Open Watcom Debugger Interface

Originally written by WATCOM International Corp.
Revised by Open Watcom contributors

Table of Contents

WATCOM Debugging Information Format VERSION 4.0 ... e

1 Debugging INfOrMELioN FOMMELc.coeirieiriiiriiiriieei bbbttt

2 ODJECE FIlE SITUCIUINES ...ttt bbbt b et bbb bt st b e st bbb b en s
2.1 Version number and source language identifiCation ..o
2.2 Line nuUMDBEr INFOPMBLIONocitiiiciiee ettt sttt et
PR A o Tor= 1o g T g (0] 7= o] o OSSR S
22 Y/ o T aTo T 10 01 (o] o

241 TYPE_NAME (VAIUE OXL?) eoeiteieiesieie ettt sttt ste sttt st st et seeseseeseseesessenessenens
W N R N G (V7 10 L=Y 002 SRS
2.4.3 SUBRANGE (VAIUE OX3?) .oveeiieeirieisieieesestesestesestesaesesaesesaesessesessesessensssesessesensesensessnsessesessnsens
2.4.4 POINTER (VAIUE OXA?) wouviteietieetesieteseeteste e st st e st se st este e ste et sastesaetesaesesaesesaesessenestenessensssens
245 ENUMERATED (VAIUE OX57) ..cviivcviiictiiietisieisiee s ste s te e te s etesaetesaesessesesaesessesessesestensssassssesens
2.4.6 STRUCTURE (VAIUE OXB7?)eiviuirieirierietereete sttt sttt sttt b e sttt se st seebesaenesaenesneneas
2.4.7 PROCEDURE (VAIUE OXT77?) .eueitiieteeeteseete st st see sttt ettt st et seebeseeseseenesaenesaeneas
2.4.8 CHARACTER_BLOCK (VAUE OX87?) ..c.eovieeiiieririetirieierieiesieesieestee e essenes
2.5 Local Symbol iNfOrMBLIONcceeeieieiiesese ettt e se et e e e e e se e e e e esessesnesresresrennens
251 VARIABLE (VAIUE OXL1?) oottt sttt s s s st st st st st sttt
2.5.2 CODE (VAIUE OX2?) ..vieeeeieeie ettt sttt sttt sttt st st s e st se st st be e sbe e be e te e es
253 NEW _BASE (VEIUE OX3?) ..oieiiieeiiieisiees st seste sttt st sae st steseste e be e besestesessesensesansesansens

3 EXECULADIE FIl@ SITUCTUIES ...ttt sttt sttt st et e e e e se e eneebesbesaeerens
3. L MaSter debDUG NEAOEY ..o bbb e
3.2 50Urce 1angUBGE TAIIEc.iiieieeiie bbb
3.3 SegmMENt A0ArESS TADIE ..ot
3.4 Section debug INFOMELIONcceieiieerc e et e e e eseesesnesresresrenrens

3.4.1 Section debUG NEAHEScceiiee e e r e ne s renre s
3.4.2L.0CaAl SYMDOIS CIASS ...cveiiiiiiieiesie ettt sttt s ae b e b e ae e resbe s resresre st es
O Y/ o= o = LSSV PP
4.4 LiNE NUMDEIS ClESSiviiiiieieie ettt bbbt et e ettt et bt b e bt sbesbe b sbe b et s

3.4.4.1 Specia Line NUMDEr TaDIEoouiiiiie e et
3.4.5ModuleiNfOrMALiON CIESSc.coiiuiriiiiriisiesie ettt sre st se et e b e e e et ne e
3.4.6 Global SYMBOIS CIESSc.oiveiiieiiiee bbb et
AN (o | (=Y T 100 7= 0] g Iox =SS

Debugger Trap File INterfaCe VERSION L3 ...ttt sttt st snesre e

1 Introduction

1.1 SOME DEFINITIONSvvicieectii ettt ettt ettt e et e e e e e e be e sabeebeesabeesbeesaseesbesssseebessstesnseesabeesseesnsenses
O 2 (=T @ o = USRI
LLL2 POINEEN SIZES ...uveeveeieei e et stee et et e st et e st e e s teeeaseeebessbeeebeesabeesseesateesheesnbeesbesanbeessessnbesssnesareeses
L LB BASE TYPES ...ttt ettt b b r e et a e r e R nr e n e renren

2 The REQUESE TNEEITACE ...t bbb bbb
A B o 10T 1 o L=
2.2 The INtErfate ROULINESciiiiiiieiirieirie ettt bbbt

2.2.1 Traplnit

2.2.2 TTADREGUESE ..oouveiiiiiitie ittt ettt sttt st st e s b e s e ek e e s st e et e e sateebeesbeeebeesbeeenbeesseennbeesreesnnee e
2.2.2.1 REQUESE EXAMPIE ...ttt st ebe e

2.2.3 TrapFini

© O o U1 oo,

10
10

11
12
13
13
14
14
14
16

17
17
19
19
19
19
20
20
20
21
22
24
24

27

29
29
29
30
30

31
31
31
31
32
33
33

3 The Requests

3.1 Core Requests
3.1.1 REQ CONNECT ...cocoeiriririrerrerinierieiereeiens
3.1.2 REQ DISCONNECTcccoeomrrereririrerrenens
3.1.3REQ SUSPENDcooceoiriirieeriererieesie e,
3.14REQ RESUMEccooeiiriiriirieeeeeeeee
3.1.5REQ _GET_SUPPLEMENTARY_SERVICE

Table of Contents

3.1.6 REQ_PERFORM_SUPPLEMENTARY _SERVICE ...eorioovveveeeeeereesesesseseeeeeeessssssesesessssseesesss

3.1.7 REQ_GET_SYS CONFIG ..oooveeeverrerrrre
3.1.8 REQ_MAP_ADDR ...coermmmmeeeerrereeecerresessenn
3.1.9 REQ_ CHECKSUM_MEM ...oovvoceerrrrre.
3.1.10 REQ READ _MEM .oooeeeeeereeveeeerrseseseee
3.1.11 REQ WRITE_ MEM ..o
3.1.12 REQ READ 10 ovvveeeeeeeeeeeeeeeeeeeeeeeressssenn
3.1.13REQ WRITE_ 1O eooooeeoeeeeeeeeeeeeeesreseeson
3.1.14 REQ PROG_GO/REQ PROG_STEP
3.1.15 REQ_PROG_LOAD ..o
3.1.16 REQ PROG_KILL .ooeereereeerreveeecrrsesensnn
3.1.17 REQ_SET_WATCH eeeeeeeeeveeveeceereesenee
3.1.18 REQ CLEAR WATCH ooovvvvveeerrrresr.
3.1.19 REQ_SET_BREAK w.oovoooorrreseeeeeeeeeeeeeriis
3.1.20 REQ CLEAR BREAK .ovvvvvveecerrenrnneee.
3.1.21 REQ _GET_NEXT_ALIAS .ccommrerrrrcrr.
3.1.22 REQ SET_USER_SCREENovvveennn.
3.1.23 REQ_SET DEBUG_SCREEN
3.1.24 REQ READ USER _KEYBOARD
3.1.25 REQ_GET_LIB_NAME .oovvvvveecerrrrrr
3.1.26 REQ_GET_ERR_TEXT oovvvvvveeerrrrrsrenen
3.1.27 REQ_GET_MESSAGE_TEXT .oevven..

3.1.28 REQ_REDIRECT_STDIN/REQ_REDIRECT _STDOUT ...ooveeeereeeeeeeeeresesseessseseeeeesesssseee

3.1.29REQ SPLIT_CMD ..cocvvvrvvrvrereereeievenes
3.1.30REQ READ _REGScccoovreerrrirrerennns
3.1.31REQ WRITE_REGSccoceovvevrrrrrinnnns
3.1.32 REQ_MACHINE DATA ...cccoveeveeennn.
3.2 File /O requests
321 REQ FILE GET_CONFIGcccovevrrrnne.
3.22REQ _FILE_OPENccooverrrirrieeererenens
3.2.3REQ _FILE_SEEKccooovvveevrirrerererees
3.24 REQ FILE READ ...cccoovvevrrrieeeeerienns
3.25REQ FILE WRITE ...coovvcvrvreieere e
3.2.6 REQ FILE WRITE_CONSOLE
3.27REQ FILE CLOSEcccocevvivereeeeeees
3.28REQ FILE ERASEccocoovvevveecieieiens

3.2.9REQ FILE STRING TO_FULLPATH

32,10 REQ FILE_RUN_CMDccccovveerrrerrenns
3.3 Overlay requests
3.31REQ OVL_STATE SIZEccooevvvvrenn
3.3.2REQ OVL_GET_DATA ..ooeerrrrreeeens
3.3.3REQ OVL_READ_STATEccecvcevvrenn.
3.34REQ OVL_WRITE_STATE ...cccoecvvvrene.
3.35REQ OVL_TRANS VECT_ADDR
3.3.6 REQ OVL_TRANS RET_ADDR

35
35
35
36
36
36
37
37
37
39
40
40
41
41
41
42

GRES

45
45
46
46
46
46
47
47
48
48
49
49
49
50
50
50
51
51
52
52
53

GELE

55
56
56
56
57
57
58

Table of Contents

3.3.7 REQ_OVL_GET_REMAP_ENTRY ..ottt
R I g == o = o U S £ USSR
341 REQ THREAD_GET_NEXT ittt ettt s st s
342 REQ THREAD _SET ...ttt ettt en
343 REQ THREAD _FREEZE ...ttt ettt st snee st nneenneens
344 REQ THREAD _THAW ..ottt sttt sreenae e e sae s e e saeeneeneeeneenseeneenes
3.45 REQ _THREAD_GET_EXTRA ..ot
G L = [£
351 REQ _RFX_RENAME ..ottt
352 REQ_RFX_MKDIR ..ottt bttt
353 REQ_RFX_RMDIR ..ottt bbbt sttt bt s
354 REQ _RFX_SETDRIVE ...ttt sttt
355 REQ RFX_GETDRIVE ..ottt st sttt
3.5.6 REQ _RFX_SETCWNDcuiiiiiieitiererietete sttt ss bt e e sttt benene s
357 REQ RFX_GETCWD ...ooueeeeeeeeeeceeeeee s ees s sssssesssess s es e s nssss s ssssss s s ssssssnnes
3.5.8REQ RFX_SETDATETIME ..ottt s nneen
3.5.9 REQ_RFX_GETDATETIME ...ocoiiiiireireetrerieeere st
3.5.10 REQ_RFX_GETFREESPACEocciiiririrteeeresietee e
3511 REQ_RFX_SETFILEATTR .ottt s
3512 REQ_RFX_GETFILEATTR ittt
3.5.13 REQ_RFX_NAMETOCANONICAL ...ooiitriiiiiririeietreririe et
3.5.14 REQ_RFX_FINDFIRSToctiiiiirietetnisieteeestses ittt sttt bbb
3.5.15 REQ_RFX_FINDNEXT ..oiitiiiiiririeteenesieieiesesesisie sttt ettt
3.5.16 REQ_RFX_FINDCLOSEcooiiiiriristetitnerie et seses sttt st ssse st se et sene e sssnns
3.6 ENVITONMENE FEOUESESeitiiiitiieteietereet ettt b et
3.6.1REQ ENV_GET VAR ..ooorieeeeeeeeeteeeeeeseeeees s ses s sssssasssesssss s ssssssassesssss s sesssss s s ssssssnnes
3.6.2 REQ _ENV_SET_VAR ottt
A Lol g (o T =0 (11 =
3. 7.1 REQ _FILE_INFO_GET_DATE ..ottt e
3. 7.2 REQ _FILE_INFO_SET_DATE ..ottt
3.8 Asynchronous DebUJQING MEOUESEScc.ceuerueruirierierierieiiereereeesiesesie st saesbesbeseessesesee e e e s e s e ssessessesnens
3.8 1 REQ _ASYNC GO ..ottt sttt ettt sttt sttt st b et se bbb et et be s
3.8.2REQ _ASYNC _STEP ...ttt bbbkttt ettt es
3.8.3 REQ _ASYNC POLL ..oeitiiiiiiieteiesires ettt sttt tsesene s
3.8 4 REQ _ASYNC _STOP ...ttt ettt se st e st se e e s e sesenesessesenesesaesene e sessesenees
3.85REQ ASYNC ADD BREAKooiieeeeeeeeeeeeeeteesesesees e sssssssses s sssss s ssssssssssssssssssnsens
3.8.6 REQ_ASYNC_REMOVE_BREAKcioiirieiirertere e
3.9 NoN-blocking Thread FEQUESEScccvviiiieirie ettt ettt e st ese e e enae e e e enens
3.9.1 REQ RUN_THREAD_INFO ..ottt
3.9.2 REQ_ RUN_THREAD_GET_NEXT ..octitririeieeririsieitesesisieie st
3.9.3REQ_RUN_THREAD_GET_RUNTIMEciitiiiiiieeerrs et
3.9.4 REQ RUN_THREAD _POLL ...ootitiitiririeiet ettt
3.9.5 REQ RUN_THREAD_SET ..ottt sttt st st st s
3.9.6 REQ RUN_THREAD_GET_NAMEooiiiiiiiirietetre ettt
3.9.7 REQ RUN_THREAD _STOPooooeeeeeeeeeeeieeeeeeeesesesesssesssssssssessassssssssssssssssssssssssssessssssnsssnsens
3.9.8REQ RUN_THREAD _SIGNAL_STOPoovveeireeeeeeeeeeteeseeesessesssessesssssssssesssnssssssssssssnsens
O 0= o= o T 1=] (= o (1= £
3.10.1 REQ_CAPABILITIES GET_EXACT_BP ..o
3.10.2 REQ_CAPABILITIES _SET_EXACT_BP ..ot

4 System DEPENTENt ASPECEScooeierereriieterie sttt sttt ettt et h e bt s aesbe b e besae st et seene e e e e et et ene e e aenbenas
A1 Trap FIIESUNAEr DOS ...ttt ettt b e bt s b e b et e se e beneese e s e s e e e e eneas

58
58
59
59
59
60
60
61
61
61
62
62
62
63
63
63

64
64
65
65
65
66
67
67
67
67
68
68
68
68
68
68
69
69
69
69
70
70
70
70
70
70
71
71
71
71
71
72

73
73

4.2 Trap Files Under OS/2

Table of Contents

A.3Trap FIESUNAEr WINAOWS. ..ottt s bbbt e se et e e b s b sneene
44 Trap FilesUnder WINAOWS NT.coiiiiieiret et

4.5 Trap Files Under QNX

4.6 Trap Files Under Netware 386 0F PENPOINTccoveiriiiirieiiineeeeee e

Overlay Manager Interface VERSION 3.0ooviiiiiiiise s et eee e ettt st sae e e sae e eneeneeneens

1 Overlay manager interface ...

R I 0 5 (010 Lo 1]

1.2 The Handler Routine ...
121 GET_STATE SIZ

B et

1.2.2 GET_OVERLAY _STATE ovvveeeeeeeeeeeeesesseeseeeessessesssssesessssssssesssssessssssssssssessssssssesessssessssssseses
1.2.3 SET_OVERLAY _STATE .cooovveeeeeeeseeeeeeeeeeeeeeeeeseesssseeeeseeseseeeesssseseeesssseeseeseesssseeessssseeeseesessen
1.2.4 TRANSLATE VECTOR _ADDR .ovvooooeeeeeeeeoseseeseeeeeesssesssssssessssessssessssesssssssessessssssseseessssssens
1.2.5 TRANSLATE_RETURN_ADDR ..ooooooeioeeeeeeeeseeeseeeeeesseeeseseeessssessseeessseesssesessssesssesesseseseseees
1.2.6 GET_OVL_TBL_ADDR ...oiovveeeeeeeeeeeeeeeeeeeeseeeeseeseesseesesssessssesesssesseseessesesssseseseseseeeesessseseees
1.2.7 GET_MOVED_SECTION ..covvoeeeeeeeeeesesseeseeeesesseesseeesesseseseeesssesesssseeesesssessseesesseesseeesessseees
1.2.8 GET_SECTION_DATA oooeeeeeeeeeeeeeeeeeeeeseeeseeeeeesssessseeeseeseessseeeeesesessesesesessessseeseseeesseeeseseseseees

1.3 Overlay Table Structure

73
74
74
74
75

77

79
79
80
80
80
80
81
81
81
82
82
83

WATCOM Debugging Information
Format VERSION 4.0

WATCOM Debugging Information Format VERSION 4.0

1 Debugging Information Format

This document describes the object and executable file structures used by the Open Watcom Debugger to
provide symbolic information about a program. Thisinformation is subject to change.

Note that version 4.0 of the Open Watcom debugger supports the DWARF and CodeView symbolic
debugging information formats in addition to the format described in this document. For the purposes of
discussion, this format will be known asthe "WATCOM" format. DWARF is now the primary format used
by Open Watcom compilers. Support for generating the WATCOM format will probably remain but is
only useful for debugging DOS overlays.

Before reading this document you should understand the Intel 8086 Object Module Format (OMF). This
format is described in the Intel document 8086 Relocatable Object Module Formats and also the October
1985 issue of PC Tech Journal.

Responsibility for the Intel/Microsoft OMF specification has been taken over by the Tools Interface
Standards (TI1S) Committee. The TIS standards (including the OMF spec) may be obtained by phoning the
Intel literature center at 1-800-548-4725 and asking for order number 241597.

This document is for the Open Watcom Debugger version 4.0 (or above.)

Debugging Information Format 3

WATCOM Debugging Information Format VERSION 4.0

4 Debugging Information Format

2 Object file structures

The compiler isresponsible for placing extrainformation into the object file in order to provide symbolic
information for the Open Watcom Debugger. There are three classes of information, each of which may be
present or absent from the fileindividually. These classes are line number, type and local symbol
information.

For the Open Watcom C compiler, line number information is provided when the "/d1" switch is used and
all three classes are provided when the "/d2" switch is used.

2.1 Version number and source language identification

Since there may be different versions of the type and local symbol information, and there may be multiple
front-ends a specidl OMF COMENT record is placed in the object file. It has the following form:

conment _cl ass = Oxfe

"D

maj or _ver si on_nunber (char)
m nor _ver si on_nunber (char)
sour ce_| anguage (string)

Thecoment _cl ass of Oxfeindicates alinker directive comment. The character 'D’ informs the linker
that this record is providing debugging information. The maj or _ver si on_nunber ischanged
whenever there is a modification made to the types or local symbol classes that is not upwardly compatible
with previous versions. The mi nor _ver si on_nunber increments by one whenever a change is made
to those classes that is upwardly compatible with previous versions. The sour ce_| anguage fieldisa
string which determines what language that the file was compiled from.

If the debugging comment record is not present, the local and type segments (described later) are not in

WATCOM format and should be omitted from the resulting executable file's debugging information. The
current major version is one, and the current minor version is three.

2.2 Line number information

Line number information is provided by standard Intel OMF LINNUM records. A kludge has been added
that allows for line numbers to refer to more than one source file. See the section on the "Special Line
Number Table" in the executable structures portion of the document for more details.

Line number information 5

WATCOM Debugging Information Format VERSION 4.0

2.3 Location information

A type or symbol definition may contain alocation field. Thisfield isof variable length and identifies the
memory (or register) location of the symbol in question. A location field may consist of asingle entry, or a
list of entries. Each entry describes an operation of a stack machine. The value of the location field is the
top entry of the stack after all the operations have been performed. To tell whether afield isasingle entry
or alist, thefirst byteis examined. If the value of the byte is greater than 0x80, then the field consists of a
list of entries, and the length in bytes of thelist is the value of the first byte minus 0x80. If thefirst byteis

less than 0x80, the byte is the first byte of asingle entry field. The top nibble of the first byte in each entry
isagenera location class while the low nibble specifies the sub-class.

6 Location information

Object file structures

BP_OFFSET (val ue 0x1?)
BYTE (val ue 0x10) offset byte
WORD (val ue 0x11) offset _word
DWORD (val ue 0x12) offset_dword
CONST (val ue 0x2?)
ADDR286 (val ue 0x20) nenory_l ocation_32_pointer
ADDR386 (val ue 0x21) nenory_| ocation_48_pointer
I NT_1 (val ue 0x22) const_byte
| NT_2 (val ue 0x23) const_word
I NT_4 (val ue 0x24) const_dword
MULTI _REG (val ue 0x37?)

Low ni bble is nunber of register bytes that follow - 1.
The registers are specified | ow order register first.
REG (val ue 0x4?)
Low nibble is |l ow nibble of the appropriate register val ue.
This may only be used for the first 16 registers.

| ND_REG (val ue 0x5?)
CALLOC NEAR (val ue 0x50)
CALLOC _FAR (val ue 0x51)
RALLOC _NEAR (val ue 0x52)
RALLOC FAR (val ue 0x53)

regi ster_byte
regi ster_byte,
regi ster_byte
regi ster_byte,

regi ster_byte

regi ster_byte

OPERATOR (val ue 0x67?)

I ND_2 (val ue 0x60)

I ND 4 (val ue 0x61)

| ND_ADDR286 (val ue 0x62)

| ND_ADDR386 (val ue 0x63)

ZEB (val ue 0x64)

ZEW (val ue 0x65)

MK_FP (val ue 0x66)

POP (val ue 0x67)

XCHG (val ue 0x68) stack _byte

ADD (val ue 0x69)

DUP (val ue 0Ox6a)

NOP (val ue 0x6b)
Here is the list of register nunbers:
0-AL, 1-AH, 2- BL, 3- BH, 4-CL, 5- CH, 6- DL, 7- DH
8- AX, 9-BX, 10-CX, 11-DX, 1l2-sI, 13-DI, 14-BP, 15-SP
16-Cs, 17-SS, 18-Ds, 19-ES
20- STO, 21-ST1, 22-ST2, 23-ST3, 24-ST4, 25-ST5, 26-ST6, 27-ST7
28- EAX, 29-EBX, 30-ECX, 31-EDX, 32-ESI, 33-EDI, 34-EBP, 35-ESP
36-FS, 37-GS

CONST pushes a single constant value onto the expression stack. INT_1 and INT_2 constant values are

sign-extended to four bytes before being pushed.

The OPERATOR class performs a variety of operations on the expression stack.

Location information

WATCOM Debugging Information Format VERSION 4.0

8

IND_2 Pick up two bytes at the location specified by the top entry of the stack, sign-extend to four
bytes and replace top of stack with the result.

IND 4 Replace the top of stack with the contents of the four bytes at the location specified by the
top of stack.

IND_ADDR286 Replace the top of stack with the contents of the four bytes, treated as afar pointer, at the
location specified by the top of stack.

IND_ADDR386 Replace the top of stack with the contents of the six bytes, treated as a far pointer, at the
location specified by the top of stack.

ZEB Zero extend the top of stack from a byte to adword (clear the high three bytes).
ZEW Zero extend the top of stack from aword to a dword.
MK _FP Remove the top two entries from the stack, use the top of stack as an offset and the next

element as a segment to form afar pointer and push that back onto the stack.

POP Remove the top entry from the stack.

XCHG Exchange the top of stack with the entry specified by st ack_byt e. "XCHG 1" would
exchange the top of stack with the next highest entry.

ADD Remove the top two entries from the stack, add them together and push the result.

DUP Duplicate the value at the top of the stack.

NOP Perform no operation.

REG and MULTI_REG push the'lvalue’ of the register. If they are the only entry then the symbol existsin
the specified register. To access the value of the register, you must indirect it.

BP_OFFSET locations are for variables on the stack. The values given are offsets from the BP register for
286 programs and from the EBP register for 386 programs. A BP_OFFSET could also be expressed with
the following series of operations:

MULTI _REG(1) SS
IND_2

MULTI _REG(1) EBP
| ND_4

MK_FP

INT_1 offset byte
ADD

The IND_REG location typeis used for structured return values. The register or register pair is used to
point at the memory location where the structureis returned. CALLOC means that the calling procedureis
responsible for allocating the return area and passing a pointer to it as a parameter in the specified registers.
RALLOC meansthat the called routine allocated the area and returns a pointer to it in the given registers.

Location information

Object file structures

2.4 Typing information

The Open Watcom Debugger typing information is contained in a special segment in the object file. The
segment nameis "$$TY PES" and the segment classis"DEBTYP'. To alow greater flexibility in demand
loading the typing information and also let it exceed 60K for a single module, each object file may have
multiple $$TY PES segments. Each segment is identified by an entry in the demand link table (described in
the executable file structures section). No individual segment may exceed 60K and no individual type
record may be split across a segment boundry. Also, any type which is described by multiple records
(structures, enums, procedures) may not be split across a segment boundry. Since each segment is loaded
as awhole by the debugger when demand loading, increasing the segment size requires larger amounts of
contiguous memory be present in the system. Decreasing the size of the individual segments reduces
memory requirements, but increases debugger lookup time since it has to traverse more internal structures.
The current code generator starts a new type segment when the current one exceeds 16K. The segments are
considered to be a stream of variable length definitions, with each definition being preceded by alength
byte. A number of the definitions contain indices of some form. These indices are standard Intel format,
with 0 meaning no index, 1 to 127 isrepresented in one byte, 128 to 32767 in high byte/low byte form with
the top bit on in the high byte. Definitions are given index numbers by the order in which they appear in
the module, with the first being index one. Character strings representing names are always placed at the
end of adefinition so that their length can be calculated by subtracting the name's start point from the
length of the record. They are not preceded by alength byte or followed by a zero byte.

Thefirst byte identifies the kind of the type definition that follows. The top nibble of the byteis used to

indicate the general class of the type definition (there are eight of these). The low order nibbleis used to
qualify the general type class and uniquely identify the definition type.

2.4.1 TYPE_NAME (value 0x1?)

This definition is used to give names to types. There are three sub-classes.

SCALAR (val ue 0x10) scal ar_type_byte, nane

SCOPE (val ue 0x11) nane

NANVE (val ue 0x12) scope_i ndex, type_index, nane
CUE_TABLE (val ue 0x13) tabl e offset dword

ECF (val ue 0x14)

SCALAR isused to give anameto abasic scalar type. It can also be used to give atype index to a scalar
type without a name by specifying the null name. The scal ar _t ype_byt e informs the Open Watcom
Debugger what sort of scalar item is being given aname. It has the following form:

BIT: 76543210
I |
|| | +---- +--- size in bytes - 1
| oo class (000 - integer)
| (001 - unsigned)
| (010 - fl oat)
| (011 - void (size=0))
| (100 - conpl ex)
oo unused

To create an unnamed scalar type, for use in other definitions, just use a zero length name.

Notes: BASIC would have been a better name for this, since complex is not a scalar type, but the name was
chosen before complex support was added.

Typing information 9

WATCOM Debugging Information Format VERSION 4.0

SCOPE is used to restrict the scope of other type names. A restricted scope type name must be preceded by
its appropriate scope name in order for the Open Watcom Debugger to recognize it as atype name. Thisis
useful for declaring C structure, union, and enum tag names. Y ou declare SCOPE names of "struct”,
"union”, and "enum" and then place the appropriate value in the scope_i ndex field of the NAME record
when declaring the tag.

NAME gives an arbitrary type aname. Thefield, scope_i ndex , is either zero, which indicates an
unrestricted type name, or is the type index of a SCOPE definition, which means that the type name must
be preceded by the given scope name in order to be recognized.

The next two records are kludges to allow OMF line numbers to refer to more than one source file. Seethe
section of on the "Special Line Number Table" in the executable structure for more details.

CUE_TABLE isfollowed by t abl e_of f set _dwor d which gives the offset in bytes from the begining
of the typing information for a module to the special line number table. If thisrecord is present, it must be
in the first $$TY PES segment for the module and preferably as close to the begining of the segment as
possible.

EOF marks the end of the typing information for the module and the begining of the special line number
table.

2.4.2 ARRAY (value 0x2?)

This definition is used to define an array type. There are 6 sub-classes.

BYTE | NDEX (val ue 0x20) hi gh_bound _byte, base type_index
WORD | NDEX (val ue 0x21) high _bound word, base type_ index
LONG | NDEX (val ue 0x22) hi gh_bound_dword, base_ type_index
TYPE_I NDEX (val ue 0x23) index_type_index, base_type_index
DESC | NDEX (val ue 0x24) scal ar _type_byte, scal ar_type_byte,

bounds_32_poi nter, base_type_i ndex
DESC | NDEX 386 (val ue 0x25) scal ar_type_byte, scal ar_type_byte,
bounds_48 poi nter, base_type_i ndex

BYTE_INDEX, WORD_INDEX, LONG_INDEX are all used to describe arestricted form of array. If one
of these formsis used then the index type is an integer with the low bound of the array being zero and the
high bound being whatever is specified.

The DESC_INDEX form is used when the array bounds are not known at compiletime. The
bounds_32_ poi nt er isafar pointer to astructurein memory. Thetype and size of thefirst field is
given by thefirst scal ar _t ype_byt e and indicates the lower bound for theindex. The second field's
type and sizeis given by the second scal ar _t ype_byt e. Thisfield givesthe number of elementsin
the array.

The DESC_INDEX_386 isthe same as DESC_INDEX except that a 48-bit far pointer is used to locate the
structure in memory.

2.4.3 SUBRANGE (value 0x3?)

This definition is used to define a subrange type. There are 3 sub-classes.

10 Typing information

Object file structures

BYTE _RANGE (val ue 0x30) | o_bnd _byte, hi_bnd _byte, base_type_ index
WORD RANGE (val ue 0x31) lo_bnd word, hi_bnd word, base type_ index
LONG RANGE (val ue 0x32) | o_bnd _dword, hi_bnd _dword, base type_ index

If the base typeis unsigned then the low and high bounds should be interpreted as containing unsigned

guantities, otherwise they contain integers. However, the decision to use the byte, word, or long form of
the definition is always made considering the high and low bounds as signed numbers.

2.4.4 POINTER (value 0x4?)

This definition is used to define a pointer type. There are 10 sub-classes.

NEAR (val ue 0x40) base type_index [, base | ocator]
FAR (val ue 0x41) base_type_index
HUGE (val ue 0x42) base_type_index
NEAR _DEREF (val ue 0x43) base type_index [, base | ocator]
FAR DEREF (val ue 0x44) base_type_index
HUGE_DEREF (val ue 0x45) base_type_index
NEAR386 (val ue 0x46) base_type_index [, base_ | ocator]
FAR386 (val ue 0x47) base_type_index

NEAR386_ DEFREF (val ue 0x48) base_type_ index [, base_I| ocator]
FAR386_DEREF (val ue 0x49) base_type_i ndex

When asymbol is one of the *_DEREF types, the Open Watcom Debugger will automatically dereference
the pointer. This"hidden" indirection may be used to define reference parameter types, or other indirectly
located symbols. The* _DEREF types have now been superceeded by location expressions. They should
no longer be generated. The NEAR* pointer types all have an optional base_| ocat or field. The
debugger can tell if thisfield is present by examining the length of the debug type entry at the begining of
the record and seeing if there are additional bytes after the base_t ype_i ndex field. If there are more
bytes, the base_| ocat or isalocation expression whose result is an address, the value of which isthe
base selector and offset value when indirecting through the pointer (based pointers). The contents of the
based pointer variable are added to result of the location expression to form the true resulting address after
an indirection. The address of the pointer variable being indirected through is pushed on the stack before
the location expression is evaluated (needed for self-based pointers). If the base_| ocat or fieldisnot
present, the debugger will use the default near segment and a zero offset.

2.4.5 ENUMERATED (value 0x5?)

This definition is used to define an enumerated type. There are 4 sub-classes.

LI ST (val ue 0x50) #consts_word, scal ar_type_byte
CONST_BYTE (val ue 0x51) val ue_byte, nane

CONST_WORD (val ue 0x52) val ue_word, nane

CONST_LONG (val ue 0x53) val ue_dword, nane

LIST isused to inform the Open Watcom Debugger of the number of constants in the enumerated type and
the scalar type used to store them in memory. It will be followed immediately by all the constant
definitions for the enumerated type. See TYPE_NAME for adescription of the scal ar _t ype_byt e.

CONST_BYTE, CONST_WORD, and CONST_L ONG define theindividua constant values for an
enumerated type. The type of the constant is provided by the preceeding LIST definition. The decision to
use the byte, word, or long form of the definition is made always by considering the value as a signed
number. The CONST_* definition records are not counted when determining type index values.

Typing information 11

WATCOM Debugging Information Format VERSION 4.0

The LIST record and its associated CONST_* records must all be contained in the same $$TY PES
segment.

2.4.6 STRUCTURE (value 0x6?)

This definition is used to define a structure type. There are 10 sub-classes.

LI ST (val ue 0x60) #fields_word [, size_dword]

FI ELD BYTE (val ue 0x61) offset_byte, type_index, nane

FI ELD WORD (val ue 0x62) offset _word, type_index, nane

FI ELD LONG (val ue 0x63) offset _dword, type_index, nane

BIT BYTE (value 0x64) offset byte, start _bit_byte, bit_size byte
type_i ndex, nane

BIT WORD (value 0x65) offset _word, start _bit_byte, bit_size byte
type_i ndex, nane

BIT LONG (value 0x66) offset _dword, start_bit_byte, bit_size byte
type_i ndex, nane

FI ELD_CLASS (v 0x67) attrib_byte, field_|ocator, type_index, nane

BIT_ CLASS (value 0x68) attrib byte, field_ locator, start_bit_byte,
bit _size byte, type_index, nane

I NHERI T_CLASS (v 0x69) adjust | ocator, ancestor_type_ index

LIST isused to introduce a structure definition. It isfollowed immediately by all the field definitions that
make up the structure. The optional si ze_dwor d givesthe size of the structure in bytes. If it isnot
present, the debugger calculates the size of the structure based on field offsets and sizes.

FIELD_BYTE, FIELD_WORD, FIELD _LONG, and FIELD_CLASS define asinglefield entry ina
structure defintion.

BIT_BYTE, BIT_WORD, BIT_LONG, and BIT_CLASS define abit field in astructure. :The
FIELD CLASSand BIT_CLASS records are used for defining fieldsinaC++ class. The attri b_byte
contain a set of bits describing attributes of the field:

BIT. 76543210
| I B
| | | | | +-- internal
| | 1] +---- public
| | | +------- pr ot ect ed
| | +--------- private
oo e oo oo unused

Aninternal field is one that is generated for compiler support. It isnot normally displayed to the user. The
other bits have their usual C++ meanings.

Thefi el d_I ocat or isalocation expression describing how to calculate the field address. Before
begining to evaluate the expression, the debugger will implicitly push the base address of the classinstance
onto the stack. The following is an example of the location expression used to calculate an ordinary field at
offset 10 from the start of the class:

INT_1 10
ADD

The INHERIT_CLASS record indicates that a particular class should inherit al the fields specified by

ancest or _type_i ndex. Thisfield must point at either a STRUCTURE LIST record or aTYPE
NAME that eventually resolvesto a STRUCTURE LIST. The adj ust _| ocat or isalocation

12 Typing information

Object file structures

expression that tells the debugger how to adjust the field offset expressions in the inherited classto their
proper values for a class of thisinstance.

TheFIELD_*, BIT_*, and INHERIT_CLASS records are not counted when determining type index values.
A C union, or Pascal variant record is described by having a number of fields all beginning at the same
offset. The Open Watcom Debugger will display the fields in the reverse order that the records define

them. This means that ordinarily, the records should be sorted by descending offsets and bit positions.

The LIST record and it's associated field descriptions must all be contained in the same $$TY PES segment.

2.4.7 PROCEDURE (value 0x7?)

This definition is used to define a procedure type. There are 4 sub-classes.

NEAR (val ue 0x70) ret_type_index, #parns_byte
{, parm type_i ndex}
FAR (value 0x71) ret _type_index, #parns_byte

{, parm_type_i ndex}

NEAR386 (val ue 0x72) ret_type_index, #parns_byte
{, parm type_i ndex}

FAR386 (val ue 0x73) ret_type_index, #parns_byte
{, parm_type_i ndex}

EXT_PARMS (val ue 0x74) {, parmtype_i ndex}

The EXT_PARMS sub-classis used when there are too many parameter typesto fit into one PROCEDURE
record. This condition can be recognized when the #parms_byte indicates there are more parameter types
than fit into the record according to the length field at the beginning. In this case the remaining parameter
types are continued in the record immediately following, which will always be of type EXT_PARMS. The
EXT_PARMS record must be contained in the same $$TY PES segment as the preceeding procedure
record.

2.4.8 CHARACTER_BLOCK (value 0x8?)

Items of type CHARACTER_BLOCK are length delimited strings. There are 4 sub-classes.

CHAR BYTE (val ue 0x80) length byte

CHAR_WORD (val ue 0x81) Il ength word

CHAR_LONG (val ue 0x82) | ength_dword

CHAR | ND (val ue 0x83) scal ar_type_byte, length 32 pointer
CHAR | ND 386 (val ue 0x84) scal ar_type_byte, [ength_48 pointer
CHAR I ND LOC (val ue 0x85) scal ar_type_byte, address_| ocator

The CHAR_BYTE, CHAR_WORD, and CHAR_LONG forms are used when the length of the character
string is known at compile time. Even though the length given is an unsigned quantity, the decision on
which form to use is made by considering the value to be signed. The CHAR_IND form is used when the
length of the string is determined at runtime. The | engt h_32_poi nt er givesthefar address of a
location containing the length of the string. The size of thislocation is given by the

scal ar _type_byt e. The CHAR_IND_386 form is the same as CHAR_IND except that the location of
the length is given by a48-bit far pointer. The CHAR_IND_LOC form is the same as CHAR_IND except
that the address of the length is given by alocation expression.

Typing information 13

WATCOM Debugging Information Format VERSION 4.0

2.5 Local symbol information

The Open Watcom Debugger local symbol information is contained in a special segment in the object file.
The segment nameis"$$SYMBOLS" and the segment classis"DEBSYM". The segment is considered to
be a stream of variable length definitions, with each definition being preceded by alength byte. A number
of the definitions contain indices of some form. Theseindices are standard Intel format, with O meaning no
index, 1to 127 is represented in one byte, 128 to 32767 in high byte/low byte form with the top bit onin
the high byte. Character strings representing names are always placed at the end of a definition so that their
length can be calculated by subtracting the name's start point from the length of the record. They are not
preceded by alength byte or followed by a zero byte.

Thefirst byte identifies the kind of the symbol definition that follows. The top nibble of the byteis used to
indicate the general class of the symbol definition. The low order nibble is used to qualify the general
definition class.

Symbol definitions are used to provide the Open Watcom Debugger with the location and scoping of source
language local symbols. There are two general classes of symbol definition, one for variables and one for
code.

2.5.1 VARIABLE (value 0x1?)

This definition is used to define the location of a data symbol. There are 4 sub-classes.

MODULE (val ue 0x10) nenory_ | ocation_32 pointer, type_index, nane
LOCAL (val ue 0x11) address_locator, type_index, nane
MODULE386 (val ue 0x12) menory_| ocation_48 pointer, type_index, name
MODULE_LOC (val ue 0x13) address_|l ocator, type_index, nane

MODULE defines either an exported, domestic, or imported variable in the module. It is not necessary to
generate symbol information for an imported variable since the Open Watcom Debugger will look for local
symbol information in the module which defines the variable if required.

LOCAL defines asymbol that islocal to acode block or procedure. The defining block isthe first one

previous to this definition. Local symbols only "exist" for the purpose of the Open Watcom Debugger
lookups when the program is executing in a block which defines the symbol.

2.5.2 CODE (value 0x2?)

This definition is used to define an object in the code. There are 6 sub-classes.

14 Local symbol information

Object file structures

BLOCK (val ue 0x20) start_offset_word, size word,
parent bl ock_of f set
NEAR_RTN (val ue 0x21) <BLOCK>, pro_size byte, epi_size byte,

ret _addr_offset_word, type_index,
return_val | oc, #parns_byte
{, parm_| ocation}, name

FAR _RTN (val ue 0x22) <BLOCK>, pro_size_byte, epi_size_byte,
ret _addr_offset_word, type_index,
return_val | oc, #parns_byte
{, parm.| ocation}, nane

BLOCK 386 (val ue 0x23) start_offset _dword, size_dword,
parent _bl ock_of f set

NEAR RTN 386 (val ue 0x24) <BLOCK 386>, pro_size byte, epi_size byte,
ret _addr_offset _dword, type_ index,
return_val | oc, #parns_byte
{, parm_| ocation}, name

FAR RTN 386 (val ue 0x25) <BLOCK 386>, pro_size_byte, epi_size_ byte,
ret _addr_offset_dword, type_index,
return_val | oc, #parns_byte
{, parm.location}, nane

MEMBER _SCOPE (val ue 0x26) parent bl ock offset, class_type_ index
[obj _ptr_type byte, object | oc]

BLOCK isusedtoindicate ablock of code that containslocal symbol definitions. Thefield
par ent bl ock_of f set isused to tell the Open Watcom Debugger the next block to search for a
symbol definition if it isnot found in thisblock. Thefield is set to zero if there is no parent block.

NEAR_RTN and FAR_RTN are used to specify aroutine definition. Notice that the first part isidentical to
acode block definition. Ther et _addr _of f set _wor d isthe offset from BP (or EBP) that the return
addressislocated on the stack. The #par ms_byt e and par m | ocat i on following are only for those
parms which are passed in registers. The remainder of the parms are assumed to be passed on the stack.

The MEMBER_SCOPE record is used for C++ member functions. It introduces a scope where the the
debugger looks up the fields of the classidentified by cl ass_t ype_i ndex asif they were normal
symbols. If theobj ptr_type_ byt e and obj ect | oc location expression portions of the record are
present, it indicates that the function has a C++ "this" pointer, and all fields of the class structure are
accessable. The location expression evaluates to the address of the object that the member function is
manipulating. The obj _ptr_t ype_byt e contains avaue from the low order nibble of a POINTER
typerecord. It indicatesthe type of ‘this’ pointer the routine is expecting. 1.e.:

Value Definition

0 16-hit near pointer
1 16-bit far pointer
6 32-bit near pointer
7 32-bit far pointer

If the portions following the cl ass_t ype_i ndex are absent from the record, the routine is a static
member function and only has access to static data members.

Local symbol information 15

WATCOM Debugging Information Format VERSION 4.0

To use thisrecord, the member function’s par ent _bl ock_of f set is pointed at the MEMBER_SCOPE
record, and the MEMBER_SCOPE’s par ent _bl ock_of f set field ispointed at what the member
function would normally be pointing at. In effect, a new block scope has been introduced.

The* 386 versions of the records are identical to their 286 counterparts exceptsthat the st art _of f set
,Si ze ,andret_addr_of f set fields have been widened to 32 bits.

Notes: There should be a better mapping of parm number to parm location. There isno provision for
Pascal calling conventions (reversed parm order) or other strangeness.

The BLOCK definition containsastart _of fset _word (or start_of fset _dwordina
BLOCK_386). Thisisthe offset from a given memory location provided by NEW_BASE entries and
indicates the address of the start of executable code for the block.

All the code location definitions are assumed to be sorted in order of increasing end offsets (start offset +
size). Thisensures that the first scope that the debugger encountersin atraversal of the symbolic
information is the closest enclosing scope.

2.5.3 NEW_BASE (value 0x3?)

ADD PREV_SEG (val ue 0x30) seg_i ncrement_word
SET_BASE (val ue 0x31) nenory_l ocation_32_pointer
SET_BASE386 (val ue 0x32) menory_| ocati on_48 pointer

For ADD_PREV_SEG, the specified amount is added to the segment value of the code start address of the
module. The code start offset isreset to zero. All BLOCK definitions occuring after thisitem are relative
tothe new value. After aSET_BASE or SET_BASE386 all BLOCK definitions are relative to the memory
location that is given by the record.

Notes: Avoid the use of the ADD_PREV_SEG record. Itsoperationisonly validinreal mode. Itis
included for backwards compatiblity only.

16 Local symbol information

3 Executable file structures

Thelinker is responsible for processing the debugging information contained in the object files and some of
itsinternal structures and appending them to the executablefile.

After linking, the executable file looks like this:

o e e e e e e e oo +
| _ |

| EXE file |

I I

[} et o

I I

| Overl ays |

I I

[Sl Y

| Any O her Stuff |

+=======================+<--- start of debugging information
| source | anguage table |

L +

| segnent address table |

o oo +

| | <\

| section debug info | +-- repeated for each overlay & root
| | </

g +

| rmaster debug header |

4===========—=—=—=—=========4<--- end of file

The section marked as "EXE file" is the normal executable file. All debugging information is appended to
the end of the file, after any overlay sections or other information. The mast er debug header begins
at afixed offset from the end of thefile, and provides the location of the remainder of the debug
information. The sour ce | anguage t abl e contains the source languages used by the program. The
section debug i nf o isrepeated once for the root and each overlay section defined in the executable.
It contains all the debugging information for all object modules defined in the root or a particular overlay
section. Thesecti on debug i nf o isfurther divided into a number of debugging information classes,
these will be explained later. All offsetsin the debugging information that refer to other information items
are relative to the start of the information, the start of a section of information, or the start of a class of the
information. In other words, the information is not sensitive to its location in the executablefile.

3.1 Master debug header

The master debug header allows the Open Watcom Debugger to verify the fact that there is debugging
information, to locate the other sections and to verify that it is capable of handling the version of debugging
information. The master header structureis asfollows:

Master debug header 17

WATCOM Debugging Information Format VERSION 4.0

struct master_dbg header {
unsi gned_16 si gnat ure;
unsi gned_8 exe_mmj or_ver;
unsi gned_8 exe_minor_ver;
unsi gned_8 obj _maj or_ver;
unsi gned_8 obj _m nor_ver;
unsi gned_16 | ang_si ze;
unsi gned_16 segment _si ze;
unsi gned_32 debug_si ze;

}s

Thesi gnat ur e word contains the value 0x8386. Thisisthe first indication to the Open Watcom
Debugger that there is debugging information present. The exe_maj or _ver field contains the major
version number of the executable file debugging information structures. The major version number will
change whenever there is amodification to these structures that is not upwardly compatible with the
previous version. The current mgjor version number isthree. The exe_nmi nor _ver field containsthe
minor version number of the executable file debugging information structures. The minor version humber
increments by one whenever there is a change to the structures which is upwardly compatible with the
previous version. The current minor version number is zero. This meansthat in order for the Open
Watcom Debugger to process the debugging information the following must be true:

1. FILE exedebug info major version == debugger exe debug info major version
2. FILE exe debug info minor version <= debugger exe debug info minor version

Theobj maj or _ver field contains the major version number of the object file debugging information
structures (internal format of the types and local symbol information). The major version number will
change whenever there is a modification to these structures that is not upwardly compatible with the
previous version. The current mgjor version number isone. The obj _ni nor _ver field contains the
minor version number of the object file debugging information structures. The minor version number
increments by one whenever there is a change to the structures which is upwardly compatible compatible
with the previous version. The current minor version number isthree. This meansthat in order for the
debugger to process the debugging information the following must be true:

1. FILE obj debug info major version == debugger obj debug info major version
2. FILE obj debug info minor version <= debugger obj debug info minor version

These two fields are filled in by the linker by extracting the version information from special debug
comment record in the processed object files. |f two object filesin the link contain different major version
numbers, the linker should report an error or warning and not process the type or local symbol information
for the'incorrect’ file. The minor version number placed in the master header should be the maximum of
all the minor version numbers extracted from the object files.

Thel ang_si ze field contains the size of the source language table at the beginning of the debug
information. The segnent _si ze field informs the debugger of the size, in bytes, of the segment address
table. Thefield, debug_si ze, givesthe total size of the debugging information, including the size of the
master header itself. This allows the debugger to calculate the start of the debugging information by
subtracting the value of the debug_si ze field from the location of the end of file. This gives the start of
the source language and segment address tables, whose sizes are known from the master header. Once the
location of the first section of debugging information is determined, it can be processed. Within the section
information isaindicator of itstotal size, which alows the debugger to find the start of the next section,
and process that aswell. This continues until all the debug sections have been processed. the debugger

18 Master debug header

Executable file structures

knows there are no more debug sections to process when the indicated start of a section is the same asthe
start of the master header.

3.2 Source language table

The source language table is merely the collection of unique source languages used in the program. The
strings are extracted from the special debug comment records in the object files and placed in this section
one after another with zero bytes separating them.

3.3 Segment address table

The segment address tableis an array of all the unique segment numbers used by the executable.
Essentially, any segment value that would appear in the map file will be represented in the table.

3.4 Section debug information

Eachsecti on debug i nf o containsthe following:

o m e e e +
| secti on header |
o e e a e +
| | ocal synbol s |
o m e e e e e e e oo +
| types |
o e e e e +
| i ne nunmbers |
Fom e e aa - +
| nodul e info |
o m e e e +
| gl obal synbol s |
o e e a e +
| address info |
o m e e e e e e e e - +

Thelocal symbols, types and line numbers classes are demand loaded by the debugger as it requires pieces
of the classes for various modules. The module info, global symbols, and address info classes are
permanently loaded by the debugger at the start of a debugging session. The global symbol, module, and
address info classes have no size restriction, however thereis alimit of 65536 modules per section and
there are some restrictions on how the addressinfo class may belaid out. These restrictions are described
in the section explaining the address info class.

3.4.1 Section debug header

The section header class alows the debugger to determine the size of the section information and the
location of the permanently loaded classes. The header structureis as follows:

Section debug information 19

WATCOM Debugging Information Format VERSION 4.0

struct section_dbg header {
unsi gned_32 nod_of fset;
unsi gned_32 gbhl _of f set;
unsi gned_32 addr _of f set;
unsi gned_32 section_si ze;
unsi gned_16 section_id;

b
Thenod_of f set , gbl _of f set ,and addr _of f set fields are offsets, from the beginning of the
section debug header to the module info, global symbol, and addressinfo classes of debugging information.
Thesecti on_si ze field isthe size of the debugging information for the section, including the section
header. The following conditions must hold true for the debugger to recognize the debugging information
asvalid:

1. mod_offset < ghl_offset

2. gbl_offset < addr_offset

3. addr_offset < section_size

Thesecti on_i d field contains the overlay number for this section. Thisis zero for the root.

3.4.2 Local symbols class

Thelocal symbols segments are processed normally by the linker, except that the data in the segmentsis
placed in this section, no relocation entries are output for any fixups in the data and fields in the module
structure are intialized to point to the beginning and size of each object file's contribution to the section.

3.4.3 Types class

The type segments are processed normally by the linker, except that the data in the segments is placed in
this section, no relocation entries are output for any fixups in the data and fields in the module structure are
intialized to point to the beginning and size of each object file's contribution to the section.

3.4.4 Line numbers class

The LINNUM records for each object file are collected and placed in this class using an array of arrays.
Thetop level array isthe following structure:

struct |ine_segment {

unsi gned_32 segnent ;
unsi gned_16 num
line_info [ine[l];

}

Thesegnent field contains a offset, from the start of the address info class, to an addr_info structure (see
the address info class description). This provides the segment value for the array of line_info’s following.
The next field, num, provides the number of line_info’sinthearray. The | i ne isavariable size array
containing the following structure:

20 Section debug information

Executable file structures

struct line_info {
unsi gned_16 | i ne_nunber;
unsi gned_32 code_of fset;

b

Thel i ne_nunber contains the source line number whose offset is being defined. |If the top bit of the
line number is on, thisline number refersto an entry in the special line number table. See the "Special Line
Number Table" section for more details. The code_of f set field contains the offset from the begining of
the module for the first instruction associated with the line number. To get the true code address for the
instruction you must add code_of f set to the address given by the segnent field in the line_segment
structure. All the instructions up to the next element’s code_of f set , or the end of the object file's code
for that segment if thereisno next code_of f set are considered to be part of the | i ne_nunber source
line. Within each line_segment structure the line_info array is assumed to be sorted in order of ascending
code_of f set. The module structure for the object file contains fields which indicate the start and size

of the line_segment array within the class.

Each line_segment structure may not exceed 60K, however the total amount of line information for a
module may exceed 60K with multiple line_segment structures and multiple entries in the demand link
table (described in the module information section).
To aobtain aline number from an address, the debugger performs the following steps
1. Given an address, the defining module is found from the address information class. This allows
the debugger to find and load the line number information for that module, if it is not already
loaded.
2. Walk down the array of line_segment structures until one with the appropriate segment is found.

3. Binary searchthe array of line_info’suntil the proper one islocated.

3.4.4.1 Special Line Number Table

The OMF line number record does not allow for more than one source file to be referenced in an object file.
This kludge gets around the restriction. If thetop bitisonin | i ne_nunber thanthat field refersto an
entry in the special line number table. The debugger then searches the typing information for the module
for a CUE_TABLE record. If it finds one, it uses the offset given to find the begining of the table in the
typing information. The table looks like this:

Section debug information 21

WATCOM Debugging Information Format VERSION 4.0

/* cue entry table */
unsi gned_16 cue_count

struct {

unsi gned_16 cue;

unsi gned_16 fno;

unsi gned_16 |i ne;

unsi gned_16 col um;
} cue_entry; /* repeated cue_count tines, sorted by the 'cue’ field
*/

/* file nanme index table */
unsi gned_16 fil e_count

struct {
unsi gned_16 i ndex;
} file_nane_index_entry; /* repeated file_count tines */

/* file name table */
A list of zero term nated source file nanes

To find the correct cue entry giventhevalueinal i ne_nunber , search the cue_ent r y tablefor the
cue which satisfies the following:

cue_entry[entry].cue <= (line_nunber & Ox7fff) <
cue_entry[entry+1]. cue

Once you have the cue entry, you can extract the true line number by:

line = cue_entry[entry].line + (line_nunber & Ox7fff)
- cue_entry[entry]. cue;

Thefile nameisfound by:

fnane_index = file_name_index_tabl e[cue_entry[entry].fno]
fnane = file_nane_table[fnane_index]

The code offset and segment arefoundinthe | i ne_i nfoand | i ne_segnent structures asusual.

3.4.5 Module information class

The module information classis built from the linker’ s list of object files that it processes to build the
executable file, which are either specified on the linker command line or extracted from libraries. All the
modules are implicitly given an index number by their order in the class. Theseindex numbers start at zero
and are used by other classes to identify individual modules. The module structure contains the following
fields:

struct nmod_info {
unsi gned_16 | anguage;
demand_i nfo | ocal s;
demand_i nfo types;
demand_i nfo |ines;
unsigned_8 nane[1];

22 Section debug information

Executable file structures

Thel anguage field contains an offset, from the start of the source language table to the string of the
source language for thismodule. The name field isavariable length array of characters with the first
element of the array being the length of the name. The remaining charactersidentify the source file the
compiler used to generate the object file (e.g. "C\DEV\WV\C\DBGMAIN.C"). The source file nameis
obtained from the THEADR record of the object file. the debugger uses the file name part of thefile
specification asits "module name". Theremaining fields, | ocal s ,types ,and | i nes areastructure
type which define the location and size of this modul€e’ s demand loaded information from those classes.
The structure contains these fields:

struct demand_info {
unsi gned_32 of fset;
unsigned_16 num entries;

b

The of f set field contains the offset from the beginning of the debugging information section to first
entry in the demand link table containing the information for that particular demand load class. The

num ent ri es field gives the number of contiguous entries in the demand link table that are present for
the modul€’' s demand load information of that particular class.

The demand link table consists of an array of unsigned 32 offsets, which are relative from the debugging
information section, to the individual demand info class data blocks. The array isin ascending order of
offsets so that the debugger may calculate the size of a particular demand load data block by subtracting the
offset of the next data block from the offset of the current datablock. Thisimpliesthat thereis an extra
entry at the end of the table whose offset points to the end of the final demand load data block so that the
debugger aways hasa’next’ link entry to calculate size of adata block with. The size of each individual
block may not exceed 60K. A picture may be useful here to show how al the pieces fit together:

nodul e i nfo

cl ass
- +
| | demand | i nk
c. tabl e demand info
| | L + data bl ock
| | | | LSRR +
S + +--->| |
| offset | ---+ | | | -
oo o oo ol |
| #entri es] +---->| offset |---+ Fo----- +
Fomm e o - + Fomm e o - +
| | | |
| | | | |
L + L + demand info
| offset |---+ data bl ock
S + | S e +
| ISR |
| | | |
Fomm e o - + Fommm o - +

When the debugger wishes to look something up in a demand load class for amodule. It usesthe offset in
the mod_info structure to locate the array entry in the demand link table which has the offset for the first
info datablock. It then loads the first block and searches it for the information. If the information is not
present in that block, it movesto the next entry in the demand link table and repeats the above process.
This continues until all the entries for that particular class of the module (identified by the num entri es
field in the mod_info structure) have been examined, or the information is located.

Section debug information 23

WATCOM Debugging Information Format VERSION 4.0

3.4.6 Global symbols class

All PUBDEF records processed by the linker create entriesin this class. Thefieldsin the structure are:

struct gbl _info {

addr 48 ptr addr ;

unsi gned_16 nod_i ndex;
unsi gned_8 ki nd;

unsi gned_8 nane[1] ;

b

Theaddr field contains the location in memory associated with this symbol. The value placed in thisfield
is the same that the linker placesin the map file (i.e. unrelocated, asif the executable loads at location 0:0).
Thefield contains a 48 bit value (32 bit offset followed by a 16 bit segment). The nod_i ndex fieldisan
index which identifies the module which defines the symbol (i.e. contained the [L]PUBDEF record). The
ki nd gives rudimentary typing information for the symbol. It consists of the following set of bits:

BIT. 76543210

| | +--- STATIC synbol
| +----- DATA synbol
AR CODE synbol

Bit zerois 1 if the global was defined by a LPUBDEF record and O if it was defined by a PUBDEF record.
LPUBDEF symbols are generated by the code generator for static symbols, so this allows a debugger to see
static symbols even when no compiler debug switches are being used. Bit oneis 1 if the producer of the
information is able to determine that the symbol is a data symbol. Bit two isoneif the producer is ableto
determine that the symbol is a code symbol. Both bits may be zero if the producer is unable to determine
whether the symbol isacode or dataitem. Thefina field, name isavariable length array, with the first
character indicating the length of the name, and the remaining characters being the actual name of the
symbol.

3.4.7 Address information class

The address information class allows the debugger, given amemory address, to determine the module
which defines that memory address. The linker builds this class from the SEGDEF and GRPDEF records
in the object filesthat it processes. The class consists of an array of structures with the following fields:

struct seg_info {

addr48_ptr addr;
unsi gned_16 num
addr _info sects[1];

s

Theaddr field identifies the start of a segment in memory. Thisfield contains the unrelocated value of the
segment starting address (i.e. asif the executable had been loaded at 0:0). The the low order 15 bits of the
next field, numtells how many of the sect s entriesthere are in the structure. The top bit of thefieldisa
one when the segment belongs to "NonSect". "NonSect" is the overlay section which holds all program
datathat is not in the root or an overlay section. Typically this consists of DGROUP and FAR_DATA
segments. NonSect alwaysis located at the highest address of all sections. It is preloaded by the overlay
manager and is never moved. |If the segment does not belong to NonSect, the top bit of the numfield is
zero. Thesect s fieldisavariable size array of structures. Thisaddr_info structure contains the
following fields:

24 Section debug information

Executable file structures

struct addr_info {
unsi gned_32 si ze;
unsi gned_16 nod_i ndex;

b

The nod_i ndex field indicates the module in the module information class which defines this piece of the
segment. The si ze field identifies how large a piece of the segment specified by the seg_info structure
belongs to the module. The starting address of the segment piece is given by adding all the previous size
fieldsinthe sect s array to the origina starting address in the seg_info structure.

The size of aseg_info structure may not exceed 60K. If asingle physical segment would have more
sect s than would fit into this restriction (numgreater than 10238), it should be split into two separate
seg_info structures.

To identify the module that defines alocation in memory, the debugger does the following:

1. Wak down the array of seg_info structures until one is found with the same segment address as
the location that is being identified. If no such seg_info isfound, or the starting offset of the
segment is greater than the offset of the memory location, then there is no defining module.

2. Walk down the array of addr_info’sin the seg_info structure until an entry is found whose
starting offset isless than or equal to the memory location offset and whose ending offset is
greater than the memory location offset. If thereis no such entry, thereis no defining module.

3. Otherwise, the mod_of f set field of the addr_info entry is added to the beginning of the

modul e information class, which gives a pointer to the module structure that defines the memory
location.

Section debug information 25

WATCOM Debugging Information Format VERSION 4.0

26 Section debug information

Debugger Trap File Interface VERSION
1.3

Debugger Trap File Interface VERSION 1.3

28

1 Introduction

The Open Watcom debugger consists of a number of separate pieces of code. The main executable,
WD.EXE (wd on UNIX systems), provides a debugging ‘engine’ and user interface. When the engine
wishes to perform an operation upon the program being debugged such as reading memory or setting a
breakpoint, it creates arequest structure and sends it to the ‘trap file' (so called because under DOS, it
contains the first level trap handlers). The trap file examines the request structure, performs the indicated
action and returns a result structure to the debugger. The debugger and trap files also use Machine
Architecture Description (MAD) files which abstract the CPU architecture. This design has the following
benefits:

1. OSdebugging interfaces tend to be wildly varying in how they are accessed. By moving al the
OS specific interface code into the trap file and having a defined interface to access it, porting
the debugger becomes much easier.

2. By abstracting the machine architecture specifics through MAD files, it becomes possible to use
one debugger for several target CPU architectures (such as x86 and Alpha AXP). Unlike most
other debuggers, the Open Watcom debugger is not tied to a single host/target combination and
if appropriate trap and MAD files are available, the debugger running on any host can remotely
debug any target.

3. Thetrapfile does not have to actually perform the operation. Instead it could send the request
out to aremote server by acommunication link such asaserial line or LAN. The remote server
can retrieve the request, perform the operation on the remote machine and send the results back
viathelink. This enables the debugger to debug applications in cases where there are memory
constraints or other considerations which prevent the debugger proper from running on the
remote system (such as Novell Netware 386).

This document describes the interface initially used by version 4.0 of the WATCOM debugger (shipped
with the 10.0 C/C++ and FORTRAN releases). It has been revised to describe changes incorporated in
Watcom 11.0 release, as well as subsequent Open Watcom releases. It is expected to be modified in future
releases. Where possible, notification of expected changes are given in the document, but all aspects are
subject to revision.

1.1 Some Definitions

Next follow some general trap definitions.

1.1.1 Byte Order

Thetrap fileinterface is defined to use little endian byte order. That is, the least significant byte is stored at
the lowest address. Little endian byte order was chosen for compatibility with existing trap files and tools.
Fixed byte order also eases network communication between debuggers and trap files running on machines
with different byte order.

Some Definitions 29

Debugger Trap File Interface VERSION 1.3

1.1.2 Pointer Sizes

In a 16-bit hosted environment such as DOS, al pointers used by the trap file are "far" 16:16 pointers. Ina
32-bit environment such as Windows NT the pointers are "near" 0:32 pointers.

1.1.3 Base Types

A number of basic types are used in the interface. They are defined as follows:

Type
unsigned 8
unsigned 16
unsigned 32

access req

addr48_ptr

bytes

string

trap_error

trap_phandle

trap_mhandle

Definition

1 byte unsigned quantity
2 byte unsigned quantity
4 byte unsigned quantity

Thefirst field of every request is of thistype. Itisal bytefield which identifiesthe
request to be performed.

This type encapsul ates the concept of a 16:32 pointer. All addresses in the debuggee
memory are described with these. The debugger always acts as if the debuggee werein a
32-hit large model environment since the 32-hit flat model and all 16-bit memory models
are subsets. The structure is defined as follows:

typedef struct {
unsi gned_32 of fset;
unsi gned_16 segnent ;
} addr48 ptr;

Thesegnent field contains the segment of the address and the of f set field storesthe
offset of the address.

Thetype bytesis an array of unsigned_8. Thelength is provided by other means.
Typically afield of type bytesisthe last one in arequest and the length is calculated from
the total length of the request.

Thetype string is actually an array of characters. The array isterminated by anull ('\0')
character. Thelengthis provided by other means. Typically afield of type string isthe last
onein arequest and the length is calculated from the total length of the request.

Some trap file requests return debuggee operating system error codes, notably the requests
to perform file 1/0 on the remote system. These error codes are returned as an
unsigned _32. The debugger considers the value zero to indicate no error.

Thisisan unsigned_32 type which holds process (task) handle. A task handleis used to
uniquely identify a debuggee process.

Thisisan unsigned_32 type which holds a module handle. Typically the main executable
will be one module, and on systems which support DLLs or shared libraries, each library
will beidentified by a unique module handle.

30 Some Definitions

2 The Request Interface

Next follow detailed description of interface elements.

2.1 Request Structure

Each request is a composed of two sequences of bytes provided by the debugger called messages. The first
set contains the actual request code and whatever parameters that are required by the request. The second
seguence is where the result of the operation is to be stored by the trap file.

The two sequences need not be contiguous. The sequences are described to the trap file through two arrays
of message entry structures. This alows the debugger to avoid unnecessary packing and unpacking of
messages, since mx_ent r y can be set to point directly at parameter/result buffers.

Multiple requests are not alowed in asingle message. The nx_ent ry isonly used to provide
scatter/gather capabilities for one request at atime.

The message entry structureis asfollows (definedin t r pt ypes. h):

typedef struct {
voi d *ptr;
unsi gned | en;
} nx_entry;

Thept r ispointing to ablock of datafor that message entry. The | en field gives the length of that block.
One array of mx_ent r y describes the request message. The second array describes the return message.

Itisnot legal to split a message into arbitrary pieces with mx_entries. Each request documents where an
mx_ent ry isalowed to start with aline of dashes.

2.2 The Interface Routines

Thetrap fileinterface must provide threeroutines: Trapl nit , Tr apRequest ,and Tr apFi ni . How
the debugger determines the address of these routines after loading atrap file, as well asthe calling
convention used, is system dependent and described later. These functions are prototyped in t r pi nmp. h.

2.2.1 Traplnit

This function initializes the environment for proper operation of Tr apRequest .

trap_versi on TRAPENTRY Traplnit(
char *par m
char *error,
unsi gned_8 renote

)

The Interface Routines 31

Debugger Trap File Interface VERSION 1.3

The par misastring that the user passesto the trap file. Itsinterpretation is completely up to the trap file.
In the case of the Open Watcom debugger, all the characters following the semicolon in the / TRAP option
are passed asthe par m For example:

wd /trap=nov;testing program

The par mwould be "testing”. Any error message will bereturned in error . Ther enot e fieldisazero
if the Open Watcom debugger is loading the trap file and aone if aremote server isloading it. This
function returns a structure t r ap_ver si on of the following form (defined in t r pt ypes. h):

typedef struct {
unsi gned_8 nmj or;
unsigned_8 m nor;
unsigned 8 renote;
} trap_version;

Themaj or field contains the major version number of the trap file whilethe m nor field tells the minor
version number of thetrap file. Maj or ischanged whenever there is a modification made to the trap file
that is not upwardly compatable with previous versions. M nor increments by one whenever achangeis
made to the trap file that is upwardly compatible with previous versions. The current major verionis 1, the
current minor version is 3. The r enot e field informs the debugger whether the trap file communicates
with aremote machine.

Trapl ni t must be called beforeusing Tr apRequest to send arequest. Failure to do so may resultin
unpredictable operation of Tr apRequest .

2.2.2 TrapRequest

All requests between the server and the remote trap file are handled by TrapRequest.

unsi gned TRAPENTRY TrapRequest (
unsi gned num. n_nx,
nk_entry *nx_in,
unsi gned num out _nx,
mKk_entry *mx_out

)

The nmx_i n pointsto an array of request mx_entry’s. The num_i n_nx field contains the number of
elements of the array. Similarly, the mx_out will point to an array of return mx_entry’s. The number of
elementswill be given by the num out _nx field. Thetotal number of bytes actually filled in to the return
message by the trap fileis returned by the function (this may be less than the total number of bytes
described by the mx_out array).

Since every request must start with an access_r eq field, the minimum size of arequest message is one
byte.

Some reguests do not require areturn message. In this case, the program invoking TrapRequest must pass
zero for num out _nx and NULL for mx_out .

32 The Interface Routines

The Request Interface

2.2.2.1 Request Example

Therequest REQ_READ_MEM needs the memory address and length of memory to read as input and will
return the memory block in the output message. To read 30 bytes of memory from address 0x0010:0x8000
into a buffer, we can write:

nmx_entry in[1];
nx_entry out[1];

unsi gned char buf fer[30];
struct in_nsg_def {

access_req reqg;
addr 48 ptr addr ;
unsi gned_16 | en;

} in_msg = { REQ READ MEM { 0x8000, 0x0010 }, sizeof(buffer) };

unsi gned_16 mem bl k_| en;

in[0].ptr = & n_nsgQ;
in[0].len = sizeof (in_nsg);
out[0].ptr &buf fer;

out[0].len = sizeof (buffer);

mem bl k_Ien = TrapRequest(1, in, 1, out);

if(memblk length != sizeof(buffer)) {
printf("Error in reading nmenory\n");

} else {
printf("OKn");
}

The program will print "OK" if it has transferred 30 bytes of data from the debuggee’ s address space to the
buf f er variable. If lessthan 30 bytesistransfered, an error message is printed out.

2.2.3 TrapFini

The function terminates the link between the debugger and thetrap file. 1t should be called after finishing
all access requests.

voi d TRAPENTRY TrapFini (void);

After calling Tr apFi ni ,itisillega to call Tr apRequest without calling Tr apl ni t again.

The Interface Routines 33

Debugger Trap File Interface VERSION 1.3

34 The Interface Routines

3 The Requests

This section descibes the individual requests, their parameters, and their return values. A line of dashes
indicateswherean mx_ent r y isalowed (but not required) to start. The debugger allows (via
REQ_GET_SUPPLEMENTARY_SERVICE/REQ_PERFORM_SUPPLEMENTARY_SERVICE) optiona
components to be implemented only on specific systems.

The numeric value of the request which isplaced in the r eq field follows the symbolic namein
parentheses.

3.1 Core Requests

These requests need to be implemented in all versions of the trap file, although some of them may only be
stub implementations in some environments. Note that structures suitable for individual requests are
declaredint r pcore. h.

3.1.1 REQ_CONNECT

Request to connect to the remote machine. This must be the first request made.

Request message:
access_req req
unsi gned_8 naj or ; <-+- struct trap_version
unsi gned_8 nm nor ; |
unsi gned_8 renote; <-+

Ther eq field containstherequest. Thet r ap_ver si on structure tells the version of the program
making the request. The naj or field contains the major version number of the trap file whilethe m nor
field tells the minor version number of the trap file. The maj or ischanged whenever thereisa
modification made to the trap file that is not upwardly compatable with previous versions. The mi nor
increments by one whenever a change is made to the trap file that is upwardly compatable with previous
versions. The current major version is 1, the current minor versionis 3. The r enot e field informsthe
trap file whether aremote server is between the Open Watcom debugger and the trap file.

Return message:

unsi gned_16 max_nsg_si ze

string err_nsg

If error has occurred, the er r _msg field will returns the error message string. If thereis no error,

error _msg returnsanull character and thefield max_nsg_si ze will contain the allowed maximum
size of amessagein bytes. Any message (typically reading/writing memory or files) which would reguire
more than the maximum number of bytes to transmit or receive must be broken up into multiple requests.
The minimum acceptable value for thisfield is 256.

Core Requests 35

Debugger Trap File Interface VERSION 1.3

3.1.2 REQ_DISCONNECT

Request to terminate the link between the local and remote machine. After thisrequest, aREQ_CONNECT
must be the next one made.

Request message:
access_req req
Ther eq field contains the request.

Return message:

NONE

3.1.3 REQ_SUSPEND

Request to suspend the link between the server and the remote trap file. The debugger issues this message
just before it spawns a sub-shell (the "system™ command). Thisallows aremote server to enter a state
where it allows other trap files to connect to it (normally, once a remote server has connected to atrap file,
the remote link will fail any other attempts to connect to it). This allowsthe user for instance to start up an
RFX process and transfer any missing files to the remote machine before continuing the debugging process.
Request message:

access_req req
Ther eq field contains the request.

Return message:

NONE

3.1.4 REQ_RESUME

Request to resume the link between the server and the remote trap file. The debugger issues this request
when the spawned sub-shell exits.

Request message:
access_req req
Ther eq field contains the request.

Return message:

NONE

36 Core Requests

The Requests

3.1.5 REQ_GET_SUPPLEMENTARY_SERVICE

Request to obtain a supplementary serviceid.

Request message:

access_req req

string servi ce_nane

Ther eq field containstherequest. The ser vi ce_narne field contains a string identifying the
supplementary service. Thisstring is case insensitive.

Return message:
trap_error err;
trap_shandl e id;

The err field is non-zero if something went wrong in obtaining or initializing the service. | d isthe
identifier for a particular supplementary service. It need not be the same from one invocation of the trap
fileto another. If both it and the er r field are zero, it means that the serviceis not available from this trap
file.

Notes: In the future, we might allow for user developed add-ons to be integrated with the debugger. There
would be two components, one to be added to the debugger and one to be added to the trap file. The
two pieces could communicate with each other via the supplementary services mechanism.

3.1.6 REQ_PERFORM_SUPPLEMENTARY_SERVICE

Request to perform a supplementary service.

Request message:

access_req req
unsi gned_32 service_id

unspecified

Ther eq field containstherequest. The ser vi ce_i d field indicates which service is being requested.
The remainder of the request is specified by the individual supplementary service provider.

Return message:
unspecified

The return message is specified by theindividual supplementary service provider.

3.1.7 REQ_GET_SYS_CONFIG

Request to get system information from the remote machine.

Request message:

Core Requests 37

Debugger Trap File Interface VERSION 1.3

access_req req
Ther eq field contains the request.

Return message:

unsi gned_8 cpu;

unsi gned_8 fpu;

unsi gned_8 osmmj or;
unsi gned_8 osmi nor;
unsi gned_8 os;

unsi gned_8 huge_shift;
unsi gned_8 arch;

The ar ch field specifies the architecture in use and determines how the other fields will be interpreted.
Currently the following architectures are used:

DI G ARCH X86 - Intel Architecture | A-32 conpatible
DI G ARCH X64 - Intel Architecture X64 conpatible
DI G ARCH AXP - Al pha Architecture

DI G ARCH PPC - PowerPC Architecture

DIG ARCH MPS - MPS Architecture

DI G ARCH MsJ - Java Virtual Machine (M crosoft)

DI G ARCH JVM - Java Virtual Machi ne (Sun)

The cpu fields returns the type of the remote CPU. The size of that field isunsigned_8. Possible CPU
typesfor DIG_ARCH_X86 are:

bits 0-3
X86_86 =0 - 8086
X86_186 = 1 - 80186
X86 286 = 2 - 80286
X86_386 = 3 - 80386
X86 486 = 4 - 80486
X86 586 = 5 - Pentium
X86 686 = 6 - PentiumPro/ll/111
X86_P4 =15 - Pentiumi4
bit 4 - MW registers
bit 5 - XMM registers
bits 6 - unused
bits 7 - unused

Thef pu fieldstells the type of FPU. The size of thefield isunsigned_8. FPU typesfor DIG_ARCH_X86

include:
X86_NOFPU = 0 - No FPU
X86_87 = 1 - 8087
X86_287 = 2 - 80287
X86_387 = 3 - 80387
X86_487 = 4 - 486 integrated FPU
X86_587 = 5 - Pentiumintegrated FPU
X86_687 = 6 - PentiumPro/I1/11l integrated FPU
X86_P47 = 15 - Pentium4 integrated FPU
X86 EMJ = 255 - Software enul ated FPU

38 Core Requests

The Requests

Theosmaj or and osmi nor contains the major and minor version number for the operating system of the
remote machine. The type of operating system can be found in os field. The size of thisfield is
unsigned 8. The OS can be:

DI G_OS_| DUNNO = 0 - Unknown operating system

Dl G_0s_DCs = 1 - DCs

Dl G 0s 052 = 2 - 05/2

DI G OS PHAR = 3 - Phar Lap 386 DOS Extender
DIG OS ECLIPSE = 4 - Eclipse 386 DOS Extender (obsolete)
DI G_OS_NWB86 = 5 - NetWare 386

Dl G 0s QNX = 6 - QNX 4. x

DG OS RATIONAL = 7 - DOS/ 4G or conpatible

DG OS WNDONS = 8 - Wndows 3.x

DIG OS PENPONT = 9 - PenPoi nt (obsol ete)

DI G OS_NT =10 - Wn32

DG OS AUTCCAD = 11 - ADS/ ADI devel opnent (obsol ete)
DI G OS_ NEUTRINO = 12 - QNX 6. x

DI G_OS_LI NUX = 13 - Li nux

DI G_OS_FREEBSD = 14 - FreeBSD

DI G OS W N64 = 15 - Wndows 64-bit

Thehuge_shi ft field is used to determine the shift needed for huge arithmetic in that system. It stores
the number of left shifts required in order to calculate the next segment correctly. Itis 12 for real mode
programs. The value in a protect mode environment must be obtained from the OS of the debuggee
machine. Thisfieldisonly relevant for 16-hit segmented architectures.

3.1.8 REQ_MAP_ADDR

Request to map the input address to the actual address of the remote machine. The addressesin the
symbolic information provided by the linker do not reflect any relocation performed on the executable by
the system loader. This request obtains that relocation information so that the debugger can update its
addresses.

Request message:
access_req req;
addr 48 _ptr i n_addr;

trap_mhandl e nod_handl e;

Ther eq field containstherequest. The i n_addr tellsthe addressto map. The nod_handl e field
identifies the module which the addressis from. The value from thisfield is obtained by

REQ PROG _LOAD or REQ GET LIB_NAME. There are two magical valuesfor the

i n_addr. segnent field.

MAP_FLAT_ CODE_SELECTOR
MAP_FLAT_DATA_SELECTOR

-1
-2

Whenthei n_addr . segnent equalsone of these values, the debugger does not have a map segment
value and is requesting that the trap file performs the mapping asif the given offset was in the flat address
space.

Return message:

Core Requests 39

Debugger Trap File Interface VERSION 1.3

addr 48 ptr out _addr
addr 48_of f | o_bound;
addr 48 _of f hi _bound,;

The mapped addressisreturned in out _addr . Notethat in addition to the segment portion being
modified, the offset of the portion of the address may be adjusted as well if the |oader performs offset
relocations (like OS2 2.x or Windows NT). The | o_bound and hi _bound fieldsidentify the lowest
and highest input offsets for which this mapping isvalid. If the debugger needs to map another address
whose input segment value is the same as a previous request, and the input offset falls within the valid
range identified by the return of that previous request, it can perform the mapping itself and not bother
sending the request to the trap file.

3.1.9 REQ_CHECKSUM_MEM

Request to calculate the checksum for a block of memory in the debuggee’ s address space. Thisisused by
the debugger to determine if the contents of the memory block have changed since the last time it was read.
Since only afour byte checksum has to be transmitted back, it is more efficient than actually reading the
memory again. The debugger does not care how the checksum is calculated.

Request message:
access_req redg;
addr 48 ptr i n_addr;
unsi gned_16 | en;

Ther eq field storestherequest. The i n_addr contains the starting address and the | en field tells how
large the block of memory is.

Return message:

unsi gned_32 result

The checksum will bereturnedinresul t .

3.1.10 REQ_READ_MEM

Request to read a block of memory.

Request message:
access_req reqg;
addr 48 _ptr nmem addr ;
unsi gned_16 | en;

The mem addr contains the address of the memory block to read from the remote machine. The length of
the block is determined by | en. The memory datawill be copied to output message.

Return message:

byt es dat a

40 Core Requests

The Requests

The dat a field stores the memory block read in. The length of this memory block is given by the return
value from TrapRequest. If error has occurred in reading memory, the length of the data returns will not be
equal to the number of bytes requested.

3.1.11 REQ_WRITE_MEM

Request to write ablock of memory.

Request message:
access_req req
addr 48 _ptr mem addr
byt es dat a

The dat a field stores the memory datato be transferred. The data will be stored in the debuggee’ s address
space starting at the addressin the mem _addr field.

Return message:

unsi gned_16 | en

Thel en field tells the length of memory block actually written to the debuggee machine. If error has
occurred in writing the memory, the length returned will not be equal to the number of bytes requested.

3.1.12 REQ_READ_IO

Request to read data from /O address space of the debuggee.

Request message:
access_req reqg
unsi gned_32 | O of fset
unsi gned_8 I en

Thel O _of f set containsthe I/O address of the debuggee machine. The length of the block is determined
by | en. It must bel, 2 or 4 bytes. The datawill be copied from | O _of f set to the return message.

Return message:
byt es data

The dat a field stores the memory block read in. The length of this memory block is given by the return
value from TrapRequest. If an error has occurred in reading, the length returned will not be equal to the
number of bytes requested.

3.1.13 REQ_WRITE_IO

Request to write data to the 1/O address space of the debuggee.

Request message:

Core Requests 41

Debugger Trap File Interface VERSION 1.3

access_req req
unsi gned_32 | O _of f set
byt es dat a

Thel O _of f set containsthe I/O address of the debuggee machine. The datastored in dat a field will be
copiedto | O of f set on the debuggee machine.

Return message:

unsigned_8 len

Thel en field tells the number of bytes actually written out. |f an error has occurred in writing, the length
returned will not be equal to the number of bytes requested.

3.1.14 REQ_PROG_GO/REQ_PROG_STEP

Requests to execute the debuggee. REQ_PROG_GO causes the debuggee to resume execution, while
REQ_PROG_STEP requests only a single machine instruction to be executed before returning. In either
case, this request will return when a breakpoint, watchpoint, machine exception or other significant event
has been encountered. While executing, atrap file is allowed to return spurious COND_WATCH
indications. The debugger always checks its own watchpoint table for changes before reporting to the user.
Thismeansthat alegal implementation of atrap file (but very inefficient) can just single step the program
and return COND_WATCH for every instruction when there are active watchpoints present.

Request message:
access_req reqg

Therequestisinr eq field.

Return message:
addr 48 _ptr stack_poi nter
addr 48 ptr program count er
unsi gned_16 condi tions

Thest ack_poi nt er and pr ogr am count er fields store the latest values of SS:ESP and CS:EIP (or
their non-x86 equivalents) respectively. The condi t i ons informs the debugger what conditions have
changed since execution began. It contains the following flags:

42 Core Requests

The Requests

Bit O COND_CONFI G

Bit 1 COND_SECTI ONS

Bit 2 COND_LI BRARI ES
Bit 3 COND_ALI ASI NG
Bit 4 COND_THREAD

Bit 5 COND_THREAD_EXTRA
Bit 6 COND_TRACE

Bit 7 COND_BREAK

Bit 8 COND_WATCH

Bit 9 COND_USER

Bit 10 : COND _TERM NATE
Bit 11 : COND _EXCEPTI ON
Bit 12 : COND MESSAGE
Bit 13 : COND _STOP

Bit 14 : COND_RUNNI NG
Bit 15 : not used

Confi gurations change
Pr ogram overl ays change
Li brari es (DLL) change
Al'i as change

Thread change

Thread extra change
Trace point occurred
Break point occurred
Wat ch point occurred
User interrupt
Program t er m nat ed
Machi ne exception
Message to be displ ayed
Debuggee wants to stop
Debuggee i s running

When abit is off, the debugger avoids having to make additional requests to determine the new state of the
debuggee. If thetrap fileisnot surethat a particular item has changed, or if it is expensive to find out, it

should just turn the bit on.

3.1.15 REQ_PROG_LOAD

Request to load a program.

Request message:
access_req reqg
unsi gned_8 true_argv
byt es ar gv

Thet r ue_ar gv field indicates whether the argument consists of asingle string, or atrue C-style
argument vector. Thisfield is set to be one for atrue argument vector and zero otherwise. The ar gv isa
set of zero-terminated strings, one following each other. Thefirst string gives the name of the program to
beloaded. The remainder of the ar gv field contains the program’ s arguments. The arguments can be a

single string or an array of strings.

Return message:
trap_error err
trap_phandl e task_id
trap_mhandl e nod_handl e
unsi gned_8 fl ags

Theer r field returnsthe error code while loading the program. The t ask_i d shows the task (process)
ID for the program loaded. The nod_handl e isthe system module identification for the executable
image. Itisused asinput to the REQ_MAP_ADDR request. The f | ags field contains the following

information:

Core Requests 43

Debugger Trap File Interface VERSION 1.3

Bit 0 LD FLAG IS BIG - 32-bit program (obsol ete)
Bit 1 LD FLAG | S PROT - Protected node (obsol ete)
Bit 2 LD FLAG | S STARTED - Program al ready started

Bit 3 LD FLAG | GNORE_SEGVENTS - Ignore segnents (flat)

Bit 4 LD FLAG HAVE RUNTI ME_DLLS - DLL | oad breaks supported
Bit 5 LD FLAG DI SPLAY_DAMAGED - Debugger must repaint screen
Bit 6 not used

Bit 7 not used

3.1.16 REQ_PROG_KILL

Request to kill the program.

Request message:

access_req req
trap_phandl e task_id

Ther eq field containstherequest. Thet ask_i d field (obtained from REQ_PROG_LOAD) identifies
the program to be killed.

Return message:

trap_error err

Theerr field returnsthe error code of the OS kill program operation.

3.1.17 REQ_SET_WATCH

Request to set awatchpoint at the address given.

Request message:
access_req reqg
addr 48 ptr wat ch_addr
unsi gned_8 si ze

The address of the watchpoint is given by the wat ch_addr field. The si ze field gives the number of
bytes to be watched (1, 2, 4 or 8 bytes).

Return message:
trap_error err
unsi gned_32 nul tiplier

Theerr field returnsthe error code if the setting failed. If the setting of the watchpoint worked, the 31
low order bitsof nul t i pl i er indicate the expected slow down of the program when it’s placed into
execution. Thetop bit of the field is set to one if adebug register is being used for the watchpoint, and zero
if the watchpoint is being done by software.

44 Core Requests

The Requests

3.1.18 REQ_CLEAR_WATCH

Request to clear awatchpoint at the address given. The trap file may assume all watch points are cleared at

once.
Request message:
access_req req
addr 48 _ptr wat ch_addr
unsi gned_8 si ze

The address of the watch point is given by the wat ch_addr field. The si ze field givesthe size of the
watch point (1, 2, 4 or 8 bytes).

Return message:
NONE

3.1.19 REQ_SET _BREAK

Request to set a breakpoint at the address given.

Request message:
access_req req
addr48 ptr br eak_addr

The address of the break point is given by the br eak _addr field.

Return message:

unsi gned_32 old

The ol d field returnsthe original byte(s) at the address br eak _addr .

3.1.20 REQ_CLEAR BREAK

Request to clear a breakpoint at the address given. The trap file may assume all breakpoints are cleared at

once.
Request message:
access_req req
addr 48 _ptr break _addr
unsi gned_32 old

The address of the break point is given by the br eak_addr field. The ol d field holds the old instruction
returned from the REQ _SET BREAK request.

Return message:

NONE

Core Requests 45

Debugger Trap File Interface VERSION 1.3

3.1.21 REQ_GET_NEXT_ALIAS

Request to get aliasinformation for a segment. In some protect mode environments (typically 32-bit flat)
two different selectors may refer to the same physical memory. Which selectors do thisisimportant to the
debugger in certain cases (so that symbolic information is properly displayed).

Request message:
access_req req
unsi gned_16 seg

The seg field contains the segment. To get the first alias, put zero in thisfield.

Return message:
unsi gned_16 seg
unsi gned_16 ali as

The seg field contains the next segment where an alias appears. If thisfield returns zero, it implies no
more aliases can befound. The al i as field returns the alias of the input segment. Zero indicates a
previously set alias should be deleted.

3.1.22 REQ_SET_USER_SCREEN

Request to make the debuggee’ s screen visible.
Request message:
access_req reqg

Return message:

NONE

3.1.23 REQ_SET_DEBUG_SCREEN

Request to make the debugger’ s screen visible.
Request message:
access_req req

Return message:

NONE

3.1.24 REQ_READ_USER_KEYBOARD

Request to read the remote keyboard input.

Request message:

46 Core Requests

The Requests

access_req req
unsi gned_16 wai t

The request will betime out if it waits longer than the period specifiesinthe wai t field. Thewaiting
period is measured in seconds. A value of zero meansto wait forever.

Return message:

unsi gned_8 key

The key field returns the input character from remote machine.

3.1.25 REQ_GET_LIB_NAME

Request to get the name of anewly loaded library (DLL).

Request message:

access_req req
trap_mhandl e nod_handl e

Thenod_handl e field contains the library handle. It should be zero to get the name of the first DLL or
the value from the nod_handl e of a previous request.

Return message:

trap_mhandl e nod_handl e

The nod_handl e field contains the library handle. It contains zero if there are no more DLL names to be
returned. The name of the library will be returned in name field. If the name field isan empty string
(consists just of the’\O' character), then thisis aindication that the DLL indicated by the given handle has
been unloaded, and the debugger should remove any symbolic information for theimage. Itisan error to
attempt to remove a handle that has not been loaded in a previous REQ _GET LIB_NAME request.

3.1.26 REQ_GET_ERR_TEXT

Request to get the error message text for an error code.

Request message:
access_req req
trap_error err

Theer r field contains the error code number of the error text requested.

Return message:

string error_nsg

The error message text will bereturnedin er r or _nsg field.

Core Requests 47

Debugger Trap File Interface VERSION 1.3

3.1.27 REQ_GET_MESSAGE_TEXT

Request to retrieve generic message text. After aREQ PROG_LOAD, REQ PROG_GO or
REQ_PROG_STEP has returned with COND_MESSAGE or COND_EXCEPTION, the debugger will
make this request to obtain the message text. In the case of a COND_EXCEPTION return text describing
the machine exception that caused the return to the debugger. Otherwise return whatever generic message
text that the trap file wants to display to the user.

Request message:
access_req req
Return message:
unsi gned_8 flags
string mg

The message text will bereturned in the nsg field. The f | ags contains a number of bits which control
the next action of the debugger. They are:

Bit O MSG_NEWLI NE
Bit 1 MSG_MORE
Bit 2 MSG_WARNI NG
Bit 3 MSG_ERROR
Bit 4 not used
Bit 5 not used
Bit 6 not used
Bit 7 not used

The MSG_NEWLINE bit indicates that the debugger should scroll its display to a new line after displaying
the message. The MSG_MORE bit indicates that there is another line of output to come and the debugger
should make another REQ_GET_MESSAGE_TEXT. MSG_WARNING indicates that the message isa
warning level message while MSG_ERROR is an error level message. If neither of these bits are on, the
message is merely informational .

3.1.28 REQ_REDIRECT_STDIN/REQ_REDIRECT_STDOUT

48

Request to redirect the standard input (REQ_REDIRECT_STDIN) or standard output
(REQ_REDIRECT_STDOUT) of the debuggee.

Request message:
access_req req
string name

The file name to be redirected to/from is given by the nane field.

Return message:

trap_error err

Core Requests

The Requests

When an error has occurred, the er r field contains an error code indicating the type of error that has been
detected.

3.1.29 REQ_SPLIT_CMD

Request to split the command line into the command name and parameters.

Request message:
access_req req
string cnd
The cd field contains the command. Command can be a single command line or an array of command
strings.
Return message:
unsi gned_16 cnd_end
unsi gned_16 parm st art

The crmd_end field tells the position in command line where the command name ends. The
par m st art field stores the position where the program arguments begin.

3.1.30 REQ_READ_REGS

Request to read CPU register contents. The data returned depends on the target architecture and is defined
by the MAD file.

Request message:

access_req req
Return message:

unspecified

The return message content is specific to the MAD in use and will containa mad_r egi st er s union
(defined in madt ypes. h).

3.1.31 REQ_WRITE_REGS

Request to write CPU register contents. The data is target architecture specific.

Request message:
access_req req

unspeci fied

The message content is specific to the MAD in use and will contain a nad_r egi st er s union.

Core Requests 49

Debugger Trap File Interface VERSION 1.3

Return message:

NONE

3.1.32 REQ_MACHINE_DATA

Request to retrieve machine specific data.

Request message:
access_req reqg;
unsi gned_8 i nfo_type;
addr 48 ptr addr ;

unspeci fi ed

Thei nf o_t ype field specifies what kind of information should be returned and addr determinesthe
address for which the information is requested. The remainder of the message is MAD specific.

Return message:
addr 48_of f cache_start;
addr 48 _of f cache_end;

unspeci fi ed

The return message content is specific to the MAD in use.

3.2 File I/O requests

This section describes requests that deal with file input/output on the target (debuggee) machine. These
requests are actually performed by the core request REQ_PERFORM_SUPPLEMENTARY _SERVICE and
appropriate service ID. The following descriptions do not show that "prefix" to the request messages.

The service name to be used in the REQ_GET_SUPPLEMENTARY _SERVICE is"Files'.

Thefile requests use a new basic type in addition to the ones already described:

Type Definition

trap_fhandle Thisisan unsi gned_64 which holds a debuggee file handle.

3.2.1 REQ_FILE_GET_CONFIG

Request to retreive characteristics of the remote file system.

Request message:

access_req req

Return message:

50 File I/O requests

The Requests

char ext _separator;
char pat h_separator[3];
char new i ne[2] ;

Theext _separ at or containsthe separator for file name extensions. The possible path separators can
befoundin array pat h_separ at or. Thefirst oneisthe "preferred” path separator for that operating
system. Thisisthe path separator that the debugger will useif it needs to construct a file name for the
remote system. The new line control characters are stored in array newl i ne. If the operating system uses
only asingle character for newline, put a zero in the second element.

3.2.2 REQ_FILE_OPEN

Request to create/open afile.

Request message:
access_req req
unsi gned_8 node
string namne

The name of thefile to be opened is given by nane. The node field stores the access mode of thefile.
The following bits are defined:

Bit O DI G_OPEN_READ
Bit 1 DI G OPEN WRI TE
Bit 2 DI G OPEN_CREATE
Bit 3 DI G_OPEN_TRUNC
Bit 4 DI G_OPEN_APPEND
Bit 5 reserved

Bit 6 reserved

Bit 7 reserved

For read/write mode, turn both DI G_OPEN_READ and DI G_OPEN_WRI TE bitson. The
DI G_OPEN_TRUNC hit should only be used together with DI G_OPEN_CREATE and indicates that the
created file needs executable permission (if relevant on the target platform).

Return message:

trap_error err
trap_fhandl e handl e

If successful, the handl e returns ahandle for the file. When an error has occurred, the er r field contains
avalue indicating the type of error that has been detected.

3.2.3 REQ_FILE_SEEK

Request to seek to a particular file position.

Request message:

File I/O requests 51

Debugger Trap File Interface VERSION 1.3

access_req req
trap_f handl e handl e
unsi gned_8 node
unsi gned_32 pos

The handle of the fileis given by the handl e field. The node field stores the seek mode. There are three
seek modes:

DI G_SEEK_ORG
DI G_SEEK_CUR
DI G_SEEK_END

O - Relative to the start of file
1 - Relative to the current file position
2 - Rrelative to the end of file

The position to seek to isin the pos field.

Return message:
trap_error err
unsi gned_32 pos

If an error has occurred, the er r field contains a value indicating the type of error that has been detected.
The pos field returns the current position of thefile.

3.2.4 REQ_FILE_READ

Request to read a block of datafrom afile.

Request message:
access_req reqg
trap_fhandl e handl e
unsi gned_16 I en

The handle of thefileis given by the handl e field. Thel en field stores the number of bytesto be

transmitted.

Return message:
trap_error err
bytes data

If successful, the dat a returnsthe block of data. The length of returned datais given by the return value
of TrapRequest minus 4 (to account for the size of er r). The length will normally be equal to the | en
field. If the end of fileis encountered before the read completes, the return value will be less than the
number of bytes requested. When an error has occurred, the er r field contains a value indicating the type
of error that has been detected.

3.2.5 REQ_FILE_WRITE

Request to write a block of datato afile.

Request message:

52 File I/O requests

The Requests

access_req req
trap_f handl e handl e

The handle of thefileis given by the handl e field. Thedataisgivenin dat a field.

Return message:
trap_error err
unsi gned_16 I en

If thereisno error, | en will equal to that inthe dat a_| en field. When an error has occurred, the er r
field contains a value indicating the type of error that has been detected.

3.2.6 REQ_FILE_WRITE_CONSOLE

Request to write a block of datato the debuggee's screen.

Request message:
access_req reqg
byt es dat a

Thedataisgivenin dat a field.

Return message:
trap_error err
unsi gned_16 | en

If thereisno error, | en will equal to the dat a_I en field. When an error has occurred, the er r field
contains a value indicating the type of error that has been detected.

3.2.7 REQ_FILE_CLOSE

Request to close afile.

Request message:

access_req req
trap_f handl e handl e

The handle of the fileis given by the handl e field.

Return message:

trap_error err

When an error has occurred, the er r field contains a value indicating the type of error that has been
detected.

File I/O requests 53

Debugger Trap File Interface VERSION 1.3

3.2.8 REQ_FILE_ERASE

Request to erase afile.

Request message:
access_req req
string file_name

Thefi |l e_nane field contains the file name to be del eted.

Return message:

trap_error err

If error has occurred when erasing thefile, the er r field will return the error code number.

3.2.9 REQ_FILE_STRING _TO_FULLPATH

Request to convert afile nameto its full path name.

Request message:
access_req req
unsi gned_8 file_ type
string file_name

Thefi | e_t ype field indicates the type of the input file. File types can be:

DI G FILETYPE_EXE = O
DI G FILETYPE_ DBG = 1
Dl G_FI LETYPE_PRS = 2
Dl G_FI LETYPE_HLP = 3

Thisis so the trap file can search different paths for the different types of files. For example, under QNX,
the PATH environment variable is searched for the DIG_FILETY PE_EXE type, and the WD_PATH
environment variable is searched for the others. The fi | e_nane field contains the file name to be

converted.

Return message:
trap_error err
string path_name

If no error occursthe er r field returns a zero and the full path name will be stored in the pat h_nane
field. When an error has occurred, the er r field contains an error code indicating the type of error that has
been detected.

54 File I/O requests

The Requests

3.2.10 REQ_FILE_RUN_CMD

Request to run acommand on the target (debuggee’ s) system.

Request message:
access_req req
unsi gned_16 chk_si ze
string cnd

Thechk_si ze field givesthe check sizein kilobytes. Thisfield isonly useful in the DOS
implementation. It contains the value of the /CHECK SIZE debugger command line option and represents
the amount of memory the user wishesto have free for the spawned sub-shell. The cnd field storesthe
command to be executed.

Return message:

trap_error err

If error has occurred when executing the command, the er r field will return the error code number.

3.3 Overlay requests

This section describes reguests that deal with overlays (supported only under 16-bit DOS). These requests
are actually performed by the core request REQ_PERFORM_SUPPLEMENTARY _SERVICE and
appropriate service ID. The following descriptions do not show that "prefix" to the request messages.

The service name to be used inthe REQ_GET_SUPPLEMENTARY _SERVICE is"Overlays".
The overlay requests use a new basic type in addition to the ones already described:
Type Definition

addr32_ptr This type encapsul ates the concept of a 16:16 pointer into the debuggee’ s address space.
Since overlays are only useful for 16-bit environments, using the addr48_ptr type would be
inefficient. The structureis defined asfollows:

typedef struct {
unsi gned_16 of f set;
unsi gned_16 segnent ;
} addr32_ptr;

Thesegnent field contains the segment of the address and the of f set field storesthe
offset of the address.

ovl_address Thistype contains the overlay address and the number of entries down in the overlay stack.
The structure is defined as follows:

t ypedef struct {
addr32_ptr nach;
unsi gned_16 sect _id;

} ovl _address;

Overlay requests 55

Debugger Trap File Interface VERSION 1.3

Themach field isthe machine address. The sect _i d field stores the address section
number.

3.3.1 REQ_OVL_STATE_SIZE

Request to return the size of the overlay state information in bytes of the task program. This request maps
onto the overlay manager's GET_STATE_SIZE request. See the Overlay Manager Interface document for
more information on the contents of the return message.

Request message:
access_req req
Ther eq field contains the request.

Return message:

unsi gned_16 si ze

Thesi ze field returnsthe sizein bytes. A value of zero indicates no overlays are present in the debuggee
and none of the other requests dealing with overlays will ever be called.

3.3.2 REQ_OVL_GET _DATA

Request to get the address and size of an overlay section. This request maps onto the overlay manager’s
GET_SECTION_DATA request. Seethe Overlay Manager | nterface document for more information on
the contents of the return message.

Request message:
access_req req
unsi gned_16 sect _id

Thesect _i d field indicates the overlay section the information is being requested of .

Return message:
unsi gned_16 segnent
unsi gned_32 si ze

Thesegnent field contains the segment value where the overlay section isloaded (or would be loaded if
it was brought into memory). The si ze field givesthe size, in bytes, of the overlay section. If thereisno
section for the given id, the segnent field will be zero.

3.3.3 REQ_OVL_READ_STATE

Request to read the overlay table state. This request maps onto the overlay manager’s
GET_OVERLAY_STATE request. Seethe Overlay Manager Interface document for more information on
the contents of the return message. The size of the returned datais provided by the

REQ _OVL_STATE_SIZE trap file request.

Request message:

56 Overlay requests

The Requests

access_req req
Return message:
byt es dat a

The dat a field contains the overlay state information requested.

3.3.4 REQ_OVL_WRITE_STATE

Request to write the overlay table state. This request maps onto the overlay manager’s
SET_OVERLAY_STATE request. See the Overlay Manager Interface document for more information on
the contents of the return message.

Request message:
access_req req
byt es dat a

The dat a field contains the overlay state information to be restored.

Return message:

NONE

3.3.5 REQ_OVL_TRANS_VECT_ADDR

Request to check if the input overlay addressis actually an overlay vector. This request maps onto the
overlay manager’s TRANSLATE_VECTOR_ADDR request. Seethe Overlay Manager Interface
document for more information on the contents of the messages.

Request message:
access_req req
ovl _address ovl _addr

Themach field isthe machine address. The sect _i d field stores the number of entries down in the
overlay stack.

Return message:

ovl _address ovl _addr

The trandlated address will be returned in the ovl _addr field. If the addressis not an overlay vector, then
the input address will be returned and the sect _i d field will be zero.

Overlay requests 57

Debugger Trap File Interface VERSION 1.3

3.3.6 REQ_OVL_TRANS_RET_ADDR

Request to check if the address is the overlay manager parallel return code. This request maps onto the
overlay manager’s TRANSLATE_RETURN_ADDR request. Seethe Overlay Manager Interface
document for more information on the contents of the messages.

Request message:

access_req req

ovl _address ovl _addr
Return message:

ovl _address ovl _addr

The translated address will be returned in the ovl _addr field. If the addressisnot an parallel return code,
then the input address will be returned and the sect _i d field in the structure ovl _addr will be zero.

3.3.7 REQ_OVL_GET_REMAP_ENTRY

Request to check if the overlay address needs to be remapped. This request maps onto the overlay
manager's GET_MOVED_SECTION request. Seethe Overlay Manager Interface document for more
information on the contents of the messages.

Request message:
access_req reqg
ovl _address ovl _addr

Theovl _addr field containsthe overlay address.

Return message:
unsi gned_8 remapped
ovl _address ovl _addr

If the address gets remapped the r emapped field will return one. The remapped address will be returned
intheovl _addr field. Theinput addresswill be unchanged if the address has not been remapped.

3.4 Thread requests

This section descibes requests that deal with threads. These requests are actually performed by the core
request REQ _PERFORM_SUPPLEMENTARY _SERVICE and appropriate service ID. Thefollowing
descriptions do not show that "prefix" to the request messages.

The service name to be used in the REQ_GET_SUPPLEMENTARY _SERVICE is"Threads'.

The thread requests use a new basic type in addition to the ones already described:

58 Thread requests

The Requests

Type Definition

trap_thandle Thisisan unsigned_32 type which holds a thread handle.

3.4.1 REQ_THREAD_GET_NEXT

Request to get next thread.

Request message:

access_req req
trap_t handl e t hr ead

Thet hr ead contains the either a zero to get information on the first thread, or the value of the t hr ead
field in the return message of a previous regquest.

Return message:

trap_t handl e t hr ead
unsi gned_8 state

Thet hr ead field returnsthe thread ID. There are no more threadsin the list, it will contain zero. The
st at e field can have two values:

0
1

THREAD_THAWED
THREAD_FROZEN

3.4.2 REQ_THREAD_SET

Request to set a given thread ID to be the current thread.

Request message:

access_req req
trap_t handl e t hr ead

Thet hr ead contains the thread number to set. If it's zero, do not attempt to set the thread, just return the
current thread 1D.

Return message:

trap_error error
trap_thandl e ol d_thread

Theol d_t hr ead field returnsthe previousthread ID. If the set fails, the er r field will be non-zero.

3.4.3 REQ_THREAD_FREEZE

Request to freeze athread so that it will not be run next time when executing the task program.

Request message:

Thread requests 59

Debugger Trap File Interface VERSION 1.3

access_req req
trap_t handl e t hr ead

Thet hr ead contains the thread number to freeze.

Return message:

trap_error err

If the thread cannot be frozen, the er r field returns non-zero value.

3.4.4 REQ_THREAD_THAW

Request to alow athread to run next time when executing the program.

Request message:

access_req req
trap_t handl e t hr ead

Thet hr ead contains the thread number to thaw.

Return message:

trap_error err

If the thread cannot be thawed, the er r field returns non zero value.

3.4.5 REQ_THREAD_GET_EXTRA

Request to get extrainformation about athread. Thisisarbitrary textual data which the debugger merely
displaysinitsthread window. Thetrap file can place any information in the return message which it feels
would be useful for the user to know.

Request message:
access_req reqg
unsi gned_32 t hr ead

Thet hr ead field containsthe thread ID. A zero value meansto get the title string for the thread extra
information. Thisisdisplayed at the top of the thread window.

Return message:

string extra

The extrainformation of the thread will be returned in ext r a field.

60 Thread requests

The Requests

3.5 RFX requests

This section deals with requests that are only used by the RFX (Remote File Xfer) program. These requests
are actually performed by the core request REQ_PERFORM_SUPPLEMENTARY _SERVICE and
appropriate service ID. The following descriptions do not show that "prefix” to the request messages.

The service nameto be used in the REQ_GET_SUPPLEMENTARY _SERVICE is"Rfx".

3.5.1 REQ_RFX_RENAME

Request to rename afile on the debuggee’ s system.

Request message:
access_req req
string fromname
string to_name

Thefilewhose nameisindicated by thefield f r om_name will be renamed to the name given by the field
t o_nane.

Return message:

trap_error err

If error has occurred, the er r field will return the error code number.

3.5.2 REQ_RFX_MKDIR

Request to create adirectory on the target (debuggee) system.

Request message:
access_req req
string di r _nane

Thedi r _name field contains the name of the directory to be created.

Return message:

trap_error err

If error has occurred when creating the directory, the er r field will return the error code number.

RFX requests 61

Debugger Trap File Interface VERSION 1.3

3.5.3 REQ_RFX_RMDIR

Request to remove a directory on the target system.

Request message:
access_req req
string di r _nane

Thedi r _name field contains the name of the directory to be removed.

Return message:

trap_error err

If error has occurred, the er r field will return the error code number.

3.5.4 REQ_RFX_SETDRIVE

Request to set the current drive on the target system.

Request message:
access_req req
unsi gned_8 drive

Thedri ve field contains the drive number to be set on the target system (0=A,1=B,...).

Return message:

trap_error err

If error has occurred, the er r field will return the error code number.

3.5.5 REQ_RFX_GETDRIVE

Request to get the current drive on the target system.
Request message:

access_req req
Ther eq field contains the request.

Return message:

unsi gned_8 drive

Thedr i ve field returns the current drive number on the target system (0=A,1=B,...).

62 RFX requests

The Requests

3.5.6 REQ_RFX_SETCWD

Request to set a directory on the target system.

Request message:
access_req req
string di r _nane

Thedi r _name field contains the name of the directory to be set.

Return message:

trap_error err

If error has occurred, the er r field will return the error code number.

3.5.7 REQ_RFX_GETCWD

Request to get the current directory name on the target system.

Request message:
access_req req
unsi gned_8 drive

Thedri ve field contains the target drive number (O=current drive,1=A,2=B,...).

Return message:
trap_error err
string di r _nane

Thedi r _name field contains the name of the directory to be set. If error has occurred, the err field will
return the error code number.

3.5.8 REQ_RFX_SETDATETIME

Request to set afile’'s date and time information on the target system.

Request message:
access_req reqg
trap_fhandl e handl e
tinme_t tinme

The handl e containsthefile handle. The t i ne field followsthe UNIX timeformat. The ti me
represents the time since January 1, 1970 (UTC).

Return message:

RFX requests 63

Debugger Trap File Interface VERSION 1.3

NONE

3.5.9 REQ_RFX_GETDATETIME

Request to get the date and time information for afile on the target system.

Request message:

access_req req
trap_fhandl e handl e

The handl e contains the file handle.
Return message:
tinme_t tinme

Thet i me field followsthe UNIX timeformat. The t i e represents the time since January 1, 1970
(UTC).

3.5.10 REQ_RFX_GETFREESPACE

Request to get the amount of free space left on the drive.

Request message:
access_req req
unsi gned_8 drive

Thedri ve field contains the target drive number (O=current drive,1=A,2=B,...).

Return message:

unsi gned_32 si ze

Thesi ze field returns the number of bytes |eft on the drive.

3.5.11 REQ_RFX_SETFILEATTR

Request to set the file attribute of afile.

Request message:
access_req req
unsi gned_32 attribute
string nanme

The nane field contains the name whose attributes areto be set. The at t ri but e field contains the new
attributes of thefile.

64 RFX requests

The Requests

Return message:

trap_error err

If error has occurred, the er r field will return the error code number.

3.5.12 REQ_RFX_GETFILEATTR

Request to get the file attribute of afile.

Request message:
access_req req
string name

The nane field contains the name to be checked.

Return message:

unsi gned_32 attribute

Theat t ri but e field returns the attribute of thefile.

3.5.13 REQ_RFX_NAMETOCANONICAL

Request to convert afile name to its canonical form.

Request message:
access_req req
string file_name

Thefi | e_nane field contains the file name to be converted.

Return message:
trap_error err
string pat h_nane

If thereisno error, the er r field returns a zero and the full path name will be stored inthe pat h_nane
field. When an error has occurred, the er r field contains an error code indicating the type of error that has
been detected.

3.5.14 REQ_RFX_FINDFIRST

Request to find the first filein adirectory.

Request message:

RFX requests 65

Debugger Trap File Interface VERSION 1.3

access_req req
unsi gned_8 attrib
string name

The nane field contains the name of the directory and the at t ri b field contains the attribute of the files
to list in the directory.

Return message:
trap_error err
rfx_find info

If found, the er r field will be zero. The location and information of about the first file will bein the
structurei nf 0. Definition of the structure r f x_fi nd isasfollows:

typedef struct rfx_find {

unsi gned_8 reserved[21];
unsi gned_8 attr;
unsi gned_16 time;
unsi gned_16 dat e;
unsi gned_32 si ze;
unsi gned_8 nane[260] ;
} rfx_find;

3.5.15 REQ_RFX_FINDNEXT

Request to find the next file in the directory. This request should be used only after
REQ_RFX_FINDFIRST.

Request message:
access_req req
rfx_find info

Ther eq field containsthe request. The i nf o field contains the rfx_find structure returned from the
previous REQ_FIND_NEXT or REQ_FIND_FIRST.

Return message:
trap_error err
rfx_find info

Thei nf o fidldisthesameasin REQ FIND FIRST.

66 RFX requests

The Requests

3.5.16 REQ_RFX_FINDCLOSE

Request to end the directory search operation.
Request message:

access_req req
Ther eq field contains the request.

Return message:

trap_error err

If successful, the er r field will be zero, otherwise the system error code will be returned.

3.6 Environment requests

This section describes reguests that deal with Environment on the target (debuggee) machine. These

requests are actually performed by the core request REQ_PERFORM_SUPPLEMENTARY _SERVICE and

appropriate service ID. The following descriptions do not show that "prefix" to the request messages.

The service name to be used inthe REQ_GET_SUPPLEMENTARY _SERVICE is"Environment".

3.6.1 REQ_ENV_GET_VAR

Request to retreive Environment variable from the remote system.

Request message:
access_req req
string name
Return message:
trap_error err
string val ue;

Theval ue containsthe value for nanme Environment variable from the remote system.

3.6.2 REQ_ENV_SET_VAR

Request to set Environment variable on the remote system.

Request message:
access_req req
string nanme
string val ue;

Environment requests

67

Debugger Trap File Interface VERSION 1.3

Return message:

trap_error err

Theval ue contains the new value for Environment variable namne on the remote system.

3.7 File Info requests

3.7.1 REQ_FILE_INFO_GET_DATE

Request message:

access_req req
Return message:

trap_error err

3.7.2 REQ_FILE_INFO_SET_DATE

Request message:

access_req req
Return message:

trap_error err

3.8 Asynchronous Debugging requests

3.8.1 REQ_ASYNC_GO

Request message:

access_req req
Return message:

trap_error err

3.8.2 REQ_ASYNC_STEP

Request message:

access_req req

Return message:

68 Asynchronous Debugging requests

The Requests

trap_error err

3.8.3 REQ_ASYNC_POLL

Request message:

access_req req

Return message:

trap_error err

3.8.4 REQ_ASYNC_STOP

Request message:

access_req req
Return message:

trap_error err

3.8.5 REQ_ASYNC_ADD_BREAK
Request message:
access_req reqg

Return message:

trap_error err

3.8.6 REQ_ASYNC_REMOVE_BREAK

Request message:

access_req req

Return message:

trap_error err

Asynchronous Debugging requests 69

Debugger Trap File Interface VERSION 1.3

3.9 Non-blocking Thread requests

3.9.1 REQ_RUN_THREAD_INFO
Request message:
access_req reqg

Return message:

trap_error err

3.9.2 REQ_RUN_THREAD_GET_NEXT
Request message:
access_req reqg

Return message:

trap_error err

3.9.3 REQ_RUN_THREAD_GET_RUNTIME
Request message:
access_req reqg

Return message:

trap_error err

3.9.4 REQ_RUN_THREAD _POLL

Request message:

access_req req

Return message:

trap_error err

3.9.5 REQ_RUN_THREAD_SET

Request message:

access_req req

Return message:

70 Non-blocking Thread requests

The Requests

trap_error err

3.9.6 REQ_RUN_THREAD GET_NAME

Request message:

access_req req
Return message:

trap_error err

3.9.7 REQ_RUN_THREAD_STOP

Request message:

access_req req
Return message:

trap_error err

3.9.8 REQ_RUN_THREAD_SIGNAL_STOP

Request message:

access_req req
Return message:

trap_error err

3.10 Capabilities requests

3.10.1 REQ_CAPABILITIES_GET_EXACT_BP

Request to get information if exact breakpoints are supported on the remote system.

Request message:
access_req req
Return message:
trap_error err
unsi gned_8 st at us

The st at us containstrue if exact breakpoints are supported on the remote system otherwise st at us
contains false.

Capabilities requests 71

Debugger Trap File Interface VERSION 1.3

3.10.2 REQ_CAPABILITIES_SET EXACT_BP

Request to set if exact breakpoints are active on the remote system.

Request message:
access_req reqg
unsi gned_8 st at us
Return message:
trap_error err
unsi gned_8 st at us

Theinput st at us containsif exact breakpoints are required to be active on the remote system.

The output st at us contains status if exact breakpoints are currently active on the remote system.

72 Capabilities requests

4 System Dependent Aspects

Every environment has a different method of loading the code for the trap file and locating the Traplnit,
TrapReguest, and TrapFini routines. This section descibes how the Open Watcom debugger performs these
operations for the various systems.

4.1 Trap Files Under DOS

A trap fileisan "EXE" format file with the extension ".TRP". The debugger searches the directories
specified by the PATH environment variable. Once found, it isloaded into memory and has the normal
EXE style relocations applied to theimage. Then the lowest addressin the load image (NOTE: not the
starting address from EXE header information) is examined for the following structure:

typedef struct {

unsi gned_16 signature; /* == OxDEAF */
unsi gned_16 init_off;
unsi gned_16 acc_off;
unsi gned_16 fini_off;

} trap_header;

If the first 2 bytes contain the value OXDEAF, thefileis considered to be avalid trap file and the
init_off ,acc_off ,andfi ni _of f fieldsare used to obtain the offsets of the Traplnit, TrapRequest,
and TrapFini routines repectively.

The starting address field of the EXE header should be set to point at some code which prints out a message
about not being able to be run from the command line and then terminates.

4.2 Trap Files Under 0S/2

A trap fileisanorma OS/2 DLL. The system automatically searches the directories specified by the
LIBPATH command in the CONFIG.SY Sfile. Once loaded, the Open Watcom debugger uses export
ordinal 1 from the DLL for Traplnit, export ordinal 2 for TrapFini and export ordinal 3 for TrapRequest.
Some example code follows:

rc = DosLoadMbdul e(NULL, O, trap_file_nane, &dIl _nodule);
if(rc!=0)
return("unable to load trap file");
}
[

| =
DosGet ProcAddr (dl | _nmodul e, "#2", &TrapFini) !=
DosGet ProcAddr (dl | _nodul e, "#3", &TrapRequest)
return("incorrect version of trap file");

f(DosGetProcAddr(dll _nodule, "#1", &Traplnit) 0
| 0
| | | =

0) {

Trap Files Under 0S/2 73

Debugger Trap File Interface VERSION 1.3

4.3 Trap Files Under Windows.

A trap fileisanorma Windows DLL. The system automatically searches the directories specified by the
PATH environment variable. Once loaded, the Open Watcom debugger uses export ordinal 2 from the
DLL for Traplnit, export ordinal 3 for TrapFini and export ordinal 4 for TrapRequest. Some example code
follows:

dl I = LoadLi brary(trap_file_name);
if(dll <32) {
return("unable to load trap file");

}
Trapl nit = (LPVAO D) GetProcAddress(dil, (LPSTR2);
Tr apFi ni = (LPVAO D) CGetProcAddress(dll, (LPSTR)3);

TrapRequest = (LPVO D) GetProcAddress(dll, (LPSTR4);

if(Traplnit == NULL || TrapFini == NULL || TrapRequest == NULL) {
return("incorrect version of trap file");

}

4.4 Trap Files Under Windows NT.

A trap fileisanorma Windows NT DLL. The system automatically searches the directories specified by
the PATH environment variable. Once loaded, the Open Watcom debugger uses export ordinal 1 from the
DLL for Traplnit, export ordinal 2 for TrapFini and export ordinal 3 for TrapRequest. Some example code
follows:

dl I = LoadLibrary(trap_file_name);
if(dll <32) {
return("unable to load trap file");

}
Traplnit = (LPVAO D) CGetProcAddress(dll, (LPSTR1);
Tr apFi ni = (LPVAO D) GetProcAddress(dil, (LPSTR)2);

TrapRequest = (LPVO D) CGetProcAddress(dll, (LPSTR)3);

if(Traplnit == NULL || TrapFini == NULL || TrapRequest == NULL) {
return("incorrect version of trap file");

}

4.5 Trap Files Under QNX

74

A trap fileisa QNX load module format file with the extension ".trp" and whose file permissions are not
marked as executable. The debugger searches the directories specified by the WD_PATH environment
variable and then the "/usr/watcom/wd" directory. Once found, it isloaded into memory and has the
normal loader relocations applied to theimage. Then the lowest address in the load image (NOTE: not the
starting address from load module header information) is examined for the following structure:

typedef struct {

unsi gned_16 signature; /* == OxDEAF */
unsi gned_16 init_off;
unsi gned_16 acc_off;
unsi gned_16 fini_off;

} trap_header;

Trap Files Under QNX

System Dependent Aspects

If the first 2 bytes contain the value OXDEAF, thefileis considered to be avalid trap file and the
init_off ,acc_off ,andfi ni _of f fieldsare used to obtain the offsets of the Traplnit, TrapRequest,

and TrapFini routines repectively.

The starting address field of the load image header should be set to point at some code which prints out a
message about not being able to be run from the command line and then terminates.

4.6 Trap Files Under Netware 386 or PenPoint

The trap file routines are linked directly into the remote server code and Traplnit, TrapRequest, TrapFini
aredirectly called.

Trap Files Under Netware 386 or PenPoint 75

Debugger Trap File Interface VERSION 1.3

76 Trap Files Under Netware 386 or PenPoint

Overlay Manager Interface VERSION
3.0

Overlay Manager Interface VERSION 3.0

78

1 Overlay manager interface

For Open Watcom Debugger to be able to debug overlays, it must be able to make requests of the overlay
manager for certain operations. The overlay manager must also be able to inform Open Watcom Debugger
when anew overlay section is|oaded.

When Open Watcom Debugger |oads a DOS program, it looks at the initial CS:I1P value for the following
structure:

struct ovl _header ({

unsigned_8 short_j nmp_opcode; [* == Oxeb */
si gned_8 short _j mp_di spl acnent ;

unsi gned_16 si gnature; [* == 0x2112 */
voi d (far *hook) ();

unsi gned_16 handl er_of fset;

}s

Open Watcom Debugger checks to make sure that the first instruction is a short jump (opcode Oxeb) and
that the word following that instruction contains the value 0x2112. If this occurs, Open Watcom Debugger
assumes that it is debugging an overlaid application.

Open Watcom Debugger then fillsin the hook field with the far address of aroutine that isinvoked with a
far call whenever a change in the overlay state occurs. Theinitial CS value and the contents of the

handl er _of f set field givesthe far address of the overlay manager routine responsible for handling
debugger requests.

1.1 The Hook Routine

After the routine addresses have been exchanged, Open Watcom Debugger starts the program executing, to
allow the overlay manager to initialize. After the manager hasfinished itsinitiaization, it performs afar
call to the debugger hook routine, with the return address on the stack being the "real" starting address of
the program being debugged. All register contents (including flags) should be preserved by the hook
routine.

After initialization, the debugger hook routine is invoked with afar call every time a new overlay sectionis
loaded into memory. In this case the AX register contains the section number that was just loaded. The DL
register contains a zero or non-zero value if the overlay load was caused by a call or return, respectively.
The CX:BX registersform afar pointer to the last byte of the call instruction that caused the overlay load,
in the case of aoverlay load being caused by areturn instruction (DL is non-zero) the far pointer isto the
last byte of the call instruction that the return is returning from.

Notes: More sections than just the one identified by the section number in AX may be loaded by the
overlay manager before the hook routine iscalled. The current overlay manager also loads all of the
ancestors of a section (See the WLINK documentation in the Users Guide for a description of what
an ancestor is). To find out what sections are really in memory the debugger should invoke the
handler routine witha GET_OVERLAY _STATE request.

The Hook Routine 79

Overlay Manager Interface VERSION 3.0

1.2 The Handler Routine

The handler routine is responsible for processing requests from the debugger pertaining to overlays. Itis
invoked by the debugger by performing afar call with arequest number in the AX register. The AX
register is used to return the result or return status of the request. The CX and BX registers are used for
some requests to pass a far pointer to memory.

There are two structures that the handler routines dealswith. Thefirstis called an overlay state. An
overlay state consists of ablock of memory containing all the information necessary for the overlay
manager to restore the overlays to their current condition at some later point in time. Thefirst portion of
thisblock is a bit vector, with each bit representing an overlay section. If the bit is a one, then the overlay
section is currently in memory. If the bit is azero then the overlay sectionis not in memory. To convert
from a section number to a bit position use the following formulas:

byte offset = (section_nunber - 1) / 8;
bit _nunmber = (section_nunber - 1) % 8;

Following the bit vector is information that the manager uses to restore the overlay stack.

The second structure used is an overlay address. This consists of afar pointer followed by a 16-bit section
number.

The following requests are recognized by the debug handler routine.

1.2.1 GET_STATE_SIZE

| nputs: Cut put s:
AX = request number (0) AX = size of overlay state

This reguest returns the number of bytes required for an overlay state.

1.2.2 GET_OVERLAY _STATE

| nputs: CQut put s:
AX = request nunmber (1) AX = 1
CX:BX = far pointer to nenory

to store overlay state

Thisrequest copies the overlay state into the memory pointed at by the CX:BX registers. A oneisaways
returned in AX.

1.2.3 SET_OVERLAY _STATE

I nputs: Qut put s:
AX = request nunber (2) AX = 1
CX:BX = far pointer to nmenory

to | oad overlay state

This request takes a previously obtained overlay state and causes the overlay manager to return itself to that

overlay configuration. A oneisalwaysreturned in AX. The overlay manager will not explicitly unload a
section that is not in memory according to the given overlay state, so aGET_OVERLAY_STATE request

80 The Handler Routine

Overlay manager interface

following a SET_OVERLAY _STATE may not return the same bit vector portion. Thisrequest may also
be used by the debugger to explicitly load a section, so the assembly code may be examined, perhaps. To
do this, zero out a block of memory the size of an overlay state, and then turn on the appropriate section
number in the bit vector, then makea SET_OVERLAY_STATE request. Remember that not only that
section will be loaded, but all of its ancestor sections as well.

1.2.4 TRANSLATE_VECTOR_ADDR

| nputs: Cut put s:
AX = request number (3) AX =1 if addr was transl ated,
CX:BX = far pointer to 0 ot herw se

overl ay address

Thisreguest checksto seeif the far pointer portion of the overlay address pointed at by CX:BX is actually
an overlay vector. If the addressis avector then the vector address is replaced by the true address of the
routine that the vector isfor, and the section number portion isfilled in with the section number the of
routine. A oneisreturnedin AX inthiscase. If the addressis not an overlay vector, then the overlay
addressis untouched and an zero isreturned in AX.

1.2.5 TRANSLATE_RETURN_ADDR

| nputs: Cut put s:
AX = request number (4) AX =1 if addr was transl ated,
CX:BX = far pointer to 0 ot herw se

overl ay address

In order to handle parallel overlay calls, the overlay manager replaces the true return address on the stack
with that of some special code (the parallel return code). It then takes the original return address and
section number an places them on the overlay stack. When aroutine returns to the overlay manager, it pops
the top entry of the overlay stack, makes sure that the original overlay section isloaded, and returnsto the
original return address.

This function performs much the same function as TRANSLATE_VECTOR_ADDR, except that rather
than checking for a vector address, it checks to seeif the addressisthat of the overlay manager parallel
return code. If it isthen the section number in the overlay addressis used as the number of entries down in
the overlay stack that the real return address and section number is to be found (zero is the top entry of the
overlay stack). The true return address and section number then replaces the contents of the overlay
addressand aoneisreturned in AX. If the addressis not the parallel return code, then the overlay address
isleft untouched and a zero isreturned in AX.

1.2.6 GET_OVL_TBL_ADDR

| nputs: Cut put s:
AX = request number (5) AX =0
CX:BX = far pointer to variable

of type far pointer to

be filled in with

overlay table address

Thisrequest fillsin the far pointer pointed at by CX:BX with the address of the overlay table so that a

profiler can find out where sections are located in the executable, or overlay files. The sampler program,
when it detects that it is sampling a overlaid application, can perform this function and write the result into

The Handler Routine 81

Overlay Manager Interface VERSION 3.0

the samplefile. Sincethe overlay tableisawaysin the root, the profiler can then find the overlay table and
from that, find the other sections. It should be noted that the format of the overlay table may change, so
this call should be avoided if at all possible.

1.2.7 GET_MOVED_SECTION

| nputs: CQut put s:
AX = request nunber (6) AX = 1 if the section exists
CX:BX = far pointer to 0 ot herw se

overl ay address

With the dynamic overlay manager, sections may be loaded, or moved, to positions other than where the
linker originally placed them. The debugger must be informed of the new positions so that it can update the
locations of its symbolic information. The GET_MOVED_SECTION request is responsible for informing
the debugger what sections have moved and their new locations. The debugger will call this request after
the hook routine has been called, or the debugger hasinvoked the SET_OVERLAY_STATE request. The
request returns the first section whose id larger than the section number that isin the overlay address being
passed in. The overlay manager will fill in the overlay address with the section number that has moved and
its new segment address. The offset portion of the overlay addressis unused. The request will return aone
in AX. If there are no sections numbers larger than the one being passed in that have moved, azerois
returned.

Here is some example debugger code:

voi d CheckMovedSecti ons()

{
over | ay_address addr ;
addr.sect_id = 0;
whi | e(Ovl Handl er (GET_MOVED_SECTI ON, &addr)) {
Handl eMovedSecti on(addr.sect _id, addr.segnent);
}
}

1.2.8 GET_SECTION_DATA

I nputs: Qut put s:
AX = request nunber (7) AX = 1 if the section exists
CX:BX = far pointer to 0 ot herwi se

overl ay address

This request returnsinformation on the current location of a section while it isin memory (or where it
would beif it wasloaded). The section number portion of the overlay addressisfilled in with the section id
that information is being requested about before the request is made. The overlay manager returns zeroin
AX if the section does not exist. Otherwise it returns one and fills in the overlay address with the location
that the section isin memory, or where it would currently go if it was loaded at that time. 1t also fillsin the
section number portion of the address with the size of the section in paragraphs.

82 The Handler Routine

Overlay manager interface

1.3 Overlay Table Structure

The pointer returned by the GET_OVL_TBL_ADDR request has the following format:

typedef struct ovl table {

unsi gned_8 maj or;

unsi gned_8 m nor ;

voi d far *start;
unsi gned_16 del t a;

unsi gned_16 ovl _si ze;
ovltab_entry entries[1];

} ovl _table;

Thefields maj or and mi nor field contain version numbers for the overlay table structure. If an upwardly
compatible change in the structures is made, the minor number will be incremented. If anon-upwardly
compatible change to the structures is made, the major field will be incremented. The current major version
is 3, the current minor versionis0. The st ar t field contains a 32-bit far pointer to the "actual" starting
address of the program. The overlay manager jumps to this address after it has finished initializing (If a
debugger/sampler is present then the overlay manager callsinto the hook routine with this address on the
return stack). The del t a field contains the value to be added to each of the segment relocations when a
section isloaded into memory (it contains the segment value for the first segment in the program). The

ovl _si ze field contains the size of the overlay area. Thisisonly used in the dynamic overlay manager.
Thefinal field, ent ri es , isavariable sized array containing one entry for each overlay section in the
program (e.g. thetenth element in the array describes overlay section 10). Each entry has the following
form:

typedef struct ovltab entry {

unsi gned_16 flags_anc;
unsi gned_16 rel ocs;

unsi gned_16 start _para;
unsi gned_16 code_handl e;
unsi gned_16 num par as;
unsi gned_16 f nane;

unsi gned_32 di sk_addr;

} ovlitab_entry;

The top bit of the f | ag_anc field contains an indicator, while the program is running, of whether the
overlay section isin memory (value one) or must be loaded from disk (value zero). The next highest hit is
filled in by the linker and informs the overlay manager that the section must be loaded during the overlay
manager initialization. The remaining bits contain the overlay number for the ancestor of this section (zero
if thereisnone). Ther el ocs field say how many segment rel ocation items there are for this section,
whilethe st art _par a field gives the location in memory (relative to the start of the program) that the
section should be placed when loaded. The num _par as field contains the size of the section in
paragraphs, and the code_handl e field isused for various purposes inside the dynamic overlay loader.
The f name field has the offset of the address of a zero terminated string for the name of the file containing
the overlay section data and relocations (The segment value is the same as the overlay table). If the top bit
of the offset is on, then the file is the original EXE file rather than a separate overlay file, and the overlay
manager should use the program file name obtained from DOS (if the version is 3.0. or greater). The

di sk_addr field givesthe starting offset the overlay datain the overlay file. The segment relocation
itemsimmediately follow the data.

Theend of theent ri es array isindicated when an element’s f | ags_anc field contains the value Oxffff.
The remaining fieldsin that element contain garbage values.

Overlay Table Structure 83

