
Open Watcom Standard Template Library (OWSTL)

Design Documentation

Open Watcom Contributors
March 30, 2025

CONTENTS i

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Philosophy . 1

1.3 Status . 1

1.4 Implementor’s Notes . 2

2 Algorithm 3

2.1 Introduction . 3

2.2 Status . 3

2.3 Design Details . 3

2.3.1 *_heap . 4

2.3.2 remove, remove_if . 4

2.3.3 remove_copy, remove_copy_if . 4

2.3.4 unique . 4

2.3.5 file_first_of . 5

2.3.6 find_end . 5

2.3.7 random_shuffle . 5

2.3.8 sort . 5

3 Deque 6

3.1 Introduction . 6

3.2 Status . 6

3.3 Design Details . 6

Open Watcom Documentation

CONTENTS ii

3.3.1 Overall Structure . 6

3.3.2 Alternative Implementations . 7

3.4 Open Watcom Extensions . 7

4 List 8

4.1 Introduction . 8

4.2 Status . 8

4.3 Design Details . 9

4.3.1 Description of a Double Linked List . 9

4.3.2 Overview of the Class . 10

4.3.3 Inserting Nodes . 10

4.3.4 Deleting Nodes . 10

4.3.5 Clearing All . 10

5 Red-Black Tree 11

5.1 Introduction . 11

5.2 Status . 11

5.3 Design Details . 13

5.3.1 Relationship to map and set . 13

5.3.2 Description of a Red-Black Tree . 13

5.3.3 Overview of the class . 14

5.3.4 Inserting Elements and Rebalancing . 14

5.3.5 Deleting Elements . 14

6 Stack 16

6.1 Introduction . 16

6.2 Status . 16

6.3 Design Details . 17

Open Watcom Documentation

CONTENTS iii

7 String 18

7.1 Introduction . 18

7.2 Status . 18

7.3 Design Details . 19

7.3.1 Copy-On-Write? . 19

7.3.2 Design Overview . 21

7.3.3 Relationship to Vector . 22

7.4 Open Watcom Extensions . 22

8 Type Traits 23

8.1 Introduction . 23

8.2 Status . 23

8.3 Design Details . 25

8.3.1 Querying Types . 25

8.3.2 Modifying Types . 25

8.3.3 Use in Main Library . 25

9 Vector 26

9.1 Introduction . 26

9.2 Status . 26

9.3 Design Details . 26

Open Watcom Documentation

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

1.1 Overview

The Open Watcom Standard Template Library (OWSTL) is an implementation of the C++ standard li-
brary defined in ISO/IEC 14882. This document describes the design of OWSTL. Each section describes
an element of the library and typically includes an overview of the design, design decisions made and the
reasoning behind them, problems encountered, and explanations of the solutions to those problems. It is
hoped that a peer review of the code and design documentation will be undertaken at some stage and that
questions raised or resulting changes made will be documented here.

1.2 Philosophy

OWSTL is written entirely from scratch. It does not, for example, build upon an old HP/SGI code base
or any other previous library. When a new element is added to OWSTL the matter should be researched
by the author before they commence coding. The commercial compiler Open Watcom is based on, made
a name for itself by producing high quality, fast code. The intention is to produce a high performance
library to complement that. This means choosing and experimenting with the best algorithms possible
and implementing them with care.

OWSTL also attempts to be highly readable to encourage code inspection and study. That will encourage
new developers to maintain and improve the library and will give the greatest advantage in the long term.

1.3 Status

OWSTL is currently under development. Many elements of the library have not yet been implemented.
The code is mainly templates and currently resides in under the hdr project. In the future, non-template
classes or functions may be factored out of the template code and be built into the static and dynamic
libraries. The existing library code is in bld/plusplus/cpplib.

Open Watcom Documentation

CHAPTER 1. INTRODUCTION 2

For example, it should be possible to separate the rebalancing algorithms from the red-black tree code
as these just manipulate pointers. They don’t really need to know the contained type. Reasonably thor-
ough regression tests can be found in plustest/owstl. These should be updated in parallel with new
functionality or fixes made to the library itself. Some Benchmarks can be found in bench/owstl.

1.4 Implementor’s Notes

When updating OWSTL, do the following:

• Check out latest source.

• Run the regression tests. If any are broken, fix them or open an issue.

• Update the source.

• Update the regression tests.

• Update this document.

• Update the user documents (e.g., on the Wiki, if applicable).

• Create a pull request.

Open Watcom Documentation

CHAPTER 2. ALGORITHM 3

Chapter 2

Algorithm

2.1 Introduction

The algorithm header (truncated to algorith for 8.3 file name compatibility) contains definitions of the
algorithms from chapter 25 of the C++ 1998 standard.

2.2 Status

About two thirds of the required algorithms have been implemented. For a list of those remaining, see the
Wiki.

2.3 Design Details

Most of the standard algorithms are function templates that operate on iterators to perform some task.
Each function template is quickly addressed in the sections that follow. They are generally quite simple
and looking directly at the source may provide the best information.

A number of the algorithms come in two forms that use either operator< or operator== (as appropriate),
and in a form that uses a predicate. The predicate form is more general. The non-predicate form can be
implemented in terms of the predicate form by using the function objects in functional.

In theory, implementing the non-predicate forms in terms of the predicate forms should not entail any
abstraction penalty because the compiler should be able to optimize away any overhead due to the func-
tion objects. Some investigation was done using Open Watcom v1.5 to find out if that was true. In fact,
the compiler was able to produce essentially identical code for the non-predicate functions that were im-
plemented directly as it did for non-predicate functions that were implemented in terms of the predicate
functions. However, at the call site, there was some abstraction penalty: the compiler issued a few extra
instructions to manipulate the (zero sized) function objects.

These experiments led us to conclude that the non-predicate functions should be implemented directly for
short, simple algorithms where the extra overhead might be an issue. For the more complex algorithms,

Open Watcom Documentation

CHAPTER 2. ALGORITHM 4

the non-predicate forms should be implemented in terms of the corresponding predicate forms. The extra
overhead of doing so should be insignificant in such cases and the savings in source code (as well as the
improved ease of maintenance) would make such an approach desirable.

If the compiler’s ability to optimize away the function objects improves, this matter should be revisited.

2.3.1 *_heap

The functions push_heap, pop_heap, make_heap, and sort_heap support the manipulation of a heap
data structure. Currently, only versions using an explicit operator< have been implemented. The ver-
sions taking a comparison object have yet to be created. Several heap-related helper functions have been
implemented in namespace std::_ow. These functions are not intended for general use.

There is a compiler bug that prevents the signature of the internal heapify function from compiling. This
has been worked around by providing the necessary type as an additional template parameter. See the
comments in algorith.mh for more information.

2.3.2 remove, remove_if

These functions “remove” the value that compares equal or the element at which the predicate evaluates
to true. Because iterators can’t be used to access the underlying container the element can’t really be
removed. These functions instead copy elements from the right (an incremented iterator) over the top
of the element that is “removed” and then return an iterator identifying the new end of the sequence.
The initial implementation just called the remove_copy and remove_copy_if functions described below.
This would perform unnecessary copies on top of the same object if there are any values at the beginning
of the container that aren’t to be removed. This could cause a performance hit if the object is large and
there are lots of objects that don’t need to be removed, therefore these functions were re-written to be
independent of the *_copy versions and perform a check for this condition.

2.3.3 remove_copy, remove_copy_if

This makes a copy of the elements that don’t compare equal, or when the predicate is false, starting at the
location given by Output. It is a simple while loop over the input iterator first to last, either just skipping
the element or copying it to the output.

2.3.4 unique

For C++ 1998 and C++ 2003 there is an open library issue regarding the behavior of unique when non-
equivalence relations are used. The standard says that the predicate should be applied in the opposite
order of one’s intuition. In particular: pred(*i, *(i-1)). This means the predicate compares an item
with its previous item.

The resolution of the open issue suggests that non-equivalence relations should not be permitted. In any
case, the standard should apply the predicate between an item and the next item: pred(*(i-1), *i).

The OpenWatcom implementation follows the proposed resolution and thus deliberately violates the stan-
dard. Most (all?) other implementations do the same.

Open Watcom Documentation

CHAPTER 2. ALGORITHM 5

2.3.5 find_first_of

There are two versions of this, one that uses operator== and one that uses a binary predicate. There is a
simple nested loop to compare each element with each element indexed by the second iterator range.

2.3.6 find_end

There are two versions of this, one that uses operator== and one that uses a binary predicate. The main
loop executes two other loops. The first loop finds an input1 element that matches the first input2
element. When a match is found the second loop then checks to see if it is complete match for the sub-
sequence. If it is, the position the subsequence started is noted and the main loop is iterated as there
may be another match later on. Note this can’t search for the substring backwards as the iterators are
ForwardIterators.

2.3.7 random_shuffle

The random_shuffle template with two arguments has been implemented using the C library function
rand. However, the 1998/2003 standard is unclear about the source of randomnumbers that random_shuffle
should use. There is an open library issue about this with the C++ standardization group. See http:
//anubis.dkuug.dk/JTC1/SC22/WG21/docs/lwg-active.html, item #395. The proposed resolution
is to allow the implementation to use rand without requiring it to do so (the source of random numbers
is proposed to be implementation defined).

The problem with rand in this case is that Open Watcom’s implementation of rand is limited to 16 bits of
output even on 32-bit platforms. This means that random_shuffle will malfunction on sequences larger
than 32K objects. This is a problem that needs to be resolved. The solution, probably, will be to provide
32-bit random number generators as an option. 〈〈〈 Has it already been done? 〉〉〉 Note

2.3.8 sort

The sort template is implemented using the QuickSort algorithm. This was shown to be significantly
faster (over twice as fast) than using HeapSort based on the heap functions in this library. This implemen-
tation of QuickSort is recursive. Since each recursive call has private state, it is unclear if a non-recursive
version would be any faster (at the time of this writing, no performance comparisons between recursive
and non-recursive versions have been made). Stack consumption of the recursive implementation should
be O(log(n)) on the average, which is not excessive. However, the stack consumption would be O(n) in
the worst case, which would be undesirable for large n.

Open Watcom Documentation

http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/lwg-active.html
http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/lwg-active.html

CHAPTER 3. DEQUE 6

Chapter 3

Deque

3.1 Introduction

The class template std::deque provides a random access sequence with amortizedO(1) push_back and
push_front operations.

3.2 Status

The basic functionality of std::deque has been implemented. This includes the specialized deque op-
erations and deque iterators. However, the more ”exotic” vector-like operations (insert and erase in the
middle of the sequence) have not yet been implemented. There has been essentially no user feedback.

3.3 Design Details

3.3.1 Overall Structure

This implementation is based on a circular buffer. Like a vector, a deque object allocates more memory
than it actually uses. In other words, its capacity may be greater than its size. However, unlike a vector the
sequence stored in a deque is allowed to wrap around in the buffer resulting in non-contiguous storage.
This means an operation such as &deq[0] + nmay result in a pointer that is invalid even if n is less than
the deque’s size. This behavior is allowed by the standard. 〈〈〈 Reference? 〉〉〉 Note

A deque object maintains two indices. The head_index refers to the location in the buffer where the
first item is stored. The tail_index refers to the location in the buffer just past (after possibly wrapping
around) where the last item is stored. When head_index == tail_index the deque is empty. To avoid
the potential ambiguity of this condition, the buffer is reallocated just before it is full, when deq_length +
1 == buf_length, so that the condition head_index == tail_index never occurs due to a full buffer.
This makes implementing some of the deque operations much easier.

Open Watcom Documentation

CHAPTER 3. DEQUE 7

For example, deque iterators are represented using a pointer to the deque object and an index value that
marks the iterator’s current position in the deque’s buffer. If the iterator’s index value equals head_index
this can only mean the iterator is at the beginning of the sequence. It never means that the iterator is
just past the end of the sequence. This disambiguation makes implementing operator< and the other
relational operators on iterator much more straight forward.

The general organization and style of deque’s implementation follows that of the other buffered sequences,
std::vector and std::string. This consistency is intentional. It is intended to make the std::deque
code easier to understand. It also opens up some possibility that all the buffered sequences might one day
share code.

3.3.2 Alternative Implementations

In addition to the circular buffer implementation an alternative approach was considered that uses con-
tiguous storage. The idea was to store the deque’s contents in the middle of the buffer so that some free
space would be available on either end for fast push_back and push_front operations. If the deque grows
to the point where one of the buffer ends is reached, the active contents of the deque might be recentered
(if the allocated space was not too large) or completely reallocated (if the allocated space was almost full).

This contiguous storage approach allows deque to be more vector-like and might promote code sharing
between deque and vector. For example, a vector would be a special kind of deque in this case. However, at
the time of this writing it is unclear how such an implementation would best decide between recentering
and reallocation. More analysis is necessary to understand the issues involved.

3.4 Open Watcom Extensions

Because of this implementation’s use of a circular buffer it is not difficult to provide capacity and reserve
methods for deque even though the standard does not require them. As with vector, the reservemethod
causes a deque to set aside enough memory so that no additional allocations or internal copies will be
needed until at least the reserved size is reached.

Open Watcom Documentation

CHAPTER 4. LIST 8

Chapter 4

List

4.1 Introduction

4.2 Status

Missing members:

1. Err…need to look through the standard.

Completed members:

1. explicit list(Allocator const &)

2. list(list const &)

3. ~list()

4. operator=(list const &)

5. assign(size_type, value_type const &)

6. get_allocator() const

7. iterator

8. const_iterator

9. reverse_iterator

10. const_reverse_iterator

11. begin() (+const)

12. end() (+const)

Open Watcom Documentation

CHAPTER 4. LIST 9

13. rbegin() (+const)

14. rend() (+const)

15. size()

16. empty()

17. front()

18. back()

19. push_front(value_type const &)

20. push_back(value_type const &)

21. pop_front()

22. pop_back()

23. insert(iterator, value_type const &)

24. erase(iterator)

25. erase(iterator, iterator)

26. swap(list&)

27. clear()

28. remove(value_type const &)

29. splice(iterator, list &)

30. splice(iterator, list &, iterator)

31. splice(iterator list &, iterator, literator)

32. reverse()

33. merge(list const &)

4.3 Design Details

template <class Type, class Allocator>
class std::list

4.3.1 Description of a Double Linked List

This is a data structure that is made up of nodes, where each node contains the data, a pointer to the next
node, and a pointer to the previous node. The overall structure also knows where the first element in the
list is and usually the last. Obviously it requires two pointers for every piece of data held in the list, but
this allows movement between adjacent nodes in both directions in constant time.

Open Watcom Documentation

CHAPTER 4. LIST 10

4.3.2 Overview of the Class

The class defines an internal DoubleLink structure that only holds forward and backward pointers to
itself. It then defines a Node structure that inherits from DoubleLink and adds to it the space for the real
data (of type value_type) that is held in the list nodes. This is done so that a special sentinel object can
be created that is related to every other node in the list, but that doesn’t require space for a value_type
object. This sentinel is used by the list class to point to the first and last elements in the list. A sentinel
is useful in this case (the alternative would just be individual first and last pointers) because it means the
insertion and deletion code does not have to check for the special case of editing the list at the beginning
and end. The sentinel is initialized pointing to itself and is used as the reference point of the end of the list.
When an element is inserted or deleted before the end or at the beginning all the pointer manipulation
just falls out in the wash. 〈〈〈 This seems to be a good uses of sentinels. 〉〉〉 Note

There are two allocators that need to be rebound for the Node and DoubleLink types. Two allocators are
needed because objects of different types are being allocated: the node allocation allocates nodes (with
their contained value_type) while the link allocator allocates the sentinel node of type DoubleLink.

4.3.3 Inserting Nodes

The work for the functions push_front, push_back and insert is done by the private member push.

The member is quite simple. It allocates a Node and then tries to make a copy of type in the memory
allocated. The usual try-catch wrappings deallocate the memory if the construction was unsuccessful. It
then modifies the pointers of the Node that was passed, the element before that node, and the new node so
that the new node is linked into place just before o. The end of the list is signaled by the sentinel object, so
if we are trying to insert before the end o is the sentinel and everything works. If we are trying to insert
before the first node, the old node before the first is again the sentinel, so the pointers are all valid and
everything works.

4.3.4 Deleting Nodes

4.3.5 Clearing All

Open Watcom Documentation

CHAPTER 5. RED-BLACK TREE 11

Chapter 5

Red-Black Tree

5.1 Introduction

Class template std::_ow::RedBlackTree is an implementation of a red-black tree data structure. It is
used as a common base for std::set and std::map. It can be found in hdr/watcom/_rbtree.mh. The
intention was to allow easy replacement and experimentation with other implementations such as an AVL
tree or perhaps some sort of relaxed chromatic tree suited to concurrent systems.

5.2 Status

The majority of the required functionality has been written. Regression tests have been written in parallel,
but little user testing and feedback exists.

The missing members are:

1. reverse_iterator

2. const_reverse_iterator

3. template<InputIterator> ctor(InputIterator, InputIterator, ...)

4. rend() and rend() const

5. rbegin() and rbegin() const

6. max_size()

7. erase(iterator first, iterator last)

8. swap(RedBlackTree &)

9. key_comp()

10. value_comp()

Open Watcom Documentation

CHAPTER 5. RED-BLACK TREE 12

11. find(key_type) const

12. count()

13. equal_range(key_type) and equal_range(key_type) const

14. Non-member operators and specialized swap algorithm

The completed member are:

1. iterator

2. const_iterator

3. ctor(Compare, Allocator)

4. cpyctor

5. operator=

6. dtor

7. begin() and begin() const

8. end() and end() const

9. empty()

10. size()

11. insert(value_type)

12. insert(iterator, value_type) (see N1780)

13. erase(iterator)

14. erase(key_type cont &)

15. clear()

16. find(key_type)

17. lower_bound(key_type) and lower_bound(key_type) const

18. upper_bound(key_type) and upper_bound(key_type) const

19. _Sane()

20. Internal tree balancing functions

Open Watcom Documentation

CHAPTER 5. RED-BLACK TREE 13

5.3 Design Details

template <class Key, class Compare, class Allocator, class ValueWrapper>
class RedBlackTree

The type Key is used to index the tree; the functor Compare (class with operator() defined) provides
ordering to the keys; the class Allocator provides the memory allocation; the class ValueWrapper de-
fines the type of the objects stored in the tree and provides an operator() that knows how to extract
the key from that type. ValueWrapper allows the same tree code to apply to sets where the key is the
only thing stored and maps where the object stored has a key and a mapped value.

5.3.1 Relationship to map and set

The templates std::set and std::map take their base class as a template parameter. They select the
appropriate value wrapper and inherit all the functionality. The base currently defaults to RedBlackTree
which is the only implementation available.

5.3.2 Description of a Red-Black Tree

A red-black tree is an ordered binary tree made up of nodes, where each node can have up to two children.
An ordered binary tree orders the nodes so that a left child is less than its parent and a right child is greater.
It could be the other way around, and this implementation uses a comparison function and puts the child
on the left if compare(child, parent) evaluates true. If a node has no children it is a leaf, otherwise
it is an internal node. Some implementations only hold the actual data in the leaves and the internal nodes
are just placeholders. This implementation has imaginary leaves - null pointers. If a node’s child pointer
is null then that non-existent child is a leaf, and we hold all the data in the real, existing nodes. Therefore,
there is no special leaf node type, just a null pointer if there is no child with data.

A red-black tree adds a color to every node, and defines some rules that mean the tree stays balanced. A
tree is balanced if the difference between the largest and smallest depth of a leaf is bounded. The invariants
are:

1. Every red node has a black parent/

2. Every route from the root node to a node with 0 or 1 children has the same number of black nodes.

3. Every leaf is black (note this is assumed as leaves don’t really exist in this implementation).

4. The root is black.

This data structure has been well covered in the literature, for a more detailed information see: (Prof
Lyn Turba, Wellesly College, CS231 Algorithms Handout 21, 2001) (McGill University, Notes for 308-251B,
http://www.cs.mcgill.ca/ cs251/, 1997) 〈〈〈 Look into setting up a BibTeX database for proper references Todo
and citations. 〉〉〉

Open Watcom Documentation

CHAPTER 5. RED-BLACK TREE 14

5.3.3 Overview of the class

The tree class defines an internal Node structure that is made up of the object stored in the tree, node
pointers for the parent and left and right children, and the node color. There is an allocator member object,
mMem, that is rebound to allocate Node objects. There are pointers to the root and furthest left and right
nodes. These are used tomark were to start the search, and create the begin and end iterators respectively.
The iterator and const_iterator classes are derived from a common member class. There is an Open
Watcom extension method _Sane() that checks the integrity of the data structure. Related to this is an
integer mErrormember that is assigned a value if an error is detected when _Sane is run. 〈〈〈 This should Todo
perhaps be renamed _Error or made private and a _GetError() method provided. 〉〉〉

5.3.4 Inserting Elements and Rebalancing

The insert method calls unbalancedInsert and insBalTransform. The loop in unBalancedInsert
moves from child to child searching for the leaf of the tree where the new item can be inserted, similarly
as the find algorithm checks for the item. A final check is made at the end of the loop to see if the key
already exists. If it does, an iterator to the existing key is returned. Otherwise, a new node is allocated
and constructed. The node is linked into the tree at the place found. A try-catch is placed around the
construction of the node to deallocate the node again if any exceptions are raised. This is needed to stop a
memory leak that could occur because the memory has been allocated, but the exception has stopped the
node from being linked into the tree (so it would never get destroyed when the tree is destroyed).

At this point, the tree is a valid binary tree but does not necessarily obey the red-black balance criteria. The
new node is painted red so as not to invalidate the black-height rule, but this may introduce a violation of
the red-red rule. Function insBalTransform is called with a pointer to the newly inserted node to correct
this. This is where this implementation of a red-black tree varies from the most common implementations.
Usually the balancing procedure is broken down into a series of rotations where a subtree of the tree would
appear to be rotated if represented graphically. These rotations can be left or right and the proceduremoves
up to the parent subtree and is repeated until the violation is removed.

Instead, Open Watcom uses the concept of a transformation. (Alternatives to Two Classic Data Structures,
Chris Okaski, 2005?) A sub-branch of the tree is analyzed to see which case it matches and the elements in
that branch are then reorganized and recolored in one block of code. Although this isn’t wildly different,
it was hoped that it would allow a faster algorithm to be created because larger subtrees and special cases
could be matched and manipulated in one go, and the code generator may be able to make a better job of
optimizing the code because a larger block of manipulating instructions would be together. Whether this
was a good decision will be born out in time. Todo

〈〈〈 Explain why the insert methods are currently inline - compiler bug - what exactly was the problem? 〉〉〉

5.3.5 Deleting Elements

Deletion is a bit more complicated than insertion. The main method that gets called is erase(iterator
). I did hope it may be possible to rewrite this in a way that is easier to understand. There are two main
cases:

Open Watcom Documentation

CHAPTER 5. RED-BLACK TREE 15

• The node to be removed has both children.

• The node has one or more null children (i.e. has 0 or 1 real child, in other words 1 or 2 leaves) - I’ve
called this an “end node.”

If it is an end node (has 0 or 1 real child) then that child can be linked into its place or the node can just be
deleted. We take note of the deleted node’s parent, the child, and its color. The other case where it has 2
children is more complicated. We swap the predecessor (which cannot have a right child by definition) of
the deleted node into the place of the deleted node, and change its color so that part of the tree is still valid.
The node being removed is now effectively the predecessors old position, so we take note of its original
child, parent and color.

Now we have created a situation where we are really removing an end node. We can look at the color of
the node to be removed. If it is red then there is no violation of the black height rule by removing it. Also,
it cannot have a real child, so there is nothing to link in its place. If the removed end node is black there
are two cases. If it has a child, that child must be red or there would have been a black height violation,
thus we link the child in the place and paint it black to maintain the black height. If there was no child,
we have created a black height problem - there is a lack of black on this branch. The deleted node has
left a null leaf node in its place, we usually count these as black, but in this case we have to call it double
black to resolve the black height problem. This isn’t valid so we call doubleBlackTransform() to run
through a set of cases to rearrange subtrees and remove the need for double black.

Open Watcom Documentation

CHAPTER 6. STACK 16

Chapter 6

Stack

6.1 Introduction

template <class Type, class Container = std::dequeue>
class std::stack

This chapter describes the std::stack adaptor. It is called an adaptor because it wraps around a real
container (the Container template parameter) to store objects. It just provides a different interface to
the underlying container. The std::stack adaptor lacks the begin and end methods, so you can’t use
iterators or the standard algorithms with it.

6.2 Status

The default container is currently a vector as deque has yet to be written

All members are complete:

1. explicit stack(const Container &x = Container())

2. empty() const

3. size() const

4. top() and top() const

5. push(const value_type &)

6. pop()

7. _Sane()

8. Relational operators

Open Watcom Documentation

CHAPTER 6. STACK 17

6.3 Design Details

The _Sane method is used to check if the stack is in a valid state. It is an Open Watcom extension. The
method returns true if the stack is valid and false otherwise. The method works by calling the _Sane
method of the underlying container.

Open Watcom Documentation

CHAPTER 7. STRING 18

Chapter 7

String

7.1 Introduction

The class template std::string provides dynamic strings of objects with a type given by the type pa-
rameter CharT. The behavior of CharT objects is described by a suitable traits class. By default, a special-
ization of std::char_traits<CharT> is used. Specializations of std::char_traits for both character
and wide character types are part of the library and are used without any further intervention by the
programmer.

Most of the methods in class template std::string are located in hdr/watcom/string.mh. This file
is also used to generate the C library header string.h and the corresponding “new style” C++ library
header cstring. This is accomplished by executing wsplice over the file multiple times using different
options. The material that goes into the C++ library header string appears in string.mh below the C
library material.

The class template std::char_traits along with its specializations for character and wide character, the
definition of std::string, and certainmethods of std::string are located in hdr/watcom/_strdef.mh.
This file generates the header _strdef.hwhich is not to be directly included in user programs. It is, how-
ever, included in string thus completing the contents of string. The reason for this separation of string
is because of the exception classes. The standard exception classes use strings and yet some of the methods
of string throw standard exceptions. This leads to circular inclusions which are clearly unacceptable. To
resolve this problem, the parts of string that are needed by the standard exception classes are split off
into _strdef.h. These parts do not themselves need the standard exceptions and so the circular reference
is broken.

7.2 Status

Most of the required functionality has been implemented together with moderately complete regression
tests. There has so far been very little user feedback, however.

The main component that is missing is the I/O support for std::string. Implementing this component
has been put on hold until the iostreams part of the library is reworked. In the meantime, users will have

Open Watcom Documentation

CHAPTER 7. STRING 19

to do string I/O using C-style strings and convert them between std::string. This is a significant issue;
it is assumed that most standard programs will do I/O on strings directly and the library doesn’t currently
support such programs no matter how complete the std::string implementation itself might be.

In addition to the problem above, the template methods of std::string have not been implemented
because the compiler does not yet support template methods sufficiently well.

7.3 Design Details

7.3.1 Copy-On-Write?

This implementation of std::string does not use a copy-on-write or a reference counted approach. In-
stead, every string object maintains its own independent representation. This was done, in large measure,
to simplify the implementation so that a reasonable std::string could be offered quickly. However,
there are a number of difficulties with making std::string reference counted, and it is worth reviewing
those issues here.

The fundamental problem is that the std::string interface leaks references to a string’s internal repre-
sentation. It could be argued that this is a design problem with std::string. Consider the program in
Listing 7.1.

Listing 7.1: Potential Reference Leakage
1 #include <iostream>
2 #include <string>
3

4 using namespace std;
5

6 int main()
7 {
8 string s1("Hello"), s2;
9 char &c(s1[0]);

10

11 s2 = s1; // s1 and s2 perhaps share representations
12 c = 'x'; // Does s2 also change?
13 if(s2[0] == 'x')
14 cout << "Wrong!\n";
15 else
16 cout << "Right!\n";
17 return 0;
18 }

The value semantics of std::string require that modifying one string should not influence the value seen
in another logically distinct string. Thus, all correct implementations of std::string should produce
”Right!” for the program above.

To deal with this case properly while using reference counted strings, the implementation must “unshare”
the representation whenever a method is called that leaks a reference to that representation. The method

Open Watcom Documentation

CHAPTER 7. STRING 20

operator[] is one example of such a method. In fact, section 21.3, paragraph 5 of the C++ standard con-
tains explicit language regarding this issue. The standard allows implementations to invalidate references,
pointers, and iterators to the elements of a basic_string sequence whenever, for example, the non-
const operator[] is called. However, this leads to rather unexpected behavior in at least two respects. In
particular:

• Accessing a string might be an O(n) operation.

• Accessing a string might cause a std::bad_alloc exception to be thrown.

The first issue is a concern to those doing time sensitive operations, such as those writing embedded
systems (OpenWatcom’s support for 16 bit 8086 targets might be attractive to such programmers). In fact,
std::string provides a reserve method specifically to give the programmer some degree of control
over when allocations are done. Copying a string’s representation unexpectedly when a string is accessed
frustrates this intention.

The second issue is a concern to those writing robust, exception safe code. To build code that is exception
safe it is important to know when exceptions might be thrown. A savvy programmer might know that
calling std::string::operator[] might throw an exception. However, because that is an unnatural
side-effect many programmers won’t be expecting it and thus using such an implementation will be error
prone. Note that on some systems, notably Linux, the operating systemwill usually terminate the program
when it runs out of memory before std::bad_alloc can be thrown. However, that is not the case on
smaller, real-mode systems like DOS. Thus for Open Watcom this issue is a concern.

In a multithreaded program reference counted strings encounter other problems. Since Open Watcom
supports a number of multithreaded targets this is also a concern.

The C++ 1998 standard does not address the semantics of programs in the face of multithreading. However,
most programmers implicitly assume the following behavior (described by SGI in the documentation for
their STL implementation). 〈〈〈 Should this discussion be moved to a more generic part of this document? Todo
Some of this would be applicable to the whole OWSTL library. 〉〉〉

• Two threads can read the same object without locking. This means that if reading an object changes
its internal state, the implementation must provide appropriate locking.

• Two threads can operate on logically distinct objects without locking. This means that if objects
share information internally, the implementation must provide appropriate locking.

• If two threads operate on the same object and at least one of the threads is modifying that object, the
programmer must provide locking. This means that the implementation does not need to protect
itself from this case.

Reference counted strings must deal with both situations 1 and 2 above. This means they must provide
locks on the representations and use them when appropriate. The problem with this is that strings are
rather low level objects and locking them is generally inappropriate. Most strings are used entirely by one
thread; locks are usually only needed on larger structures. For example consider the following function:

Open Watcom Documentation

CHAPTER 7. STRING 21

typedef std::map<std::string, std::string> string_map_t;

string_map_t global_map;

void f()
{

// Modify the global_map.
}

If more than one thread is modifying the global map it would be appropriate to include a lock for the
entire map. Locking the individual strings in the map would most likely be too fine-grained since a single
transactionmight involve updating several strings. It would be important to serialize the entire transaction.
Locking the components of the transaction separately would be incorrect.

Yet a reference counted implementation of std::string must add locking to the strings themselves to
ensure correct behavior when apparently unrelated strings are simultaneously modified. This would be
adding a large amount of logically unnecessary locking overhead in cases such as the one above. This
overhead can cause reference counted strings to have very poor performancewhen used in amultithreaded
environment. 〈〈〈 reference? 〉〉〉 This is particularly ironic considering that reference counting is intended Todo
to improve string performance.

Concerns about the day-to-day performance of Open Watcom’s non-reference counted implementation
have been partially addressed by the results of some (minimal) benchmark tests. See bld/bench/owstl.
These tests show that the current performance of std::string is at least competitive with that offered
by other implementations. More complete benchmark testing is needed to verify this result.

It is interesting to note that gcc, which at the time of this writing (2005) uses a reference counted ap-
proach, has extraordinarily poor performance on these benchmark tests. If this result stands up to further
investigation it would be dramatic evidence that a reference counted approach does not automatically en-
sure good performance. In fact, I am led to wonder if the gcc maintainers did any benchmark studies of
their implementation or if they just assumed that it would be fast because it is reference counted. Either
way, this highlights the importance, in my mind, of following up performance assumptions by making
real measurements on the final implementation. One should always verify that any change designed to
improve performance actually does improve performance before committing to it.

7.3.2 Design Overview

This implementation of std::string uses a single pointer and two counters to define the buffer space
allocated for a string. One counter measures the length of the allocated space while the other measures the
number of character units in that space that are actually used. In order tomeet the complexity requirements
of the standard, string allocates more space than it needs, increasing that amount of space by a constant
multiplicative factor whenever more is needed. This implementation uses a multiplicative factor of two.
〈〈〈 Note: other factors, such as 1.5, might be more desirable; a factor of two causes somewhat inefficient Clarify
memory reuse characteristics. Reference? 〉〉〉 The capacity of a string is always an exact power of two.
When a string is first created it is given a particular minimum size for its capacity (currently 8) or a capacity
that is the smallest power of two larger than the new string’s length, whichever is larger.

A string’s capacity is never reduced in this implementation. Once a string’s capacity is increased, the
memory is not reclaimed until the string is destroyed. This was done on the assumption that if a string

Open Watcom Documentation

CHAPTER 7. STRING 22

was once large it will probably be large again. Not returning memory when a string’s length shrinks
reduces the total number of memory allocation operations and reduces the chances of an out of memory
exception being thrown during a string operation. However, this design choice is not particularly friendly
to low memory systems. Considering that Open Watcom targets some small machines, an alternative
memory management strategy might be worth offering as an option. In the meantime programmers on
such systems should be careful to destroy large strings when they are no longer needed rather than, for
example, just calling erase.

7.3.3 Relationship to Vector

The std::string template is very similar in manyways to the std::vector template. In fact, in OWSTL
both implementations use a similar representation technique and a similarmemorymanagement approach.
However, the implementation of std::vector is more complicated because the objects in a vector need
not be of a POD type (as is the case for string) so they need to be carefully copied and initialized using
appropriate methods. In contrast, the CharT type used by std::string can be copied and moved with
low level memory copying functions (see std::char_traits).

7.4 Open Watcom Extensions

Because of the widespread demand for case-insensitive string manipulation, OWSTL provides a traits class
that includes case-insensitive character comparisons. An instantiation of std::string, called _watcom::istring
is provided that uses this traits class.

Open Watcom Documentation

CHAPTER 8. TYPE TRAITS 23

Chapter 8

Type Traits

8.1 Introduction

The header type_traits is based on the metaprogramming section of n1836 “Draft Technical Report on
C++ Library Extensions.” It contains a set of templates that allow compile-time testing and modification
of types.

8.2 Status

About half of the required functionality has been implemented so far. There are currently a few compiler
bugs stopping some parts being implemented.

The missing templates are:

1. is_member_object_pointer

2. is_member_function_pointer

3. is_enum

4. is_union

5. is_class

6. is_function

7. struct is_object

8. is_scalar

9. is_compound

10. is_member_pointer

Open Watcom Documentation

CHAPTER 8. TYPE TRAITS 24

11. is_pod

12. is_empty

13. is_polymorphic

14. is_abstract

15. has_trivial_constructor

16. has_trivial_copy

17. has_trivial_assign

18. has_trivial_destructor

19. has_nothrow_constructor

20. has_nothrow_copy

21. has_nothrow_assign

22. has_virtual_destructor

23. is_signed

24. is_unsigned

25. alignment_of

26. rank

27. extent

28. is_same

29. is_base_of

30. is_convertible

31. remove_extent

32. remove_all_extents

33. add_pointer

34. aligned_storage

Open Watcom Documentation

CHAPTER 8. TYPE TRAITS 25

8.3 Design Details

8.3.1 Querying Types

This is implemented by specializing templates for the types that the test holds true. The class derives from
a helper class that contains a static const value. The important cases are when this static const is a bool
and is true or false. The user can then access is_void<type>::value to see if the test is positive. A
set of macros are used to help make the definitions look a bit less cluttered. There is a default case which
declares the main template and is usually false. There are then other macros that define the specializations.
There are also macros that define 4 specializations for the const volatile qualified variations of the type.

8.3.2 Modifying Types

This works similarly. The template is specialized for the type with the modifier and the class contains a
typedef type that refers to the modified type. Macros aren’t used for the modifiers as they tend to have
subtle differences for each template and in many cases there isn’t the need for 4 different CV variations.

8.3.3 Use in Main Library

This header should be a help for writing the constructors and member functions of the standard containers
that are required to have different behavior for iterators and integral types.

Open Watcom Documentation

CHAPTER 9. VECTOR 26

Chapter 9

Vector

9.1 Introduction

The class template std::vector provides a dynamic array of objects with a type given by the type pa-
rameter. Unlike std::string vectors can be instantiated with non-POD types. This complicates the
implementation of std::vector considerably, as discussed below.

9.2 Status

Most of the required functionality has been implemented. Some of the methods are not yet exception safe.

9.3 Design Details

The internal structure of vector is very similar to that of string. Any enhancement or bug fix applied
to either of these templates should be reviewed for possible application to the other. Like a string, a vector
allocates more raw memory than it needs. This allows the logical size of the vector to increase without
necessarily requiring a reallocation of memory. However, unlike a string, a vector can contain objects with
user defined copy constructors and user defined operator=. In addition, copying and assigning objects in
a vector might cause an exception to be thrown. These details make implementing vector more difficult
than implementing string.

For example, consider a vector of size 100 with 200 units of memory allocated. Now suppose that 10 new
objects are inserted in the middle of this vector. The 10 objects at the end of the vector need to be copying
onto the raw memory just past the end using a copy constructor. However, the other objects that are
moved will be placed on top of existing objects and thus must be copied with an operator=.

If an exception occurs while the new objects are being constructed, the objects constructed so far can be
destroyed and the vector can be left in an unmodified state. However, if an exception occurs after the new
objects have been created but during the assignment of the remaining objects it is somewhat unclear how
to best proceed. If the new objects are destroyed data may be lost since the original copies of those objects

Open Watcom Documentation

CHAPTER 9. VECTOR 27

may have already been overwritten. Yet trying to restore the vector to its initial state is probably unwise;
if an exception has occurred while copying objects around, further copying is unlikely to be successful.
There is little choice but to leave the vector in a corrupted, partially modified state.

Open Watcom Documentation

	Introduction
	Overview
	Philosophy
	Status
	Implementor's Notes

	Algorithm
	Introduction
	Status
	Design Details
	*_heap
	remove, remove_if
	remove_copy, remove_copy_if
	unique
	file_first_of
	find_end
	random_shuffle
	sort

	Deque
	Introduction
	Status
	Design Details
	Overall Structure
	Alternative Implementations

	Open Watcom Extensions

	List
	Introduction
	Status
	Design Details
	Description of a Double Linked List
	Overview of the Class
	Inserting Nodes
	Deleting Nodes
	Clearing All

	Red-Black Tree
	Introduction
	Status
	Design Details
	Relationship to map and set
	Description of a Red-Black Tree
	Overview of the class
	Inserting Elements and Rebalancing
	Deleting Elements

	Stack
	Introduction
	Status
	Design Details

	String
	Introduction
	Status
	Design Details
	Copy-On-Write?
	Design Overview
	Relationship to Vector

	Open Watcom Extensions

	Type Traits
	Introduction
	Status
	Design Details
	Querying Types
	Modifying Types
	Use in Main Library

	Vector
	Introduction
	Status
	Design Details

