
Linear Algebra

Peter C. Chapin

February 6, 2010

Contents

1 Introduction 2

2 The Concept of a Matrix 2

3 Matrix Operations 5

4 Linear Transformations 8

5 Matrix Inverses 8

6 Matrix Norms 10

7 Simultaneous Equations 13

8 Gaussian Elimination 18

9 Eigenvalues and Eigenvectors 21

Legal

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with no Invariant Sections, with no
Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is
included in the file GFDL.txt distributed with the LATEX source of this document.

1

1 Introduction

This document is a quick primer on linear algebra. Its intended audience is
senior computer engineering technology students at Vermont Technical College.
This document assumes the reader has a reasonable mathematical background,
largely calculus based, but no prior exposure to the topics of linear algebra at
all.

At the end of each major section below you will find some exercies that will en-
courage you to practice with the concepts presented in that section. In addition
you will find some notes on how to use Octave to experiment with the topics
of the section. Octave is an open source program that excels at doing matrix
computations of various kinds (as well as many other mathematical things). It
is similar to the commerical program MATLAB and even uses a largely com-
patible syntax. You may also be able to do a number of interesting matrix
computations on your calculator. However, Octave will probably have greater
capacity, higher performance, and more functionality than your calculator. Re-
gardless of what your calculator can or can’t do, I recommend that you spend
some time getting familiar with Octave.

2 The Concept of a Matrix

A matrix is, essentially, a rectangular array of numbers. It is the basic “data
type” used in linear algebra. The individual numbers in a matrix, usually called
the elements, can be drawn from any of the usual sets. In many applications
the matrix elements are real numbers but in some cases they might be complex
numbers, integers, or rational numbers. We speak of real matrices, complex
matrices, and so forth according to the type of the matrix elements.

The dimensions of a matrix are usually given in the form m× n where m is the
number of rows and n is the number of columns. The row dimension is always
given first. If n = m then the matrix is said, for obvious reasons, to be square.
Here is an example of how a 2× 3 matrix named A might be displayed.

A =

[
a11 a12 a13
a21 a22 a23

]

Each element is given two subscripts to indicate its position in the matrix. The
first subscript is the row number, ranging from 1 . . .m, and the second subscript
is the column number, ranging from 1 . . . n. Typically when one wants to refer
to a generic element of matrix one would use variables such as i, j, or k to be
placeholders for the indices. For example, a typical element of matrix A might
be written as aij . As a computer programmer you should be able to relate this
notation to the index variables used in typical loops. For example, in C

2

double A[2][3];

for (int i = 0; i < 2; i++) {

for (int j = 0; j < 3; j++) {

A[i][j] = ... ;

}

}

Notice that in the mathematical notation it is traditional to regard the matrix
subscripts as starting at one and not zero. Also in the mathematical notation
it is traditional to use uppercase letters to represent the entire matrix and
lowercase letters to represent individual matrix elements.

Matrices with only one row, that is 1×n matrices, are often called row vectors.
In many cases the row subscript is dropped, since it is always 1, when talking
about the elements of a row vector. Similarly matrices with only one column
are often called column vectors. In that case the column subscript is often
dropped when talking about the elements of a column vector. Row vectors and
column vectors are essentially ordinary arrays in a programming sense. In the
mathematics of linear algebra they are basically treated like any other matrix
although their unusual dimensions give them somewhat special properties.

You might have noticed that in the notation above I did not put any punctuation
between the two subscripts in, for example, a12. This might cause you to wonder
what happens if one or both of the subscripts exceeds 9. In general this is not
a significant concern. In the mathematical development one rarely uses specific
numbers other than 1 or 2 anyway. For example, I might show a general m× n
matrix as follows

A =

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

In the discussion about this matrix I might talk about element aij and how,
for example, it relates to aii or amj or even ai+1,j−1. However, it would be
extremely rare for me to talk about a specific element such as a3982 so the
ambiguity about what 3982 means in this case would not be an issue.

Keep in mind also that many of the applications of linear algebra involve the
use of very large matrices. While the examples in this document and most text
books are small so that they can be worked by hand, in the real world matrices
with dimensions of many thousands of rows and columns are commonplace. The
theory, of course, has no special problems with such large matrices but doing
computations efficiently on them can be a serious concern. Much has been
written about that subject but it is outside the scope of this document.

3

Exercises

1. I need something here.

Octave

I will assume here that you will be using the open source program Octave for
your computer experiments. However, if you have access to MATLAB you
should find that all of the commands I talk about here will also work for you.
The two programs have a substantial degree of compatibility, particularly in the
area of basic commands.

When you start Octave you will get a prompt that might look something like

octave:1>

The number (shown as “1” above) is the command number. It increments after
each command although in this document I will typically show it always as “1.”
You can use octave as a simple calculator, just type in expressions for it to
evaluate. For example

octave:1> 2 + 10 / 5

ans = 4

octave:2>

Octave stores the result of the evaluation into a special variable named ans that
it displays on the next line. After displaying the answer it then prints a new
prompt. You can store the result of an expression into a named variable using
the obvious syntax.

octave:1> x = 2 + 10 / 5

x = 4

The beauty of Octave is that it allows you to manupulate matrices in a natural
way. To enter a matrix use square brackets.

octave:1> A = [1 2 3; 4 5 6; 7 8 9]

A =

1 2 3

4 5 6

7 8 9

4

Octave allows a fairly flexible input syntax. You can separate matrix elements
with white space alone or with commas at your option. The semicolons are
used to delimit one row from another. However, you could have also entered
the matrix on multiple lines using the RETURN key at the end of each row in
a natural way.

Once a matrix has been entered you can access an individual element using
parenthesis. For example A(1,3) prints out the value of a13. You can also
modify a particular matrix element.

octave:2> A(1,3) = 10

A =

1 2 10

4 5 6

7 8 9

Notice that when a matrix element is modified, Octave redisplays the entire
matrix.

There are some quirks with Octave to keep in mind as you use it. First, as is
mathematically traditional, element indices are numbered starting at 1, not 0 as
a C programmer might expect. Also Octave uses parenthesis instead of square
brackets when accessing an individual element. These things are consistent with
Fortran’s syntax and are considered natural among numerical specialists who
use Fortran. Also be aware that Octave uses a floating point type internally to
hold all scalars. This is typically what you want but it means that its integer
calculations are somewhat of an illusion. Be careful.

You should take Octave for a test drive. Try entering in a few matrices and
accessing their elements. Although I didn’t discuss it here, experiment with
Octave’s slice notation. For example, using the matrix A entered above, try
executing the command A(2:3, 2). Can you explain what happens? Verify
your explaination by trying some other possibilities. Also try A(:, 2) as well.

3 Matrix Operations

Various operations have been defined for matrices so that they may be manipu-
lated as a single unit. In this section I will review some of those basic operations.
Please read this section carefully. Understanding this material is essential for
understanding the later material.

Two matrices can be added if they have the same dimensions. If the dimensions
are different the addition of the matrices is undefined. To add two compatible

5

matrices one simply adds corresponding elements. Thus addition is very natural.
For example

[
a11 a12
a21 a22

]
+

[
b11 b12
b21 b22

]
=

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]

To multiply a matrix by a scalar, simply multiple each element in the matrix
by that scalar. This is also very natural. For example

a

[
b11 b12
b21 b22

]
=

[
ab11 ab12
ab21 ab22

]

Matrix subtraction follows from the above two operations. If A and B are
matrices then A − B can be regarded as A + (−1)B. Thus matrix subtraction
is also done on an element by element basis in a natural way.

Because matrix addition is defined as element by element addition it should
be fairly clear that matrix addition obeys the same laws of commutivity and
associativity as ordinary addition. That is, if A, B, and C are matrices then
A + B = B + A and (A + B) + C = A + (B + C). This assumes that all the
matrices involved have the same dimensions so that the addition operations are
properly defined.

Matrix multiplication, on the other hand, is defined in a way that might seem
rather counter-intuitive at first. However, as you will see later, it actually
provides a very useful operation. Let the matrices to be multipled be called A
and B. Let C = AB be the product matrix. Let A have the dimensions m× n
and B have the dimensions n× p. For the multiplication to be defined the two
inner dimensions must agree. The dimension of C is then given by the two outer
dimensions. In this case that would be m× p. For example you could multiple
a 3× 2 matrix with a 2× 5 matrix. The result would be a 3× 5 matrix.

To compute an element in the result matrix, say cij , you would run down row i
of A and column j of B. Because of the rules described above, there would be
n columns in A and n rows in B so the number of items in each run would be
the same. You calculate cij as follows

cij =

n∑
k=1

aikbkj

The computation is, essentially the vector dot product of the ith row vector
of matrix A and the jth column vector of matrix B. Of course you would
have to repeat this calculation, using different rows and columns in A and B
respectively, for each element in the result matrix.

6

As an example consider the following product of a 3 × 2 matrix with a 2 × 3
matrix. 1 2

4 −1
−3 3

× [−2 3 1
5 2 5

]
=

 8 7 11
−13 10 −1

21 −3 12

For example c11 = a11b11 + a12b21 = (1)(−2) + (2)(5) = 8. The other elements
of the result matrix are calculated similarly. You should verify them to be
sure you understand how matrix multiplication works. Notice also that in this
case the result matrix is larger than either of the matrices being multiplied
together. This is a consequence of dimensioning rules. It won’t always be like
that, however. For example a 2× 6 matrix being multiplied with a 6× 2 matrix
will result in a smaller 2× 2 matrix. In the special case where all the matrices
involved are square the dimensions will stay the same during the multiplication.

Matrix multiplication is not commutative. For one thing reversing the order of
the matrices might cause the multiplication to be undefined due to incompatible
dimensions. Even if the multiplication is defined the result matrix might not
be the same size. For example, reversing the order of the matrices in the last
example will produce a 2×2 result, not a 3×3 result. Even if the result matrices
are the same size (both A and B are square), the results will not, in general,
be the same. It is easy to find two square matrices that don’t commute when
multiplied. Most pairs don’t.

Matrix multiplication does, however, associate. That is if A, B, and C are
matrices (AB)C = A(BC). As a consequence of this the parenthesis are not
necessary when writing the product of several matrices. It also means that
something like A3 is well defined. In particular, A3 = AAA = (AA)A = A(AA).
Notice that only square matrices can be raised to powers (do you see why?).

At this point you might be wondering about the definition of matrix division.
It turns out that the problem of dividing matrices is fraught with subtle com-
plications. In fact we do not define it at all in the usual sense. Instead we talk
about matrix inverses. However, that is a topic that deserves its own section.

Exercises

1. Demonstrate that matrix multiplication, even of square matrices, is not
in general commutative.

2. Prove that matrix multiplication is associative.

3. Does matrix multiplication distribute over matrix addition? That is, if A,
B, and C are matrices does A(B + C) = AB + AC? If so, then prove it.
If not, then find a counter example using Octave (see below). Repeat the
question for (B + C)A = BA+ CA.

7

Octave

Once matrices are defined in Octave you can add, subtract, and multiply them
with the obvious expressions. Octave will print the results of each expression
as you enter it (you can supress such printing by ending your command with
a semicolon). Use Octave to demonstrate the commutativity and associativity
(or lack thereof) of matrix addition and matrix multiplication. Use Octave to
support your answer to the distribution question above. Either find suitable
counter examples or demonstrate that distribution does work.

Keep in mind that numerical experiments of the sort you can do in Octave
can prove that a certain property does not hold in all cases by finding a single
counter example. You do not need to try every matrix in existence. However,
Octave can not prove that a certain property does hold in all cases since it
can’t test every possible case. One must rely on the standard techniques of
mathematical proof to verify that a property is true in all cases.

More specifically, you can use Octave to prove that matrix multiplication does
not commute by finding two matrices that don’t commute. However, you can’t
prove that matrix multiplication is associative without computing A(BC) and
(AB)C for every possible A, B, and C. That would require an infinite amount
of computation since there are infinitely many matrices. However, you can
demonstrate the association of matrix multiplication in Octave by computing
A(BC) and (AB)C for some particular A, B, and C and then showing that the
results are the same. Such a demonstration does not constitute a proof of the
general case but it is interesting anyway.

4 Linear Transformations

Exercises

1. I need something here.

Octave

5 Matrix Inverses

In order to talk about the inverse of a matrix I should first talk about the concept
of identities. Consider ordinary multiplication. There exists a number, namely
1, that has the property x× 1 = 1× x = x. Thus 1 is called the multiplicative
identity because when you multiply any number by 1 the result is the same. It

8

turns out that there is a identity matrix as well. Actually there are infinitely
many identity matrices of different sizes. The general form is

In =

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

That is, In is an n×n square matrix that has ones down the diagonal and zeros
everywhere else. It is relatively easy to see that IA = A for any matrix A (just
try multiple out an example and you will quickly see how it works). Note that
A need not be square. As long as you use the proper sized identity matrix so
that the multiplication is defined the result of IA will be A again.

The identity matrix is also special because, unlike the general case, multiplica-
tion by the identity martix commutes. That is IA = AI = A. This assumes
that A is square. Otherwise one must use different sized identities depending
on if the identity is being pre-multiplied or post-multiplied.

Another property of real numbers is that every number except zero has a mul-
tiplicative inverse. For example x’s inverse, symbolized as x−1 is such that
xx−1 = x−1x = 1. Similarly many matrices have inverses as well. For example
A’s inverse, symobolized as A−1 is such that AA−1 = A−1A = I. Here I restrict
myself to square matrices. In that case notice how multiplication by the inverse
commutes; again contrary to the general case for matrix multiplication.

With real numbers we can define division in terms of multiplication by an in-
verse. Specifically we can define a/b as ab−1 or as b−1a. Here I’m taking
advantage of the fact that multiplication of real numbers commutes in every
case. Similarly in situations where one is tempted to divide by a matrix we
normally talk instead about multiplying by the inverse of the matrix instead.
Because matrix multiplication is not commutative we have the added complica-
tion, in the algebra of matrices, of having to carefully track pre-multiplications
as opposed to post-multiplications. An example of this will be shown in the
next section.

Computing the inverse of a matrix is a non-trivial problem. I will discuss this
more in a later version of this document.

Exercises

1. Consider the following n× n matrix.

A =

a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

9

This matrix has non-zero elements only on its main diagonal. What is its
inverse?

Octave

You can use the eye() function in Octave to generate an identity matrix of any
size. For example eye(3) returns a 3× 3 identity. You can also use the inv()

function to compute the inverse of a matrix. For example

octave:1> A = [1 2 4; -4 2 1; 9 -2 1];

octave:2> B = inv(A)

Verify that the result of inv() is a proper inverse by computing A∗B and B ∗A
and showing that both result in the identity matrix. You may notice that the
results shows slight round off errors in the computations (mostly identified by
the existence of negative zeros in the result). This is normal.

What does Octave do when asked to find the inverse of the singular matrix in
the example above?

6 Matrix Norms

Before I can discuss the norm of a matrix, I should first describe the norm of a
vector. A vector’s norm is a measure of the vector’s length. For example, if the
components of a vector X are x1, x2, and x3 the usual formula for the vector’s
length is L(X) =

√
x21 + x22 + x23. This formula has the following “length-like”

properties.

1. L(X) ≥ 0, with L(X) = 0 if and only if X = 0.

2. L(X + Y) ≤ L(X) + L(Y).

3. L(αX) = |α|L(X).

The second property above is called the triangle inequality. It says that the
length of the sum of two vectors is less than or equal to the sum of the two
lengths. A simple diagram will make it obvious that this is true in the case of
the traditional concept of length.

The vector function L(X) above satisfies the length-like properties but it is not
the only function that does so. Any function that satisfies those properties
(for all vectors) can be considered a “length”. Such functions are norms. In

10

fact, L(X) above is actually one function in an entire class of functions called
p-norms. The general form of a p-norm is

‖X‖p = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p , p ≥ 1

We use the symbol ‖X‖p to represent the p-norm of vector X. You can see that
the traditional formula for the length of a vector is the 2-norm of the vector. In
addition to the 2-norm we will also be interested in the 1-norm and the∞-norm.
The ∞-norm is the result of a limiting process and is found from

‖X‖∞ = max
1≤i≤n

|xi|

That is the ∞-norm is simply the component of the vector with the largest
absolute value.

We can now extend these concepts to matrices. One way to do that would be
to treat a m × n matrix as a vector with mn components. One could then
simply use a suitable vector norm as a matrix norm. It is easy to see that a
matrix norm defined in this way will continue to have all the required properties
provided that the underlying vector norm has those properties.

However, since the product of two n × n matrices is again an n × n matrix, it
turns out to be useful to add an additional constraint on the behavior of matrix
norms. In particular, we will want ‖AB‖ ≤ ‖A‖ · ‖B‖. With this condition in
place the simple extension of vector norms to matrix norms does not work.

However, one can define useful matrix norms in terms of vector norms anyway.
In particular, let the norm of a matrix A be

‖A‖ = max
‖u‖=1

‖Au‖

To understand what this means remember that a matrix, when multiplied by
a vector, performs a linear transformation of that vector into another vector.
In the above expression the vector u has a norm of 1 and is thus a unit vector.
There are, in general, infinitely many unit vectors (depending on the norm
used). For example, if one uses the 2-norm the unit vectors describe a sphere of
radius 1 centered on the origin. The norm of a matrix is thus the norm of the
“largest” vector produced by applying the matrix as a linear transformation to
every possible unit vector. For example, if one used a 2-norm and applied the
matrix to every point on the surface of a unit sphere, the norm of the matrix
would be the distance from the origin to the most distant point on the resulting
surface.

It is important to note that any vector norm can be used to define a matrix
norm in this way. Then when one speaks, for example, of the p-norm of a matrix
one is talking about the matrix norm that results from using the corresponding

11

p-norm of a vector. This method of defining a matrix norm may seem odd but
it has a number of useful properties. For an m× n matrix

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij |

‖A‖∞ = max
1≤j≤m

n∑
j=1

|aij |

In other words the 1-norm is the maximum of the sums of the columns, with
the understanding that it is the sums of the absolute values of the elements that
are done. Similarly the ∞-norm is the maximum of the sums of the rows, with
the same understanding about taking the absolute values of the elements. For
example, the matrix below shows the column sums below each column and the
row sums beside each row. 1.23 −3.42 0.89

−4.48 4.56 6.22
5.19 3.95 −2.88

 → 5.54
→ 15.26
→ 12.02

↓ ↓ ↓
10.90 11.93 9.99

Thus the 1-norm of the matrix above is 11.93 and the ∞-norm of the matrix is
15.26. Notice that if a single element in the matrix was much larger than any of
the others, it would dominate its column sum and its row sum. That element
would become, in effect, both the 1-norm and the ∞-norm.

It is important to realize that both the 1-norm and the∞-norm of a matrix can
be calculated in Θ(n2) time. As you will see in Section 7, this is more efficient
than what is required to invert a general matrix. This observation is important
during the solution of simultaneous equations.

Exercises

1. Calculate the 1-norm, 2-norm, 3-norm, and ∞-norm of the following vec-
tors

(a) (1.27,−3.12, 4.84)

(b) (3.44,−2.19, 15.32)

(c) (0.00, 0.00, 0.00)

2. Prove that for any vector X, ‖X‖∞ ≤ ‖X‖p for all finite p. Prove that if
q > p, then ‖X‖q ≤ ‖X‖p.

12

3. Calculate the 1-norm and ∞-norm of the following matrix.
6.28 −12.31 4.22 1.33
4.89 −2.23 6.69 −3.44
8.32 2.41 −10.34 9.83
0.48 −0.48 −18.40 4.44

4. How do the p-norms of the transpose of a matrix relate to the p-norms of

the original matrix?

Octave

Octave has a built in norm function that can be used to compute the norm
of a vector or of a matrix. Read about it in Octave’s online help. Use that
function to check your answers in Exercise 1 and Exercise 3 above. Use Octave
to compute the norms of several matrices and their transposes and see if you
can verify your findings in Exercise 4.

7 Simultaneous Equations

One of the most important applications of matrices and linear algebra is in the
study of systems of simultaneous linear equations.

A system of two linear equations and two unknowns can always be written in
the following general way.

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

The unknowns are x1 and x2. In many elementary texts the unknowns are
often referred to as x and y but that notation is less extensible to the more
general case of many unknowns. The equations above are called linear equations
because each equation taken alone defines a straight line on an x1 vs x2 plane.
The intersection of those two lines defines a single point, (x1, x2), that satisfies
both equations simultaneously.

One is usually interested in solving the system of equations for the two un-
knowns given values for the coefficents and for b1 and b2. However, before wor-
rying about how to best solve such systems, it is useful to make the following
observation. Let

x =

[
x1
x2

]

13

Call x the vector of unknowns. Notice that it is a 2× 1 column vector. Let

b =

[
b1
b2

]
Call b the driving vector. It is also a 2 × 1 column vector consisting of the
constant terms in the system of equations. Finally let

A =

[
a11 a12
a21 a22

]
Call A the matrix of coefficients. It is a 2× 2 square matrix.

Now the system of equations can be succintly expressed by the matrix equation

Ax = b

The expression Ax is the multiplication of a 2× 2 matrix with a 2× 1 column
vector. By the rules of matrix multiplication this is properly defined. The
result will be another 2 × 1 column vector—exactly the dimensions of b. The
first element in b, in row 1, column 1, can be found by scanning down row 1 of
A and column 1 of x and forming the sum a11x1 + a12x2. Thus

b1 = a11x1 + a12x2

This is, of course, the first equation in the system of equations. The other
equation follows similarly. Now we can see how the odd definition of matrix
multiplication can be useful!

A linear system of three equations and three unknowns can be written

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

Each equation in such a system defines a plane in three dimensional space
with coordinates x1, x2, and x3. Two planes intersect to define a line and
the intersection of that line with the third plane defines a single point. That
point is the solution of the system; it is the specific value of (x1, x2, x3) that
satisfies all three equations simultaneously. Although this system is larger, it
can still be expressed with the matrix equation Ax = b with the understanding
that A is a 3× 3 matrix in this case.

What of very large matrices? Suppose A was a general n × n matrix. In that
case each row in A would correspond to a single equation with n unknowns.
Such an equation defines a n− 1 dimensional hyperplane in the n dimensional
space with coordinates x1, x2, . . . , xn. The intersection of two n−1 dimensional
hyperplanes defines a n − 2 dimensional hyperplane. The intersection of that

14

n−2 dimensional hyperplane with another n−1 dimensional hyperplane results
in a n− 3 dimensional hyperplane. As each equation is used, the dimension of
the region of intersection decreases by 1. When all n equations are considered,
the region of intersection is a zeroth dimensional region—a point. It is the
point (x1, x2, . . . , xn) that simultaneously satisfies all the equations. Even if n
is very large, the system of equations can still be represented by the simple form
Ax = b.

Solving Ax = b is, in theory very simple. Just “divide” both sides by A. More
precisely

Ax = b

A−1(Ax) = A−1b

(A−1A)x = A−1b

Ix = A−1b

x = A−1b

In particular, we can pre-multiply both sides of the equation by A−1 and then
use the associativity of matrix multiplication and the special properties of the
identity matrix to reduce the left hand side of the equation to just x. The right
side of the equation then becomes A−1b. Two matrices are equal only if their
corresponding elements are all equal. Thus the first element of the x column
vector, x1, must be equal to the first element in the A−1b column vector. This
is the solution for the unknown x1. The other unknowns are given by the other
values in the A−1b column vector.

Thus we have this important result: Solving the system of equations is simply
a matter of finding the inverse of the matrix of coefficients, if it exists, and
then pre-multiplying the driving vector by that inverse. Notice that if the
driving vector is changed a new solution can be found with a simple matrix
multiplication. The matrix of coefficients does not need to be re-inverted unless
one of A’s elements changes. This can be significant in some applications. As
you will see, the driving vector is usually an expression of signals applied to a
system while the matrix of coefficients is usually related to the structure of a
system. Computing what a system does with different inputs is usually a matter
of solving the equations with a new driving vector. Once the coefficients are
inverted this is a simple matter.

You know from Section 5 that not all matrices have inverses. What is the signif-
icance of the case when the matrix of coefficients is singular? In that situation
the system of equations has no solution. However, the physical interpretation
of this case is quite interesting and worth looking at more closely. Consider the
following system [

1 2
1 2

] [
x1
x2

]
=

[
3
4

]
The two lines defined by these equations are parallel; they have no point of

15

intersection1. Thus there is no point (x1, x2) that can satisfy both equations at
the same time. It also happens that the matrix of coefficients is singular. Now
consider the system [

1 2
2 4

] [
x1
x2

]
=

[
1
2

]
Here one equation is simply a scaled version of the other. As a result they are
really the same equation. This system does not contain enough information
to have a unique solution. In effect it has only one equation. Once again the
matrix of coefficients is singular.

Both of these examples have one thing in common. One row of the matrix of
coefficients is a scaled version of another row. In the first example the scaling
factor was 1. In the second example the scaling factor was 2. In the first example
the values in the driving vector did not use the same scaling factor and the result
was parallel lines. In the second example the values in the driving vector did
use the same scaling factor and the result was two identical lines (which are also
parallel, of course).

This observation can be generalized but it is necessary to first define a new
concept. Suppose u and v are n element row vectors. A linear combination of
u and v is any vector, w such that

w = a1u+ a2v

where a1 and a2 are any arbitrary scalars. In other words, I can express w in
terms of u and v by scaling each vector and adding the scaled results. Note that
a1 and a2 could be negative or zero. If w is a linear combination of u and v
then we say that w is linearly dependent on u and v. If you have a vector that
can not be expressed as a linear combination of other vectors we say that it is
linearly independent of those other vectors.

Consider two vectors in a plane that don’t point along the same line. There
is no way I can scale one to get the other. Thus the two vectors are linearly
independent. However, any other vector in that plane can be expressed as a
linear combination of the first two vectors. Thus any other vector in that plane
is linearly dependent of the first two. Consider the set of all vectors that can be
written as a linear combination of the first two. That set of vectors constitutes
a vector space and the first two, linearly independent vectors, form the basis of
that space. They are said to span the space.

For any particular vector space there are many different sets of basis vectors
possible. Any two linearly independent vectors in a plane can be used as a basis
for that plane. It is common in engineering and physics to use two orthagonal2

vectors of length 1 as a basis for the plane. However, it is perfectly possible, in
general, to use two oblique vectors of arbitrary lengths as a basis as well.

1This might be easier to see if you rearrange each equation into the form x2 = mx1 + b
2perpendicular

16

Now suppose that you introduce a third vector that points out of the plane
spanned by the first two. There is no way to write this third vector as a linear
combination of the others and so it is linearly independent of them. In fact,
we can talk about the space spanned by the three vectors—the first two and
this new one. That space has three dimensions. Hopefully you can see that
the number of basis vectors required to span a space is equal to that space’s
dimensionality. In fact, this is the where the very concept of dimensionality
comes from.

Let’s bring this back to the subject of simultaneous equations. Each equation
in an n × n system defines a n − 1 dimension hyperplane. In particular, if
you regard each equation as a row vector, the hyperplane that it describes is
perpendicular to that vector and passes through the tip of that vector. If any of
the hyperplanes are parallel there can be no solution to the system. Furthermore
if the intersection of any combination of those hyperplanes is parallel to any of
the remaining hyperplanes there can be no solution. This will occur if any row
of the matrix of coefficients can be written as a linear combination of the other
rows. In that case, the system contains insufficient information for a unique
solution. The matrix of coefficients will be singular.

The following is important.

Theorem 7.1 Let A be an n × n matrix. A has an inverse if and only if
det(A) 6= 0. Furthermore A has an inverse if and only if the rows of A are
linearly independent.

Since A needs to have an inverse in order to solve the matrix equation Ax = b,
the theorem above is directly relevant to solving such systems. However, in
general computing the detA is expensive so a somewhat different approach that
is more practical is usually taken.

In a realistic computation the coefficients in the matrix of coefficients are not
normally known to infinite precision. If they represent physical quantities they
may only be accurate to two or three significant figures. Even if they coefficients
are known to infinite precision, the computer used to calculate a solution has
finite precision. Thus you would not expect the solution to be perfectly accurate.

If the matrix of coefficients is close to being singular that means that the hy-
perplane described by one of its rows is nearly parallel to the intersection of the
other hyperplanes. As a result, very slight variations in the coefficients will cause
a very large change in the solution. Such a system is said to be ill-conditioned.
In real calculations, exactly singular matrices don’t exist. Singularity is a mat-
ter of degree and, due to practical limits of precision, one normally only sees
systems with relatively more or less ill-conditioning.

Since many naive formulations of real problems lead naturally to ill-conditioned
systems, it is important to be aware of this issue and to check the conditioning

17

of one’s system before expending too many computational resources trying to
solve it. Thus we can define a condition number of a matrix, κ∞, as a figure of
merit that we can use to judge a system’s degree of ill-conditioning.

κ∞(A) = ‖A‖∞ · ‖A−1‖∞

In a perfectly conditioned case, all the hyperplanes described by the rows of
the matrix are perpendicular. This occurs for the identity matrix and thus
κ∞(In) = 1 is the ideal. For matrices where some of the hyperplanes are oblique
κ∞ is greater than one and approaches infinity for the singular case.

Note that you can compute the condition number of a matrix using a norm
other than the ∞-norm. However, the general properties of the condition num-
ber remain the same. One reason why κ∞ is nice to use is because the ∞-norm
of a matrix is easy to calculate (see Section 6). Unfortunately a proper com-
putation of κ∞ requires that the matrix be inverted. However, if the system
is ill-conditioned, the inverse of A can’t be computed accurately. Indeed, the
whole point of computing κ∞ is to know if A−1, or an equivalent result, can
be calculated with reasonable accuracy. Much has been written on how to esti-
mate a system’s condition number without computing the inverse of the matrix
of coefficients and without spending too much time doing it. A full discussion
of this matter is outside the scope of this short document.

Exercises

1. I need something here.

Octave

8 Gaussian Elimination

Although this document is not intended to cover issues related to numerical
computation, there is one numerical method that is so important that it does
deserve coverage: Gaussian Elimination. This method can be used to solve
a system of linear equations in a reasonably effective manner. Although it
requires a running time of O(n3) it is considerably more efficient than some other
techniques (such as Kramer’s Rule using determinants). In addition Gaussian
Elimination has good numerical properties and works well on dense systems3.

In principle Gaussian Elimination is very simple to understand. Three basic
row operations are defined.

3A dense system of equations is one in which a large percentage of the coefficients are not
zero.

18

1. Exchange two rows, Ri ↔ Rj

2. Multiple a row by a scalar, Ri ← aRi

3. Replace a row with the sum of that row and another scaled row, Rj ←
Rj + aRi

In each case it is necessary to also apply the operations to the corresponding
elements of the driving vector. It is easy to see that these operations are justified
based on concepts from elementary algebra. For example exchanging two rows
is equivalent to writing down the equations in a different order; this does not
change the solution of the system. Furthermore, multiplying a row by a scalar
is equivalent to multiplying an equation by a scalar, and so forth.

The easiest way to explain how Gaussian Elimination works is to show an ex-
ample. Consider the following 3x3 system of equations.

1.23x1 − 4.53x2 + 2.83x3 = 6.77
8.33x1 + 1.93x2 + 3.28x3 = −2.33
−3.48x1 + 7.12x2 − 1.20x3 = 6.12

We can write this system in matrix form as follows 1.23 −4.53 2.83
8.33 1.93 3.28
−3.48 7.12 −1.20

 x1
x2
x3

 =

 6.77
−2.33

6.12

The first phase of the computation is the elimination phase. It entails using
the three row operations listed above to change the matrix of coefficients into
a upper triangular matrix. In other words, a matrix in which all the elements
below the main diagonal are zero. The computation proceeds by considering
each diagonal element one at a time. Starting with a11 we start be scanning
down the column below and including the diagonal element looking for the
element with the largest absolute value. In this case row two holds that element
(a21 = 8.33). We thus do R1 ↔ R2 to exchange those rows. 8.33 1.93 3.28

1.23 −4.53 2.83
−3.48 7.12 −1.20

 x1
x2
x3

 =

 −2.33
6.77
6.12

This step is not strictly necessary but it turns out to improve the accuracy of
the computation. Notice that the elements in the driving vector are exchanged
as well. This is necessary, of course, because those elements are part of the
equations being exchanged.

Next using a11 we do row operations to zero out the coefficients below it in the
same column. Specifically we do−(1.23/8.33)R1+R2 → R2 and (3.48/8.33)R1+

19

R3 → R3. The result is 8.33 1.93 3.28
0.00 −4.82 2.35
0.00 7.93 0.17

 x1
x2
x3

 =

 −2.33
7.11
5.15

Moving on to a22 we again search the column beneath and including that element
looking for the element with the largest absolute value. In this case that element
is a32 = 7.93. We thus do R2 ↔ R3 to exchange those rows. 8.33 1.93 3.28

0.00 7.93 0.17
0.00 −4.82 2.35

 x1
x2
x3

 =

 −2.33
5.15
7.11

Finally we zero out the coefficients below the (new) a22 by doing (4.82/7.93)R2+
R3 → R3. 8.33 1.93 3.28

0.00 7.93 0.17
0.00 0.00 2.45

 x1
x2
x3

 =

 −2.33
5.15

10.24

This completes the elimination phase. The next phase is called back substitution.
We start by observing that the last row represents the equation 2.45x3 = 10.24.
From this equation we can immediately calculate x3 = 10.24/2.45 = 4.18. No-
tice also that the second to last row can be written as 7.93x2 + 0.17x3 = 5.15.
Of course this equation can be written as x2 = (5.15 − 0.17x3)/7.93. Given
that x3 has just been calculated we can now compute x2 = 0.56. Similarly
x1 = (−2.33− 1.93x2 − 3.28x3)/8.33 = −2.06.

The back substitution phase can store the computed results in the space used
for the driving vector. After each value is computed the corresponding driving
vector slot is no longer needed and can be used for storing the final result.

If you substitute the values for (x1, x2, x3) computed above back into the original
system you will find that they almost work. The error you observe is due to the
imprecise nature of the computations done. In this example only two or three
significant figures are retained in each step. As with any numerical computation,
errors can potentially accumulate as the computation proceeds. In misbehaving
situations, the resulting accumulated errors can be so great as to swamp out any
real results. Because it is such an important algorithm, Gaussian Elimination
has been extensively studied with respect to its error propagation behavior.
However, it is outside the scope of this document to discuss that issue any
further.

It is important to note that the elimination phase of the computation runs in
O(n3) time, where n is the number of equations being solved. This is because
each diagonal element must be considered and, for each such element an average
of n/2 rows must be processed and, for each row O(n) computations are needed.

20

In contrast, the back substitution phase only requires O(n2) time. This is
because n rows must be processed and, for each row an average of O(n/2)
computations are needed. This means for large systems, the dominate factor
limiting the performance of the algorithm is the elimination phase.

Exercises

1. I need something here.

Octave

9 Eigenvalues and Eigenvectors

Exercises

1. I need something here.

Octave

21

	Introduction
	The Concept of a Matrix
	Matrix Operations
	Linear Transformations
	Matrix Inverses
	Matrix Norms
	Simultaneous Equations
	Gaussian Elimination
	Eigenvalues and Eigenvectors

