

TCP Protocol Details, Part 2

Vermont Technical College
Peter C. Chapin

Receiver Window

● The receiver window manages flow control.
● Receiver adjusts size to reflect buffer space.
● Sends window size updates via “Window” field in

TCP segment header.
● Sender won't send more data than receiver can

handle.
● ... even in the case where receiving application is

busy elsewhere.

Sources of Slowness

● Receiver
● Slow computer
● Distracted program

– Dealing with other tasks...
– Processing received data is complicated...

● Receiver buffer fills and receiver window shrinks.
● Network

● Slow links
● High traffic
● How is this handled?

Congestion Window

● TCP maintains a second window.
● Estimate of the network's capacity to transmit data.
● Sender must compute the size of this window

– Based on implicit feedback from the receiver
● Successful ACKs
● Timeouts

– Assumption: Lost segments are due to network
congestion (is this really true?)

● Actual window used for transmission is the
smallest of (receiver, congestion).

Slow Start

● Congestion window size (cwnd) starts small
and grows to “probe” the network capacity.
● In what follows “one segment” means the MSS

used by the sender (typically 1460 bytes on
ethernet).

● Initialize with cwnd = 1 segment.
● Increment cwnd by 1 segment for each

segment acknowledged.
● This increases cwnd exponentially!

Exponentially?

● Consider...
● Set cwnd = 1 segment. Send it.
● Wait for ACK. Set cwnd = 2 segments. Send them.
● After both ACKs...

– Set cwnd = 2 + 1 + 1 = 4 segments. Send them.
● After all four ACKS...

– Set cwnd = 4 + 1 + 1 + 1 + 1 = 8 segments. Send them.

● In real life it is more complicated.
● ACKs don't really arrive all together (in general).
● TCP follows the same basic rule, however.

Slow Start Threshold

● A second value, ssthresh, defines when slow
start ends and “congestion avoidance” begins.
● After cwnd reaches ssthresh...

– Increment cwnd by 1/cwnd (as measured in segments)
for each ACK.

● Example: If cwnd = 4 segments, then add ¼ segment to cwnd in
response to the next ACK.

● Thus 4 ACKs needed to increase cwnd by 1 segment.
– Thus cwnd increases by 1 for each round trip time

regardless of segment count.
● Causes a linear increase of cwnd.

Summary

0 1 2 3 4 5 6 7 8

0

2

4

6

8

10

12

14

16

18

20

TCP Congestion Window

Round-Trip Times

cw
n

d
 (

S
e

g
m

e
n

ts
)

ssthresh

Timeout!

● When a timeout occurs...
● ssthresh is set to ½ the current cwnd value.
● cwnd is set to 2.
● Slow start begins again.

● TCP assumes timeout means data loss.
● Backs off by reducing the congestion window size.
● Begins probing the network again in case source of

congestion is gone.

Remember...

● TCP uses the smallest of (receiver, congestion)
windows.
● Once cwnd exceeds the receiver window, flow is

limited by receiver window size.
● This is the normal case on a clear network.

● On a WAN, however, cwnd is often limiting.
● Many details left out of this dicussion.

● See references slide at end of this slide group.

How Long to Timeout?

● Too long...
● If TCP waits too long to retransmit a lost segment

time is wasted.
● Slows down transmission.

● Too short...
● If TCP doesn't wait long enough, it may retransmit

unnecessarily.
● Clogs the network.
● Wastes bandwidth.

Round Trip Time?

● How long is a normal round trip?
● LAN...

– Transit time is sub-millisecond.
– Usually steady.

● WAN...
– Transit time is multiple millisecond.
– Often tens, hundreds, even thousands of milliseconds.
– Often highly variable.

● Computation time is usually short.
– TCP acknowledges, application not involved.

RTT Estimation (Old)

● RFC-793 contains an algorithm for estimating
round trip time (RTT).
● Associate a timer with each outgoing segment.
● When an ACK comes in, note the measured RTT

for that segment (M).
● Compute:

– Where α is a scale factor (typically 0.9). R is an estimate
of the RTT.

● Compute timeout:
– Where β is another scale factor (typically 2).

Rnew=α Rold+(1−α)M

T=Rnew 

Problems

● The previous algorithm is not that great.
● Can't keep up with changes.
● Doesn't deal with highly variable RTT values.
● Tends to cause many unnecessary retransmissions.

● What is needed is a way to account for the
degree of variability in the RTT.

Jacobson's Algorithm

● Compute both RTT and “deviation” estimates.
● Compute

– Note that the error value is signed.
● Compute

– Here g is typically 1/8.
● Compute

– Here h is typically ¼. D is an estimate of the deviation in
observed RTT values.

● Compute
– Time is RTT with extra to account for variability of RTT.

● Note that computations above are easy.

E r=M−Rold

Rnew=Roldg E r

Dnew=Dold+ h(∣E r∣−Dold)

T new=Rnew4Dnew

How is RTT Measured?

● Both methods described so far depend on M,
the measured RTT. Where does that come
from?
● For each segment sent…

– Note sequence # just off the end of the segment. Note
time with a high resolution clock.

● When an ACK covering that sequence number first
arrives…
– Note time on high resolution clock, subtract previously

recorded time.

TSopt

● Managing timestamp data is a burden
● Many segments in flight; each has a different send

timestamp. When an ACK arrives, must figure out to
which segment(s) it applies, etc.

● RFC-7323 discusses the TSopt option
– Sending timestamp installed in outgoing segment (TSval)
– ACKs echo this value (TSecr)
– TCP need not maintain a database of send timestamps

for all in-flight segments.
– No need to synchronize clocks! Echoed timestamps are

in terms of the sender’s clock.

TCP Performance

DATA Octets ACK Octets

Preamble 8 8

Ethernet Header 14 14

IP Header 20 20

TCP Header 20 20

Data 1460 0

Pad 0 6

FCS (CRC) 4 4

Interframe Gap 12 12

TOTAL 1538 84

Needed to meet
ethernet minimum
of 64 octets per frame

9.6 microseconds on
10 Mbps ethernet.

Performance Computation

● Assume one ACK for every two data segments
● In real life there are many possibilities.

● Assume 10 Mbps ethernet.

2(1460)

2(1538)+84
∗

10,000,000
8

=1,155,063octets / s

Real data

Data+overhead ACK overhead

Raw data rate (1,250,000 octets/s)

Actual data rate

Two data segments
per ACK

Interactive TCP

● So far we have assumed we are transferring a
large file… a steady stream of data primarily in
one direction.

● Interactive sessions are different
● One byte at a time (each character typed)
● Small bursts of data bidirectionally
● Think: terminal session such as SSH or telnet.

Small Packet Problem

● It goes like this:
● User types character
● TCP sends segment with one byte of data
● Huge overhead!

● In absolute terms such segments are small…
● … but if there are many of them they can create

excessive congestion (particularly on slow links)

Nagle’s Algorithm

● Batch small writes to the connection. Send
them all at once (several keystrokes in one
segment).

● Do not send data if there is previously
unACKed data in flight. Instead buffer it.
● Unless… there is MSS data waiting in the buffer.
● The last point allows smooth flow in the case of a

file transfer.
● Degrades to stop-and-wait when interactive

● Not a problem: RTT small by human standards

RTT Small?

● What about satellite links?
● Geostationary satellites are 22,200 miles above

Earth’s surface…
● At the speed of light it takes ~240 ms to go up and

back…
● … plus the time on the terrestrial Internet.
● … yields RTT on the order of ½ sec+

With Non-Local Echo

● Without Nagle’s Algorithm…
● Each letter typed appears about ½ second after you

type it. When you stop typing, characters continue
to appear as the echo catches up.

● With Nagle’s Algorithm…
● The letters appear about ½ second later, as before,

but now in batches. When you stop typing, the last
batch appears in about ½ second.

● … BUT, only a fraction of the packets are sent.

References

● RFC-793: Transmission Control Protocol
● RFC-896: Congestion Control in IP/TCP Internetworks.

(Describes Nagle's Algorithm for interactive
connections)

● RFC-2581: TCP Congestion Control
● RFC-7323: TCP Extensions for High Performance
● http://en.wikipedia.org/wiki/Transmission_Control_Protocol

http://en.wikipedia.org/wiki/Transmission_Control_Protocol

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

