- Command Line10

Ack! A bit of a security risk.

(hint: $ hash –r)

S. Ruegsegger

Running a script not in $PATH

• Therefore, if “.” is not in $PATH, then you must run
commands “explicitly” with “./”
$./myscript.pl

2017CIS2230 Linux Sys Admin -- Command Line11

S. Ruegsegger

Bash has a speedier builtin: hash

• Not a file, a bash shell builtin

• Notes:
• Builds the hash in ‘real-time’; i.e. as commands are used
• The “first time” you use a command, $PATH is searched,

but the “next times”, the hash lookup is used first! (fast)
• $ hash –r to reset the hash (i.e. $PATH has changed)

2017CIS2230 Linux Sys Admin -- Command Line12

S. Ruegsegger

Command <options>

• Typical/conventional syntax:
• Single letter options start with a single hyphen: -B
• Less cryptic options are whole words or phrases, and start with

two hyphens: --ignore-backups
• Which form?

• Depends on the command (e.g. adduser)
• Some commands support both (e.g. ls, mv)

• Some options take arguments
• argument is the next word after the option
• e.g.: $ sort -o output_file input_file

• A few programs use different styles of command-line options
• For example, long options (not single letters) sometimes start

with a single - rather than --
• e.g. firefox

• Summary: use the man, man
2017CIS2230 Linux Sys Admin -- Command Line13

S. Ruegsegger

Differentiating Options and Arguments

• The options usually come first, but not always
• Options always start with a dash, single or double
• Arguments are usually filenames, directories, etc., on

which to operate and can be a long, long list
• Example: file commands have list of files for arguments

• There is a limit.
• There are ways to get around these limits when they are

encountered. (we'll investigate later)
• What if an argument starts with a dash?

• e.g. try: $ touch -foo.bar
• Hint: special option ‘--’ → what does it do?

2017CIS2230 Linux Sys Admin -- Command Line14

Strange, but could happen!

S. Ruegsegger

required vs optional arguments

• Some arguments are required
• If you don't include the argument(s), the command gives an

error
• e.g. run rm, mv or cp without arguments

• Some arguments are optional
• They do something special or have a default value
• e.g. cd <dir>

• <dir> is optional, without it, the default is $HOME
• e.g. ls <paths-or-files>

• without an argument, the default is . (pwd)
• e.g. sort -- defaults are stdin and stdout

• How do you know if an argument is required or optional?
• It can be tricky
• The man pages might specify
• Often documentation uses <> or [] to mean optional

• Study $ man cp vs $ man ls

2017CIS2230 Linux Sys Admin -- Command Line15

S. Ruegsegger

Option vs Argument Order

• Does order matter?
• Is $ ls -al different than $ls -la ?
• Is $ mv file1 file2 different than $ mv file2 file1 ?

• For options, order doesn't matter
• For arguments, order often does matter
• This is what differentiates options from arguments
• Why? Think about these examples from perl:

2017CIS2230 Linux Sys Admin -- Command Line16

use Getopt::Std;
&getopts('vm');
if($opt_v) { ... }

$dir = shift @argv;
$file = shift @argv;

S. Ruegsegger

Command reuse, reduce, recycle

• As expected
• Up/down arrow keys will scroll through the command

history.
• Left/right arrows move cursor
• Typing inserts, backspace deletes

• This can be used to repeat or correct or modify
commands

• The emacs keys work: ^p, ^n, ^a, ^e, ^t, ^d, ^k

2017CIS2230 Linux Sys Admin -- Command Line17

S. Ruegsegger

History

• $ history
• Very useful “bang” shortcuts:

$!n
$!-n
$!!
$!string

2017CIS2230 Linux Sys Admin -- Command Line18

S. Ruegsegger

Combining Commands on One Line

• A couple methods....
1. Separate with “;”

• Don't start the 2nd until the 1st finishes
• This is 2 commands. It's like typing in the 2nd command

after the 1st one finishes.
$ time-consuming-program ; log_result

2. Separate with “&&”
• This is seen as one command where...
• 2nd command runs only if the 1st one succeeds
$ potentially-failing-program && cp results.txt ..

3. Separate with “||”
• 2nd command runs only if the 1st one fails
$ rm file1 || echo file1 not found

2017CIS2230 Linux Sys Admin -- Command Line19

S. Ruegsegger

Background – getting the prompt back

• Unix is a multitasking OS and runs many programs at
once.

• You can put your command in the background with “&”
at the end of the command string
$ firefox –display 0 &
$ emacs userlog.log &

• If you forget the &, you can suspend a job with ^Z,
then put in background with “bg”

• What do these commands do?
$ bg
$ fg
$ jobs
$ ps

2017CIS2230 Linux Sys Admin -- Command Line20

S. Ruegsegger

Background and don't die

• If the terminal ends, all background jobs end.
• Unless, you start with nohup (no hangup)

$ nohup really-long-command &
• Text output goes to file nohup.out

2017CIS2230 Linux Sys Admin -- Command Line21

	Command Line
	Review
	Shells (review)
	Shells
	How do I communicate with the shell?
	Examples of Command-Line Options
	Key ls options
	Calling a command
	Which command to run implicitly?
	Security thoughts about $PATH
	Running a script not in $PATH
	Bash has a speedier builtin: hash
	Command <options>
	Differentiating Options and Arguments
	required vs optional arguments
	Option vs Argument Order
	Command reuse, reduce, recycle
	History
	Combining Commands on One Line
	Background – getting the prompt back
	Background and don't die

