Intel 80386 Instruction Set Highlights
Peter C. Chapin (Last Revised: January 2, 2017)

Introduction

Although this document talks about the 80386 processor, the instructions presented here work
for any processor in the IA-32 architecture family. More modern 1A-32 processors typically have
additional instructions but they are typically instructions used for specialized purposes and are
less useful in a general purpose application context.

In the following description | will use reg to refer to one of the 80386 registers and mem to re-
fer to a memory location accessible via one of the 80386 addressing modes. For the most part,
any instruction that uses reg can use any reg, and any instruction that uses mem can use any
addressing mode. Exceptions are noted.

Be aware that assembly language is not standardized. Not only do different processors have
(often radically) different instructions but even different assemblers targeting the same proces-
sor might use different instruction syntax. The syntax presented here is the “Intel” syntax used
by Microsoft's Macro Assembler (MASM) and any assembler that attempts to be compatible
with MASM such as Open Watcom's WASM. It is the dominant syntax for assembly language on
Windows systems. The other major syntax in use is the “AT&T” syntax used by the GNU Assem-
bler (gas). This alternate syntax dominates on Linux systems where the GNU tool chain is the
de facto standard.

Addressing Modes

The 80386 supports the following addressing modes. The addressing modes are described by
demonstration.

Immediate

The number specified with the instruction is placed into the indicated destination. Note that all
three of the forms below do this—including the one with the brackets. Instructions that can
use this mode are shown with an immed in the instruction summaries below.

ANUMBER EQU OFFFFFFFFh
mov eax, ANUMBER
mov ebx, 12345678h
mov ecx, [12345678h]
Direct Memory

The contents of the specified memory location is placed into the indicated destination. Note
that brackets have to used with a segment name (or register) to force MASM to use this ad-
dressing mode when a raw address is specified. However, normally this addressing mode is

used to access named variables declared in the data segment and no brackets are necessary in
that case.

The assembler is sensitive to data types. The three basic types are bytes (8 bits, declared with
DB), words (16 bits, declared with DW), and double words (32 bits, declared with DD). Modern
processors also deal with quad words (64 bits, declared with DQ). The assembler will select the
appropriate instruction variant based on the type of the operand or produce an error message.

.DATA
variablel DD 12345678h
variable2 Dw 1234h
variable3 DB 12h
.CODE
mov eax, variableil
mov ebx, ds:[12345678h] ; Reads specified location.
mov CcX, variablel ; Error: variable is a DWORD.
inc variablel ; 32 bit increment used.
inc variable2 ; 16 bit increment used.
inc variable3 ;8 bit increment used.
Indirect Memory

The contents of some register (often ebx, esi, or edi, but it could be any of the general 32 bit
registers) are used as an offset into the data segment. This is the basic mode used when ac-
cessing memory with a pointer. The idea is to store the pointer into a 32 bit register and use it
to access the operand indirectly.

In cases where the data type must be specified the notation BYTE PTR, WORD PTR, or DWORD
PTR must be used. The assembler will produce an ambiguity error if disambiguation is needed.

mov eax, [ebx] Read 32 bits from memory.

mov cl, [esi] ; Read 8 bits from memory.

inc [edi] ; Ambiguous. What size is intended?
inc DWORD PTR [edi] ; 32 bit increment used.

inc WORD PTR [edi] ; 16 bit increment used.

inc BYTE PTR [edi] ; 8 bit increment used.

Indirect Memory with (Scaled) Index and Optional Displacement.

More generally the indirect mode can use the following form.

[base_reg + scale*index_reg + displacement]

where

* “base_reg” is one of the general purpose registers (eax, ebx, ecx, edx, esi, edi, ebp, or
esp). When ebp or esp is used as a base, the reference is into the stack segment.

* ‘“scale” is either 1, 2, 4, or 8. A scale factor of 1 is the default and need not be men-
tioned explicitly.

* “index_reg” is one of the general purpose registers (eax, ebx, ecx, edx, esi, edi, or ebp).
Notice that esp can not be used as an index register.

* ‘“displacement” is a signed quantity that is either 8 or 32 bits (if necessary) in size.

This general mode is particularly useful in connection with arrays which are just allocated
blocks of memory with a label representing their starting address.

.DATA

bufferi DB 1000 dup(0) ; Array of 1000 bytes.
mov al, [ebx+2] ; 8 bits from location ebx + 2.
mov al, ebx[2] ; Alternate form of above.
mov al, [ebx+bufferi] ; 8 bits from the ebx™ element.
mov al, bufferi[ebx] ; Alternate form of above.
Mov eax, [ebx+4*esi] ; 32 bits from the esit" element.

In general to access an array element one has to multiply the index value by the size of the ele-
ment type and add the result to the base address of the array. The addressing modes of the
80386 make this easy for arrays of bytes, words, or double words. For larger objects it is neces-
sary to use explicit multiply instructions.

Note that the ability to add a displacement allows you to easily access the components of
structures in an array of structures. Adjust the index register to “point” at the array element in
question and then use the displacement for dealing with the offset into the structure at that
position.

Use of the "Other” Base Register

The ebp register can be as a base register. When the ebp register is used, however, the offset
calculated is taken to be an offset into the stack segment. This allows easy access of data on
the stack. Typically programming languages (such as C) use the stack to pass parameters to
functions and for function local variables.

The Instruction Set

1. Data movement. Despite the name, “mov” these instructions actually copy data. The
source of the data is not affected. The source operand is the rightmost (last) operand.
The destination operand is the leftmost (first) operand.

a) mov reg, reg
b) mov mem, reg
c) mov reg, mem
d) mov mem, immed
e) mov reg, immed

2. Math and bitwise operations.

a) add reg, reg
b) add mem, reg
c) add reg, mem
d) add reg, immed
e) add mem, immed

The same pattern is used for "adc" (add with carry), "sub" (subtract), "sbb" (subtract
with borrow), "and" (bitwise AND), "or" (bitwise OR), and "xor" (bitwise XOR). Note that
the instruction "sub ebx, ecx" subtracts ecx from ebx and leaves the result in ebx. That
is, the instruction calculates ebx -= ecx.

3. Compare and jump

a) The cmp instruction works like the math and bitwise instructions above. It does a
subtraction but does not store result. However, it does condition the flags in prepa-
ration for a jump.

b) The test instruction works like the math and bitwise instructions above. It does a
bitwise "and" but does not store result. However, it does condition the flags in
preparation for a jump.

¢) Unsigned jumps

* jb Jump if below.
* jbe Jump if below or equal.
* je Jump if equal.
e jae Jump if above or equal.
* ja Jump if above.

d) Signed jumps

e jl Jump if less.
* jle Jump if less or equal.
* je Jump if equal.
* jge Jump if greater or equal.
* jg Jump if greater.
e) Jump on state of individual flags
* js Jump if sign flag set.
* jc Jump if carry flag set.
s jz Jump if zero flag set.
* jo Jump if overflow flag set.

* jp Jump if parity flag set (even parity)

f) An "n" can be used in all forms to negate the sense of the jump. For example

* jnb Jump if not below (unsigned jump).
* jnbe Jump if not below or equal.

* jne Jump if not equal.

* jnae Jump if not above or equal.

* jna Jump if not above.

* ..etc

4. Shift and rotate
For both the shift and rotate instructions the number of bits shifted (rotated) can be ei-
ther 1 or the number in cl. A reg or mem can be shifted (rotated).

a) Shifts. An arithmetic right shift copies the sign flag. A logical right shift does zero fill.

e sal ax, 1 ; Shift arithmetic left.
e sar ax, 1 ; Shift arithmetic right.
e shl ax,1 ; Shift (logical) left.
e shr ax, 1 ; Shift (logical) right.
b) Rotates
* rol ax, 1 ; Rotate left.
* ror ax,1 ; Rotate right.
* rcl ax,1 ; Rotate left through carry.
* rcr ax, 1 ; Rotate right through carry.

5. Direct Flag Control

a) stc ; Set carry flag.

b) std ; Set direction flag (string instr go down).
c) sti ; Enable interrupts.

d) clc ; Clear carry flag.

e) cld ; Clear direction flag (string instr go up).
f) cli ; Disables interrupts.

g) cmc ; Complements the carry flag.

Special Instructions

The 8086 provides a number of specialized instructions that can be used to improve efficiency.
Compilers often don't use these instructions effectively because to do so requires extensive
analysis of the program. Human programmers, however, try to use these features as much as
they can.

The loop instruction provides a simplified way to set up a loop. It uses ecx as a counter register.
The instruction decrements ecx and then jumps to the indicated address if ecx is not zero.

mov ecx, 1000 ; 1000 times through the loop.
top:

loop top ; Jump to top if more to do.

The movsb (movsw, movsd) instruction moves a byte (word, double word)from ds:esi to es:edi
(note the use of the extra segment). The esi and edi registers are automatically incremented or
decremented (depending on the state of the direction flag). These instructions are often used
with a "rep" prefix to force them to run ecx number of times. The overall effect is to implement
a block copy instruction.

mov ecx, 1000 ; 1000 words to move.
mov esi, OFFSET source
mov edi, OFFSET destin
rep movsw ; Copy all 1000 words.

The stosb (stosw, stosd) and lodsb (lodsw, lodsb) store (load) a byte (word, double word) be-
tween memory and the accumulator. These instructions use esi and edi in the same way movsX
instructions do. They can also be used with a "rep" prefix.

mov ecx, 1000 ; 1000 bytes to store.

mov edi, OFFSET destin

mov al, 0Gaah

rep stosb ; Copy al into memory 1000 times.

This description is not a complete description of all the 80386 instructions. However, this list
should suffice for the comprehension of many programs.

	Introduction
	Addressing Modes
	Immediate
	Direct Memory
	Indirect Memory
	Indirect Memory with (Scaled) Index and Optional Displacement.
	Use of the "Other" Base Register

	The Instruction Set
	Special Instructions

