

Dynamic Languages

Peter C. Chapin
Vermont Technical College

What is a “Dynamic Language”

● A language in which many behaviors are
deferred to run time.
– Type checking

● Type consistency of every expression checked at the
time the expression is evaluated.

– Code writing
● Strings of characters can be interpreted as program text.
● Precise definition of program entities depend on user

input.

– Code linking
● Modules located and loaded at run time.

Pros and Cons
● Pros

– Flexibility
● Program can adapt as it runs to account for run time

environment, user input, or errors that are encountered.

– Easy of development
● Compilation step is simple (and fast) because less work

is done at compile time.

● Cons
– Slow execution

● Extra run time work requires processor cycles.

– Less reliable
● Static checking provides early bug detection.

Examples

● The “scripting” languages are usually dynamic.
– Python
– Perl
– Ruby
– ... a cast of others

● The “compiled” languages are usually static.
– C/C++, Java, Scala, Ada, etc.

Distinction Can Be Unclear
● Many compiled languages do allow certain

dynamic features.
– Dynamic Link Libraries (*.dll) or Shared Object files

(*.so) allow static languages to load code
dynamically.

● Requires OS support; feature exists outside the
language.

– Dynamic type checking can be simulated.
● For example, in C using unions

● Some dynamic languages also support static
features
– Boo allows both static and dynamic type checking

Python Dynamic Type Checking

● Consider:
– "Hello" + 1

● It's a run time exception: TypeError: cannot
concatenate 'str' and 'int' objects

– if p(x) < q(x):
 print "Hello"

else:
 print "Hello" + 1

● It works fine, no type error because the bad expression
isn't evaluated.

Python Dynamic Evaluation

● The exec statement lets you execute strings as
program text.
– exec(
 “for i in range(1, 3):\n print(i)\n”)

● The contents of the string is parsed and then executed.
● String could be built at run time based on user input, etc.

● The eval function lets you evaluate strings as
Python expressions.
– result = eval(“1 + 2”)

● The expression in the string is parsed and evaluated.
● String could be built at run time based on user input, etc.

Python Dynamic Definitions

● Precise class definition depends on condition
– if p(x) < q(x):

class Example:
def method_1(self):

print("I'm in method_1")
else:

class Example:
def method_2(self):

print("I'm in method_2")

– After the if statement executes, what methods does
class Example have?

Dynamic Defs (Continued)

● Let's find out...
– ex = Example()
ex.method_1()

● Print's “I'm in method_1”

– ex = Example()
ex.method_2()

● Raises: AttributeError: Example instance has
no attribute 'method_2'

● Methods in a class are checked dynamically.
– Python run time system verifies the existence of

each method just before every call.

Python Import

● Modules brought into your program with import
– import mystuff

● At run time, Python searches for mystuff.py (or
mystuff.pyc) and executes it.

● Names defined in the module are now available for use in
the importing module.

● Importing the same module more than once has
no effect.
– Module code only executed once.
– BUT... names in the module still available!

Dynamic Module Selection

● Combine exec with modules.
– if p(x) < q(x):

module_name = “amod”
else:

module_name = “bmod”

exec(“import ” + module_name)
● Constructs the module name at run time.
● Uses exec to execute the necessary import.

● This is rarely done, but it illustrates Python's
dynamic nature.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

