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Receiver Window

● The receiver window manages flow control.
● Receiver adjusts size to reflect buffer space.
● Sends window size updates via “Window” field in 

TCP segment header.
● Sender won't send more data than receiver can 

handle.
● ... even in the case where receiving application is 

busy elsewhere.



  

Sources of Slowness

● Receiver
● Slow computer
● Distracted program

– Dealing with other tasks...
– Processing received data is complicated...

● Receiver buffer fills and receiver window shrinks.
● Network

● Slow links
● High traffic
● How is this handled?



  

Congestion Window

● TCP maintains a second window.
● Estimate of the network's capacity to transmit data.
● Sender must compute the size of this window

– Based on implicit feedback from the receiver
● Successful ACKs
● Timeouts

– Assumption: Lost segments are due to network 
congestion (is this really true?)

● Actual window used for transmission is the 
smallest of (receiver, congestion).



  

Slow Start

● Congestion window size (cwnd) starts small 
and grows to “probe” the network capacity.
● In what follows “one segment” means the MSS 

used by the sender (typically 1460 bytes on 
ethernet).

● Initialize with cwnd = 1 segment.
● Increment cwnd by 1 segment for each 

segment acknowledged.
● This increases cwnd exponentially!



  

Exponentially?

● Consider...
● Set cwnd = 1 segment. Send it.
● Wait for ACK. Set cwnd = 2 segments. Send them.
● After both ACKs...

– Set cwnd = 2 + 1 + 1 = 4 segments. Send them.
● After all four ACKS...

– Set cwnd = 4 + 1 + 1 + 1 + 1 = 8 segments. Send them.

● In real life it is more complicated.
● ACKs don't really arrive all together (in general).
● TCP follows the same basic rule, however.



  

Slow Start Threshold

● A second value, ssthresh, defines when slow 
start ends and “congestion avoidance” begins.
● After cwnd reaches ssthresh...

– Increment cwnd by 1/cwnd (as measured in segments) 
for each ACK.

● Example: If cwnd = 4 segments, then add ¼ segment to cwnd in 
response to the next ACK.

● Thus 4 ACKs needed to increase cwnd by 1 segment.
– Thus cwnd increases by 1 for each round trip time 

regardless of segment count.
● Causes a linear increase of cwnd.



  

Summary
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Timeout!

● When a timeout occurs...
● ssthresh is set to ½ the current cwnd value.
● cwnd is set to 2.
● Slow start begins again.

● TCP assumes timeout means data loss.
● Backs off by reducing the congestion window size.
● Begins probing the network again in case source of 

congestion is gone.



  

Remember...

● TCP uses the smallest of (receiver, congestion) 
windows.
● Once cwnd exceeds the receiver window, flow is 

limited by receiver window size.
● This is the normal case on a clear network.

● On a WAN, however, cwnd is often limiting.
● Many details left out of this dicussion.

● See references slide at end of this slide group.



  

How Long to Timeout?

● Too long...
● If TCP waits too long to retransmit a lost segment 

time is wasted.
● Slows down transmission.

● Too short...
● If TCP doesn't wait long enough, it may retransmit 

unnecessarily.
● Clogs the network.
● Wastes bandwidth.



  

Round Trip Time?

● How long is a normal round trip?
● LAN...

– Transit time is sub-millisecond.
– Usually steady.

● WAN...
– Transit time is multiple millisecond.
– Often tens, hundreds, even thousands of milliseconds.
– Often highly variable.

● Computation time is usually short.
– TCP acknowledges, application not involved.



  

RTT Estimation (Old)

● RFC-793 contains an algorithm for estimating 
round trip time (RTT).
● Associate a timer with each outgoing segment.
● When an ACK comes in, note the measured RTT 

for that segment (M).
● Compute:

– Where α is a scale factor (typically 0.9). R is an estimate 
of the RTT.

● Compute timeout: 
– Where β is another scale factor (typically 2).

Rnew=α Rold+(1−α)M

T=Rnew 



  

Problems

● The previous algorithm is not that great.
● Can't keep up with changes.
● Doesn't deal with highly variable RTT values.
● Tends to cause many unnecessary retransmissions.

● What is needed is a way to account for the 
degree of variability in the RTT.



  

Jacobson's Algorithm

● Compute both RTT and “deviation” estimates.
● Compute

– Note that the error value is signed.
● Compute

– Here g is typically 1/8.
● Compute

– Here h is typically ¼. D is an estimate of the deviation in 
observed RTT values.

● Compute
– Time is RTT with extra to account for variability of RTT.

● Note that computations above are easy.  

E r=M−Rold

Rnew=Roldg E r

Dnew=Dold+ h(∣E r∣−Dold )

T new=Rnew4Dnew



  

How is RTT Measured?

● Both methods described so far depend on M, 
the measured RTT. Where does that come 
from?
● For each segment sent…

– Note sequence # just off the end of the segment. Note 
time with a high resolution clock.

● When an ACK covering that sequence number first 
arrives…
– Note time on high resolution clock, subtract previously 

recorded time.



  

TSopt

● Managing timestamp data is a burden
● Many segments in flight; each has a different send 

timestamp. When an ACK arrives, must figure out to 
which segment(s) it applies, etc.

● RFC-7323 discusses the TSopt option
– Sending timestamp installed in outgoing segment (TSval)
– ACKs echo this value (TSecr)
– TCP need not maintain a database of send timestamps 

for all in-flight segments.
– No need to synchronize clocks! Echoed timestamps are 

in terms of the sender’s clock.



  

TCP Performance

DATA Octets ACK Octets

Preamble 8 8

Ethernet Header 14 14

IP Header 20 20

TCP Header 20 20

Data 1460 0

Pad 0 6

FCS (CRC) 4 4

Interframe Gap 12 12

TOTAL 1538 84

Needed to meet
ethernet minimum
of 64 octets per frame

9.6 microseconds on
10 Mbps ethernet.



  

Performance Computation

● Assume one ACK for every two data segments
● In real life there are many possibilities.

● Assume 10 Mbps ethernet.

2(1460)

2(1538)+84
∗

10,000,000
8

=1,155,063octets / s

Real data

Data+overhead ACK overhead

Raw data rate (1,250,000 octets/s)

Actual data rate

Two data segments
per ACK



  

Interactive TCP

● So far we have assumed we are transferring a 
large file… a steady stream of data primarily in 
one direction.

● Interactive sessions are different
● One byte at a time (each character typed)
● Small bursts of data bidirectionally
● Think: terminal session such as SSH or telnet.



  

Small Packet Problem

● It goes like this:
● User types character
● TCP sends segment with one byte of data
● Huge overhead!

● In absolute terms such segments are small…
● … but if there are many of them they can create 

excessive congestion (particularly on slow links)



  

Nagle’s Algorithm

● Batch small writes to the connection. Send 
them all at once (several keystrokes in one 
segment).

● Do not send data if there is previously 
unACKed data in flight. Instead buffer it.
● Unless… there is MSS data waiting in the buffer.
● The last point allows smooth flow in the case of a 

file transfer.
● Degrades to stop-and-wait when interactive

● Not a problem: RTT small by human standards



  

RTT Small?

● What about satellite links?
● Geostationary satellites are 22,200 miles above 

Earth’s surface…
● At the speed of light it takes ~240 ms to go up and 

back…
● … plus the time on the terrestrial Internet.
● … yields RTT on the order of ½ sec+



  

With Non-Local Echo

● Without Nagle’s Algorithm…
● Each letter typed appears about ½ second after you 

type it. When you stop typing, characters continue 
to appear as the echo catches up.

● With Nagle’s Algorithm…
● The letters appear about ½ second later, as before, 

but now in batches. When you stop typing, the last 
batch appears in about ½ second.

● … BUT, only a fraction of the packets are sent.



  

References

● RFC-793: Transmission Control Protocol
● RFC-896: Congestion Control in IP/TCP Internetworks. 

(Describes Nagle's Algorithm for interactive 
connections)

● RFC-2581: TCP Congestion Control
● RFC-7323: TCP Extensions for High Performance
● http://en.wikipedia.org/wiki/Transmission_Control_Protocol

http://en.wikipedia.org/wiki/Transmission_Control_Protocol
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