Subversion How-To
© Copyright 2008 by Vermont Technical College

Last Revised: 2008-02-22

Table of Contents

F N 11 1) ¢SSP 1
1< . | OO TR 1
INETOAUCTION. ...ttt et e e et e et e e tb e e eaaeeetbeesasaeesssaeesnsaeesnsaeennsaeennseeenssaeeennsssanaeens 1
CheckoUt With TOTOISE. ...c.veeeiieiieeiieiie ettt ettt et e st e et e e teebeeesbeeteesateeseeenseeesssaeesannseeesnnnns 2
Adding and Deleting FAles........c.oiiiiiiiiiiiiie ettt e s st e e stae e e e e naa e e e e e e nnnnraes 3
Update Files to the NeWeSt REVISION.ccoiiiiiiiiiiiiieiie ettt ettt ettt sete e sntaeaeenneaeenes 5
COMIMIE CRANEES......ccviieiiiieiiieeeiieeeieeeetee et ee e st e e sateeetteeessseeesaeesssaeeassaeaassseeassesenssaeasseeansseeensseeessssneeens 5
ReVErting t0 @ CUITENT VEISION.eeiiiiiiieiieiiie et ette et e siteeteetteebeesteesteesaeessbeesseesaseeseesnseenseesnseenseesnnnes 8
MoVINg Files and FOLAETS........cooiiiiiiieeiie ettt ettt e tte e e e e e snraaaaeeseesnsraeaeees 8
CONTTICE RESOIULION. ...ttt ettt ettt e st e et estteeabeesseesnbeensseeeensaeaeensbeaeenns 10
BIOWSING the LLOZ. . ciiiiiiiiiieeiieeee ettt e et e e s te e e s staeesssaeesssaeenssaeensseeensnaeeeennsnnes 12
Updating To O1der REVISION.cccuiiiiiiiieiiieiieeie ettt ettt et sttt et eebeesateebeessbeeeeebeeesansaeeeennseeeas 13
28 0 0151 SRR 14
CommMANd LINe CHENL.....ccuiiiiiiiiiiie ettt ettt et e st e e beeseaeebeesabeesseessseenseessseenbeaeensseeenans 17
S (5] (<) 1 (o1 USSR 17
Authors

The following people have contributed to this document.
e Nick Guertin (BS.CPE 2008)
e David Ransom (BS.CPE 2009)
e Peter C. Chapin (ECET Faculty)

Legal

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is in-
cluded in the Subversion repository holding the source of this document.

Introduction

Subversion is a version control system. It is useful when several people work on a collection of shared
files. Subversion tracks all changes made to any file and allows you to access previous versions of files.
It also makes it easy to share the latest updates of a file with others. To use Subversion you first need to

Page 1 of 18

have a Subversion client installed. We recommend TortoiseSVN for Windows and most of this docu-
ment describes how to use that client. However, a later section of this document briefly describes how
to use the command line client typically found on Unix-like systems. Once the client is installed you
can then check out some or all of the files stored in a Subversion repository (on a Subversion server).
Your copy of these files is stored in an ordinary folder called a working copy.

You can edit the files in your working copy as you see fit (coordinating with the other people who
might also be working on their own copy of those files) and then, when you are ready, commit your
changes back to the repository. Other team members can pick up your changes by updating their work-
ing copies. In this way everyone keeps their working copies synchronized with each other and with the
central repository.

If a change is made that is later discovered to be bad, that change can be reversed by making use of the
historical information stored by the Subversion server. In addition the server logs who made each
change, when each change was made, and what files were involved in each change. This makes track-
ing down problems much easier than it would be the case without this information.

This document is a tutorial on how to use Subversion. It is organized by task, in an order that mimics
the order in which you might want to perform those tasks. The more advanced material is at the end;
feel free to skip whatever parts you want.

This document assumes you are comfortable with using Windows, but you do not need to be a Win-
dows expert. In addition, this document assumes you've never used a version control system before.

Checkout with Tortoise

1. Create a new folder where you want to store your working copy.
2. Right click on this folder and select “SVN Checkout...”

" warking Direckory

Open
Explore
Search...

sharing and Security..,

i S¥N Checkout. .. %
'ﬁjTu:urtu:uiseS'-.-'I"-.l

3. A new window should appear similar to the one shown below.

Page 2 of 18

= C heckout

Reposibory
URL of repository:

File: {0 fevninguertin ™ EI
Checkout direckory:
Cilsvniworking Directory E]

[only check out the top Folder
[omit externals

Revisian
G} HEALD rewvision

() Revision [Show log]

[[a]:4] [Zancel] [Help]

In the first text box enter the location of the repository where the files you want are stored, such
as svn://svn.ecet.vtc.edu/Scratch/trunk. If you are not sure what URL to use for your project,
you should ask someone who is working on the project or the repository administrator.

In the second text box, the location of the folder that you selected should be there, if it is not
then either use the “...” button on the right to browse for it or enter it in manually.

For now just leave the revision set to HEAD and don't worry about anything else as it will be
covered later. HEAD just means that the most recent version will be checked out.

Now select OK. This will bring you to a screen where it will show you all the files and folders
that are added to your working directory. Select OK.

Now your folder is populated with the latest revision of the project and will have a green circle
icon with a check mark inside it to signify this. Whenever you make changes this icon will turn
into a red circle with an exclamation point in it.

= working directory

|' working directory

9. You have now successfully checked out a group of version controlled files. Good job!

Adding and Deleting Files

1.

First we'll look at how to add files to the repository. Browse to a version controlled directory
and either move a file you want controlled to that directory or select a file that's currently unver-
sioned. Right-click and select TortoiseSVN -> Add as shown below.

Page 3 of 18

L] Y
Open
Explore
Search...

Sharing and Security, ..

15 Checkout, ..
¥ TortoiseSyH b Repo-browser

Scan with Clarmvwin Free Antiviris B Export...

Send Ta MO ' Create repository here. .,
cub ﬁ. .ﬁ.dd..%
Copy 7 Import s,
i ' "
create Shortout % Add toignove list
Delete ? Help
Renarme ¥ Settings
Propetties W About

2. You will be prompted with a box listing the file you are trying to add. If you are adding a fold-
er, all the files in that folder will be shown as well and you should unselect any files that you
don't want in the repository. When you click on OK, the file or files should now have a blue

“+” on them. These will be added at your next commit.

L]
=
—_

3. Deleting files from the repository works pretty much the same way. Don't even think about tak-
ing the “easy” route and just hitting the delete key on the files you don't want anymore, next
time you update they'll be right back as the changes didn't make it to the repository. Instead,
browse to the file you want removed from the repository, right-click and select TortoiseSVN ->

Delete as shown below.

Page 4 of 18

w

T ™ Localsyi.odt

OpenDocument Texk
Open

e
Prink

Scan with Clamwin Free Antivirus

_Edit with Motepad++
Cpen With, ..

i 5WM Update

™ SYN Carmit, ..
T orboisesyn P Ly Showlog
cend To , 2, Repo-browser
B3, Check for modifications
Cut % Rewvision graph
Zopy

i~ Update to revision. ..
Create Sharkouk

& R

Delete % Ename

Rename Delete %
) cet lock, .,

4. Once you click delete the file will disappear. On your next commit the file will no longer be
under version control and will not be included in future updates. Checking out older copies be-
fore the deletion will still include the file. If you deleted by mistake, move to the parent folder
and revert.

Update Files to the Newest Revision
1. Using Windows Explorer, browse to your working copy.

2. Right-click on the folder and select SVN Update as shown below. All of your files should now
be at the newest version. If you have made changes to any file your changes will not be erased
and only updates elsewhere will be applied.

J oy
0 Open

Explore
Search...

Sharing and Security,..

i SYMN Updake %
@ SYN Commit. .,
W Tartoise Sy »

Cmmm kb Tlerallim Cemm A sk

Commit Changes

1. After you have made some changes to files in your working copy and everything works as it
should, you're going to want to save them in the repository. You can only commit when your

Page 5 of 18

‘6"’

working copy has changed to a red circle with a

First you should update your working directory as described above. This will not do anything
with the changes you have made, but will update everything else so that you are working with
the newest revision.

If you are working on a program and the update does update a few files you may want to try
building again to make sure that the new changes along with yours haven't broken something.
Better to take an extra minute than to commit something that breaks the program for others.

Now that you're at the newest revision and have checked that everything still works, just right-
click on your local copy and select SVN commit.

[Wby

0 - Open

Explore
Search...

Sharing and Securiky, ..

i 5WM Update
1 SYM Cammik, ..
T ortoiseSYM % r

You will now be asked to enter a log message before you commit, as shown below. It is very
important that you write something meaningful for a log message otherwise it will be hard to
find a specific version where something was broken or a certain change was made. A good
message typically contains the changes you made (not just the file you changed) and why you
made those changes (bug fix, new feature, updating documentation, etc.). Note that you do not
need to mention your name or the date in the log message. The Subversion server records these
things automatically.

Page 6 of 18

= Enter Log Message - C:\WoW E]@

Carmikt ko
sy imarning, ecek, vbe, edu Wi trunk

Message:

[Recent messages]

Please type some kind of meaningful log here.

Changes made (double-click on file For diff):

File Extension | Text skatus Property skatu
f:f, docsfsubversionDocs/SYM,... ode modified niormal
E docsfsubversionDocs/B0,.. .pdf non-wersioned
il ,:;L docsfsubversionDocsfCom. .. .bmp non-versioned
il ,j docsfsubversionDocs/Upd... .bmp non-wersionead
< 3]

e urpersioned s 1 files selected, 4 files takal

[E] select | deselect all

[Ikeep lacks [K] [Cancel] [Help]

6. In the changes made window you can select the changes you want submitted and which you
don't. For now don't worry about this, subversion will select the changed files that are already

under version control, so you can just let it work its magic.

7. Hit the OK button to commit. You may be prompted for a user name and password which your
teacher or administrator should have given you, just enter it and hit OK.

Page 7 of 18

Reverting to a Current Version

1. Sometimes you will be working in a file, and you decide that you don't want to keep the
changes you have made. Subversion will let you revert any changes you have made to your cur-
rent working version. In order to do this you must have made changes so that ses= ey
there is a red circle with an exclamation point in it on your file. Just right-click &fﬁ | Tex!
on your file, browse to TortoiseSVN->Revert, as shown in the figure below. = RN

2. This will bring you to a dialog screen where it will show you a list of modified files that will be

Texk Document
i D

‘ Mew Text Document, bxk

Open
Prink
Edit:

Scan with Clamitin Free Ankivirus

* Edit with Motepad++
Cipen With 3

i SvM Update
SN Commit.
W TortaiseSwh * Diff

B add to archive. .. &z Show log

B Add to "Mew Text Document.rar” &4, Repo-browser
B Compress and email... 53, Check for modifications

B Compress to "Mew Text Document.rar” and emai & Revision graph

Send To B Update ko revision...
cut & Rename...
Copy X Delete

: =} Revert...
Creake Shorkout b\
r'laE! & =horted 7 et lodk...

reverted.

3. Select all the files you wish to revert. Note: This revert will NOT update your copy of the file to
the HEAD revision in the central repository. This will only revert back to whatever the most re-
cent version that you had previously checked out on your system.

Moving Files and Folders

1. If you ever have the need to refactor the directory structure of your repository, you can move
files and folders around and commit them back to the central server. But only in a very special
way. First, create a destination directory where you want to put your files and add it to the
repository.

1 dest QJ dest

|_ r;r-'-v“-- Fie To Move.txt

-—"| e OCLIT

2 | src %
w7 Fie To Move.txt 1

= gl src

= ‘ ext Document @J

2. Open Up both of the folders that you want to transfer files. Right-click the file that you want to
move, hold it, and drag it from one folder to the next. Release the button and drop your file into

the destination folder.

-’__} SIC M g @ -\ = o
» Iy » ":l

File Edit Wiew F?:&fnrites n
>

QEack M > 'ﬁ' i Gﬁack T &4 'ﬁ'

Address |3 Hing Directorylsre | v | Gu:u Address | orking Directorydest | ¥ 4 G0

SN SN

Text Document

"'""] Mew Text Document, Bxt
0O kB

3. When you drop it, a menu will pop up with different options for what you want to do with that

file. Select “SVN Move versioned files here”.

J /-\.i _} s
Fle Edt Wiew Favorkes > g » o
xr

QEack M ﬁ- i QBack . 7 ?

Address |3 rking Directarysrc k4 - Go fddress (I arking Directorydest] 1 Go

=y VST
= Mew Text Document . bxk
= Texk Docurment - -
0KE WM Move versioned files here %
SWM Move and rename versioned files he
M Copy versioned files here

WM Copy and rename versioned file here
SN Add Files to this Wi
SN Export to here

4. This will copy the file, add it to the repository in the new location, and delete the old version all
in one step. After that, all you have to do is commit the changes to the repository, and you will

have successfully moved a file from one place to another. This technique also works for mov-

ing folders.

Page 9 of 18

Conflict Resolution

1.

Conflicts occur when you and another person modity the same line or lines of a file at about the
same time. When one of you commits, the other will have to update before they can commit.
But, the same lines were edited in the same file and subversion doesn't know anything about
what's being written, so it enters into a conflict state and it's your job to determine which
changes are the right ones. When this happens the window showing you the update progress
will tell you there's a conflict and conflicted files and folders will receive exclamation points in
yellow triangles.

,

Subversion adds a marker of “<<<<<<<” to conflicting lines in your copy to help with the reso-
lution. It also adds 3 new files to the directory, a clean copy of your file labeled with a .mine, a
copy of the last revision before it was edited, and a copy of the newest revision; the latter two
labeled as .rx, where x is the version number.

Conflict txt Conflict. Ext mine ConflicE ket rid? Conflict.bxt.r1S
Text Document IMIME File AMINRAR, archive WIinRAR archive
LKE LEB LER L KB

To resolve the conflict you can either edit the file manually using whatever tool you've been us-
ing, or you can use the conflict editor. We're going to use the conflict editor, so right-click on
the file and select TortoiseSVN->Edit Conflicts.

| Conflick. kb
Open
Prink
Edit

Scan with Clamwin Free Antivirus

_Edit with Motepad++
Cpen With 3

i 5WM Update

™ SYN Carmit, ..
T orboisesyn J Diff
B add ta archive... Gz Show log

i, Repo-browser

B add to "Conflict.rar"
B, Check for modifications

B Compress and email, .,
B Compress to "Conflick.rar" and email "Fk Revision graph

Send Tao b KL, Editconflicts

4. In this editor you will see three sets of text: the newest version on the left, your version on the

right, and the version resulting from a merge on the bottom. In all three there are red areas
which delineate the conflicted portions. Clicking on a line in either of the top two files will se-
lect the line, right-clicking will bring up a menu allowing you to choose what to use. The first
two selections are fairly self explanatory, the other two selections work by placing the text from
one file then placing the text from the other file below it.

Page 10 of 18

|-t TortoizeMerge I&ﬂi'ﬂ
Fit Bt Wew Mege Heb

2EZ9 323 & Tl=5 @2

Theirs - Conflict.txk.rly Hine - Conflict.tut.mine

Here' s sope tegk, Hepe' - zome - CeRt.

oy

1
& .-
;...
4,..

5 +5
6 eining 5
+7

Merged - Conflict.txt

Hare' = some texk,

1

. . -
= P
4 ...

5. Once you have resolved the conflict to your satisfaction, right-click on the file and select Tor-
toiseSVN->Resolved. This will remove the extra files and use your selected fix when you next

commit.
r;““‘*‘ Conflick. kxt
= Text Docurmnent
L. - Open
Prink
Edit

Scan with Clamwin Free Antivirus

|77 Edit with Motepad++
Open with 3

K™ SV Update

#1 SN Commit. .,
W Tartoisesvi J DiFf
B add to archive. .. & Show lag
B add to "Conflict. rar" 3, Repo-browser
B Compress and email... B3, Check For modifications
B Compress to "Conflick.rar" and email % Revision graph
Send To B JE, Edit conflicts
cut v Resolved. ., [

Page 11 of 18

Browsing the Log

1. Browsing log files is extremely useful, allowing you to see past changes, yet it's also very easy
to do. Just right-click on a file or folder and click TortoiseSVN->Show Log.

T SwN-HT.odt
Openbocument Texk
470 KE
Open
[
Prink

Scan with Clam'win Free Antivirus

7 Edit with Mokepad++
Cpen Wikh, .,

K SYN Update

P 3YM Commit,
WFTorkoiseSvI kLo Show log %
Sand Tn . 2, Repo-browser

2. This will bring up a window showing the changes to that file. If you selected a folder, you will
see all the changes to any and all controlled files in it. Clicking on items in the top section will
cause the full log message to be shown in the center and a list of files changed at that time.

" Log Messages - SVN-HT.odt g@
From: SIE2007 |s | To: S5/24/2007 | .
Revision | Actions Author | Date Message ||
332 o nguertin - 10:23:08 AM, Thursday, May 24, 2007 WO fdocs) SubversionDocs: Added the conflick resolution section. i
331 @ pchapin 10:10:19 PM, Wednesday, May 23, 2007 WO /docs/ SubversionDiocs: Reorganized the How-To so that it now uses appropriate internal struckuring el
330 @ nguertin - 1:37:36 PM, Wwednesday, May 23, 2007 wow/docs: Edited the SWM how-to For clarity.,
329§ dﬂ:Ssom 1:30:30 PM, Wednesday, May 23, 2007 WOW/docs/ SubversionDocs): added section 6-Move to svn how-to, hdl

Edited the Tortoise walkthrough for content and presentation and then renamed it so that the full walkthrough could be placed in it

Currently contains Section l: Checkout

Action | Path Copy from path Revision
Added WO trunk/docsfSubversionDocs) SYM-HT .odt PO fbrunkfdocsSubversionDocsSubHT- 1Checkout, odk - 310

[E] Hide unrelated changed paths Stakistics
] I:‘Stop on copyfrename

[showal |-][mextimo

Page 12 of 18

Updating To Older Revision

1. Updating your working copy to an older revision can be useful if you want to back-track your
steps and start fresh. This is very similar to the Revert command, but instead of changing to the
most current revision on your system, you can get any version that exists in the repository. You
may want to do this will an entire folder, or just one file. First, right-click on the version con-
trolled file or folder and click TortoiseSVN->Update to revision...

T ™ SMN-HT.odt
Cpenbocument Texk
5438 KB
Open
MNew
Prink

Scan with ClamWin Free Antivirus

-+ Edit with Motepad++
COpen With 3

K™ 5N Update

¢ SN Commit.

W TorkoiseSWN F L= Showlog

2L, Repo-browser

B add ta archive. ..
B3, Check for modifications

B add ta "SYM-HT.rar"
B Compress and email. .. 4L, Revision graph

Compress ko "SYM-HT.rar" and email
B2 P i Update ta revision, .. %

Send To * S Rename...

2. A dialog will pop up like the one shown below and will allow you to update either the HEAD
(latest) version or one that you specify. If you do not know the exact version number you wish
to revert to, click on the “Show Log” button, and you can choose which revision you want via
the log messages in the repository.

s =)

= Update

Revision

(I HEAD revision Shiow log]

(%) Revision 326

[]only update the top Folder
[] omit externals

[Ok] [Cancel

3. Select OK, and your file or folder will be changed to a previous version.

Page 13 of 18

=" Log Messages - SVM-HT.odt E]@

From: S/E2007 |w | To: 5/31/2007 |w e

Revision | Actions Author | Date Message -
339 & dransom 3:50:15 PM, Thursday, May 31, 2007 WwO's quick, little spacing issue
335 &l dransom 3:43:53 PM, Thursday, May 31, 2007 oy fSubversionDocs: added two sections in the HT, etiquette and references. Pretty much stole the etique
335 4l dransom 3:06:11 PM, Tuesday, May 29, 2007 WO SubversionDocs: Added section on updating to older revision,
335 @ nguertin - 9:51:56 AM, Friday, May 25, 2007 WOy fdocs)SubversionDocs: Added the log browsing section and cleaned up some of my pictures,
332 nguertin - 10:23:08 AM, Thursday, May 24, 2007 WOW fdocs/SubversionDocs: Added the conflict resolution section.
33§ pchapin 10:10:19 PM, Wednesday, May 23, 2007 WOwW docs/SubversionDocs: Reorganized the How-To sa that it now uses appropriate internal structuring el
330 & nguertin 1:37:36 PM, Wednesday, May 23, 2007 WoW/docs: Edited the SWN how-to For clarity.
329§ dransom 1:30:30 PM, Wednesday, May 23, 2007 WOW docs/SubversionDocs|: added section 6-Move ka svn how-to.
328§ nguertin 9:21:27 AM, Wednesday, May 23, 2007 WoW/docs: Added AddfDelete section to the how-to document .
326 dransom 12:31:53 PM, Tuesday, May 22, 2007 WOW docs/SubversionDocs]: cleaned up a Few parts in the how to (Revert)
- nguertin 12:20:13 PM, Tuesday, May 22, 2007 Edited the 54r how-to For clarity. il
£ >

Edited the S5VHN how-to for clarity.

Action Path Copy from path | Revision
Modified Ot ftrunkfdocs/SubversionDocsfSY-HT .odk

[E]Hide unrelated changed paths Stakistics
[showal] [mextion | [Jstop oncopyirename % Cancel

Etiquette

Files under Subversion version control are being shared with other developers and thus, unlike with
most files stored on your system, making changes to Subversion controlled files is a social act. There
are standard expectations in the industry regarding how you should behave with respect to version con-
trolled files. If you don't follow those standards you will certainly annoy other developers.

+ Don't include generated files like object files or executable files in the repository.

Instead you should generate them in your working copy and leave them uncontrolled. The prob-
lem with including generated files in the repository is that they cause a massive waste of reposi-
tory space and network bandwidth (to keep synchronized). Every time you recompile your pro-
gram, for example, you will create new versions of the object files and executables.

Sometimes people include generated files because one or more developers is unable to generate
them due to missing or improperly configured tools. There are times when this is reasonable;
however the best solution in this case is to get those missing or improperly configured tools
fixed so that all developers can generate the files they need from the sources.

+ Don't include personal scratch files in the repository.

Files that contain notes to yourself that are not interesting or useful to other developers should
not be added to the repository. Instead leave them uncontrolled in your working copy. Similarly
configuration files that contain personal settings should not be in the repository. Each developer
will likely want to use different personal settings; it's rude to force your settings on everyone

Page 14 of 18

else.
Don't include static files (files that will never change) in the repository.

For example, third party documentation does not need to be under Subversion control. Similarly
third party libraries that you will never modify should not be under Subversion control. While
sharing such files between developers is a good idea, there are other more suitable ways to do
that (for example, put the files on a project web site).

Don't include the same file in multiple formats.

This is really another example of the prohibition against generated files. However, it deserves
special attention. Some developers will, for example, write documentation using Microsoft
Word and then save the documentation in .doc, .rtf, and . pdf format. The rationale for this
is that some developers might not want to use Word and so the other formats are being generat-
ed as a convenience. However, doing this is a mistake. The development team should agree on
what file formats are going to be used and then every developer should get the tools necessary
to manipulate those formats. Additional formats can be generated during the build process for
distribution to users, but such files should not be subject to version control.

Don't include backup files.

Developers used to working without version control get in the habit of making backup copies of
files before changing them in significant ways to facilitate rolling back if the changes go wrong.
This is usually unnecessary when working under a version control system. The Subversion serv-
er remembers every version of every file that was committed to it. Indeed, that is one of the
main purposes of the system. If you need to roll back changes that have gone wrong or refer to
an old version of a file, simply ask the Subversion server to fetch the version you want.

Don't commit multiple, unrelated changes at once.

Each significant change that you make is likely to involve multiple files. This is fine and ex-
pected. However, you should avoid, if possible, committing logically unrelated changes—even
if in the same file—in a single commit operation. If one of the changes turns out to be a mis-
take, it will be impossible to roll it back without also rolling back the other change. Also making
multiple unrelated changes in a single commit makes searching and interpreting log messages
harder; it can make it more difficult to find when a particular change was done.

Don't commit half made changes—except when you should.

Ideally each commit operation should be a logically complete change that can be described with
a simple log message. Avoid committing changes that are half baked. Especially avoid commit-
ting programs that don't compile! Committing changes before they are ready makes interpreting
the log messages harder and it makes life harder for the other developers since they will get a
non-working, semi-changed system the next time they do an update.

However... some changes are very large and require a lot of work to stabilize. It may not make
sense to wait until such a change is completely finished before committing. For one thing other
developers might want to see how the work is going and may want to assist. In cases like this,
you should make it clear in the log message that the change is unfinished. Also you should com-
municate what is happening to the other developers so that everyone is aware that the system
will be in a non-working state for a while. In situations like this you might consider creating a
branch where the large change can be hammered out without impacting the main line of devel-

Page 15 of 18

opment. Read about branches in the Subversion documentation if this idea sounds interesting to
you.

Do include control files necessary for generating the generated files.

For example, makefiles, if you are using them, should definitely be in the repository. Any con-
figuration files that affect the way your project is built should all be in the repository. When a
developer checks out the project for the first time, that developer should be able to build the
project exactly the same was as everyone else (assuming he or she has the right tools installed),
using all the same options, without having to build or change any configuration files.

Do include scratch files that contain information of interest to multiple developers.

While some scratch files might contain information only of interest to you, other scratch files
might contain information of interest to many. A "to-do" list is one example of such a file. Files
that multiple developers will want to read and update should definitely be under version control.

Do include any documentation that needs to be shared between developers and that will
evolve and change as the project proceeds.

Your project's documentation is a development effort just like the code and should be treated ac-
cordingly. Thus documentation files should be under version control (unless they are generated
from the program source files). You might also consider adding your project's web pages to the
repository. You can then just check out that portion of the project to a web server to publish it.

Do communicate with other developers.

No version control system can replace team communication. Subversion is able to merge
changes made by different developers to the same file, however it will report a "conflict" and re-
quire manual merging if the changes are both to the same part of the file. In addition, Subver-
sion can do nothing to protect you against high level inconsistencies. For example if two devel-
opers try taking a project in two totally different directions, Subversion will obviously have no
knowledge about that. As in any team project, coordination between developers is a must if
chaos is to be avoided. Using Subversion, or any other version control system, does not change
that.

Do write high quality log messages.

Although it may seem during normal development that the log messages are pointless, you will
rely on them greatly if you need to dig back in the repository looking for an old version of some
file. For example you might want to find the most recent version of a file before a certain
change was made. Without good, clear log messages such a task is difficult.

My suggestion is to prefix your log message with the name of the project. For example a com-
mit to the RTWho project might have a log message such as "RTWho: Fixed the annoying re-
fresh bug with the configuration dialog box (bug #1234 in Bugzilla)."

If you need to remove a controlled file, be sure to do it using Subversion so that it gets
properly removed from the repository.

If you simply delete a controlled file it will return the next time you do a svn update opera-
tion.

If you want to rename a controlled file, be sure to do it using Subversion so that it gets

Page 16 of 18

properly renamed in the repository.

You can rename a file by removing it under the old name and then adding it back under the new
name. However, it is better to use the svn rename operation. That way Subversion knows the
new name is related to the old file and the logging and version tracking will be more useful.

Command Line Client

Although this document has focused on using the Windows client, TortoiseSVN, Linux users will most
likely be using the command line client instead. In fact, the command line client is also available for
Windows, both as a native application and as part of Cygwin. Some tools (IDEs, etc) provide Subver-
sion support by invoking the command line client in the background and thus having such a client in-
stalled on a Windows system is not unusual or useless.

The command line client is called svn. It supports a large number of “subcommands.” Use the com-
mand:

$ svn help

For a list of the subcommands and their arguments. Note that the $ character above (and in the exam-
ples below) represents the command prompt. To check out a working copy use a command such as:

S svn checkout svn://svn.ecet.vtc.edu/Scratch/trunk Scratch

The last argument is the name of the directory where the working copy will be placed. If that argument
is omitted svn will use the last component of the repository URL (trunk in the example above) in-
stead. Often that is fine, but in this case it seems undesirable to put the working copy in a directory
named trunk. If the working copy directory does not yet exist it will be created. In fact, this is the
common case.

All other operations on a working copy should be done with the root of the working copy as the current
directory. The svn client applies each operation to all subdirectories recursively. To update a working
copy use the command:

$ svn update

To find out which controlled files, if any, have been modified locally use the command:
$ svn status

To commit changes to the repository. Use the command:

$ svn commit -m “This is a log message.”

Despite its modest appearance the command line client is every bit as powerful as the TortoiseSVN
client. The commands above are the most commonly used and provide the basic services one normally
needs. However don't hesitate to consult the Subversion documentation for more details on svn's many
options.

References:

If you wish to learn more, here are a few resources that we can recommend:

1. Practical Subversion 2™ ed — Daniel Berlin and Garrett Rooney. Apress. http://www.apress.com/

Page 17 of 18

http://www.apress.com/book/bookDisplay.html?bID=10203

book/bookDisplay.html?bID=10203. ISBN — 1590597532

. Pragmatic Version Control 2™ ed — Mike Mason. The Pragmatic Programmers.
http://www.pragmaticprogrammer.com/titles/svn2/index.html ISBN — 0-9776166-5-7

. Subversion Homepage — http://subversion.tigris.org/

Page 18 of 18

http://www.apress.com/book/bookDisplay.html?bID=10203
http://subversion.tigris.org/
http://www.pragmaticprogrammer.com/titles/svn2/index.html

	Authors
	Legal
	Introduction
	Checkout with Tortoise
	Adding and Deleting Files
	Update Files to the Newest Revision
	Commit Changes
	Reverting to a Current Version
	Moving Files and Folders
	Conflict Resolution
	Browsing the Log
	Updating To Older Revision
	Etiquette
	Command Line Client
	References:

