
Open Watcom Debugger

User’s Guide

Version 2.0

Notice of Copyright

Copyright  2002-2023 the Open Watcom Contributors. Portions Copyright  1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit https://github.com/open-watcom/open-watcom-v2 .

ii

Table of Contents

Introduction .. 1

1 Overview .. 3
1.1 Introduction ... 3
1.2 New Features ... 3

1.2.1 User Interface ... 3
1.2.2 Reverse Execution .. 3
1.2.3 Replay ... 4
1.2.4 Stack Unwinding .. 4
1.2.5 Simplified Breakpoints ... 4
1.2.6 Context Sensitive Menus .. 4
1.2.7 Buttons .. 4

1.3 Common Menu Items .. 4

Preparing a Program to be Debugged ... 7

2 Preparing a Program to be Debugged .. 9
2.1 Compiler Debugging Options ... 9
2.2 Linker Debugging Options .. 10
2.3 Debugger Settings ... 11

Starting the Debugger ... 13

3 Starting Up the Debugger .. 15
3.1 Open Watcom Debugger Command Line ... 15
3.2 Common Switches ... 16
3.3 DOS and Windows Options .. 18
3.4 DOS Specific Options ... 19
3.5 Windows Specific Options .. 20
3.6 Linux Options .. 20
3.7 QNX Options .. 21
3.8 Environment Variables .. 21

3.8.1 WD Environment Variable ... 22
3.8.2 WD Environment Variable in Linux .. 22
3.8.3 WD Environment Variable in QNX ... 22

Open Watcom Debugger Environment .. 23

4 The Open Watcom Debugger Environment ... 25
4.1 Debugger Windows ... 25

4.1.1 Window Controls .. 25
4.1.2 The Current Window .. 26
4.1.3 Controlling the Size and Location of Windows ... 26

4.1.3.1 Moving Windows .. 26
4.1.3.2 Resizing Windows ... 26
4.1.3.3 Zooming Windows .. 26
4.1.3.4 Context Sensitive Pop-up Menus ... 26
4.1.3.5 Text Selection .. 27

4.2 Menus .. 27

iii

Table of Contents

4.3 The Toolbar ... 27
4.4 Dialogs .. 28
4.5 Accelerators ... 29

4.5.1 Default Accelerators ... 29
4.5.2 Turbo Emulation Accelerators ... 30

4.6 The File Menu ... 31
4.6.1 The Options Dialog .. 32
4.6.2 The Window Options Dialog .. 33

4.6.2.1 The Assembly Options ... 34
4.6.2.2 The Variables Options ... 34
4.6.2.3 The File Options .. 34
4.6.2.4 The Functions and Globals Options ... 34
4.6.2.5 The Modules Options ... 34

4.7 The Code Menu ... 35
4.8 The Data Menu .. 35
4.9 The Window Menu .. 36
4.10 The Action Menu .. 37
4.11 The Help Menu .. 37
4.12 The Status Window ... 37
4.13 The Log Window .. 37
4.14 The Accelerator Window .. 38

Navigating Through a Program .. 41

5 Navigating Through a Program ... 43
5.1 The Search Menu .. 43

5.1.1 Entering Search Strings .. 43
5.2 The Source Window .. 44
5.3 The File Window ... 45
5.4 The Modules Window ... 46
5.5 The Globals Window .. 47
5.6 The Functions Window ... 48
5.7 The Images Window ... 49

Controlling Program Execution .. 51

6 Controlling Program Execution ... 53
6.1 The Run Menu ... 53
6.2 The Undo Menu .. 54
6.3 The Replay Window .. 56
6.4 The Calls Window ... 57
6.5 The Thread Window .. 57

Examining and Modifying the Program State .. 59

7 Examining and Modifying the Program State ... 61
7.1 Variable and Watch Windows ... 61
7.2 The Memory and Stack Windows ... 65

7.2.1 Following Linked Lists ... 68

iv

Table of Contents

7.2.2 Traversing Arrays ... 68

Breakpoints ... 69

8 Breakpoints .. 71
8.1 How to Use Breakpoints during a Debugging Session ... 71

8.1.1 Setting Simple Breakpoints .. 72
8.1.2 Clearing, Disabling, and Enabling Breakpoints ... 72

8.2 The Break Menu .. 72
8.3 The Break Window ... 74
8.4 The Breakpoint Dialog .. 75

Assembly Level Debugging ... 79

9 Assembly Level Debugging ... 81
9.1 The CPU Register Window ... 81
9.2 The Assembly Window ... 82
9.3 The I/O Ports Window .. 83
9.4 The FPU Registers Window .. 84
9.5 The MMX Registers Window ... 84
9.6 The XMM Registers Window ... 85

Remote Debugging ... 87

10 Remote Debugging .. 89
10.1 Overview ... 89
10.2 Link Descriptions .. 93

10.2.1 NOV (Novell SPX) ... 93
10.2.2 NET (NetBIOS) .. 94
10.2.3 PAR (Parallel) .. 94
10.2.4 SER (Serial) .. 95
10.2.5 WIN (Windows 3.x/9x Virtual DOS Machine) .. 96
10.2.6 NMP (Named Pipes) ... 97
10.2.7 VDM (Virtual DOS Machine) .. 98
10.2.8 TCP/IP (Internet Packets) ... 99

10.3 Specifying Files on Remote and Local Machines ... 100

Interrupting A Running Program .. 103

11 Interrupting a Running Program .. 105
11.1 Overview ... 105
11.2 DOS ... 105
11.3 Windows 3.x ... 105
11.4 Windows NT, Windows 95 ... 105
11.5 OS/2 ... 106
11.6 NetWare .. 106
11.7 Linux ... 106
11.8 QNX .. 106

v

Table of Contents

Operating System specifics ... 107

12 Operating System Specifics ... 109
12.1 Debugging 32-bit DOS Extender Applications ... 109

12.1.1 Debugging CauseWay 32-bit DOS Extender Applications .. 110
12.1.2 Debugging DOS/4G(W) 32-bit DOS Extender Applications .. 110
12.1.3 Debugging Phar Lap 32-bit DOS Extender Applications .. 110

12.2 Debugging a Novell NLM ... 111
12.3 Debugging Graphics Applications .. 111
12.4 Debugging Windows 3.x Applications ... 112
12.5 Debugging Dynamic Link Libraries ... 112
12.6 Disabling Use of 386/486 Debug Registers .. 113
12.7 Debugging Under Linux ... 113

12.7.1 Search Order for Open Watcom Debugger Support Files under Linux 113
12.8 Debugging Under QNX .. 114

12.8.1 Debugging Under QNX Using the Postmortem Dump Facility ... 114
12.8.2 Search Order for Open Watcom Debugger Support Files under QNX 116

Expressions ... 117

13 Open Watcom Debugger Expression Handling ... 119
13.1 Introduction ... 119
13.2 General Rules of Expression Handling ... 119
13.3 Language Independent Variables and Constants .. 120

13.3.1 Symbol Names .. 120
13.3.2 Line Numbers ... 122
13.3.3 Constants .. 123

13.3.3.1 Integer Constants ... 123
13.3.3.2 Real Constants ... 124
13.3.3.3 Complex Constant (FORTRAN Only) .. 124
13.3.3.4 Character Constant (C Only) ... 125
13.3.3.5 Character String Constant (FORTRAN Only) ... 125

13.3.4 Memory References .. 125
13.3.5 Predefined Debugger Variables .. 126
13.3.6 Register Aggregates .. 126

13.4 Operators for the C Grammar .. 127
13.4.1 Assignment Operators for the C Grammar ... 128
13.4.2 Logical Operators for the C Grammar .. 129
13.4.3 Bit Operators for the C Grammar ... 129
13.4.4 Relational Operators for the C Grammar ... 130
13.4.5 Arithmetic/Logical Shift Operators for the C Grammar .. 130
13.4.6 Binary Arithmetic Operators for the C Grammar ... 130
13.4.7 Unary Arithmetic Operators for the C Grammar ... 131
13.4.8 Special Unary Operators for the C Grammar ... 131
13.4.9 Binary Address Operator for the C Grammar .. 133
13.4.10 Primary Expression Operators for the C Grammar .. 133

13.5 Operators for the C++ Grammar ... 134
13.5.1 Ambiguity Resolution in the C++ Grammar .. 135
13.5.2 The "this" Operator for the C++ Grammar ... 136
13.5.3 "operator" Functions in the C++ Grammar .. 136
13.5.4 Scope Operator "::" for the C++ Grammar ... 136

vi

Table of Contents

13.5.5 Constructor/Destructor Functions in the C++ Grammar .. 137
13.6 Operators for the FORTRAN Grammar .. 137

13.6.1 Assignment Operators for the FORTRAN Grammar ... 139
13.6.2 Logical Operators for the FORTRAN Grammar .. 139
13.6.3 Bit Operators for the FORTRAN Grammar ... 140
13.6.4 Relational Operators for the FORTRAN Grammar ... 140
13.6.5 Arithmetic/Logical Shift Operators for the FORTRAN Grammar .. 140
13.6.6 Concatenation Operator for the FORTRAN Grammar .. 140
13.6.7 Binary Arithmetic Operators for the FORTRAN Grammar ... 141
13.6.8 Unary Arithmetic Operators for the FORTRAN Grammar .. 141
13.6.9 Special Unary Operators for the FORTRAN Grammar ... 142
13.6.10 Binary Address Operator for the FORTRAN Grammar .. 142
13.6.11 Primary Expression Operators for the FORTRAN Grammar .. 142

Appendices ... 143

A. Debugger Commands ... 145
A.1 Syntax Definitions .. 145
A.2 Command Summary ... 146

A.2.1 Accelerate .. 146
A.2.2 Break .. 147
A.2.3 Call ... 148
A.2.4 CAPture ... 150
A.2.5 COnfigfile .. 150
A.2.6 Display ... 150
A.2.7 DO (or /) .. 151
A.2.8 ERror ... 151
A.2.9 Examine ... 152
A.2.10 Flip ... 153
A.2.11 FOnt ... 153
A.2.12 Go .. 153
A.2.13 Help ... 154
A.2.14 HOok ... 154
A.2.15 IF .. 154
A.2.16 INvoke (or <) ... 155
A.2.17 Log (or >) .. 155
A.2.18 MOdify .. 155
A.2.19 NEW .. 156
A.2.20 PAint .. 156
A.2.21 Print (or ?) .. 158
A.2.22 Quit .. 160
A.2.23 RECord .. 160
A.2.24 Register .. 160
A.2.25 REMark (or *) ... 160
A.2.26 Set .. 160
A.2.27 SHow ... 161
A.2.28 SKip ... 162
A.2.29 STackpos <intexpr> ... 162
A.2.30 SYstem (or !) ... 162
A.2.31 THread (or ~) ... 162
A.2.32 Trace .. 162

vii

Table of Contents

A.2.33 Undo .. 163
A.2.34 View ... 163
A.2.35 While ... 163
A.2.36 WIndow ... 163

B. Predefined Symbols .. 167

C. Wiring For Remote Debugging .. 173
C.1 Serial Port Wiring Considerations .. 173
C.2 Parallel Port Wiring Considerations ... 173

D. Remote File Operations (DOS, NT, OS/2 Only) ... 177
D.1 RFX Commands ... 177
D.2 Set Current Drive - drive: ... 178
D.3 Change Directory - CHDIR, CD .. 178
D.4 Copy Files - COPY .. 179
D.5 List Directory - DIR ... 180
D.6 Erase File - ERASE, DEL .. 181
D.7 Exit from RFX - EXIT ... 181
D.8 Make Directory - MKDIR, MD ... 182
D.9 Rename - RENAME, REN ... 182
D.10 Remove Directory - RMDIR, RD .. 183
D.11 Display File Contents - TYPE .. 184
D.12 RFX Sample Session .. 185

viii

List of Figures

Figure 1. The Debugger Window ... 27
Figure 2. A Typical Dialog ... 28
Figure 3. The Options Dialog ... 32
Figure 4. The Window Options Dialog .. 33
Figure 5. The Log Window .. 37
Figure 6. The Accelerator Window .. 38
Figure 7. Entering a search string ... 43
Figure 8. The Source Window ... 44
Figure 9. The Modules Window ... 46
Figure 10. The Globals Window .. 47
Figure 11. The Functions Window ... 48
Figure 12. The Images Window ... 49
Figure 13. The Replay Window ... 56
Figure 14. The Calls Window .. 57
Figure 15. The Thread Window ... 57
Figure 16. The Watch and Variable Window ... 61
Figure 17. The Memory Window ... 65
Figure 18. The Break Window ... 74
Figure 19. The Breakpoint Dialog .. 75
Figure 20. The CPU Register Window .. 81
Figure 21. The Assembly Window ... 82
Figure 22. The I/O Window ... 83
Figure 23. The FPU Registers Window ... 84
Figure 24. The MMX Registers Window ... 84
Figure 25. The XMM Registers Window ... 85
Figure 26. Serial Port Wiring Scheme ... 173
Figure 27. Watcom Cable Wiring Scheme ... 174
Figure 28. LapLink Cable Wiring Scheme .. 175
Figure 29. Flying Dutchman Cable Wiring Scheme .. 175

ix

x

Introduction

Introduction

2

1 Overview

1.1 Introduction

The Open Watcom Debugger is a powerful debugging tool that helps you analyse your programs and find
out why they are not behaving as you expect. It allows you to single step through your code, set break
points based on complex conditions, modify variables and memory, expand structures and classes and much
more. With the debugger you can debug programs that run on the following platforms:

• DOS
• CauseWay DOS Extender
• Tenberry Software DOS/4G Extender
• Phar Lap DOS Extender
• Windows 3.x
• Windows NT/2000/XP
• Windows 9x
• 16 and 32-bit OS/2
• GNU/Linux
• QNX 4
• QNX 6 (Neutrino)
• Novell NetWare

1.2 New Features

The latest version of the debugger contains many new features that you should know about.

1.2.1 User Interface

The debugger’s user interface has been redesigned. There are GUI versions of the debugger that run under
Windows 3.x, Windows NT/2000/XP, Windows 9x, and 32-bit OS/2. There are also character mode
versions that run under DOS, Windows 3.x, OS/2, Linux and QNX 4. All versions share a common user
interface incorporating powerful features like context sensitive menus, eliminating the need for command
oriented debugging.

1.2.2 Reverse Execution

The debugger keeps a history of your interactions that modify the state of the program you are debugging.
This includes the effects of statements in your program that you trace. The size of this history is limited
only by available memory. Undo and Redo allow you to step backward and forward through this history.
This allows you to reverse the effects of tracing over simple statements in your program. You can also
reverse any accidental interactions that affect your program’s state. See "The Undo Menu" on page 54.

New Features 3

Introduction

1.2.3 Replay

The debugger keeps a history of all interactions that affect the execution of your program such as setting
break points and tracing. Replay allows you to restart the application and run the application back to a
previous point. This is particularly useful when you accidentally trace over a call. This replay information
may be saved to a file in order to resume a debugging session at a later date. See "The Replay Window" on
page 56.

1.2.4 Stack Unwinding

You can navigate up and down the program’s call stack to see where the currently executing routine was
called from. As you do this, all other windows in the debugger update automatically. Local variables in
the calling routines will be displayed along with their correct values. See "The Undo Menu" on page 54.

1.2.5 Simplified Breakpoints

The debugger allows you to set breakpoints when code is executed or data is modified. These breakpoints
may be conditional based on an expression or a countdown. Simple breakpoints are created with a
keystroke or single mouse click. More complex breakpoints are entered using a dialog. See "The
Breakpoint Dialog" on page 75.

1.2.6 Context Sensitive Menus

Context sensitive menus are present in each debugger window. To use them, you select an item from the
the screen using the right mouse button. A menu containing a list of actions appropriate for that item is
displayed. You can use this capability to perform actions such as displaying the value of an expression
which you have selected from the source window.

1.2.7 Buttons

The debugger contains small buttons that appear on the left side of some windows. These buttons are
shortcuts for the most common operations. For example, you can set and clear a breakpoint by clicking on
the button to the left of a source line.

1.3 Common Menu Items

The debugger’s context sensitive menus contain many useful menu items. Each of these items behave
differently depending upon the selected item. A description of some of the commonly found menu items
follows:

Inspect Inspect displays the selected item. The debugger determines how to best display the
selected item based on its type. If you inspect a variable or an expression, the debugger
opens a new window showing its value. If you inspect a function, the debugger positions
the source code window at the function definition. If you inspect a hexadecimal address
from the assembly window, a window showing memory at that address is opened, and so
on. Experimenting with inspect will help you learn to use the debugger effectively.

4 Common Menu Items

Overview

Modify Modify lets you change the selected item. You will normally be prompted for a new value.
For example, select the name of a variable from any window and choose Modify to change
its value.

New New adds another item to a list of items displayed in a window. For example, choosing
New in the Break Point window lets you create a new breakpoint.

Delete Delete removes the selected item from the window. For example, you can use Delete to
remove a variable from the Watches window.

Source Source displays the source code associated with the selected item. The debugger will
reposition the source code window at the appropriate line. Selecting a module name and
choosing Source will display the module’s source code.

Assembly Assembly positions the assembly code window at the code associated with the selected
item.

Functions Functions shows a list of all functions associated with the selected item or window. For
example, choose Functions in the source window to see a list of all functions defined in that
module.

Watch Watch adds the selected variable or expression to the Watches window. This allows you to
watch its value change as the program runs. Note that this is not a watchpoint. Execution
will not stop when the variable changes. See the chapter entitled "Breakpoints" on page
71 for information about setting watchpoints.

Break Break sets a breakpoint based on the selected item. If a variable is selected, the program
will stop when the variable is modified. If a function is selected, the program will stop
when the function executes.

Globals Globals shows a list of global variables associated with the selected item.

Show Show will present a cascaded menu that let’s you show things related to the selected item.
For example, you can use Line from the Show menu in the source code window to see the
line number of the selected line.

Type Type will present a cascaded menu that allows you to change the display type of the
window or selected item.

Common Menu Items 5

Introduction

6 Common Menu Items

Preparing a Program to be Debugged

Preparing a Program to be Debugged

8

2 Preparing a Program to be Debugged

Before you can debug a program, you must put debugging information into the code.

There are three different formats of debugging information that can be put into the code — "Watcom",
"DWARF" or "CodeView". Starting with version 11.0 (and continuing in the Open Watcom 1.0 and later
compilers), the default format is "DWARF". In earlier releases, the default was "Watcom". Although the
debugger supports all three formats, it is best if you allow the default format to be generated.

To produce an executable that has debugging information, you need to:

1. specify the correct compiler options when you compile, and
2. specify the correct linker options when you link.

During development, use the d2 option of the compiler and use the debug all directive at the beginning of
your linker command line or at the beginning of your linker directive file. This will ensure that maximum
debugging information is available during your debugging session. Change to the d1 option when you need
to create a distribution version of your product. This is necessary since the d2 option disables most
compiler optimizations, whereas d1 will not affect the quality of generated code. During production, you
can use the linker’s symfile option to put the d1 debugging information into a separate file. This lets you
distribute a production quality executable yet still have the luxury of source line debugging when bugs are
reported.

2.1 Compiler Debugging Options

d0 The d0 option will generate no debugging information. This is the default option.

d1 The d1 option will generate debugging information for global symbols and line numbers.

d1+ The d1+ option will generate debugging information for global symbols and line numbers,
and typing information for local structs and arrays.

d2 The d2 option will generate the most debugging information that is normally needed,
including global information, line numbers, types, and local variables.

d2i The d2i option is identical to d2 but does not permit inlining of functions. This option can
result in larger object and/or executable files (we are discussing both "code" and "file" size
here).

d2t The d2t option is identical to d2 but does not include type name debugging information.
This option can result in smaller object and/or executable files (we are discussing "file" size
here).

d3 The d3 option will generate all debugging information generated by d2. In addition, it will
generate information about all types defined in a compilation unit, regardless of whether
they are used in that compilation unit. This option will create very large objects and

Compiler Debugging Options 9

Preparing a Program to be Debugged

executable files. Do not use it unless you want to have access to types that have no
variables associated with them.

2.2 Linker Debugging Options

The linker is the tool that puts together a complete program and sets up the debugging information for all
the modules in the executable file. There is a linker directive that tells the linker when it should include
debugging information from the modules.

The directive you should use in the general case is:

DEBUG ALL

This directive will include all debugging information in the default format. You should always use this
directive except in the rare cases when you need debugging information in a format other than the default.

For "DWARF" format debugging information, the directive is:

DEBUG DWARF

For "Watcom" format debugging information, there are two levels of debugging information that you
should collect during the link. They are:

DEBUG WATCOM LINES global names, source line numbers

DEBUG WATCOM ALL global names, source line numbers, local variables, typing information

Linker DEBUG directives are position dependent so you must make sure that the directive precedes the
object files and libraries that require debugging information.

For instance, if the file "mylink.lnk" contained:

#
invoke with: wlink @mylink
#
file main
debug watcom lines
file input, output
debug watcom all
file process

then the files input and output will have global names and source line information available during
debugging. All debugging information in the file process is available during debugging. No information is
available for main except global names.

If you use a DEBUG directive anywhere, all files, including main, will have global name information.

10 Linker Debugging Options

Preparing a Program to be Debugged

2.3 Debugger Settings

You may encounter problems if the debugger does not know where to find the source code associated with
your executable. The name of the source file included in the debugging information is the path and the
original name from the compiler’s command line. If the original filename is no longer valid (i.e., you have
moved the source to another directory), you must tell the debugger where to find the source files by
choosing Source Path from the File menu.

Debugger Settings 11

Preparing a Program to be Debugged

12 Debugger Settings

Starting the Debugger

Starting the Debugger

14

3 Starting Up the Debugger

The following topics are discussed:

• "Open Watcom Debugger Command Line"

• "Common Switches" on page 16

• "DOS and Windows Options" on page 18

• "DOS Specific Options" on page 19

• "Windows Specific Options" on page 20

• "Linux Options" on page 20

• "QNX Options" on page 21

• "Environment Variables" on page 21

3.1 Open Watcom Debugger Command Line

There are several versions of the debugger.

binw\wd.exe This is the DOS character-mode debugger.

binw\wdc.exe This is the Windows 3.x character-mode debugger.

binw\wdw.exe This is the Windows 3.x windowed (GUI) debugger.

binnt\wd.exe This is the Windows NT/9x character-mode debugger.

binnt\wdw.exe This is the Windows NT/9x windowed (GUI) debugger.

binp\wd.exe This is the OS/2 character-mode debugger.

binp\wdw.exe This is the OS/2 windowed (GUI) debugger.

wd This is the name of the debugger used on UNIX platforms.

See the sections entitled "Operating System Specifics" on page 109 and "Remote Debugging" on page 89
for information on which version to select for your situation.

On the debugger command line, you can specify options that you want to use during your debugging
session. Acceptable option short forms are indicated in capital letters. For example, the /TRap option may
be shortened to /tr.

Open Watcom Debugger Command Line 15

Starting the Debugger

3.2 Common Switches

The following switches are applicable to all operating systems.

/TRap=trap_file[;trap_parm]
specifies an executable helper program that the debugger uses to control the application
being debugged, or to communicate across a remote link. It is called a "trap file" since the
interrupts used for debugging are sometimes called "traps". The trap option selects the
appropriate trap file to use. This option must be specified when remote debugging,
debugging DOS extender applications or debugging OS/2 exception handlers.

The remote trap files themselves have startup parameters. This is specified following the
semi-colon. See "Remote Debugging" on page 89. Normally you do not have to specify a
trap file. If you do not specify the trap option, the default trap file that supports local
debugging is loaded. There are several exceptions.

1. To debug a CauseWay 32-bit application, you must use /TRAP=CW.
2. To debug a Tenberry Software 32-bit DOS/4G(W) application, you must use

/TRAP=RSI.
3. To debug a Phar Lap 32-bit application, you must use /TRAP=PLS.
4. To debug an OS/2 exception handler, you must use /TRAP=STD 2 which tells

the debugger to catch exceptions only on the second chance (normally it would
be the debugger that traps the exception).

5. To debug an OS/2 16-bit application under Phar Lap’s RUN286 DOS extender,
you must use /TRAP=STD16.

/LInes=n controls the number of lines used by a character mode debugger. The number of lines
available depends on the operating system and your video card. The values 25, 43 and 50
are often supported.

/COlumns=n controls the number of columns used by a character mode debugger. The number of
columns available depends on the operating system and your video card. If your system
does not support the requested number of columns, this option is ignored

/Invoke=file may be used to specify an alternate name for the debugger configuration file which is to be
used at start-up time. The default file name is "WD.DBG". Debugger configuration files
are found in the current directory or one of the directories in your PATH.

/NOInvoke specifies that the default debugger configuration file is not to be invoked.

/NOMouse requests that the debugger ignore any attached mouse. This may be necessary if you are
trying to debug mouse events received by your application. This option ensures that the
debugger will not interfere with the mouse.

/DYnamic=number
specifies the amount of dynamic storage that the debugger is to set aside for its own use on
startup. The default amount that is set aside is 500K bytes. The larger the amount, the less
memory will be available for the application to be debugged. You only need to use this
option if the debugger runs out of memory, or is causing your application to run out of
memory. If you are using the remote debugging feature, the debugger will use as much
available memory as available.

16 Common Switches

Starting Up the Debugger

/NOExports specifies that no exports (system symbols) should be loaded. It helps to speed up load time
when debugging remotely and marginally so when debugging locally.

/LOcalinfo=local_file
is used primarily, but not exclusively, in conjunction with the remote debugging
capabilities of the debugger. It causes the debugger to use one or more local files as
sources of debugging information if the right conditions are met. When the debugger
observes that an executable file or Dynamic Link Library (DLL) is being loaded with the
same name (i.e., the path and extension have been stripped) as one of the /localinfo files,
then the named local file is used as a source of debugging information. The named file can
be an executable file, a DLL file (.dll), a symbolic information file (.sym), or any other file
with debugging information attached.

Example:
wd /local=c:\dlls\mydll.sym /local=c:\exes\myexe.exe /tr=par myexe

In the above example, the debugger would obtain debugging information for any
executable or DLL called myexe or mydll from c:\exes\myexe.exe or
c:\dlls\mydll.sym respectively. Note that no path searching is done for local files.
The debugger tries to open the file exactly as specified in the localinfo option.

See the section entitled "Remote Debugging" on page 89 for an explanation of remote
debugging.

/DOwnload specifies that executable file to be debugged is to be downloaded to the task machine from
the debugger machine. The debugger searches for the executable file in the local path, and
downloads it to the debug server’s current working directory on the remote machine before
starting to debug. Debugging information is not downloaded, but is obtained locally, as in
the localinfo option. Note: Only the executable is downloaded; any required DLLs must
be present on the remote machine. Downloading is relatively fast if you are using one of
the TCP/IP (TCP) or Netware (NOV) remote links. Be sure to specify the file extension if
it is not ".exe".

Example:
wd /tr=nov;john /download sample.exe
wd /tr=nov;john /download sample.nlm

The debugger does not erase the file when the debugging session ends. So if you debug the
application again, it will check the timestamp, and if the file is up-to-date, it doesn’t bother
re-downloading it.

See the section entitled "Remote Debugging" on page 89 for an explanation of remote
debugging.

/REMotefiles is used in conjunction with the remote debugging capabilities of the debugger. It causes the
debugger to look for all source files and debugger files on the remote machine. When
remotefiles is specified, all debugger files (except "trap" files) and application source files
are opened on the task machine rather than the debugger machine. The trap file must be
located on the debugger machine.

The PATH environment variable on the task machine is always used in locating executable
image files. When remotefiles is specified, the debugger also uses the task machine’s
PATH environment variable to locate debugger command files. See the section entitled
"Remote Debugging" on page 89 for an explanation of remote debugging. See the section

Common Switches 17

Starting the Debugger

entitled "Specifying Files on Remote and Local Machines" on page 100 for an explanation
of remote and local file names.

/NOFpu requests that the debugger ignore the presence of a math coprocessor.

/NOSYmbols requests that the debugger omit all debugging information when loading an executable
image. This option is useful if the debugger detects and tries to load debugging
information which is not valid.

/DIp=dipname used to load a non-default Debug Information Processor (DIP). This option is generally not
needed since the debugger loads all DIPs that it finds by default. See "The Images
Window" on page 49.

3.3 DOS and Windows Options

The following switches apply to the DOS (binw\wd) and Windows 3.x character-mode (binw\wdc)
debuggers. Refer to the sections called "DOS Specific Options" on page 19 and "Windows Specific
Options" on page 20 for more switches relating to these environments.

/Monochrome When two display devices are present in the system, this option indicates that the
Monochrome display is to be used as the debugger’s output device, leaving the Color
display for the application to use. Use this option in conjunction with the Two option
described below.

/Color, /Colour
When two display devices are present in the system, this option indicates that the Colour
display is to be used as the debugger’s output device. This option is used in conjunction
with the Two option described below.

/Ega43 When an Enhanced Graphics Adapter (EGA) is present, 43 lines of output are displayed by
a character mode debugger.

/Vga50 When a Video Graphics Array (VGA) is present, 50 lines of output are displayed by a
character mode debugger.

/Overwrite specifies that the debugger’s output can overwrite program output. In this mode, the
application and the debugger are forced to share the same display area.

Do not use this option if you wish to debug a DOS graphics-mode application.

/Two specifies that a second monitor is connected to the system. If the monitor type
(Monochrome, Color, Colour, Ega43, Vga50) is not specified then the monitor that is not
currently being used is selected for the debugger’s screen. If the monitor type is specified
then the monitor corresponding to that type is used for the debugger’s screen. This option
may be used when debugging a DOS graphics-mode application on the same machine
and a second monitor is available.

18 DOS and Windows Options

Starting Up the Debugger

3.4 DOS Specific Options

Use the following switches for the DOS debuggers. For more DOS options, refer to the section called
"DOS and Windows Options" on page 18.

/Page specifies that page 0 of screen memory is to be used for the application’s screen and that
page 1 of screen memory should be used for the debugger’s screen. This option may be
selected when using a graphics adapter such as the CGA, EGA or VGA. Using the Page
option results in faster switching between the application and debugger screens and makes
use of the extra screen memory available with the adapter. This is the default display
option. Do not use this option if you wish to debug a DOS graphics-mode application.

/Swap specifies that the application’s screen memory and the debugger’s screen memory are to be
swapped back and forth using a single page. The debugger allocates an area in its own data
space for the inactive screen. This reduces the amount of memory available to the
application. It also takes more time to switch between the application and debugger
screens. This option MUST be used when debugging a DOS graphics-mode application
and a second monitor is not available.

The default display options are:

1. If you have a two display system, the debugger uses both displays with the
program output appearing on the active monitor and the debugger output
appearing on the alternate monitor. In other words, the Two option is selected by
default.

2. If you have one of the CGA, EGA or VGA graphics adapters installed in your
system then the debugger selects the Page option by default.

3. Under all other circumstances, the debugger selects the Swap option by default.

/CHecksize=number
specifies the minimum amount of storage, in kilobytes, that the debugger is to provide to
DOS for the purpose of spawning a program while the debugger is active. This option is
useful when the application that is being debugged uses up most or all of available
storage, leaving insufficient memory to spawn secondary programs. In order to provide
the requested amount of free memory to DOS, the debugger will checkpoint as much of the
application as required.

Checkpointing involves temporarily storing a portion of the memory-resident application
on disk and then reusing the part of memory that it occupied for the spawned program.
When the spawned program terminates, the checkpointed part of the application is restored
to memory.

The default amount is 0K bytes. In this case, the spawned program may or may not be run
depending on how much free storage is available to DOS to run the program.

Warning: If the application being debugged installs one or more interrupt handlers,
the use of this option could hang your system. Your system could lock up
if the debugger checkpoints a portion of the application’s code that contains
an interrupt handler.

/NOCHarremap
turns off the character re-mapping that the DOS debugger uses for displaying dialogs and
window frames. Use this option when trying to debug in an environment where

DOS Specific Options 19

Starting the Debugger

character remapping is not available. Windowed DOS boxes under OS/2 do not support
character re-mapping.

/NOGraphicsmouse
Turn off the graphics mouse emulation code that makes the mouse cursor look like an
arrow instead of a block. Use this option if the mouse cursor appears as 4 line drawing
characters instead of an arrow.

3.5 Windows Specific Options

Use the following switches for the Windows character-mode debugger. Refer to the section called "DOS
and Windows Options" on page 18 for more Windows options.

/Fastswap specifies that Windows 3.x screen memory and the debugger’s screen memory are to be
swapped back and forth using a technique that is faster than the default method of screen
swapping but not guaranteed to work for all video adapters. This option applies to
Windows 3.x only. By default, the Windows 3.x version of the debugger uses a more
conservative (and slower) method that works with all video adapters.

3.6 Linux Options

You can use the following switch for the Linux debugger.

-Console=console_spec
specifies the virtual console to use for debugger windows. This may be a console number
as in the following example.

Example:
-console=2

You may also use a full device name.

Example:
-console=/dev/tty

In this case, the debugger will use that device for its input and output. The
debugger/application screen flipping features will be disabled.

You can also optionally follow the device name with a colon and a terminal type.

Example:
-con=/dev/tty:vt240

This will let the debugger know what kind of terminal it’s talking to so it can initialize the
user interface appropriately.

-COlumns=n specifies the number of columns of the screen/window that the debugger should attempt to
establish.

20 Linux Options

Starting Up the Debugger

-XConfig=string
specifies a set of X Windows configuration options to pass to xterm. The following
example sets the xterm font size to 12 point.

Example:
-xc=-fs -xc=12

3.7 QNX Options

You can use the following switch for the QNX debugger.

-Console=console_spec
specifies the virtual console to use for debugger windows. This may be a console number
as in the following example.

Example:
-console=2

You may also use a full device name.

Example:
-console=//23/dev/ser1

In this case, the debugger will use that device for its input and output. The
debugger/application screen flipping features will be disabled.

You can also optionally follow the device name with a colon and a terminal type.

Example:
-con=/dev/ttyp1:vt240

This will let the debugger know what kind of terminal it’s talking to so it can initialize the
user interface appropriately.

-COlumns=n specifies the number of columns of the screen/window that the debugger should attempt to
establish.

-XConfig=string
specifies a set of X Windows configuration options to pass to xqsh.

3.8 Environment Variables

You can use the WD environment variable to specify default options to be used by the debugger. Once you
have defined the environment variable, those options are used each time you start the debugger.

Environment Variables 21

Starting the Debugger

3.8.1 WD Environment Variable

If the specification of an option involves the use of an "=" character, use the "#" character in its place. This
is required by the syntax of the "SET" command. Options found in the environment variable are processed
before options specified on the command line. The following example illustrates how to define default
options for the debugger:

Example:
C>set wd=/swap/lines#50

3.8.2 WD Environment Variable in Linux

The following example illustrates how to define default options for the debugger under Linux:

Example:
$ export WD="-lines=50 -columns=100"

Under Linux, care must be taken to specify the environment variable name entirely in uppercase letters.

3.8.3 WD Environment Variable in QNX

The following example illustrates how to define default options for the debugger under QNX:

Example:
$ export "WD=-nofpu -console=3"

Under QNX, care must be taken to specify the environment variable name entirely in uppercase letters.

22 Environment Variables

Open Watcom Debugger Environment

Open Watcom Debugger Environment

24

4 The Open Watcom Debugger Environment

This chapter describes the interactions you need in order to use the debugger.

4.1 Debugger Windows

The debugger displays its information in windows. Both the character and the GUI-based debuggers use
similar conventions for window manipulation.

4.1.1 Window Controls

Each window has the following controls

Minimize, Maximize, Restore
You can control the size of each window using the Minimize, Maximize, and Restore
buttons. The buttons appear on the top right corner of the window. The Minimize button is
the down arrow. When you click on the down arrow, the window becomes an icon at the
bottom of the screen. The Maximize button is the up arrow. When you click on the up
arrow, the window fills the whole screen. The Restore button appears only when the
window is maximized. It is an up and down arrow. Click on the Restore button to put the
window back to its original size.

Close Each window has a Close button in the top left corner. Double-click on this button to close
the window.

System Menu The System Menu contains menu items that operate on the window. It contains:

• Restore
• Move
• Size
• Minimize
• Maximize

You can activate the System Menu of the main window by clicking once on the System
Menu button (top, left-hand corner) or by typing ALT-Space. For Microsoft Windows, you
can type ALT-Hyphen to activate a child window’s System Menu.

Scroll Bars Windows that contain information that cannot fit in the window have scroll bars. Use the
scroll bars to reposition the window so the information you want to see is visible. The
small box in the scroll bar indicates the current scroll position in the window.

Title Each window is titled so that you know what information it contains. The title appears in
the bar at the top of the window.

Buttons Many windows have small buttons on the left hand side. These buttons are short forms for
performing the most common operations.

Debugger Windows 25

Open Watcom Debugger Environment

4.1.2 The Current Window

The current window is the one whose title bar is coloured. Press CTRL-TAB to move from window to
window.

4.1.3 Controlling the Size and Location of Windows

The following window operations are possible.

• "Moving Windows"

• "Resizing Windows"

• "Zooming Windows"

• "Context Sensitive Pop-up Menus"

• "Text Selection" on page 27

4.1.3.1 Moving Windows

To move a window, click in the Title bar and drag it to a new location. You can also choose Move from the
System Menu and use the cursor keys to reposition the window, pressing ENTER when the window is in
the right spot.

4.1.3.2 Resizing Windows

In the GUI-based version of the debugger, you can resize a window’s width, height, or both. Refer to the
system documentation for details.

In the character-based version of the debugger, you can only resize a window from the corners. Move the
cursor to any corner of the window. Click and drag the mouse to resize the window.

You can also choose Size from the System Menu to change the size of a window. Use the cursor keys to
resize the window, press ENTER when the window is the right size.

4.1.3.3 Zooming Windows

Choose Zoom from the Window menu to toggle a window between its maximized and normal sizes.

4.1.3.4 Context Sensitive Pop-up Menus

The debugger has context sensitive pop-up menus for each window in the application. You can access the
menu either by pressing the right mouse button in the window or by typing the period (.) key. You can
then choose a menu item by typing the highlighted character or by clicking the mouse on it.

If you have memorized the highlighted menu character, you can bypass the menu and activate the menu
item directly by pressing the CTRL key in conjunction with that character. The items that appear in the
menu depend on the current window. These menus are described in detail throughout this document.

26 Debugger Windows

The Open Watcom Debugger Environment

Note The Action item in the main menu is identical to the the context sensitive pop-up menu for
the current window and may be used instead of pop-up menus.

For more information on the choices presented in the pop-up menus, see the section entitled "Variable and
Watch Windows" on page 61.

4.1.3.5 Text Selection

Some windows, such as the Source and Assembly windows, allow you to select text. For example, you
might want to select a variable name or expression. Menu items will act on the selected item.

You can select text with either the left or right mouse button. If you use the right button, the pop-up menu
appears when you release the button. With the keyboard, hold SHIFT while using the cursor keys. You
can select a single character and the debugger will automatically extend the selection to include the entire
surrounding word.

4.2 Menus

At the top of the debugger window are a number of menu items. You can select a menu item with the
mouse or by pressing ALT and the highlighted character from the menu title.

Many menu items have accelerators or keyboard equivalents. They appear to the right of the menu item.
As you learn the debugger, take time to learn the accelerators. They will help you to use the debugger more
effectively.

4.3 The Toolbar

Figure 1. The Debugger Window

The Toolbar 27

Open Watcom Debugger Environment

The Toolbar appears under the menu in the GUI-based debugger. The buttons in the Toolbar are equivalent
to menu selections. There are eight buttons in the toolbar. Listed from left to right, they are:

• Go from the Run menu
• Step Over from the Run menu
• Trace Into from the Run menu
• Until Return from the Run menu
• Undo from the Undo menu
• Redo from the Undo menu
• Unwind Stack from the Undo menu
• Rewind Stack from the Undo menu
• Home from the Undo menu

See the sections entitled "The Run Menu" on page 53 and "The Undo Menu" on page 54 for details.

4.4 Dialogs

Figure 2. A Typical Dialog

Dialogs appear when you choose a menu item that does not perform an immediate action. They allow you
to make choices and set options. The dialogs contain the following:

Edit fields These are fields in which you can type information.

Buttons You can click on buttons to perform actions.

Default button The default button in a dialog is highlighted. You can select this button by pressing
ENTER.

28 Dialogs

The Open Watcom Debugger Environment

Cancel All dialogs contain a cancel button. Choose the Cancel button or press ESC to leave a
dialog without saving or implementing changes you have made to the dialog.

Check Boxes Check boxes are used to control settings in the debugger. Click on the field, or TAB to it
and press SPACE to toggle the option between on and off.

Radio Buttons Radio buttons present a set of mutually exclusive choices. Click on a radio button to turn it
on or press TAB to move to the group of radio buttons and use the cursor keys to select a
radio button. If this does not work, use the accelerator key to turn on the desired radio
button. Only one radio button is on at all times. When you select a different radio button,
the currently selected one is turned off.

List boxes A list box contains a list of applicable items.

Drop-down List boxes
A drop down list box is a list that does not appear on the screen until you click on the down
arrow on the right of the box. You may then select from a list of options.

4.5 Accelerators

Accelerators are keys that you can press in place of selecting a menu item or typing commands. The
debugger comes with a standard set of accelerators that you can view by choosing Accelerators from the
Window menu.

If you are used to the CodeView debugger, you should be comfortable with the Open Watcom Debugger’s
default set of accelerators. If you are used to using Turbo Debugger, you can select accelerators which are
similar to its accelerator definitions. To select Turbo accelerators, choose Accelerator from the Window
menu then select TD Keys from the Action menu.

4.5.1 Default Accelerators

The default accelerators are:

/ Search/Find...
ALT-/ Search/Next
CTRL-\ Search/Next
? add a new expression to the Watch window
F1 invoke help facility
F2 Data/Registers
F3 toggle between source level and assembly level debugging
F4 Window/Application
F5 Run/Go
F6 Window/Next
F7 Run/Run to Cursor
F8 Run/Trace Into
F9 Break/Toggle
F10 Run/Step Over
SHIFT-F9 add a new item to the Watch window
CTRL-F4 close the current window

Accelerators 29

Open Watcom Debugger Environment

CTRL-F5 restore the current window to its normal size
CTRL-F6 rotate the current window
CTRL-F9 minimize the current window
CTRL-F10 maximize the current window
ALT-F10 display the floating pop-up menu for the current window
CTRL-TAB rotate the current window
CTRL-LEFT Undo/Undo
CTRL-RIGHT Undo/Redo
CTRL-UP Undo/Unwind Stack
CTRL-DOWN Undo/Rewind Stack
CTRL-BACKSPACE Undo/Home
ALT-1 Data/Locals
ALT-2 Data/Watches
ALT-3 Code/Source
ALT-4 File/View...
ALT-5 Data/Memory at...
ALT-6 Data/Memory at...
ALT-7 Data/Registers
ALT-8 Data/80x87 FPU
ALT-9 File/Command...
CTRL-z Window/Zoom
SPACE Run/Step Over
. display the floating pop-up menu for the current window
: File/Command...
= Search/Match
n Search/Next
N Search/Previous
u Undo/Undo
U Undo/Redo
b Break/At Cursor
e Data/Memory at...
g Run/Execute to...
h move cursor left one
i Run/Trace Into
j move cursor down one
k move cursor up one
l move cursor right one
t Break/Toggle
x Run/Next Sequential

4.5.2 Turbo Emulation Accelerators

The Turbo emulation accelerators are:

F2 Break/Toggle
F3 Code/Modules
F4 Run/Run to Cursor
F5 Window/Zoom
F6 Window/Next
F7 Run/Trace Into
F8 Run/Step Over

30 Accelerators

The Open Watcom Debugger Environment

F9 Run/Go
ALT-F2 Break/New...
ALT-F3 close the current window
ALT-F4 Undo/Undo
ALT-F5 Window/Application
ALT-F7 trace one assembly instruction
ALT-F8 Run/Until Return
ALT-F9 Run/Execute to...
ALT-F10 activate the pop-up menu for the current window
CTRL-F2 Run/Restart
CTRL-F4 open a new Watch window
CTRL-F7 add a new item to the Watch window

4.6 The File Menu

The File menu contains items that allow you to perform file operations, such as:

Open Start debugging a new program, or to restart the current program with new arguments.

View Display a file in a window.

Command Enter a debugger command. For a description of debugger commands, refer to the section
entitled "Debugger Commands" on page 145.

Options Set the global debugging options. For a full description of these options, refer to the
section entitled "The Options Dialog" on page 32.

Window Options
Set the options for the debugger’s various windows. For a full description of these options,
refer to the section entitled "The Window Options Dialog" on page 33.

Save Setup Save the debugger’s current configuration. This saves the positions and sizes of all
windows as well as all options and settings. By default, this information is saved into the
file setup.dbg, however, you can save this information into another file to create
alternate debugger configurations.

Load Setup Load a configuration previously saved using Save Setup.

Source Path Modify the list of directories which will be searched when the debugger is searching for
source files.

System The menu item appears only in the character-based version of the debugger. It spawns a
new operating system shell.

Exit Close the debugger.

The File Menu 31

Open Watcom Debugger Environment

4.6.1 The Options Dialog

Figure 3. The Options Dialog

The Options dialog allows you to change the following settings:

Auto configuration save When this option is on, the debugger automatically saves its configuration upon
exit.

Warning Bell When this option is on, the debugger will beep when a warning or error is issued.

Implicit Invoke If this option is on, the debugger will treat an unknown command as the name of a
command file and automatically try to invoke it. If this option is off, you must use the
invoke command to invoke a command file.

Under UNIX, a conflict is possible when Invoke is on. A path specified for a command file
name is confused with the short form of the DO command (/). A similar problem occurs
under DOS, OS/2, Windows 3.x, Windows NT, or Windows 95 when a drive specifier
forms part of the file name.

Recursion Check Use this option to control the way tracing over recursive function calls is handled. When
this option is on, and you trace over a function call, the debugger will not stop if the
function executes recursively.

Break on write (not change) Use this option (if available with the selected trap) to enable true
break-on-write breakpoints. This will break on any write access; not just when a watch
point has changed.

Screen flip on execution Use this option to control whether the debugger automatically flips the display to
the application’s screen upon execution. Leave this option on if you are using the
character mode debugger to debug a Windows 3.x application.

Ignore case This option controls whether or not case is ignored or respected when the debugger is
searching for a string.

32 The File Menu

The Open Watcom Debugger Environment

Do not expand hex numbers This option controls whether or not hexadecimal values are displayed in their
natural size (zero preceded) or displayed in their most compact form. The default is to
display the value in its full natural size.

Default Radix Use this option to define the default radix used by the debugger. The debugger associates a
radix with each action automatically. For example, if you are asked to enter an address, the
debugger assumes base 16. If you double click on a decimal value, you will be prompted
for a decimal replacement value but there are occasions when the debugger must use the
default radix. If you add an arbitrary expression to the Watches window, the default radix
is used when interpreting that expression. You can specify any radix between 2 and 36.

Double click mS This option sets the amount of time in milliseconds allowed between two clicks for the
debugger to accept it as a double click. Enter a larger value if you are having trouble with
double clicks.

4.6.2 The Window Options Dialog

Figure 4. The Window Options Dialog

Use the Window Options dialog to define options related to the debugger’s various windows. All of these
options appear in a dialog when you choose Window Options from the File menu.

The Window Options dialog allows you to set options for the following windows:

• Source
• Modules
• Functions
• Assembly
• Watches
• Locals
• File Variables
• Globals

The File Menu 33

Open Watcom Debugger Environment

• Variable

4.6.2.1 The Assembly Options

The Assembly options allow you to define how your assembly code appears. You can set the following
options:

Show Source Turn on this option if you want source code intermixed with assembly code.

Hexadecimal Turn on this option if you want immediate operands and values to be displayed in
hexadecimal.

4.6.2.2 The Variables Options

Use the Variable options to set display options and to specify which members of a class you want displayed
when a structure or class is expanded. You can set:

Protected Display protected members in expanded classes.

Private Display private members in expanded classes.

Whole Expression
Turn this option on to show the whole expression used to access fields and array elements
instead of just the element number or field name itself.

Functions Display C++ member functions in expanded classes.

Inherited Display inherited members in expanded classes.

Compiler Display the compiler-generated members. You will usually not want this option turned on.

Members Display members of the ’this’ pointer as if they were local variables declared within the
member function.

Static Display static members.

4.6.2.3 The File Options

You can set the display width of a tab in the File options section. This value defaults to 8 spaces.

4.6.2.4 The Functions and Globals Options

For both Functions and Global Variables windows, you can turn on the Typed Symbols option. This
restricts the list of symbols to those that are defined in modules compiled with full debugging information
(d2 option).

4.6.2.5 The Modules Options

You can turn on Show All to allow the Modules window to display all modules in your program, not just
those which have been compiled with the d2 option.

34 The File Menu

The Open Watcom Debugger Environment

4.7 The Code Menu

The Code menu allows you to display windows that show different information related to your code. It
contains the following items:

Source Open the Source window. It shows source code at the currently executing location. See
"The Source Window" on page 44.

Modules Display a sorted list of modules contained in the current program. See "The Modules
Window" on page 46.

Functions Open a sorted list of all functions in the program. See "The Functions Window" on page
48.

Calls Open the Call History window. This window displays the program’s call stack. See "The
Calls Window" on page 57.

Assembly Open the Assembly window. It shows assembly code at the currently executing location.
See "The Assembly Window" on page 82.

Threads Open a list of all threads in your program and their current state. See "The Thread
Window" on page 57.

Images Open a list of the executable images which are related to the program being debugged.
This includes a list of all loaded DLLs. See "The Images Window" on page 49.

Replay Open the program execution Replay window. This window allows you to restart your
application and replay your debugging session to any point. See "The Replay Window" on
page 56.

4.8 The Data Menu

The Data menu contains a number of windows that you can open to view the state of your program’s data.
It contains the following items:

Watches Open a Watches window. You can add and delete variables from the Watches window and
use it to evaluate complex expressions and perform typecasting. See "Variable and Watch
Windows" on page 61.

Locals Open a Locals window. It displays the local variables of the currently executing function.
See "Variable and Watch Windows" on page 61.

File Variables Open a File Variables window. It contains a list of variables defined at file scope in the
current module. See "Variable and Watch Windows" on page 61.

Globals Open a sorted sorted list of all global variables in your program. Values are not displayed
since it would make this window very expensive to update, but you can select variables
from this window and add them to a Watches window. See "The Globals Window" on
page 47.

The Data Menu 35

Open Watcom Debugger Environment

Registers Displays the CPU registers and their values. See "The CPU Register Window" on page 81.

FPU Registers Displays the FPU registers and their values. See "The FPU Registers Window" on page 84.

MMX Registers
Displays the MMX (multi-media extension) registers and their values. See "The MMX
Registers Window" on page 84.

XMM Registers
Displays the XMM (SSE) registers and their values. See "The XMM Registers Window"
on page 85.

Stack Displays memory at the stack pointer. See "The Memory and Stack Windows" on page 65.

I/O Ports Open a window that lets you manipulate the I/O address space of the machine. See "The
I/O Ports Window" on page 83.

Memory at... Display memory at a given address. See "The Memory and Stack Windows" on page 65.

Log Displays debugger messages and the output from debugger commands. See "The Log
Window" on page 37.

4.9 The Window Menu

The Window menu allows you to control and arrange the windows on your screen.

The Window menu contains the following items:

Application Switch to the output screen of the application. Press any key to return to the debugger.

To Log Save the current window’s contents to the log window. Open the Log window to see the
contents.

To File Save the contents of the current window to a file. You must enter a file name and choose
the drive and directory to which you want to save the information. This is useful for
comparing program state between debugging sessions.

Zoom Change the size of the current window. Zoom toggles the current window between its
normal and maximum sizes.

Next Rotate through the windows, choosing a new current window.

Accelerator Open the Accelerator window. This window allows you to inspect and modify the
debugger’s keyboard shortcut keys.

36 The Window Menu

The Open Watcom Debugger Environment

4.10 The Action Menu

Most windows in the debugger have a context sensitive pop-up menu. The Action menu will contain the
same menu items as the current window’s pop-up menu. It may be used as an alternative to the pop-up
menus. As an alternative to selecting text with the right mouse button and using the pop-up menu, you can
select text with the left mouse button or keyboard and use the Action menu. For more information on the
choices presented in the pop-up menus, see the section entitled "Variable and Watch Windows" on page 61.

4.11 The Help Menu

The Help menu contains items that let you use the on-line help facility. They are:

Contents Show the main table of contents of the on-line help information. This is equivalent to
pressing F1.

On Help Display help about how to use the on-line help facility. This menu item is not available in
character-mode versions of the debugger.

Search Search the on-line help for a topic. This menu item is not available in character-mode
versions of the debugger.

About Display the "about box". It contains the copyright and version information of the debugger.

4.12 The Status Window

The Status window appears at the bottom of the debugger screen. As you drag the mouse over a menu
item, descriptive text about that menu item appears in the toolbar. Messages about the current status of the
program and debugger warning messages also appear in the Status window.

4.13 The Log Window

Figure 5. The Log Window

The Log Window 37

Open Watcom Debugger Environment

Choose Log from the Data menu to see the Log window. The Log window displays several different types
of messages, including:

• status messages such as break point notification
• warning and error messages
• output from debugger commands

You can send the contents of any window to the Log window by selecting To Log from the Window menu.
This allows you to save a window’s contents and review it later.

4.14 The Accelerator Window

Figure 6. The Accelerator Window

The Accelerator window allows you to control the accelerators or keyboard equivalents used by the
debugger. Choose Accelerator from the Window menu to open this window. The window displays 4 items
relating to each accelerator definition. They are the key name, the window to which the accelerator applies,
the type of action that the accelerator defines, and the specifics of that action.

Accelerators may either apply to all windows or to a specific window. You could define F2 to perform a
different action depending upon which window is current. Accelerators which apply to all windows will
have a window type of all.

An accelerator can define one of three action types. They are:

pop-up Activate a pop-up menu item in the current window.

menu Activate an item from the main menu.

command Perform an arbitrary debugger command.

38 The Accelerator Window

The Open Watcom Debugger Environment

You can modify an element of an accelerator definition by double-clicking on it, or by cursoring to it and
pressing ENTER. Press the right mouse button to access the following menu items:

Modify Change the currently selected element of an accelerator assignment. If the key name is
selected, the you will be prompted to type a new key. If the window name is selected, you
will be presented with a list of possible window classes. If the action type or details are
selected, you will be presented with a menu in order to pick the menu item which will be
attached to the accelerator.

New Add a new accelerator assignment. You will be prompted for all details.

Delete Delete the selected accelerator.

TD Keys Use an approximation of Borland Turbo Debugger’s accelerators.

WD Keys Use the default set of accelerators. If you are familiar with CodeView, you will be
comfortable with these key assignments.

The Accelerator Window 39

Open Watcom Debugger Environment

40 The Accelerator Window

Navigating Through a Program

Navigating Through a Program

42

5 Navigating Through a Program

This section describes how to use the debugger to browse through your program.

5.1 The Search Menu

The Search menu allows you to search a window for a given string. It contains the following items:

Find Search the current window for the first appearance of a given string. You will be prompted
for the string. See "Entering Search Strings".

Next Find a subsequent occurrence of a search string.

Previous Find a previous occurrence of a search string.

All Modules This will search through the source code of all the modules contained in your program for a
given string. See "Entering Search Strings".

Match Find a string in a sorted window by incremental matching. Once you select match, the text
you type appears in the status window, and the window you are searching repositions itself
as you type each character. Press ESC to leave this mode.

5.1.1 Entering Search Strings

Figure 7. Entering a search string

When you choose Find from the Search menu or All Modules from the Search menu, you must enter the
search string that you are looking for and set the parameters for the search. The Search screen consists of
the following items:

The Search Menu 43

Navigating Through a Program

Enter Search String
Enter the string to be found in this edit box. The larger list below shows other strings that
you have searched for during this debugging session. You can select these by clicking on
them or by using the up and down arrow keys. The most recent search string appears at the
top of the list.

Regular Expression
Check this box if the string is to be interpreted as a regular expression. You can click on
the Edit button to edit the set of regular expression characters that will be used. For a
description of regular expressions, see the Editor manual.

Ignore Case Check this box if you want the debugger to match the search string regardless of case.

5.2 The Source Window

Figure 8. The Source Window

The Source window displays your program’s source code. As you trace through your program, it
repositions itself at the currently execution location. If you have an Assembly window open, the Source
and Assembly windows will always be positioned at the same code. If you scroll in one, the other follows.

Source lines that have code associated with them have a button at the left of the screen. You can click on
this button to set, disable and clear break points.

You can Inspect any item displayed in the source window by double-clicking on it, or by cursoring to it and
pressing ENTER. Press the right mouse button to access the following pop-up menu items:

Inspect Inspect the selected item in an appropriate window. You can select function names,
variable names, or any valid expression.

Run to Cursor Resume program execution until the selected line is executed.

Break Add a breakpoint based on the selected text. If a variable is selected, the program will stop
when its value changes. If a function name is selected the program will stop when that
function is executed. This does not set a break at the current line. Use Toggle from the
Break menu or At Cursor from the Break menu to set a breakpoint at the current line.

44 The Source Window

Navigating Through a Program

Enter Function
Resume program execution until the selected function is entered.

Watch Add the selected item to the Watches window for further inspection or modification.

Find Search for other occurrences of the selected string in the Source window.

Home Reposition the window to show the currently executing location. The cursor will move to
the next line of the program to be executed.

Show/Assembly
Show the assembly code associated with the selected line.

Show/Functions
Show the list of all functions contained in the source file.

Show/Address Reposition the window at a new address. You will be prompted for an expression.
Normally you would type a function name but you can type any expression that resolves to
a code address. For example, you might type the name of a variable that contains a pointer
to a function. See "Open Watcom Debugger Expression Handling" on page 119.

Show/Module Show the code for a different module. You will be prompted for its name in a dialog. As a
shortcut, you can type the beginning of a module name and click the Module... button.
This will display a list of all modules that start with the text you typed.

Show/Line Move to a different source line. You can also find out what line you are looking at. The
edit field will be initialized with the current line number.

5.3 The File Window

A File window is Similar to a source window except that it displays a file which is not part of the program
being debugged. Menu items related to execution such as Break from the pop-up menu are not available.

The Modules Window 45

Navigating Through a Program

5.4 The Modules Window

Figure 9. The Modules Window

The Modules window displays a list of the modules that make up the current program. To open the
Modules window, choose Modules from the Code menu.

Three items are displayed for each module. At the left, there is a button. You can click the mouse on it to
see the source or assembly associated with the module. This can also be accomplished by double-clicking
on the module name or cursoring to it and pressing ENTER. Next is the module name. Third, if the
module is contained in an executable image other than the one being debugged, is the name of that image.

Since this window is sorted Match from the Search menu can be used to find a module. Choose Match
from the Search menu (or press =) and begin typing the name of the module.

Press the right mouse button to access the following pop-up menu items:

Source Show the source code associated with the selected module.

Assembly Show the assembly code associated with the selected module.

Functions Show the list of all functions contained in this module.

Break All Set a breakpoint at each function in this module.

Clear All Delete all breakpoints which are set at addresses with this module. This does not affect
break-on-write break points.

Show All Toggle between showing all modules and just modules which were compiled with full
debugging information (d2). This menu item sets options on a per-window basis,
overriding the global settings. When you use the menu item to change these settings, they
will not be saved between debugging sessions. To change an option permanently, see "The
Window Options Dialog" on page 33.

46 The Modules Window

Navigating Through a Program

5.5 The Globals Window

Figure 10. The Globals Window

You can open the Globals window by choosing Globals from the Data menu. This window displays the
names of all global variables defined in the program. You can add a variable to the Watches window by
double-clicking on it, or cursoring to it and pressing ENTER.

Press the right mouse button to access the following pop-up menu items:

Watch Add the selected variable to the Watches window.

Raw Memory Display the memory associated with the selected variable.

Typed Symbols
Toggle between showing all symbols and just those defined in modules compiled with the
d2 option. Variables from the C/C++ library and assembly code are suppressed. This
menu item sets options on a per-window basis, overriding the global settings. When you
use the menu item to change these settings, they will not be saved between debugging
sessions. To change an option permanently, see "The Window Options Dialog" on page
33.

The Functions Window 47

Navigating Through a Program

5.6 The Functions Window

Figure 11. The Functions Window

The Functions window can display a list of all functions contained in a module, executable image or
program. To the left of each function name is a button. You can click on these buttons to set and clear
breakpoints at the various functions. This can also be accomplished by double-clicking on the function
name or cursoring to a function and pressing ENTER.

Press the right mouse button to access the following pop-up menu items:

Break Set a breakpoint at the selected function. A dialog will appear so that you can fill in
detailed breakpoint information. For more information, refer to the section entitled "The
Breakpoint Dialog" on page 75.

Source Show the source code for the selected function.

Assembly Show the assembly code associated with the selected function.

Typed Symbols
Toggle between showing all symbols and just those defined in modules compiled with the
d2 option. Variables from the C/C++ library and assembly code are suppressed. This
menu item sets options on a per-window basis, overriding the global settings. When you
use the menu item to change these settings, they will not be saved between debugging
sessions. To change an option permanently, see "The Window Options Dialog" on page
33.

48 The Images Window

Navigating Through a Program

5.7 The Images Window

Figure 12. The Images Window

Choose Images from the Code menu to open the Images window. It displays a list of executable images
associated with the program that you are currently debugging. Executable images include the program
executable, DLLs (Windows, OS/2 and Windows NT), and NLMs (NetWare). This window displays the
name of the executable image, the name of the symbolic debugging information file (if available), and the
debugging information type.

Different debugging information types are generated by different compilers.

Valid information types are:

DWARF This information is generated by the Open Watcom compilers.

Watcom This information is optionally generated by the Open Watcom compilers.

CodeView In addition to Open Watcom compilers, several other products, including Microsoft’s, can
generate CodeView style information.

MAPSYM This information is generated by Microsoft’s or IBM’s MAPSYM utility. MAPSYM
processes linker map file and outputs a .sym file. Symbol files in MAPSYM format are
often available for OS/2 system DLLs. MAPSYM files only contain information about
global symbols, but usually provide much more detail than just exports information.

EXPORTS This information is contained in the executable file itself, and is used by the operating
system. Under OS/2, Windows and Windows NT, DLLs have export tables which define
the names and addresses of entry points. Exports information lets you see the names of
system entry points and APIs. Novell NLMs also have entry point tables. In addition, they
may have Novell style debugging information, created with Novell’s linker (NLMLINK) or
using the Open Watcom Linker’s "debug novell" option. This information is made
available to the debugger.

You can add new debugging information to an image by double-clicking on the image name or cursoring to
it and pressing ENTER.

Press the right mouse button to access the following pop-up menu items:

The Images Window 49

Navigating Through a Program

New Symbols Add symbolic debugging information for the selected image. This is useful if you know
that a separate debug information file contains the appropriate debugging information that
was not found by the debugger.

Delete Symbols
Delete any symbolic debugging information associated with the selected image.

Modules Show a list of modules contained in the selected image.

Functions Show a list of functions contained in the selected image.

Globals Show a list of all global variables contained in the selected image.

50 The Images Window

Controlling Program Execution

Controlling Program Execution

52

6 Controlling Program Execution

This section describes how you can control the execution of your program as you debug it.

6.1 The Run Menu

The Run menu controls how your program executes. It contains the following items.

Go Start or resume program execution. Execution resumes at the current location and will not
stop until a breakpoint is encountered, an error occurs, or your program terminates.

Run to Cursor Resume program execution until it executes the location of the cursor in the Source or
Assembly window. Execution will stop before the cursor position if a breakpoint is
encountered or an error occurs.

Execute to Resume program execution until it executes a specified address. You will be prompted to
enter an address. It can be the name of a function or an expression that resolves to a code
address. See "Open Watcom Debugger Expression Handling" on page 119. In the dialog,
you can click the Symbols... button as a shortcut. You can type a partial symbol name like
foo and the Symbol button will show you a list of symbols that start with foo. You can
then choose one of these symbols by clicking on it or hitting ENTER. Note that the first
time you use the Symbols... in a debugging session, it will take a while as the debugger
sorts the symbol table for the program.

If your program encounters a breakpoint or an error occurs before the specified address is
executed, your request to stop at the given address is ignored.

Step Over Trace a single source or assembly line depending on whether the source or assembly
window is current. Step Over will not step into any function calls.

Trace Into This is similar to Step Over except that it will step into any function calls.

Next Sequential
Run until the program executes the next sequential source line or assembly instruction.
This is useful if the program is executing the last statement in a loop and you wish to
execute until the loop terminates. When using this command, be sure that the execution
path will eventually execute the next statement or instruction. If execution fails to reach
this point then the program may continue to execute until completion. This situation is like
setting a breakpoint at a statement or assembly instruction which will never be executed
and then issuing a GO command. In this situation, the application would execute until an
error occurred or another breakpoint was encountered.

Until Return Resume program execution until the currently executing function returns. Execution
terminates prior to this if an error occurs or a breakpoint is encountered.

Skip to Cursor Reposition the instruction pointer at the cursor position, "skipping" all instructions in
between. When you continue execution, the program continues from this point. This is

The Run Menu 53

Controlling Program Execution

useful if you want to skip an offending line or re-execute something. Use this menu item
with caution. If you skip to an instruction which is not in the current function or skip to
code that expects a different program state, your program could crash.

Restart Restart your program from the beginning. All breakpoints in your program will be
preserved. Breakpoints in DLLs will not be preserved.

Debug Startup Restart your program from the beginning but stop before system initialization. Normally
the debugger puts you at the main (fmain, winmain, etc.) entry point in your application.
This option will allow you to break much earlier in the initialization process. This feature
is useful for debugging run-time startup code, initializers, and constructors for static C++
objects.

For DOS, Windows 3.x and Netware, the debugger will put you at the assembly entry point
of your application (i.e., it doesn’t run the "progstart" hook).

Windows 3.x runs each DLL’s startup code as it loads it, and the static DLLs are really
loaded by the run-time startup code, so, to debug the startup code for a statically linked
Windows 3.x DLL, you need to do the following.

1. Select Debug Startup from the Run menu.

2. Select On Image Load from the Break menu. Type the name of the DLL in
which you are interested.

3. Select Go from the Run menu

For OS/2 and Windows NT, the debugger will put you at a point after all DLLs have been
loaded, but before any DLL initialization routines are called. This enables you to set
breakpoints in your statically referenced DLL’s startup code.

If you have hard-coded int3 instructions in your DLL startup, the debugger will skip them,
unless you use Debug Startup from the Run menu.

All breakpoints in your program will be preserved. Breakpoints in DLLs will not be
preserved.

Save Save the current debugging session to a file. The file contains commands that will allow
the debugger to play your debugging session back to its current point in a later session. See
"The Replay Window" on page 56.

Restore Restore a saved debugging session. If you run the program with different input or if the
program is a multi-threaded application, this option may not work properly since external
factors may have affected program execution. See "The Replay Window" on page 56.

6.2 The Undo Menu

The debugger keeps an execution history as you debug your program. This history is accessible using the
Undo menu. The effect of program statements as you single step through your program are recorded. All
interactions that allow you to modify the state of your program including modifying variable values,
changing memory and registers are also recorded. Undo and Redo let you browse backward and forward

54 The Undo Menu

Controlling Program Execution

through this execution history. As you use these menu items, all recorded effects are undone or redone, and
each of the debugger’s windows are updated accordingly.

You can resume program execution at any previous point in the history. The program history has no size
restrictions aside from the amount of memory available to the debugger, so theoretically you could single
step through your entire program and then execute it in reverse. There are several practical problems that
get in the way of this. When you single step over a call or interrupt instruction, or let the program run
normally, the debugger has no way of knowing what kind of side effects occurred. No attempt is made to
discover and record these side effects, but the fact that you did step over a call is recorded. If you try to
resume program execution from a point prior to a side effect, the debugger will give you a the option to
continue or back out of the operation. Use caution if you choose to continue. If an important side effect is
duplicated, you program could crash. Of course reversing execution over functions with no side effects is
harmless, and can be a useful debugging technique. If you have accidentally stepped over a call that does
have a side effect, you can use Replay to restore your program state.

Unwind and Rewind move the debugger’s state up and down the call stack. Like Undo, all windows are
updated as you browse up and down the stack, and you can resume execution from a point up the call stack.
A warning will be issued if you try resuming from a point up the call stack since the debugger cannot
completely undo the effects of the call.

Unwind is particularly useful when your program crashes in a routine that does not contain debugging
information. strcpy() is a good example of this. You can use Unwind to find the call site and inspect the
parameters that caused the problem.

The runtime library detects certain classes of errors and diagnoses them as fatal runtime errors. If this
occurs when you are debugging, the debugger will be activated and the error message will be displayed.
For example, throwing an exception in C++ without having a catch in place is a fatal runtime error. In C,
the abort() and assert() functions are fatal errors. When this happens, you will be positioned in an internal
C library call. You can use Unwind to find the point in your source code that initiated the error condition.

When Unwind and Undo are used in conjunction, Undo is the primary operation and Unwind is secondary.
You can Undo to a previous point in the history and then Unwind the stack. If you Unwind the stack first
and then use Undo, the Unwind has no effect.

If you modify the machine state in any way when you are browsing backward through the execution
history, all forward information from that point is discarded. If you have browsed backward over a side
effect the debugger will give you the option of canceling any such operation.

The Undo menu contains the following items.

Undo Browse backwards through the program execution history.

Redo Browse forward through the program execution history.

Unwind Stack Move up the call stack one level.

Rewind Stack Move down the call stack one level.

Home Return to the currently executing location, reversing the effects of all Undo and Unwind
operations.

The Undo Menu 55

Controlling Program Execution

6.3 The Replay Window

Figure 13. The Replay Window

Choose Replay from the Code menu to open the Replay window. This window displays each of the steps
that you have performed during this debugging session that might have affected program flow. There are
three items displayed in the replay window. First is the address the program was executing when you took
some action that could affect the program. These actions include setting break points, tracing and
modifying memory. Second is the source or assembly code found at that address. Third is a command in
the debugger’s command language that will duplicate the action you took. The most common use for
Replay is when you accidentally step over a function call, or the program unexpectedly runs to completion.
If this happens, you can open the replay window, and replay you debugging session up to any point prior to
the last action you took.

There are special cases where replay will not perform as expected. Since replay is essentially the same as
playing your keystrokes and mouse interactions back to the debugger, your program must behave
identically on a subsequent run. Any keyboard or mouse interaction that your program expects must be
entered the same way. If your program expects an input file, you must run it on the same data set. Your
program should not behave randomly or handle asynchronous events. Finally, your program should not be
multi-threaded. If you have just been tracing one thread, your program will replay correctly, but multiple
threads may not be scheduled the same way on a subsequent run.

You can replay program execution to any point by double clicking on that line or by cursoring to it and
pressing ENTER. Select any line and press the right mouse button to see the following pop-up menu items:

Goto Replay the program until it returns to the selected level in the replay history.

Source Position the source window at the selected line.

Assembly Show the assembly code for the selected line.

56 The Calls Window

Controlling Program Execution

6.4 The Calls Window

Figure 14. The Calls Window

Choose Calls from the Code menu menu to display the Calls window. This window displays the program’s
call stack. Each line contains the name of the function that was executing, and the source or assembly code
at the call site. You can use Unwind and Rewind to obtain this information, but the calls windows will
show you the entire call stack.

You can Unwind to any point in the call stack by double-clicking on a line, or by cursoring to it and
pressing ENTER. Select a line and press the right mouse button to access the following pop-up menu
items:

Unwind Unwind the stack to the level of the selected code. This is equivalent to using Unwind
from the Undo menu or Rewind from the Undo menu.

Break Set a breakpoint at the return from the selected call.

Goto Execute until the program returns from the selected call.

6.5 The Thread Window

Figure 15. The Thread Window

The Thread Window 57

Controlling Program Execution

Choose Thread from the Code menu to display Thread window. This window displays the system ID of
each thread, the state of the thread, and under some operating systems, system specific information about
the thread including its name and scheduling priority. The state of each thread can be:

current This is the thread that was running when the debugger was entered. It is the thread that hit
a break point or error. When you trace through the application, only the current thread is
allowed to run.

runnable This thread will be allowed to run whenever you let your program run, but will not run
when you trace the program.

frozen This thread will not be allowed to run when you resume your program.

dead Under some operating systems, threads that have been terminated still show up in the list of
threads. A dead thread will never execute again.

You can make any thread current by double clicking on it or cursoring to it and pressing ENTER. All other
debugger windows update accordingly. Press the right mouse button to access the following pop-up menu
items:

Switch to Make the selected thread current.

Freeze Change the state of the selected thread to be frozen. You cannot freeze the current thread.

Thaw Change the state of the selected thread to be runnable.. The current thread is always
runnable.

58 The Thread Window

Examining and Modifying the Program
State

Examining and Modifying the Program State

60

7 Examining and Modifying the Program State

The following topics are discussed:

• "Variable and Watch Windows"

• "The Memory and Stack Windows" on page 65

7.1 Variable and Watch Windows

Figure 16. The Watch and Variable Window

Windows that display variables come in several different varieties. They are:

• Locals
• File Variables
• Watches
• Variable

They are collectively called variable windows. You use the same interactions in all variable windows to
display, modify and browse your variables and data structures. The only difference between these windows
are the variables that they display. The values in each window are updated as you trace through your
program. The windows display the following information:

Locals Contains the list of variables which are local to the current routine. Choose Locals from
the Data menu to open this window.

File Variables Contains a list of all variables which are defined at file scope in the current module. This
includes external and static symbols. Choose File Variables from the Data menu to open
this window.

Watches The Watches windows allows you to add and delete variables and expressions. In other
windows you can choose Watch from the pop-up menu. This will open the watches
window add the text which is selected in another window to the watches window. You can
use New from the pop-up menu to add any expression to the Watches window. Once

Variable and Watch Windows 61

Examining and Modifying the Program State

entered, you can choose Edit from the pop-up menu to edit the expressions or typecast the
variables.

Variable This is another instance of a Watches window. A variable window is created when you
select a variable or expression in a window and use Inspect from the pop-up menu.

Each line of a variable window has three elements. On the left is a button. The button changes depending
on the type of the variable or expression. it changes based on the type of the item:

structs (classes) (unions) Structures may be opened and closed by clicking on the button at the left. When
you open a structure or class, one line is added to the window for each field of the structure.
These new lines are indented. If you click on the button again, the structure is closed and
the window is returned to its original state.

arrays Like structs, arrays may be opened and closed. When you open an array, one line is added
to the window for each element of the array. The debugger will display at most 1000
elements of an array. If it contains more you can use Type/Array... to open different
ranges. Multi dimensional arrays are treated like an array of arrays. When you open the
first dimension, the lines that are added will also be arrays which you can open.

pointers When the variable is a pointer, you can click on the button and the debugger will follow the
pointer and change the line to represent the item which is the result of the pointer reference.
For example, if you have a pointer to an integer and click on the button, the integer value
will be displayed. The button then changes to indicate so that you can undo the operation
by clicking on it again.

In the case of pointers to pointers, clicking on the button will follow the pointers one level
each time you click on the button until a non-pointer value is reached. Clicking on the
button at this point will undo take you back to the original state. When the pointer points to
a struct, the structure will automatically be opened when you click on the button. If a
pointer is really an array, you can use Type/Array... from the pop-up menu to open it as an
array.

Next comes the name of the variable, field or array element being displayed. Finally, the value is
displayed. If the item being displayed is not a scalar item, the value displayed is an indication that it is a
complex data type. If the value changes when you run your program, it will be highlighted. If a variable
goes out of scope, or a pointer value becomes invalid, the value will be displayed as question marks.

You can modify a variable’s value by double clicking on the value field, or by cursoring to it and pressing
enter. Double clicking or pressing enter on the name field is equivalent to clicking on the button. Press the
right mouse button to access the following pop-up menu items:

Modify... Modify the value of the selected item.

Break Set a breakpoint so that execution stops when the selected item’s value changes. This is the
same as setting a breakpoint on the object. See "Breakpoints" on page 71.

Inspect Open a new Variable window containing the selected item. If the item is a compound
object (array, class, or structure), it will be opened automatically.

Watch Add the selected item to the Watch window.

62 Variable and Watch Windows

Examining and Modifying the Program State

Show/Raw Memory
Display raw memory at the address of this variable. This lets you examine the actual
binary representation of a variable.

Show/Pointer Memory
Display the memory that the item points to. This is useful when you have a pointer to a
block of memory that does not have a type associated with it.

Show/Pointer Code
Display the code that the variable points to. If the item being displayed is a pointer to
function, you can use this menu item to see the definition of that function.

Show/Type Display the type of the variable in an information message box. Select "OK" to dismiss the
information box and resume debugging.

Edit Open a dialog box in which you can edit an expression in the Watch window. This is
useful for typecasting variables or evaluating expressions. See "Open Watcom Debugger
Expression Handling" on page 119.

New Add a new variable or expression to the window. You will be prompted for the expression
to add.

Delete Delete the selected item from the window.

FieldOnTop Display the value of this member at the top of the structure/class. You can selectively add
or remove items from the list that is displayed "on top". For example, say you have a
struct Point displayed as:

[-] point

x 10
y 30
other "asdf"

If you toggle FieldOnTop for both x and y then point would be displayed like this:

[-] point { 10, 30 }

x 10
y 30
other "asdf"

Furthermore, if you closed the struct (or pointer to struct) then you would see:

[+] point { 10, 30 }

This carries to structs containing structs (and so on) as shown in the following struct
containing two Point structures.

[-] rect { { 10, 10 }, { 30, 30 } }

top_left { 10, 10 }
bot_right { 30, 30 }

Variable and Watch Windows 63

Examining and Modifying the Program State

If you close it, then you will see:

[+] rect { { 10, 10 }, { 30, 30 } }

Class/Show Functions
Display function members of this object. If this option is not selected, no functions are
displayed. This option works in conjunction with other Class selections to display
"Inherited", "Generated", "Private" and "Protected" functions.

Class/Show Inherited
Display inherited members of this object. To see inherited functions, you must also select
Class/Show Functions.

Class/Show Generated
Display compiled-generated members of this object. To see generated functions, you must
also select Class/Show Functions.

Class/Show Private
Display private members of this object. To see private functions, you must also select
Class/Show Functions.

Class/Show Protected
Display protected members of this object. To see protected functions, you must also select
Class/Show Functions.

Class/Show Static
Display static members of this object.

Type/All Hex This item is only available when the display item is an array or a fake array (a pointer
changed to display as if it were an array using Type/Array). Change the value of all
sibling array entries to be displayed in hexadecimal.

Type/Hex Change the value to be displayed in hexadecimal.

Type/All Decimal
This item is only available when the display item is an array or a fake array (a pointer
changed to display as if it were an array using Type/Array). Change the value of all
sibling array entries to be displayed in decimal.

Type/Decimal Change the value to be displayed in decimal.

Type/Character
Change the value to be displayed as a single character constant. This useful when you have
a one byte variable that really contains a character. The debugger will often display it as an
integer by default.

Type/String The debugger automatically detects pointers to strings in the variable windows and displays
the string rather than the raw pointer value. In the string is not null terminated, contains
non-printable characters, or is not typed as a pointer to ’char’, this mechanism will not
work. Type/String overrides the automatic string detecting and displays the pointer as a
string regardless of its type.

Type/Pointer This will undo the effects of Type/String or Type/Array. It will also let you see the raw
pointer value when the debugger has automatically displayed a pointer to char as a string.

64 Variable and Watch Windows

Examining and Modifying the Program State

Type/Array... Use this menu item to display a pointer as if it were an array, or to display ranges of an
array’s elements. You will be prompted for the first and last element to display.

Options/Whole Expression
Select this option to show the whole expression used to access fields and array elements
instead of just the element number or field name itself.

Options/Expand ’this’
Do not display members of the ’this’ pointer as if they were local variables declared within
the member function.

7.2 The Memory and Stack Windows

Figure 17. The Memory Window

Use the Memory window or the Stack window to examine memory in raw form. To open a Memory
window, choose Memory At from the Data menu. The Enter Memory Address dialog appears. Enter the
memory address and press Return to see the Memory window. You can also use one of the Show/Pointer
Memory or Show/Raw Memory items in a variable window to display the memory associated with a
variable.

The Stack Window always shows the memory at the stack pointer. It is moved as your program executes to
track the top of the stack. The stack pointer location will be at the top of the window. The location of the
BP or EBP register will also be indicated. Choose Stack from the Data menu to open the Stack window.

You can modify memory by double-clicking on a value in the Memory or Stack window, or by cursoring to
it and pressing enter. You will be prompted for a new value.

Memory windows allow you to follow data structures in the absence of debugging information. The
Follow menu items will reposition the memory window to the address that is found under the cursor. The
Repeat and Previous items will let you repeat a follow action. This makes it simple to follow linked lists.
Press the right mouse button to access the following pop-up menu items:

The Memory and Stack Windows 65

Examining and Modifying the Program State

Modify Modify the value at the selected address. You will be prompted for a new value. You
should enter the value in the same radix as the window is currently displaying. You are not
limited to typing constants values. You can enter an arbitrary expression to be used for the
new value.

Break on Write
Set a breakpoint to stop execution when the selected value changes. See "Breakpoints" on
page 71.

Near Follow Displays the memory that the selected memory points to, treating it as a near pointer. The
new offset to be displayed will be xxxx where xxxx is the word under the cursor.
DGROUP will be used as the segment if it can be located. The program’s initial stack
segment will be used otherwise. When you are debugging a 16-bit or 32-bit application,
the appropriate word size is used.

Far Follow Displays the memory that the selected memory points to, treating it as a far pointer. The
new address to be displayed will be the the segment and offset found at the cursor location.
Note that pointers are stored in memory with the offset value first and the segment value
second.

Segment Follow
Display the segment that the selected memory points to, treating it as a segment selector.
The new address to be displayed will be xxxx:0 where xxxx is the two byte word under the
cursor.

Cursor Follow Make the selected position the new starting address in the window. This means that the
first byte in the memory window will become the byte that the cursor was pointing to. This
is useful for navigating through an array when no debugging information is available.

Repeat Repeat the previous Follow operation. The new address that will be used is at the same
offset relative to the beginning of the window as it was in the original Follow operation.
Repeating a pointer or segment follow is a linked list traversal. Repeating a Cursor Follow
operation advances to the next element in an array.

Previous Back out of a Follow or Repeat operation. This will display the memory window you were
previously viewing. Essentially, this undoes a Follow operation. You can back all the way
out to the first memory location you were examining.

Home Undo all Follow and Repeat operations. This will take you back to the very first location
window you were examining. It is equivalent to using Previous repeatedly.

Left Scroll the window backward through memory by the size of the displayed memory items.

Right Scroll the window forward through memory by the size of the displayed memory items.

Address Position the window at a new address. You will be prompted to type in a new address.
You can type an arbitrary expression. See "Open Watcom Debugger Expression Handling"
on page 119. If you type the name of a variable, the address of that variable is used. If the

66 The Memory and Stack Windows

Examining and Modifying the Program State

expression you type does not contain a segment value DGROUP will be used as the
segment if it can be located. The program’s initial stack segment will be used otherwise.

Assembly Position the assembly window to the address of the memory under the cursor. This is
useful if you have incorrectly displayed a pointer as data and wish to look at the code
instead.

Type/Byte Display as hexadecimal bytes.

Type/Word Display as hexadecimal 16-bit words.

Type/Dword Display as hexadecimal 32-bit words.

Type/Qword Display as hexadecimal 64-bit words.

Type/Char Display as signed 8-bit integers.

Type/Short Display as signed 16-bit integers.

Type/Long Display as signed 32-bit integers.

Type/__int64 Display as signed 64-bit integers.

Type/Unsigned Char
Display as unsigned 8-bit integers.

Type/Unsigned Short
Display as unsigned 16-bit integers.

Type/Unsigned Long
Display as unsigned 32-bit integers.

Type/Unsigned __int64
Display as unsigned 64-bit integers.

Type/0:16 Pointer
Display as 16-bit near pointers (16-bit offset).

Type/16:16 Pointer
Display as 32-bit far pointers (16-bit segment, 16-bit offset).

Type/0:32 Pointer
Display as 32-bit near pointers (32-bit offset).

Type/16:32 Pointer
Display as 48-bit far pointers (16-bit segment, 32-bit offset).

Type/Float Display as 32-bit floating-point values.

Type/Double Display as 64-bit floating-point values.

Type/Extended Float
Display as 80-bit floating-point values.

The Memory and Stack Windows 67

Examining and Modifying the Program State

7.2.1 Following Linked Lists

Use the memory window to display the memory address of the first node of your linked list. Move to the
"next" field of your structure and use the Near (or Far) Follow command. The next node of your linked list
will be displayed. Now by using the Repeat command you can traverse the linked list.

7.2.2 Traversing Arrays

Display the memory address of your array. Select the first byte of the second element of your array then
use the Cursor Follow command to move the second element of your array to the beginning of the memory
window. By using the Repeat command you can traverse your array.

68 The Memory and Stack Windows

Breakpoints

Breakpoints

70

8 Breakpoints

The Open Watcom Debugger uses the single term breakpoint to refer to the group of functions that other
debuggers often call breakpoints, watchpoints, and tracepoints.

A breakpoint is traditionally defined as a place in your program where you want execution to stop so that
you can examine program variables and data structures. A watchpoint causes your program to be executed
one instruction or source line at a time, watching for the value of an expression to become true. Do not
confuse a watchpoint with the watch window. A tracepoint causes your program to be executed one
instruction or source line at a time, watching for the value of certain program variables or
memory-referencing expressions to change.

In the Open Watcom Debugger:

• Break-on-execute refers to the traditional breakpoint
• Break-on-write refers to the traditional tracepoint
• A traditional watchpoint is a break-on-execute or break-on-write that is coupled with a condition

The Open Watcom Debugger unifies these three concepts by defining three parts to a breakpoint:

• the location in the program where the breakpoint occurs
• the condition under which the breakpoint is triggered
• the action that takes place when the breakpoint triggers

You can specify a countdown, which means that a condition must be true a designated number of times
before the breakpoint is triggered.

When a breakpoint is triggered, several things can happen:

• program execution is stopped (a breakpoint)
• an expression is executed (code splice)
• a group of breakpoints is enabled or disabled

In this chapter, you will learn about the breakpoint including how to set simple breakpoints, conditional
breakpoints, and how to set breakpoints that watch for the exact moment when a program variable,
expression, or data object changes value.

8.1 How to Use Breakpoints during a Debugging Session

The following topics are discussed:

• "Setting Simple Breakpoints" on page 72

• "Clearing, Disabling, and Enabling Breakpoints" on page 72

How to Use Breakpoints during a Debugging Session 71

Breakpoints

8.1.1 Setting Simple Breakpoints

When debugging, you will often want to set a few simple breakpoints to make your program pause
execution when it executes certain code. You can set or clear a breakpoint at any location in your program
by placing the cursor on the source code line and selecting Toggle from the Break menu or by clicking on
the button to the left of the source line. You can set breakpoints in the assembly window in a similar
fashion. Setting a break-on-write breakpoint is equally simple. Select the variable with the right mouse
button and choose Break from the pop-up menu.

Break points have three states. They are:

• enabled
• disabled
• cleared (non-existent)

The button for an enabled break point is a stop sign or [!]. The button for a disabled break point is a grey
stop sign or [.]. A green diamond or [] appears when no breakpoint exists at the given line. The same
buttons also appear in the Assembly window and the Break window to indicate the status of a break point.

Note: Some lines in your program do not contain any machine code to execute and therefore, you
cannot set a breakpoint on them. The compiler does not generate machine code for
comments and some C constructs. All lines of code in your program that can have a
breakpoint on them have a button to the left of the source line. You can click on them to
change their current status.

8.1.2 Clearing, Disabling, and Enabling Breakpoints

Choosing Toggle from the Break menu (F9) toggles between the three different breakpoint states:

• enabled
• disabled
• cleared (non-existent)

8.2 The Break Menu

You can use the Break menu to control your breakpoints. Operations including creating new breakpoints,
changing a breakpoint’s status, and viewing a list of all break points.

Toggle Change the status of the breakpoint at the current line in the source or assembly window.
The status alternates between enabled, disabled and cleared. The button on the source or
assembly line will be updated to reflect the status of the breakpoint.

Note: Disabled and cleared breakpoints are not the same. If you disable a
breakpoint, you can re-enable it and retain the information about the
breakpoint (i.e., conditions, countdown, and actions). When you clear a
breakpoint, you lose all information about the breakpoint. If you disable a
breakpoint, and press F9 twice to enable, you will lose the information
about the breakpoint because you cleared it before you re-enabled it. To
enable a disabled breakpoint without losing the breakpoint information, use
the Breakpoint Option dialog or the Breakpoint window.

72 The Break Menu

Breakpoints

At Cursor Set a breakpoint at the current line in the source or assembly window. If the current line
does not contain any executable code, the breakpoint is set on the closest preceding line of
code that does contain executable code. When you choose At Cursor, the Breakpoint
dialog appears.

New This allows you to create any type of breakpoint using a dialog. You must specify the
address in the dialog.

On Image Load...
Cause program execution to stop when an executable image (DLL) is dynamically loaded.
The menu item is only available when debugging an Win32 or OS/2 executable. A
dialogue will appear allowing you to add and delete image names from the list. You only
need to type a substring of the actual image name. You can identify the file
"C:\PATH\IMAGE.DLL" with any substring, for example "IMAGE", "IMAGE.DLL" or
"ATH\IMAGE.DLL". Case is ignored in the image names.

On Debug Message
When checked, cause program execution to stop whenever Windows 3.1, Windows NT, or
Windows 95 prints a debug string. A debug string is printed whenever the application or
debug Kernel calls the OutputDebugString function. This option is toggled each time it is
selected from the Break menu.

View All Open the breakpoint window. This window will show a list of all breakpoints. You can
use the window to create, delete and modify breakpoints.

Clear All Clear all breakpoints.

Disable All Disable all breakpoints, but do not delete them.

Enable All Enable all breakpoints that are disabled.

Save Save all breakpoint information to a file. This is useful when you are creating complicated
breakpoints. You can save and restore them in a later debugging session.

Restore Restore a set of breakpoints that were saved by using Save from the Break menu.

The Break Window 73

Breakpoints

8.3 The Break Window

Figure 18. The Break Window

The Break window displays each breakpoint and its status. It appears when you select the View All from
the Break menu A breakpoint button appears at the left of each line. You can click on this button to enable
and disable a breakpoint. Unlike the source and assembly windows, the button will not clear the
breakpoint. Next appears the address of the breakpoint. Finally, for break-on-execute breakpoints, the
source or assembly code at the break point location is displayed. For break-on-write breakpoints, the
current value of the location is displayed in hex.

You can modify any break point by double clicking on it, or by cursoring to it and pressing enter. The
Breakpoint Options dialog will appear to allow you to modify the break point. Press the right mouse button
to access the following pop-up menu items:

Modify Change the definition of the selected breakpoint. The Breakpoint dialog will appear.

New Add a new breakpoint. An empty Breakpoint dialog will appear. You must specify the
address of the new Breakpoint. Refer to the section entitled "The Breakpoint Dialog" on
page 75 for a description of the items in the which appear in the dialog.

Delete Delete the selected breakpoint.

Enable Enable the selected breakpoint.

Disable Disable the selected breakpoint.

Source Display the source code associated with the break point. This operation only makes sense
for break-on-execute breakpoints.

Assembly Display the assembly code associated with the selected line. This operation only makes
sense for break-on-execute breakpoints.

74 The Break Window

Breakpoints

8.4 The Breakpoint Dialog

Figure 19. The Breakpoint Dialog

The breakpoint dialog appears when you select At Cursor from the Break menu or New from the Break
menu and whenever you attempt to modify a break point. It allows you to define the breakpoint and set all
of its conditions. A description of the items in the dialog follows.

Address This edit field displays the address tag associated with the selected breakpoint.

When you choose At Cursor this field already contains an address that describes the line of
code that the cursor is on. The format of the address tag is symbol+offset where
symbol is the name of the nearest function and offset is distance in bytes past that
symbol where the break point is defined. It is normally best NOT to edit this field. To
change the line of source code, leave the dialog, move the cursor to where you want the
breakpoint, and use the At Cursor command again.

When you choose New, this field is empty. You can type any valid address expression in
this field. It can be the name of a function, global variable. Refer to the section entitled
"Open Watcom Debugger Expression Handling" on page 119 for more information about
address expressions. In the dialog, you can click the Symbols... button as a shortcut. You
can type a partial symbol name like foo and the Symbol button will show you a list of
symbols that start with foo. You can then choose one of these symbols by clicking on it
or hitting ENTER. Note that the first time you use the Symbols... in a debugging session,
it will take a while as the debugger sorts the symbol table for the program.

The Breakpoint Dialog 75

Breakpoints

Note: Be careful when using local (stack) variables for a break-on-write
breakpoint. As soon as execution leaves the scope of the variable, the
memory will change at random since the variable does not really exist any
more and the memory will be used for other variables. Also, if execution
enters that variable’s scope again, the variable may not have the same
memory address.

Condition Use this field to enter a conditions that must be met before a breakpoint will trigger. The
condition can be an arbitrary debugger expression. These include statements in the
language you are debugging. A valid example for the C language is i == 1.

Break on Execute
Check this field to create a break-on-execute breakpoints. If you choose Execute, be sure
that the address field contains a code address (function name or code line number) and not
a variable address. Variable are never executed. If the address field names a variable, the
breakpoint will never trigger.

Break on 1 Byte/2 Bytes/4 Bytes/8 Bytes...
Check one of these fields to create break-on-write breakpoints. If you choose one of these
options, be sure that the Address field contains a variable address and not a code address.
A code address will never be written to, so the breakpoint will never trigger. The size of
the memory location is defined by the checkbox you use as follows:

1 Byte The breakpoint will trigger only when the first byte of the memory address
is written to.

2 Bytes The breakpoint will trigger when either of the first two bytes at the memory
address are written to.

4 Bytes The breakpoint will trigger if any of the first four bytes of the memory
address are written to.

8 Bytes The breakpoint will trigger if any of the first eight bytes of the memory
address are written to. This option is only supported by certain trap files
and will be grayed out if the selected trap file does not support it.

Note: In older versions of the debugger and traps, the break on write feature is
really a break on change: the debugger will only stop execution if the
breakpoint is hit and the value of the watched data has been changed. For
the current version of the debugger this is the still the default behaviour but
can be modified. Refer to "The Options Dialog" on page 32 to change the
breakpoint behaviour to true break-on-write.

Countdown Use this field to enter the number of times an address must be hit before the breakpoint
triggers. Every time the breakpoint conditions are met, the countdown decreases by one.
The breakpoint will trigger only after the countdown is at zero. Once the countdown
reaches zero, the breakpoint will trigger each time the conditions are met. If you have also
set a condition, the countdown will only decrease by one when the condition is true.

Total Hits This field displays the total number of times an address has been hit. This includes the
times the breakpoint does not trigger because a condition failed or the countdown has not
yet hit zero.

Reset Click on this button to reset the Total Hits field to zero.

Execute when Hit
Use this field to enter a debugger command. When the breakpoint is triggered, the

76 The Breakpoint Dialog

Breakpoints

debugger will execute this command. You can use this field to execute arbitrary C
statements, change a variable or register, or even set other breakpoints. For a more detailed
description of commands that can be entered in this field, refer to the section called
"Debugger Commands" on page 145. If you want to use this field to execute a statement in
the language you are debugging, you need to use a DO command in front of the statement.
For example, you could enter DO i = 10 to have the value of 10 assigned to i each time
the breakpoint triggered.

Resume Check this field if you want the program to resume execution after the Execute when Hit
command has been completed. This capability can be used to patch your code.

Enabled This field displays the current status of the breakpoint. If it is checked, the breakpoint is
enabled. If it is unchecked, the breakpoint is disabled.

Value For Break-on-Execute breakpoints this field displays the source line or the assembly line at
which the break point is defined. For Break-on-Write breakpoints, this field displays the
memory contents.

Clear Click on the clear button to clear the breakpoint and close the dialog.

The Breakpoint Dialog 77

Breakpoints

78 The Breakpoint Dialog

Assembly Level Debugging

Assembly Level Debugging

80

9 Assembly Level Debugging

This chapter addresses the following assembly language level debugging features:

• "The CPU Register Window"

• "The Assembly Window" on page 82

• "The I/O Ports Window" on page 83

• "The FPU Registers Window" on page 84

• "The MMX Registers Window" on page 84

• "The XMM Registers Window" on page 85

9.1 The CPU Register Window

Figure 20. The CPU Register Window

You can open the CPU Register window by choosing Register from the Data menu. The register names
and values are displayed in this window. As you execute your program, registers that have changed since
the last trace or breakpoint will be highlighted.

You can modify a register value by double clicking on the value, or by cursoring to it and pressing ENTER.
Press the right mouse button to access the following pop-up menu items:

Modify Change the value of the selected register.

Inspect Open a Memory window displaying the memory contents of the address specified by the
register. If a segment register is selected, memory at offset 0 in the segment will be
displayed.

Hex Toggles the register window display format between hexadecimal and decimal.

Extended Displays the Extended 386 register set. This menu item sets options on a per-window
basis, overriding the global settings. When you use the menu item to change these settings,

The CPU Register Window 81

Assembly Level Debugging

they will not be saved between debugging sessions. To change an option permanently, see
"The Window Options Dialog" on page 33.

9.2 The Assembly Window

Figure 21. The Assembly Window

You can open the Assembly window by choosing Assembly from the Code menu. You can Inspect an item
in by double-clicking on it, or by cursoring to it and pressing ENTER. Press the right mouse button to
access the following pop-up menu items:

Inspect When you selecting a memory address, register or operand and use Inspect, the debugger
opens a Memory Window displaying the selected memory address.

Break If a code address is selected this command will set a break-on-execute breakpoint at the
selected code address. If a variable address is selected, this command will set a
break-on-write breakpoint on the selected address. this does not set a break at the current
line. Use Toggle from the Break menu or At Cursor from the Break menu to set a
breakpoint at the current line.

Enter Function
Resume program execution until the selected function is executed.

Show/Source Display the source code associated with the selected assembly line.

Show/Functions
Show the list of all functions defined in the current module.

Show/Address Reposition the window at a new address. You will be prompted for an expression.
Normally you would type a function name but you can type any expression that resolves to

82 The Assembly Window

Assembly Level Debugging

a code address. For example, you might type the name of a variable that contains a pointer
to a function. See "Open Watcom Debugger Expression Handling" on page 119.

Show/Module...
Show a different module. You will be prompted for its name in a dialog. As a shortcut,
you can type the beginning of a module name and click the Module... button. This will
display a list of all modules that start with the text you typed.

Home Reposition the window to the currently executing location. The cursor will move to the
next line of the program to be executed.

No source Toggle the Assembly window display between only assembly code and assembly code
intermixed with source lines. This menu item sets options on a per-window basis,
overriding the global settings. When you use the menu item to change these settings, they
will not be saved between debugging sessions. To change an option permanently, see "The
Window Options Dialog" on page 33.

Hex Toggle the Assembly window display between hexadecimal and decimal. This menu item
sets options on a per-window basis, overriding the global settings. When you use the menu
item to change these settings, they will not be saved between debugging sessions. To
change an option permanently, see "The Window Options Dialog" on page 33.

9.3 The I/O Ports Window

Figure 22. The I/O Window

Use the I/O window to manipulate I/O ports. This is only supported when the operating system allows
application software to use IN and OUT instructions. I/O ports can be added to the window, and typed as a
byte, word (2 bytes) or dword (4 bytes). Use New from the pop-up menu to add a new port to the window.
Once you have done this, four items will appear on the line. First appears the read button which appears as
an open book, or [r]. Second appears the write button. It is a pencil or [w]. Third appears the port address,
and finally the value. When you first enter a port address the value appears as question marks. The
debugger does not automatically read or write the value since this can have side effects. In order to read
the displayed value from the port, click on the read button. To write the displayed value back, click on the
write button. You can change the value by double clicking on it, or by cursoring to it and pressing ENTER.
Press the right mouse button to access the following pop-up menu items:

Modify Change the selected item. You can change either the value field or the address field. This
does not write the value back to the port. You must choose Write to write to the port.

New Add a new line to the window. You can have several I/O ports displayed at once.

The I/O Ports Window 83

Assembly Level Debugging

Delete Delete the selected line from the window.

Read Read the displayed value from the port.

Write Write the displayed value to the port.

Type Change the display type of the value. The size of this type determines how much is read
from or written to the I/O port.

9.4 The FPU Registers Window

Figure 23. The FPU Registers Window

Choose FPU Registers from the Data menu to open the FPU window. This window displays the current
value and status of all the FPU registers. If you are debugging a program that uses Intel 8087 emulation,
this window display the contents of the emulator’s data area. You can change a value by double-clicking
on, it or by cursoring to it and pressing ENTER. Press the right mouse button to access the following
pop-up menu items:

Modify Change the value of the selected register, or bit. You will be prompted for a new value,
unless you are modifying a bit. A bit will toggle between 0 and 1.

Hex Toggle the FPU window display between hexadecimal and floating-point display. This
menu item sets options on a per-window basis, overriding the global settings. When you
use the menu item to change these settings, they will not be saved between debugging
sessions. To change an option permanently, see "The Window Options Dialog" on page
33.

9.5 The MMX Registers Window

Figure 24. The MMX Registers Window

84 The MMX Registers Window

Assembly Level Debugging

Choose MMX Registers from the Data menu to open the MMX window. This window displays the current
values of all the MMX registers. You can change a value by double-clicking on, it or by cursoring to it and
pressing ENTER. Press the right mouse button to access the following pop-up menu items:

Modify Change the value of the selected register component. You will be prompted for a new
value. The same action can be performed by pressing ENTER or double-clicking as
described above.

Inspect This item has no function in the MMX register window.

Hex Toggle the MMX register window display between hexadecimal and floating-point display.
This menu item sets options on a per-window basis, overriding the global settings. When
you use the menu item to change these settings, they will not be saved between debugging
sessions. To change an option permanently, see "The Window Options Dialog" on page
33.

Signed Toggle the display of the contents of the MMX registers as signed or unsigned quantities.
When "signed" is enabled, each byte, word, doubleword or quadword is displayed as a
signed quantity. When "signed" is disabled, each byte, word, doubleword or quadword is
displayed as an unsigned quantity.

Byte Display the contents of the MMX registers as a series of 8 bytes.

Word Display the contents of the MMX registers as a series of 4 words.

DWord Display the contents of the MMX registers as a series of 2 doublewords.

QWord Display the contents of the MMX registers as single quadwords.

Float Display the contents of the MMX registers as a series of 2 IEEE single-precision
floating-point values.

9.6 The XMM Registers Window

Figure 25. The XMM Registers Window

Choose XMM Registers from the Data menu to open the XMM window. This window displays the current
values of all the XMM registers, as well as the contents of XMM status registers. You can change a value
by double-clicking on, it or by cursoring to it and pressing ENTER. Press the right mouse button to access
the following pop-up menu items:

The XMM Registers Window 85

Assembly Level Debugging

Modify Change the value of the selected register component. You will be prompted for a new
value. The same action can be performed by pressing ENTER or double-clicking as
described above.

Inspect This item has no function in the XMM register window.

Hex Toggle the XMM register window display between hexadecimal and floating-point display.
This menu item sets options on a per-window basis, overriding the global settings. When
you use the menu item to change these settings, they will not be saved between debugging
sessions. To change an option permanently, see "The Window Options Dialog" on page
33.

Signed Toggle the display of the contents of the XMM registers as signed or unsigned quantities.
When "signed" is enabled, each byte, word, doubleword or quadword is displayed as a
signed quantity. When "signed" is disabled, each byte, word, doubleword or quadword is
displayed as an unsigned quantity.

Byte Display the contents of the XMM registers as a series of 16 bytes.

Word Display the contents of the XMM registers as a series of 8 words.

DWord Display the contents of the XMM registers as a series of 4 doublewords.

QWord Display the contents of the XMM registers as a series of 2 quadwords.

Float Display the contents of the XMM registers as a series of 4 single-precision floating-point
values.

Double Display the contents of the XMM registers as a series of 2 double-precision floating-point
values.

86 The XMM Registers Window

Remote Debugging

Remote Debugging

88

10 Remote Debugging

10.1 Overview

Remote debugging allows you to run the debugger on one side of a communication link and the application
being debugged on the other. Remote debugging is required when there is not enough memory to run both
the debugger and the application on the same machine. Remote debugging may also be required for
debugging graphical applications.

The DOS debugger runs in protected mode (above the 1M mark), with a small memory footprint in the first
640k. Newer operating systems such as OS/2 and Windows NT/9x have eliminated the 640k barrier, so
there is little need for remote debugging due to memory limitations alone. However, remote debugging is
often helpful when debugging graphical or interactive application where the debugger interferes with the
user application. Remote debugging is also required to debug Novell NetWare applications, or specialized
embedded systems that cannot run the entire debugger.

There are many different communication links supported. Some communicate between two machines. In
this case an external communication medium is used. Some links communicate between two operating
systems shells on the same machine. In either case, the concepts are the same.

While remote debugging, you may want to reference a file that is found on one machine or the other. See
the section entitled "Specifying Files on Remote and Local Machines" on page 100 for details about remote
and local file names.

The debugger is broken down into 4 parts.

The Debugger This is the portion of the debugger that contains the user interface. It is the largest part of
the debugger. Its name is either WD.EXE, WDW.EXE or WDC.EXE

The Debug Kernel The debugger interprets your requests and sends low level requests to the debug kernel.
It is a small executable that is dynamically loaded by the debugger or a remote debug
server and used to control your application. It can be called STD.TRP, STD.DLL,
RSI.TRP or PLS.TRP

Remote Trap Files— These are versions of the debug kernel file that take requests and send them across a
communications link to a remote debug server. You choose a trap file using the debugger’s
"trap" option. See "Common Switches" on page 16. Trap files have a 3 letter file name
that represents the name of the communications layer being used. The file extension is
TRP or DLL.

Remote Debug Servers— These executable files receive requests from a communications link and pass
them to a debug kernel. Remote debug server names all start with ???SERV. The first 3
letters represent the communication layer being used and correspond to the trap file that is
used on the other side of the link.

In the following examples,

Overview 89

Remote Debugging

A>cmd1
B>cmd2

indicates that cmd1 is to be run on one machine and cmd2 is to be run on the other.

A normal non-remote debugging session just uses the user interface and the debug kernel. All components
run on the same machine. This simple debugging session would be started with the command:

A>wd app

+-----------+ +----------+ +----------+
WD.EXE		STD.TRP		APP.EXE
/ /				
\ \				
+-----------+ +----------+ +----------+

Debugging a Tenberry Software DOS/4GW (32-bit extended DOS) application is the same except you must
use a different trap file to control the application.

A>wd /trap=rsi app

+-----------+ +----------+ +----------+
WD.EXE		RSI.TRP		APP.EXE
/ /				
\ \				
+-----------+ +----------+ +----------+

A remote debugging session adds a remote debug server and a remote trap file as well. For example, using
the parallel port to debug between two machines would be accomplished using the following components:

A>parserv
B>wd /tr=par app

+-----------+ +----------+
| WD.EXE | | PAR.TRP |
| / / |
| \ \ |
| | | |
+-----------+ +----------+

|
+-- parallel --+
| cable
|

+-----------+ +----------+ +----------+
PARSERV		STD.TRP		APP.EXE
.EXE / /				
\ \				
+-----------+ +----------+ +----------+

In order to start the above remote debugging session, you must follow these steps.

1. Connect the two machines with a parallel cable. See "Wiring For Remote Debugging" on page
173.

90 Overview

Remote Debugging

2. Start the remote debug server (PARSERV) on one machine.
3. Start the debugger with the option "/trap=PAR" on the other machine. This causes the debugger

to load the remote trap file (PAR). This will communicate across the remote link to
PARSERV.EXE, which will in turn communicate with the debug kernel (STD) in order to debug
the application.

The rest of the debugger command line is identical to the command you would type if you were debugging
the application locally.

You must start the remote debug server first. If you do not, the remote trap file will not be able to establish
a communication link and the debugger will refuse to start.

It is important to realize that the application to be debugged must reside on the debug server machine. It
must be possible for the debug server to locate the application to be debugged. It can be in the current
working directory of the debugger server machine, or in the PATH, or a path to locate the application on
the debug server machine can be specified on the debugger command line. Alternatively, you can ask the
debugger to download the application to the debug server machine if the application resides on the
debugger machine.

A>parserv
B>wd /down /tr=par app

See the description of the "download" option in the section entitled "Common Switches" on page 16.

If you are remote debugging a 32-bit application, you must use the correct trap file on the remote debug
server side of the link. The trap file specification must come first before any other arguments on the
command line.

A>serserv /tr=rsi
B>wd /tr=ser app

+-----------+ +----------+
| WD.EXE | | SER.TRP |
| / / |
| \ \ |
| | | |
+-----------+ +----------+

|
+--- serial ---+
| cable
|

+-----------+ +----------+ +----------+
SERSERV		RSI.TRP		APP.EXE
.EXE / /				
\ \				
+-----------+ +----------+ +----------+

Following is an example of an internal remote link. This example shows you how to use the OS/2 version
of the debugger to debug a DOS application.

Overview 91

Remote Debugging

+-----------+ +----------+
| WD.EXE | | NMP.DLL |
| / / |
| \ \ |
| | | |
+-----------+ +----------+

|
+-- OS/2 NP API --+
|

+-----------+ +----------+ +----------+
NMPSERV		STD.DLL		APP.EXE
.EXE / /				
\ \				
+-----------+ +----------+ +----------+

The communication medium employed in this case is OS/2 Named Pipes.

The debugger provides the following remote link capabilities:

NOV This link uses Novell’s SPX layer for communication. Supported under DOS, OS/2,
Windows 3.x, Windows NT/2000/XP and NetWare.

NET This link uses NetBIOS to communicate. If your network software supports NetBIOS, you
can use this link. Supported under DOS, OS/2, Windows 3.x, and NetWare.

PAR This link supports communication using the parallel or printer port. Several different cable
configurations are supported. See "Wiring For Remote Debugging" on page 173.
Supported under DOS, OS/2, Windows 3.x, Windows 9x, Windows NT/2000/XP,
NetWare, Linux and QNX 4.

SER This link uses a serial port to communicate. Rates of up to 115K BAUD are supported.
See "Wiring For Remote Debugging" on page 173. Supported under DOS, OS/2, Windows
9x, Windows NT/2000/XP and QNX 4.

WIN This link will communicate between two Windows DOS boxes. Supported under Windows
3.x and Windows 9x (for DOS applications only).

NMP This link will use Named Pipes to communicate internally between OS/2 sessions. OS/2,
DOS and Win-OS/2 sessions are supported. If your network supports Named Pipes, and
you have at least one OS/2 machine on the network, you can communicate between OS/2,
DOS and Windows 3.x machines on the network. Supported under OS/2 (DOS, OS/2 and
Windows 3.x applications).

VDM This link is a subset of the NMP link. It is supported under OS/2 and Windows NT. The
application being debugged must be a DOS or seamless Win-OS/2 application. Supported
under OS/2 and Windows NT (DOS, OS/2 and Windows 3.x applications).

TCP This link will use TCP/IP to communicate internally or over a network between sessions.
Supported under DOS, OS/2, Windows 9x, Windows NT/2000/XP, Linux and QNX.

Communication parameters may be passed to the remote trap file and the remote server. They are passed to
the remote trap file by following the name of the trap file with a semi-colon and the parameter. For
example:

92 Overview

Remote Debugging

A>serserv 2.4800

passes the parameter 2.4800 to the remote debug server. To pass the same parameter to the remote trap file,
use:

B>wd /tr=ser;2.4800 app

These link parameters are specific to each remote link and are described in the following section.

Each of the debug servers can accept an optional "Once" parameter. The "Once" parameter is used by the
Open Watcom Integrated Development Environment. Usually, a server stays running until terminated by
the user. If the "Once" option is specified, the remote server will terminate itself as soon as the debugger
disconnects from it.

10.2 Link Descriptions

The following communication links are described:

• "NOV (Novell SPX)"

• "NET (NetBIOS)" on page 94

• "PAR (Parallel)" on page 94

• "SER (Serial)" on page 95

• "WIN (Windows 3.x/9x Virtual DOS Machine)" on page 96

• "NMP (Named Pipes)" on page 97

• "VDM (Virtual DOS Machine)" on page 98

• "TCP/IP (Internet Packets)" on page 99

10.2.1 NOV (Novell SPX)

This link communicates over a Novell Network. In order to use this link, you must have a NetWare
requester installed on both machines. Be sure that it is configured to include the SPX option. Consult your
NetWare documentation for details.

The parameter to this link is an arbitrary name to be used for the connection. This allows multiple network
users users to remote debug simultaneously. The default name is NovLink. If the remote server will not
start, try specifying a different name for the link. The following example shows how to use the default link
parameters:

A>novserv
B>wd /tr=nov app

The following example shows how to name "john" as a link parameter:

Link Descriptions 93

Remote Debugging

A>novserv john
B>wd /tr=nov;john app

10.2.2 NET (NetBIOS)

This link communicates over NetBIOS. In order to use this link, you must have NetBIOS installed on both
machines. Consult your network documentation for details.

The parameter to this link is an arbitrary name to be used for the connection. This allows multiple network
users users to remote debug simultaneously. The default name is NetLink. The following example shows
how to use the default link parameters.

A>netserv
B>wd /tr=net app

The following example shows how to use the name "tammy" as a link parameter.

A>netserv tammy
B>wd /tr=net;tammy app

10.2.3 PAR (Parallel)

This link communicates over the parallel port. Three different cable types may be used. They are called
the LapLink, Flying Dutchman, and Watcom cables. Although the Watcom cable will communicate
considerably faster than the other two, we have found it to be unreliable on some printer cards. See
"Wiring For Remote Debugging" on page 173.

The parameter to this link is a number from 1 to 3 or the letter "p" followed by a hexadecimal printer I/O
port address. This tells the software which parallel port the cable is connected to (LPT1, LPT2, LPT3).
The default is 1. The parameter used on each side of the link depends on which printer port the cable is
plugged into on that machine. It need not be the same on both sides. The following example shows how to
debug across a parallel cable plugged into printer port 3 on one machine and port 2 on the other.

A>parserv 3
B>wd /tr=par;2 app

As an alternative, you can specify a port address to use. It is less convenient than specifying a port number
but will work on systems like OS/2 where the actual I/O port address cannot be obtained from the system.
The following example shows how to debug across a parallel cable plugged into I/O port 0x378 on one
machine and port 2 on the other.

A>parserv p378
B>wd /tr=par;2 app

Windows NT Note: Under Windows NT/2000/XP you must have the dbgport.sys device driver installed
and loaded on your machine before the host debugger will be able to access the parallel port. To install this
file manually, first copy it from %WATCOM%\binnt\dbgport.sys to %WINDOWS%\system32\drivers.
Once the file has been copied, run the %WATCOM%\binnt\dbginst.exe program to install the device driver
and activate it. You will need to have system administrator permissions in order to be able to run the
dbginst.exe program. Once these two steps are done, the parallel port debugger can work. Note also that if
you wish to do parallel port debuging on a target machine running Windows NT/2000/XP, you will need to
follow the same set of steps on the target machine as well.

94 Link Descriptions

Remote Debugging

If you are going to debug a DOS extender application, then you must also specify a trap file to the server
program. The trap file must be specified before the port number. The following example shows how to
debug a 32-bit DOS/4GW application across a parallel cable plugged into printer port 2 on one machine
and port 3 on the other.

A>parserv /tr=rsi 2
B>wd /tr=par;3 app

The "RSI" trap file is specified for DOS/4G(W) applications. You can specify other trap files for the other
DOS extenders (e.g., "CW" for CauseWay). Do not forget to include other required files in the path.

CW Both "CWSTUB.EXE" and the loader help file "CWHELP.EXE" must also be located in
one of the directories listed in the DOS PATH environment variable. See the section
entitled "Debugging CauseWay 32-bit DOS Extender Applications" on page 110 for more
information on debugging applications that use the CauseWay DOS extender.

RSI Both "DOS4GW.EXE" and the loader help file "RSIHELP.EXP" must also be located in
one of the directories listed in the DOS PATH environment variable. See the section
entitled "Debugging DOS/4G(W) 32-bit DOS Extender Applications" on page 110 for
more information on debugging applications that use the DOS/4GW DOS extender.

PLS One or more of "RUN386.EXE" (or "TNT.EXE"), "DBGLIB.REX", "PLSHELP.EXP",
and "PEDHELP.EXP" must be located in one of the directories listed in the DOS PATH
environment variable. See the section entitled "Debugging Phar Lap 32-bit DOS Extender
Applications" on page 110 for more information on debugging applications that use the
Phar Lap DOS extender.

10.2.4 SER (Serial)

This link communicates over the serial port. See the appendix entitled "Wiring For Remote Debugging" on
page 173 for wiring details. The debugger and server will automatically synchronize on a communications
speed. They may communicate at rates as high as 115kB. The DOS and OS/2 "mode" command or the
QNX "stty" commands need not be used.

The parameter to this link takes the form

port_number.baud_rate

port_number is a number from 1 to 3 indicating which serial port the cable is connected to. The default
is 1.

baud_rate is the maximum BAUD rate at which to communicate. If you already know the maximum
BAUD rate at which the two machines will communicate, this parameter will speed up the connection time
by eliminating some of the synchronization protocol.

baud_rate may be any of 115200, 57600, 38400, 19200, 9600, 4800, 2400, or 1200. It may be
shortened to the first 2 digits.

A special BAUD rate of 0 is also allowed. This should be used if the serial port has been pre-assigned
using the "mode" or "stty" commands. The pre-assigned BAUD rate is used and the BAUD rate
negotiation is avoided. This will allow you to debug over a modem.

The following example shows how to debug across a serial cable using default settings:

Link Descriptions 95

Remote Debugging

A>serserv
B>wd /tr=ser app

The following example shows how to debug across a serial cable using serial port 2 on each machine
setting the maximum BAUD rate to 9600:

A>serserv 2.9600
B>wd /tr=ser;2.9600 app

QNX 4 Note: Under QNX 4, a node id may be specified followed by a comma if the serial port is not
located on the current node. The command "serserv 3,1.9600" would use the device
//3/dev/ser1 at a BAUD rate of 9600. Alternatively, you can specify a device such as
/dev/foobar. To specify the maximum line speed, you can specify something like
/dev/foobar.56. Of course, you can also include a node id such as //5/dev/foobar.

A>serserv //3/dev/ser2.9600
B>wd /tr=ser;//5/dev/ser2.9600 app

If you are going to debug a DOS extender application, then you must also specify a trap file to the server
program. The trap file must be specified before the port number and BAUD rate. The following example
shows how to debug a 32-bit DOS/4GW application across a serial cable using serial port 1 on one machine
and serial port 2 on the other machine setting the maximum BAUD rate to 9600 for each:

A>serserv /tr=rsi 1.9600
B>wd /tr=ser;2.9600 app

The "RSI" trap file is specified for DOS/4G(W) applications. You can specify other trap files for the other
DOS extenders (e.g., "CW" for CauseWay). Do not forget to include other required files in the path.

CW Both "CWSTUB.EXE" and the loader help file "CWHELP.EXE" must also be located in
one of the directories listed in the DOS PATH environment variable. See the section
entitled "Debugging CauseWay 32-bit DOS Extender Applications" on page 110 for more
information on debugging applications that use the CauseWay DOS extender.

RSI Both "DOS4GW.EXE" and the loader help file "RSIHELP.EXP" must also be located in
one of the directories listed in the DOS PATH environment variable. See the section
entitled "Debugging DOS/4G(W) 32-bit DOS Extender Applications" on page 110 for
more information on debugging applications that use the DOS/4GW DOS extender.

PLS One or more of "RUN386.EXE" (or "TNT.EXE"), "DBGLIB.REX", "PLSHELP.EXP",
and "PEDHELP.EXP" must be located in one of the directories listed in the DOS PATH
environment variable. See the section entitled "Debugging Phar Lap 32-bit DOS Extender
Applications" on page 110 for more information on debugging applications that use the
Phar Lap DOS extender.

10.2.5 WIN (Windows 3.x/9x Virtual DOS Machine)

This link communicates between 2 Windows DOS boxes. In order to use this link, you must have
Windows 3.x or Windows 95 installed on your machine. You must run Windows 3.x in enhanced mode.
You must also include the "device" specification listed below in the [386Enh] section of your
"SYSTEM.INI" file (this line is usually added during the Open Watcom software installation process).

DEVICE=C:\WATCOM\BINW\WDEBUG.386

96 Link Descriptions

Remote Debugging

In order for this link to work properly, you must ensure that this link runs in a DOS box that has
background execution enabled.

The parameter to this link is an arbitrary name to be used for the connection. This allows you to have
multiple remote debug sessions active simultaneously. The default name is WinLink. The following
examples show how to use the default name or specify a link name using the Windows 3.x/95 VDM link.

A>winserv
B>wd /tr=win app

A>winserv whats_in_a_name
B>wd /tr=win;whats_in_a_name app

The following examples show how to debug a 32-bit extended DOS application using the Windows 3.x/95
VDM link.

A>winserv /tr=rsi
B>wd /tr=win app

A>winserv /tr=rsi whats_in_a_name
B>wd /tr=win;whats_in_a_name app

The "RSI" trap file is specified for DOS/4G(W) applications. You can specify other trap files for the other
DOS extenders (e.g., "CW" for CauseWay). Do not forget to include other required files in the path.

CW Both "CWSTUB.EXE" and the loader help file "CWHELP.EXE" must also be located in
one of the directories listed in the DOS PATH environment variable. See the section
entitled "Debugging CauseWay 32-bit DOS Extender Applications" on page 110 for more
information on debugging applications that use the CauseWay DOS extender.

RSI Both "DOS4GW.EXE" and the loader help file "RSIHELP.EXP" must also be located in
one of the directories listed in the DOS PATH environment variable. See the section
entitled "Debugging DOS/4G(W) 32-bit DOS Extender Applications" on page 110 for
more information on debugging applications that use the DOS/4GW DOS extender.

PLS One or more of "RUN386.EXE" (or "TNT.EXE"), "DBGLIB.REX", "PLSHELP.EXP",
and "PEDHELP.EXP" must be located in one of the directories listed in the DOS PATH
environment variable. See the section entitled "Debugging Phar Lap 32-bit DOS Extender
Applications" on page 110 for more information on debugging applications that use the
Phar Lap DOS extender.

10.2.6 NMP (Named Pipes)

The named pipes link allows you to communicate between any two sessions on an OS/2 machine. You can
also debug remotely between DOS, Windows 3.x and OS/2 machines if you have installed remote named
pipe support on these machines. See your network documentation for details on remote named pipes.

In order to use named pipes, you must first run the NMPBIND program. This may run any OS/2 machine
on the network. It can be run detached, by putting the following line into your OS/2 CONFIG.SYS.

RUN=C:\WATCOM\BINP\NMPBIND.EXE

Link Descriptions 97

Remote Debugging

If you run NMPSERVW under Win-OS/2, it must be run as a seamless Windows session. This is due to
the fact that full screen Win-OS/2 sessions may not get any processor time when they are not in the
foreground.

The parameter to this link can take the following forms:

name
name@machine

name is an arbitrary name to be used for the connection. This allows you to have multiple remote debug
sessions active simultaneously. The default name is NMPLink.

machine is the name of the machine on which the NMPBIND program is running. This allows you to use
remote named pipes.

The following example shows you how to use the named pipe link between two sessions on the same OS/2
machine.

A>nmpserv
B>wd /tr=nmp app

The following example assumes that there is a machine named HAL with a remote named pipe server on
the network which is running NMPBIND.

A>nmpserv mylink@hal
B>wd /tr=nmp;mylink@hal app

10.2.7 VDM (Virtual DOS Machine)

VDM is actually a limited version of named pipes that does not require the NMPBIND program to be
running. It has several restrictions however.

1. It does not support network debugging.
2. Under OS/2, the debugger (user interface) must run in an OS/2 (not a DOS) session. The

debugger may also be started under Windows NT but not Windows 95 since it does not support
named pipes.

3. Under OS/2, the remote debug server must run in a seamless Win-OS/2 or a DOS session.
4. Under Windows NT, the remote debug server will be run in a Windows NT Virtual DOS

Machine.
5. Under Windows 95, the remote debug server can be started but since Windows 95 does not

support named pipes it will not work properly. See the section entitled "WIN (Windows 3.x/9x
Virtual DOS Machine)" on page 96 for an alternative.

6. If you are running VDMSERVW under Win-OS/2, it must be run as a seamless Windows
session. This is due to the fact that full screen Win-OS/2 sessions may not get any processor
time when they are not in the foreground.

The parameter to this link is an arbitrary name to be used for the connection. This allows you to have
multiple VDM debug sessions active simultaneously. The default name is VDMLink. The following
example shows how to use the VDM link:

A>vdmserv
B>wd /tr=vdm app

The following example shows how to use the VDM link specifying "brian" as the link name.

98 Link Descriptions

Remote Debugging

A>vdmserv brian
B>wd /tr=vdm;brian app

10.2.8 TCP/IP (Internet Packets)

The TCP/IP link allows you to communicate between any two sessions using TCP/IP if you have installed
TCP/IP support. You can also debug remotely between OS/2 and Windows NT/95 machines if you have
installed TCP/IP support on these machines. See your network documentation for details on installing
TCP/IP support. To use TCP/IP support under DOS, you need to configure the WATTCP client and install
a packet driver for your network card.

In order to use TCP/IP to remotely debug a program, you must start the TCPSERV server program first.

Example:
A>tcpserv
Socket port number: 3563
Open Watcom TCP/IP Debug Server Version 2.0
&cpyrit 1988
Press ’q’ to exit

The server program displays an available socket port number on the screen.

You may specify a TCP/IP "service" as an argument on the command line. TCPSERV will check the
TCP/IP services list to find a matching service. If no argument is specified on the command line,
TCPSERV uses "tcplink" as the service name. If no matching service name is found, TCPSERV attempts
to convert the argument to a numeric port number and use that. If the argument can not be converted to a
number, port number 3563 is used.

The TCP/IP services list is stored in different places depending on the operating system.

OS/2 d:\TCPIP\ETC\SERVICES depending on the drive where TCP/IP is installed

Linux and QNX /etc/services

Windows 9x d:\windows\SERVICES depending on the drive and directory where Windows 95 is
installed

Windows NT d:\WINNT\SYSTEM32\DRIVERS\ETC\SERVICES depending on the drive where
Windows NT is installed

You will also need to know the Internet Protocol (IP) address of the machine running the TCPSERV
program. This can be in alphanumeric or numeric form (e.g., jdoe.watcom.on.ca or 172.31.0.99). With the
alphanumeric form, it is not necessary to specify the domain name portion if the two machines are in the
same domain.

To use the remote TCP/IP server, you must specify the TCP/IP trap file name to the debugger along with an
argument consisting of your IP address, optionally followed by a ":" and the service name or socket port
number used by TCPSERV. You must also include the name of the application you wish to run and debug
on the remote machine.

Link Descriptions 99

Remote Debugging

Example1:
A>tcpserv
B>wd /tr=tcp;jdoe app

or
B>wd /tr=tcp;172.31.0.99 app

Example2:
A>tcpserv 1024
B>wd /tr=tcp;jdoe:1024 app

or
B>wd /tr=tcp;jdoe.watcom.on.ca:1024 app

or
B>wd /tr=tcp;172.31.0.99:1024 app

Example3:
A>tcpserv dbgservice
B>wd /tr=tcp;jdoe:dbgservice app

or
B>wd /tr=tcp;jdoe.watcom.on.ca:dbgservice app

or
B>wd /tr=tcp;172.31.0.99:dbgservice app

The TCP/IP remote debug service permits debugging of applications anywhere on the Internet. However,
response will vary with the distances involved.

10.3 Specifying Files on Remote and Local Machines

In order to identify files on either the local or remote machine, two special prefixes are supported.

@L The "@L" prefix is used to indicate that the file resides on the local machine (the one on
which the debugger is running).

@L[d:][path]filename[.ext]

When "[path]" is not specified, the current directory of the specified drive of the local
machine is assumed. When "[d:]" is not specified, the current drive of the local machine is
assumed.

Example:
@LOUTPUT.LOG
@LD:\CMDS
@LD:\CMDS\DATA.TMP

@R The "@R" prefix is used to indicate that the file resides on the remote machine.

@R[d:][path]filename[.ext]

When "[path]" is not specified, the current directory of the specified drive of the remote
machine is assumed. When "[d:]" is not specified, the current drive of the remote machine
is assumed.

100 Specifying Files on Remote and Local Machines

Remote Debugging

Example:
@RMYAPPL.DAT
@RD:\PROGRAMS\EXE\MYAPPL.LNK
@R\PROGRAMS\SRC
@R\PROGRAMS\SRC\UILIB.C

Thus a file may be identified in three different ways.

[d:][path]filename[.ext]
@L[d:][path]filename[.ext]
@R[d:][path]filename[.ext]

A file of the first form resides on either the local or remote machine depending on whether the current drive
is a local or remote drive. A file of the second form always resides on the local machine. A file of the third
form always resides on the remote machine.

Notes:

1. In the each form, the omission of "[d:]" indicates the current drive.

[path]filename[.ext]
@L[path]filename[.ext]
@R[path]filename[.ext]

2. In the each form, the omission of "[path]" indicates the current path of the specified drive.

[d:]filename[.ext]
@L[d:]filename[.ext]
@R[d:]filename[.ext]

Observe that if "[d:]" is omitted also then the following forms are obtained:

filename[.ext]
@Lfilename[.ext]
@Rfilename[.ext]

3. The special drive prefixes "@L" and "@R" cannot be used in your own application to reference
files on two different machines. These prefixes are recognized by the Open Watcom Debugger
only. Should the situation arise where one of your filenames begins with the same prefix ("@L",
"@l", "@R" or "@r") then "@@" can be used. For example, if your wish to refer to the file on
disk called "@link@" then you could specify "@@link@". Note that ".\@link@" would also
suffice.

Specifying Files on Remote and Local Machines 101

Remote Debugging

102 Specifying Files on Remote and Local Machines

Interrupting A Running Program

Interrupting A Running Program

104

11 Interrupting a Running Program

11.1 Overview

It is not unusual for your code to contain an endless loop that results in the program getting stuck in one
spot. You then want to interrupt the program so that you can see where it’s getting stuck. The process to
give control back to the debugger is different for each operating system.

11.2 DOS

Press the Print Screen key. This will work if the program is stuck in a loop. If it has misbehaved in some
other way, Print Screen may have no effect since a misbehaved application may overwrite code, data, the
debugger, or operating system code.

When debugging with the CauseWay DOS extender, by default the running program can be interrupted by
pressing CTRL-ALT. The key combination is configurable in the CWHELP.CFG file (located in "BINW"
directory).

11.3 Windows 3.x

Press CTRL-ALT-F. Windows must be running in enhanced mode and the device WDEBUG.386 must be
installed the [386Enh] section of SYSTEM.INI for this to work. You cannot interrupt a running program
under Win-OS/2.

11.4 Windows NT, Windows 95

If you are using the non-GUI version of the debugger, switch focus to the debugger screen and press
CTRL-BREAK.

If you are using the GUI-based version of the debugger or one of the remote debug servers, switch focus to
the debugger or debug server screen and click anywhere. When you switch to the debugger screen, you
will see a pop-up stating that:

The debugger cannot be used while the application is
running. Do you want to interrupt the application?

If you select "Yes", the debugger will attempt to interrupt the application. If you select "No", the debugger
will resume waiting for the application to hit a breakpoint or terminate.

If you select "Yes" and the debugger cannot interrupt the application, you can click on the debugger again
and it will display a pop-up asking:

Windows NT, Windows 95 105

Interrupting A Running Program

The debugger could not sucessfully interrupt your
application. Do you want to terminate the application?

If you select "Yes", the debugger will terminate your application. If you select "No", the debugger will
resume waiting for the program to hit a breakpoint or terminate.

Note: Under Windows 95, it is very difficult to interrupt a program that is in an infinite loop or
spending most of its time in system API’s. Under Windows 95, you can only interrupt a
program that is responding to messages (or looping in its own thread code). If your
program is an infinite loop, interrupting the program will likely fail. The only option in this
case is to terminate the program.

This is not an issue under Windows NT which has a superior debug API.

If you press CTRL-BREAK when the application has focus, you will terminate the application being
debugged rather than interrupting it.

11.5 OS/2

Use the program manager to switch focus to the debugger screen then press CTRL-BREAK. If you press
CTRL-BREAK when the application has focus, you will terminate the application being debugged rather
than interrupting it.

11.6 NetWare

On the NetWare file server console, press ALT-ESCAPE while holding down both SHIFT keys. In some
instances, this may cause the system debugger to become active instead of the Open Watcom Debugger.

11.7 Linux

Switch focus to the debugger console and press CTRL-C. Alternatively, you may send any unhandled
signal to the application being debugged. Consult your Linux documentation for details.

11.8 QNX

Switch focus to the debugger console and press CTRL-BREAK. Alternatively, you may send any
unhandled signal to the application being debugged. Consult your QNX system documentation for details.

106 QNX

Operating System specifics

Operating System specifics

108

12 Operating System Specifics

This section discusses the following topics:

DOS Extender debugging
See the section entitled "Debugging 32-bit DOS Extender Applications".

NLM debugging
See the section entitled "Debugging a Novell NLM" on page 111.

Graphics programs
See the section entitled "Debugging Graphics Applications" on page 111.

Windows 3.x debugging
See the section entitled "Debugging Windows 3.x Applications" on page 112.

DLL debugging
See the section entitled "Debugging Dynamic Link Libraries" on page 112.

Disabling 386/486 debug registers
See the section entitled "Disabling Use of 386/486 Debug Registers" on page 113.

Linux debugging
See the section entitled "Debugging Under Linux" on page 113.

QNX debugging
See the section entitled "Debugging Under QNX" on page 114.

12.1 Debugging 32-bit DOS Extender Applications

The Open Watcom Debugger supports debugging of 32-bit applications developed with Open Watcom
C/C++(32), Open Watcom FORTRAN 77/32, and assembly language. A DOS extender must be used to
run the application. The following DOS extenders are supported.

CauseWay DOS Extender
a public domain DOS extender included in the Open Watcom C/C++(32) and Open
Watcom FORTRAN 77/32 packages. Note that this DOS extender is largely compatible
with DOS/4GW and can often be used interchangeably.

DOS/4GW a DOS extender from Tenberry Software, Inc. DOS/4GW is a subset of Tenberry
Software’s DOS/4G product. DOS/4GW is customized for use with Open Watcom
C/C++(32) and Open Watcom FORTRAN 77/32 and is included in these packages.

386|DOS-Extender
(version 2.2d or later) a DOS extender from Phar Lap Software, Inc.

Debugging 32-bit DOS Extender Applications 109

Operating System specifics

12.1.1 Debugging CauseWay 32-bit DOS Extender Applications

When using the CauseWay DOS extender, the "CWSTUB.EXE" file must be located in one of the
directories listed in the DOS PATH environment variable. The "CWSTUB.EXE" file will usually be
stored in the "BINW" directory of the Open Watcom compiler package. You must also use the TRap=CW
option. The "CW.TRP" file will usually be stored in the "BINW" directory of the Open Watcom compiler
package. You should ensure that this "BINW" directory is included in the DOS PATH environment
variable. Otherwise, you must specify the full path name for the trap file.

The help file "CWHELP.EXE" must also be located in one of the directories listed in the DOS PATH
environment variable. It will usually be stored in the "BINW" directory of the Open Watcom compiler
package.

Example:
C>wd /trap=cw hello

or
C>set wd=/trap#cw
C>wd hello

12.1.2 Debugging DOS/4G(W) 32-bit DOS Extender Applications

When using the Tenberry Software DOS extender, the "DOS4GW.EXE" or "DOS4G.EXE" file must be
located in one of the directories listed in the DOS PATH environment variable. The "DOS4GW.EXE" file
will usually be stored in the "BINW" directory of the Open Watcom compiler package. You must also use
the TRap=RSI option. The "RSI.TRP" file will usually be stored in the "BINW" directory of the Open
Watcom compiler package. You should ensure that this "BINW" directory is included in the DOS PATH
environment variable. Otherwise, you must specify the full path name for the trap file.

The help file "RSIHELP.EXP" must also be located in one of the directories listed in the DOS PATH
environment variable. It will usually be stored in the "BINW" directory of the Open Watcom compiler
package.

Example:
C>wd /trap=rsi hello

or
C>set wd=/trap#rsi
C>wd hello

12.1.3 Debugging Phar Lap 32-bit DOS Extender Applications

When using the Phar Lap Software, Inc. DOS extender, the "RUN386.EXE" (or "TNT.EXE"),
"DBGLIB.REX", "PLSHELP.EXP", and "PEDHELP.EXP" files must be located in one of the directories
listed in the DOS PATH environment variable. You must also use the TRap=PLS option. The
"PLS.TRP", "PLSHELP.EXP" and "PEDHELP.EXP" files will usually be stored in the "BINW" directory
of the Open Watcom compiler package. You should ensure that this "BINW" directory is included in the
DOS PATH environment variable. Otherwise, you must specify the full path name for the trap file.

Parameters are passed to the "RUN386" or "TNT" DOS extender using the TRap option. The entire
parameter must be placed within braces. The following example illustrates how to debug a Phar Lap
application passing the -maxreal switch to RUN386.EXE or TNT.EXE.

110 Debugging 32-bit DOS Extender Applications

Operating System Specifics

Example:
C>wd /trap=pls;{-maxreal 512} hello

or
C>set wd=/trap#pls;{-maxreal 512}
C>wd hello

12.2 Debugging a Novell NLM

Novell NLM’s may only be debugged remotely. You must use either the serial, parallel, or Novell SPX
link. There are 5 NLM’s distributed in the Open Watcom package. The following table describes their use:

NetWare 3.11/3.12 NetWare 4.01

Serial serserv4.nlm
Parallel parserv3.nlm parserv4.nlm
SPX novserv3.nlm novserv4.nlm

To start remote debugging, you load one of the above NLMs at the NetWare file server console. The
debugger is then invoked as in any remote debugging session. See the chapter entitled "Remote
Debugging" on page 89 for parameter details. See the appendix entitled "Wiring For Remote Debugging"
on page 173 for parallel/serial cable details.

For example, on a NetWare 4.01 server type: load novserv4

On a workstation, type: WD /tr=nov mynlm

Debugging information for every running NLM is available. You can debug any NLM in the system as if it
were part of your application, as long as you created it with debug information. If the NLM does not have
Watcom style debugging information, the debugger will attempt to use any debugging information created
by Novell’s linker (NLMLINK).

12.3 Debugging Graphics Applications

When debugging a graphics application, there are a number of Open Watcom Debugger command line
options that could be specified depending on your situation.

1. If you only have one monitor attached to your system, use the Swap option. The Swap option
specifies that the application’s screen memory and the debugger’s screen memory are to be
swapped back and forth using a single page.

2. If you have two monitors attached to your system then the Two and Monochrome options should
be used. The Two option specifies that a second monitor is connected to the system. Note that if
the monitor type (Monochrome, Color, Colour, Ega43, Vga50) is not specified then the monitor
that is not currently being used is selected for the debugger’s screen. If you specify
Monochrome then the monochrome monitor will be used for the debugger’s screen.

3. If you are debugging the graphics application using a second personal computer and the remote
debugging feature of the Open Watcom Debugger then the choice of display and operation mode
for the Open Watcom Debugger is irrelevant. If one system is equipped with a graphics display
and the other with a monochrome display then you will undoubtedly use the system equipped
with the monochrome display to run the Open Watcom Debugger.

Debugging Graphics Applications 111

Operating System specifics

12.4 Debugging Windows 3.x Applications

Both a character mode and a GUI debugger are supplied that run in the Windows environment. You must
choose which of these debuggers you are going to use. They both have advantages and disadvantages.
When your application is suspended, the GUI and character mode debuggers behave differently. The GUI
debugger allows other applications to continue running. The character mode debugger does not. Although
the GUI debugger has a much nicer looking user interface, you should not use it under some circumstances.
You can always use the character mode debugger. You should be aware of the following restrictions:

1. If you are trying to debug an applications that uses DDE you should not use the GUI debugger.
2. Do not try to use the GUI debugger to debug system modal dialogs.
3. If you hit a break-point in a dialog callback procedure or in your window procedure when it is

receiving certain events (e.g., WM_MENUSELECT), the GUI debugger will lock input to itself.
When this happens, you will not be able to switch away from the debugger, and no other
application will repaint themselves. When this happens, pop-up menus will not draw correctly
and you will have to use the Action menu instead. You should not try to quit the debugger when
it is in this state.

4. Do not try to use either of the Windows debuggers in a seamless Win-OS/2 session.

If you find that the Windows debugger starts too slowly, try using the DIp=DWARF option. This prevents
the debugger from searching each DLL in the system for debugging information. It will start up faster, but
you will not be able to see the name of the Windows API calls.

To start the Open Watcom Debugger, select the program group in which you have installed the Open
Watcom Debugger. One of the icons presented is used to start the debugger. Double-click on the Open
Watcom Debugger icon.

You can make special versions of the Open Watcom Debugger icon using Properties from the File menu of
the Windows "Program Manager". For example, you can add any options you wish to the "Command
Line" field of the "Properties" window. When you click on the newly created icon, the options specified in
the "Command Line" field are the defaults. As long as no executable file name was specified in the
"Command Line" field, the Open Watcom Debugger will present its prompt window. In the prompt
window, you can specify an executable file name and arguments.

If you are debugging the same program over and over again, you might wish to create an icon that includes
the name of the file you wish to debug in the "Command Line" field. Each time you click on that icon, the
Open Watcom Debugger is started and it automatically loads the program you wish to debug.

12.5 Debugging Dynamic Link Libraries

The debugger automatically detects all DLLs that your application references when it loads the application.
When your program loads a DLL dynamically, the debugger detects this as well. If you have created your
DLL with debugging information, you can debug it just as if it were part of your application. Even if it
does not have debugging information, the debugger will process system information to make the DLL entry
point names visible. There are a few limitations:

1. You cannot debug your DLL initialization code. This is the first routine that the operating
system runs when it loads the DLL. This is not normally a problem, since most DLLs do not do
much in the way of initialization.

2. When a DLL is loaded dynamically, its debugging information may not be available
immediately. Try tracing a few instructions and it will appear.

112 Debugging Dynamic Link Libraries

Operating System Specifics

3. If you restart an application, you will lose any break points that you had set in dynamically
loaded DLLs. You need to trace back over the call to LoadModule or DOSLoadModule and
re-set these break points.

12.6 Disabling Use of 386/486 Debug Registers

It may be necessary to prevent the Open Watcom Debugger from using the 386/486 Debug Registers (a
hardware feature used to assist debugging). This situation arises with certain DOS control programs that do
not properly manage Debug Registers. If the Open Watcom Debugger fails upon startup on a 386/486
system, it is a good indication that use of the Debug Registers must be disabled. With "STD.TRP", the trap
file parameter "d" may be specified to disable the use of Debug Registers. The following example
illustrates the specification of the "d" trap file parameter.

Example:
C>wd /trap=std;d calendar

12.7 Debugging Under Linux

When the debugger starts up, it will attempt to open the initialization file .wdrc provided that you have
not specified the Invoke command line option. It looks for this file in all the usual places (CWD,
WD_PATH, /opt/watcom/wd). This file normally contains your customization commands. If it is
found, it is processed as the default configuration file. You would normally place this file in your home
directory.

If the file does not exist, the debugger then looks for the wd.dbg file.

If you do not want the debugger to use the .wdrc file then you can do one of two things — make sure that
it cannot be located (e.g., delete it) or use the Invoke command line option (you could specify the wd.dbg
file as the target).

The supplied version of the wd.dbg file contains an "invoke" command referencing the file
setup.dbg. This file, in turn, contains a "configfile" command and "invoke" commands referencing
other command files. The "configfile" command marks setup.dbg as the default file name to use when
the debugger writes out the current configuration.

The following section entitled "Search Order for Open Watcom Debugger Support Files under Linux"
describes the search order for debugger files under Linux.

12.7.1 Search Order for Open Watcom Debugger Support Files under Linux

There are several supporting files provided with the Open Watcom Debugger. These files fall into five
categories.

1. Open Watcom Debugger command files (files with the ".dbg" suffix).

2. Open Watcom Debugger trap files (files with the ".trp" suffix).

3. Open Watcom Debugger parser files (files with the ".prs" suffix).

4. Open Watcom Debugger help files (files with the ".hlp" suffix).

Debugging Under Linux 113

Operating System specifics

5. Open Watcom Debugger symbolic debugging information files (files with the ".sym" suffix).

The search order for Open Watcom Debugger support files is as follows:

1. the current directory,
2. the paths listed in the WD_PATH environment variable,
3. the path listed in the HOME environment variable
4. the directory where Open Watcom Debugger was started from
5. "../wd" directory relative to the directory where Open Watcom Debugger was started from, and,

finally,
6. the "/opt/watcom/wd" directory.

You should note the following when using the remote debugging feature of the Open Watcom Debugger.
When the REMotefiles option is specified, the debugger also attempts to locate the Open Watcom
Debugger’s support files (command files, trap files, etc.) on the task machine.

12.8 Debugging Under QNX

When the debugger starts up, it will attempt to open the initialization file .wdrc provided that you have
not specified the Invoke command line option. It looks for this file in all the usual places (CWD,
WD_PATH, /usr/watcom/<ver>/wd, /usr/watcom/wd). This file normally contains your
customization commands. If it is found, it is processed as the default configuration file. You would
normally place this file in your home directory.

If the file does not exist, the debugger then looks for the wd.dbg file.

If you do not want the debugger to use the .wdrc file then you can do one of two things — make sure that
it cannot be located (e.g., delete it) or use the Invoke command line option (you could specify the wd.dbg
file as the target).

The supplied version of the wd.dbg file contains an "invoke" command referencing the file
setup.dbg. This file, in turn, contains a "configfile" command and "invoke" commands referencing
other command files. The "configfile" command marks setup.dbg as the default file name to use when
the debugger writes out the current configuration.

The following section entitled "Debugging Under QNX Using the Postmortem Dump Facility" describes
the use of the debugger with the Postmortem dump facility. The following section entitled "Search Order
for Open Watcom Debugger Support Files under QNX" on page 116 describes the search order for
debugger files under QNX.

12.8.1 Debugging Under QNX Using the Postmortem Dump Facility

A limited form of debugging of an application that has terminated and produced a postmortem dump can be
done under QNX. In order to use this feature, you must start the QNX "dumper" program.

dumper [-d path] [-p pid] &

114 Debugging Under QNX

Operating System Specifics

dumper is the program name for the QNX postmortem dump program.

-d path The name of the directory in which postmortem dumps are written. If not specified, the
default is the user’s home directory.

-p pid Save a dump file for this process if it terminates for any reason. Do not save a dump file
for any other process.

& must be specified so that the shell is rejoined.

Example:
$ dumper &
$ dumper -d /usr/fred/dump_area &

Whenever a program terminates abnormally, a dump of the current state of the program in memory is
written to disk. The dump file name is the same as the program name with a .dmp extension. For example,
if the program name is a.out then the dump will be written to the /home/userid/a.out.dmp file.

You can use the -d option of the dumper program to force all dumps into a single directory rather than into
the invoking user’s home directory.

The -p option lets you monitor a particular process. You can run multiple copies of the dumper program,
each monitoring a different process.

If the Open Watcom Debugger was being used to debug the program at the time that it abnormally
terminated then the dump is written to the user’s home directory provided that the -d option was not used.

To examine the contents of the postmortem dump, the Open Watcom Debugger may be used. The interface
between the Open Watcom Debugger and the postmortem dump is contained in a special "trap" file. The
trap file is specified to the Open Watcom Debugger using the TRap option.

wd -TRap=pmd[;i] [:sym_file] file_spec

wd is the program name for the Open Watcom Debugger.

-TRap=pmd[i] must be specified when debugging an application that has terminated and produced a
postmortem dump. The optional ";i" is specified when the modification date of the original
program file does not match the information contained in the dumper file. It indicates that
the symbolic debugging information in the program file may be out-of-date. It instructs the
Open Watcom Debugger to ignore the date mismatch. Depending on the shell that you are
using, it may be necessary to place the option specification in quotation marks if you
include the optional ";i".

Example:
$ wd "-trap=pmd;i" myapp

sym_file is an optional symbolic information file specification. The specification must be preceded
by a colon (":"). When specifying a symbol file name, a path such as "//5/etc/" may be
included. For QNX, the default file suffix of the symbol file is ".sym".

file_spec is the file name of the dumper file to be loaded into memory. When specifying a file name,
a path such as "//5/etc/" may be included. If a path is omitted, the Open Watcom Debugger

Debugging Under QNX 115

Operating System specifics

will first attempt to locate the file in the current directory and, if not successful, attempt to
locate the file in the default dumper directory: /usr/dumps.

Basically, the Open Watcom Debugger is fully functional when a postmortem dump is examined.
However, there are some operations which are not allowed. Among these are:

1. Task execution cannot be restarted using Go from the Run menu.

2. A register can be modified for the purposes of expression evaluation. You can choose Go from
the Run menu to restore the register contents to their original postmortem state.

3. Memory cannot be modified.

4. Memory outside of regions owned by the program cannot always be examined.

5. I/O ports cannot be examined.

12.8.2 Search Order for Open Watcom Debugger Support Files under QNX

There are several supporting files provided with the Open Watcom Debugger. These files fall into five
categories.

1. Open Watcom Debugger command files (files with the ".dbg" suffix).

2. Open Watcom Debugger trap files (files with the ".trp" suffix).

3. Open Watcom Debugger parser files (files with the ".prs" suffix).

4. Open Watcom Debugger help files (files with the ".hlp" suffix).

5. Open Watcom Debugger symbolic debugging information files (files with the ".sym" suffix).

The search order for Open Watcom Debugger support files is as follows:

1. the current directory,
2. the paths listed in the WD_PATH environment variable,
3. the path listed in the HOME environment variable, and, finally,
4. the "/usr/watcom/wd" directory.

You should note the following when using the remote debugging feature of the Open Watcom Debugger.
When the REMotefiles option is specified, the debugger also attempts to locate the Open Watcom
Debugger’s support files (command files, trap files, etc.) on the task machine.

116 Debugging Under QNX

Expressions

Expressions

118

13 Open Watcom Debugger Expression Handling

13.1 Introduction

The Open Watcom Debugger is capable of handling a wide variety of expressions. An expression is a
combination of operators and operands selected from application variables and names, debugger variables,
and constants. Expressions can be used in a large number of debugger commands and dialogs. For
example, the evaluated result of an expression may be displayed by choosing New from the pop-up menu in
the Watches window or by using the print command.

The appropriate syntax of an expression, i.e., the valid sequence of operators and operands, depends on the
grammar of the language that is currently established. The Open Watcom Debugger supports the grammars
of the C, C++, and FORTRAN 77 languages. A grammar is selected automatically by the debugger when
tracing the execution of modules in an application. For example, part of an application may be written in
C, another part in C++, and another part in FORTRAN 77. The modules must have been compiled by one
of the Open Watcom C, C++ or FORTRAN 77 compilers. When tracing into a module written in one of
these languages, the debugger will automatically select the appropriate grammar. In addition to this
automatic selection, a particular grammar may be selected using the debugger Set LAnguage command.
The language currently selected can be determined using the SHow Set LAnguage command.

13.2 General Rules of Expression Handling

The debugger handles two types of expressions. The difference between the two types of expressions is
quite subtle. One is called an "expression" and things operate as you would normally expect. This type of
expression is used for all "higher" level operations such as adding items to the Watches window. The other
type is called an "address expression". It is used whenever the debugger prompts for an address and in
lower level commands such Examine and Modify. If the notation for a particular command argument is
<address>, it is an address expression. If it ends in just "expr" then it is a normal expression. The
difference between the two forms lies in how they treat symbol names. In a normal expression the value of
a symbol is its rvalue, or contents. In an address expression, the value of a symbol is (sometimes) its
lvalue, or address.

Consider the following case. You have a symbol sam at offset 100 and the word at that location contains
the value 15. If you enter sam into the watches window you expect the value 15 to be printed and since the
Watches window takes a normal expression that is what you get. Now let us try it with the Breakpoint
dialog. Enter sam in the address field. The Breakpoint dialog uses the result of its expression as the
address at which to set a breakpoint. The Breakpoint dialog takes an address expression, and an implicit
unary "&" operator is placed in front of symbols. The debugger has a set of heuristics that it applies to
determine whether it should use the rvalue or lvalue of a symbol.

General Rules of Expression Handling 119

Expressions

13.3 Language Independent Variables and Constants

The following sections describe conventions used in the debugger for identifying modules, variables, line
numbers, registers, etc.

13.3.1 Symbol Names

Regardless of the programming language that was used to code the modules of an application, the names of
variables and routines will be available to the debugger (provided that the appropriate symbolic debugging
information has been included with the application’s execution module). The debugger does not restrict the
way in which names are used in expressions. A name could represent a variable but it could also represent
the entry point into a routine.

The syntax of a symbol name reference is quite complicated.

[[[image]@][module]@][routine_name.]symbol_name

Generally, an application will consist of many modules which were compiled separately. The current
image is the one containing the module which is currently executing. The current module is the one
containing the source lines currently under examination in the Source or Assembly window. By default,
the Source window’s title line contains the current module name. The current routine is the one containing
the source line at which execution is currently paused.

The following are examples of references to symbol names.

Example:
symbol_name
main
WinMain
FMAIN
printf
LIB$G_OPEN
stdin

If the symbol does not exist in the current scope then it must be qualified with its routine name. Generally,
these are variables that are local to a particular routine.

Example:
routine_name.symbol_name
main.curr_time
main.tyme
SUB1.X
SUB2.X

If the symbol is not externally defined and it does not exist in the current module then it may be qualified
with its module name. In the C and C++ programming languages, we can define a variable that is global to
a module but known only to that module ("static" storage class).

Example:
static char *NarrowTitle = { "Su Mo Tu We Th Fr Sa" };

In the above example, "NarrowTitle" is global to the module "calendar". If the current module is not
"calendar" then the module name can be used to qualify the symbol as shown in the following example.

120 Language Independent Variables and Constants

Open Watcom Debugger Expression Handling

Example:
calendar@NarrowTitle

If the symbol is local to a routine that is not in the current module then it must be qualified with its module
name and routine name.

Example:
module_name@routine_name.symbol_name
calendar@main.curr_time
calendar@main.tyme
subs@SUB1.X
subs@SUB2.X

If the symbol is local to an image that is not in the current executable then it must be fully qualified with
the image name.

Example:
prog_name@@routine_name
prog_name@module_name@routine_name
prog_name@module_name@routine_name.symbol_name
dll_name@calendar@main.curr_time
dll_name@calendar@main.tyme
program@subs@SUB1.X
program@subs@SUB2.X

There is a special case for the primary executable image. This is the name of the program you specified
when you started the debugger. You can reference it by omitting the image name. The following examples
all refer to symbols in the primary executable image:

Example:
@@WinMain
@module@WinMain
@@routine.symbol

In the FORTRAN 77 programming language, all variables (arguments, local variables, COMMON block
variables) are available to the subprogram in which they are defined or referenced. The same symbol name
can be used in more than one subprogram. If it is a local variable, it represents a different variable in each
subprogram. If it is an argument, it may represent a different variable in each subprogram. If it is a
variable in a COMMON block, it represents the same variable in each subprogram where the COMMON
block is defined.

Language Independent Variables and Constants 121

Expressions

Example:
SUBROUTINE SUB1(X)
REAL Y
COMMON /BLK/ Z

.

.

.
END
SUBROUTINE SUB2(X)
REAL Y
COMMON /BLK/ Z

.

.

.
END

In the above example, "X" is an argument and need not refer to the same variable in the calling
subprogram.

Example:
CALL SUB1(A)
CALL SUB2(B)

The variable "Y" is a different variable in each of "SUB1" and "SUB2". The COMMON block variable
"Z" refers to the same variable in each of "SUB1" and "SUB2" (different names for "Z" could have been
used). To refer to "X", "Y", or "Z" in the subprogram "SUB2", you would specify "SUB2.X", "SUB2.Y",
or "SUB2.Z". If "SUB2" was in the module "MOD" and it is not the current module, you would specify
"MOD@SUB2.X", "MOD@SUB2.Y", or "MOD@SUB2.Z".

Note: Global and local symbol name debugging information is included in an executable image if
you request it of the linker. However, local symbol information must be present in your
object files. The Open Watcom C, C++ and FORTRAN 77 compilers can include local
symbol debugging information in object files by specifying the appropriate compiler
option. See "Preparing a Program to be Debugged" on page 9.

13.3.2 Line Numbers

Regardless of the programming language that was used to code the modules of an application, line number
information identifying the start of executable statements will be available to the debugger (provided that
the appropriate symbolic debugging information has been included with the application’s execution
module). The debugger does not restrict the way in which line number references are used in expressions.
A line number represents the code address of an executable statement in a routine. Not all line numbers
represent executable statements; thus some line numbers may not be valid in an expression. For example,
source lines consisting of comments do not represent executable statements.

The general format for a line number reference is:

[[image]@] [module_name] @ decimal_digits

The following are examples of references to executable statements.

122 Language Independent Variables and Constants

Open Watcom Debugger Expression Handling

Example:
@36
@@45
@51
@125
hello@9
@hello@9
prog@hello@9
otherprg@goodbye@9
puzzle@50
calendar@20
SUB1@30

If the line number does not exist in the current module, it must be qualified with its module name. If it does
not exist in the current image, it must be qualified with the image name. Line numbers are not necessarily
unique. For example, an executable statement could occur at line number 20 in several modules. The
module name can always be used to uniquely identify the line 20 in which we are interested. In the above
examples, we explicitly refer to line 20 in the module "calendar". When the module name is omitted, the
current module is assumed.

Note: Line number debugging information is included in an executable image if you request it of
the linker. However, line number information must be present in your object files. The
Open Watcom C, C++ and FORTRAN 77 compilers can include line number debugging
information in object files by specifying the appropriate compiler option. See "Preparing a
Program to be Debugged" on page 9. You can request line number debugging information
when assembling assembly language source files using Open Watcom Assembler The "d1"
option must be specified on the command line.

13.3.3 Constants

A constant can be arithmetic or character. Each constant has a data type associated with it. Arithmetic
constants consist of those constants whose data type is one of integer, real, or complex (FORTRAN only).
C treats character constants like arithmetic constants so they can be used in arithmetic expressions.
FORTRAN treats character constants as constants of type CHARACTER so they cannot be used in
arithmetic expressions.

13.3.3.1 Integer Constants

An integer constant is formed by a non-empty string of digits preceded by an optional radix specifier. The
digits are taken from the set of digits valid for the current radix. If the current radix is 10 then the digits are
’0’ through ’9’. If the current radix is 16 then the digits are ’0’ through ’9’ and ’A’ through ’F’ or ’a’
through ’f’. See "The Options Dialog" on page 32.

The following are examples of integer constants.

Example:
123
57DE
1423
345
34565788

Language Independent Variables and Constants 123

Expressions

Radix specifiers may be defined by the user, but two are predefined by the debugger. 0x may be defined to
be a radix specifier for hexadecimal (base 16) numbers. 0n may be defined to be a radix specifier for
decimal (base 10) numbers

Example:
0x1234 hexadecimal
0n1234 decimal
255 decimal
0xff hexadecimal
0x1ADB hexadecimal
0n200 decimal
0x12fc0 hexadecimal

13.3.3.2 Real Constants

We first define a simple real constant as follows: an optional sign followed by an integer part followed by
a decimal point followed by a fractional part. The integer and fractional parts are non-empty strings of
digits. The fractional part can be omitted.

A real constant has one of the following forms.

(1) A simple real constant.

(2) A simple real constant followed by an E or e followed by an optionally signed integer
constant.

The optionally signed integer constant that follows the E is called the exponent. The value of a real
constant that contains an exponent is the value of the constant preceding the E multiplied by the power of
ten determined by the exponent.

The following are examples of real constants.

123.764
0.4352344
1423.34E12
+345.E-4
-0.4565788E3
2.E6
1234.

Note: The accepted forms of floating-point constants are a subset of that supported by the
FORTRAN 77 programming language. The debugger does not support floating-point
constants that begin with a decimal point (e.g., .4352344) or have no decimal point (e.g.,
2E6). However, both forms would be acceptable to a FORTRAN compiler. Also, the
debugger does not support double precision floating-point constants where "D" is used
instead of "E" for the exponent part (e.g., 2D6, 2.4352344D6). All floating-point constants
are stored internally by the debugger in double precision format.

13.3.3.3 Complex Constant (FORTRAN Only)

A complex constant consists of a left parenthesis, followed by a real or integer constant representing the
real part of the complex constant, followed by a comma, followed by a real or integer constant representing
the imaginary part of the complex constant, followed by a right parenthesis.

124 Language Independent Variables and Constants

Open Watcom Debugger Expression Handling

The following are examples of complex constants.

(1423.34E12, 3)
(+345, 4)

Complex constants will be accepted when the debugger’s currently established language is FORTRAN.
The language currently selected can be determined using the SHow Set LAnguage command.

13.3.3.4 Character Constant (C Only)

In the C and C++ programming languages, a character constant consists of an apostrophe followed by a
single character followed by an apostrophe. The apostrophes are not part of the datum. An apostrophe in a
character datum represents one character, namely the apostrophe. A character constant must have length 1.

The following are examples of character constants.

’A’
’e’
’’’

The C/C++ form of a character constant will be accepted when the debugger’s currently established
language is C or C++. The language currently selected can be determined using the SHow Set LAnguage
command.

13.3.3.5 Character String Constant (FORTRAN Only)

In the FORTRAN 77 programming language, a character constant consists of an apostrophe followed by
any string of characters followed by an apostrophe. The apostrophes are not part of the datum. If an
apostrophe is to appear as part of the datum it must be followed immediately by another apostrophe. Note
that blanks are significant. The length of the character constant is the number of characters appearing
between the delimiting apostrophes. Consecutive apostrophes in a character datum represent one character,
namely the apostrophe. A character constant must not have length 0.

The following are examples of character constants.

’ABCDEFG1234567’
’There’’s always tomorrow’

The FORTRAN form of a character constant will be accepted when the debugger’s currently established
language is FORTRAN.

13.3.4 Memory References

In addition to referring to memory locations by symbolic name or line number, you can also refer to them
using a combination of constants, register names, and symbol names. In the Intel 80x86 architecture, a
memory reference requires a segment and offset specification. When symbol names are used, these are
implicit. The general form of a memory reference is:

[segment:]offset

When an offset is specified alone, the default segment value is taken from the CS, DS or SS register
depending on the circumstances.

Language Independent Variables and Constants 125

Expressions

13.3.5 Predefined Debugger Variables

The debugger defines a number of symbols which have special meaning. These symbols are used to refer
to the computer’s registers and other special variables.

General Purpose Registers
eax, ax, al, ah, ebx, bx, bl, bh, ecx, cx, cl, ch, edx, dx, dl, dh

Index Registers
esi, si, edi, di

Base Registers esp, sp, ebp, bp

Instruction Pointer
eip, ip

Segmentation Registers
cs, ds, es, fs, gs, ss

Flags Registers
fl, fl.o, fl.d, fl.i, fl.s, fl.z, fl.a, fl.p, fl.c, efl, efl.o, efl.d, efl.i, efl.s, efl.z, efl.a, efl.p, efl.c

8087 Registers st0, st1, st2, st3, st4, st5, st6, st7

8087 Control Word
cw, cw.ic, cw.rc, cw.pc, cw.iem, cw.pm, cw.um, cw.om, cw.zm, cw.dm, cw.im

8087 Status Word
sw, sw.b, sw.c3, sw.st, sw.c2, sw.c1, sw.c0, sw.es, sw.sf, sw.pe, sw.ue, sw.oe, sw.ze, sw.de,
sw.ie

Miscellaneous Variables
dbg$32, dbg$bottom, dbgbp, dbgcode, dbgcpu, dbgctid, dbg$data, dbg$etid, dbg$fpu,
dbgip, dbgleft, dbg$monitor, dbg$ntid, dbgos, dbgpid, dbgpsp, dbgradix,
dbg$remote, dbg$right, dbgsp, dbgtop, dbgnil, dbgsrc, dbg$loaded

The debugger permits the manipulation of register contents and special debugger variables (e.g., dbg$32)
using any of the operators described in this chapter. By default, these predefined names are accessed just
like any other variables defined by the user or the application. Should the situation ever arise where the
application defines a variable whose name conflicts with that of one of these debugger variables, the
module specifier _dbg may be used to resolve the ambiguity. For example, if the application defines a
variable called cs then _dbg@cs can be specified to resolve the ambiguity. The "_dbg@" prefix indicates
that we are referring to a debugger defined symbol rather than an application defined symbol. See
"Predefined Symbols" on page 167.

13.3.6 Register Aggregates

There are times when a value may be stored in more than one register. For example, a 32-bit "long" integer
value may be stored in the register pair DX:AX. We require a mechanism for grouping registers to
represent a single quantity for use in expressions.

126 Language Independent Variables and Constants

Open Watcom Debugger Expression Handling

We define the term "register aggregate" as any grouping of registers to form a single unit. An aggregate is
specified by placing register names in brackets in order from most significant to least significant. Any
aggregate may be specified as long as it forms an 8, 16, 32 or 64-bit quantity. The following are examples
of some of the many aggregates that can be formed.

Example:
8-bit [al]
16-bit [ah al]
16-bit [bl ah]
16-bit [ax]
32-bit [dx ax]
32-bit [dh dl ax]
32-bit [dh dl ah al]
32-bit [ds di]
64-bit [ax bx cx dx]
64-bit [edx eax] (386/486/Pentium only)

In some cases, the specified aggregate may be equivalent to a register. For example, the aggregates "[ah
al]" and "[ax]" are equivalent to "ax".

The default type for 8-bit, 16-bit, and 32-bit aggregates is integer. The default type for 64-bit aggregates is
double-precision floating-point. To force the debugger into treating a 32-bit aggregate as single-precision
floating-point, the type coercion operator "[float]" may be used.

13.4 Operators for the C Grammar

The debugger supports most C operators and includes an additional set of operators for convenience. The
Open Watcom C Language Reference manual describes many of these operators.

The syntax for debugger expressions is similar to that of the C programming language. Operators are
presented in order of precedence, from lowest to highest. Operators on the same line have the same
priority.

Operators for the C Grammar 127

Expressions

Lowest Priority

Assignment Operators
= += -= *= /= %= &= |= ^= <<= >>=

Logical Operators
||
&&

Bit Operators
|
^
&

Relational Operators
== !=
< <= < >=

Shift Operators
<< >>

Arithmetic Operators
+ -
* / %

Unary Operators
+ - ~ ! ++ -- & * %
sizeof unary_expr
sizeof(type_name)
(type_name) unary_expr
[type_name] unary_expr
?

Binary Address Operator
:

Highest Priority

Parentheses can be used to order the evaluation of an expression.

In addition to the operators listed above, a number of primary expression operators are supported. These
operators are used in identifying the object to be operated upon.

[] subscripting, substringing

() function call

. field selection

-> field selection using a pointer

The following sections describe the operators presented above.

13.4.1 Assignment Operators for the C Grammar

= Assignment: The value on the right is assigned to the object on the left.

+= Additive assignment: The value of the object on the left is augmented by the value on the
right.

-= Subtractive assignment: The value of the object on the left is reduced by the value on the
right.

128 Operators for the C Grammar

Open Watcom Debugger Expression Handling

*= Multiplicative assignment: The value of the object on the left is multiplied by the value on
the right.

/= Division assignment: The value of the object on the left is divided by the value on the
right.

%= Modulus assignment: The object on the left is updated with MOD(left,right). The result is
the remainder when the value of the object on the left is divided by the value on the right.

&= Bit-wise AND: The bits in the object on the left are ANDed with the bits of the value on
the right.

|= Bit-wise inclusive OR: The bits in the object on the left are ORed with the bits of the value
on the right.

^= Bit-wise exclusive OR: The bits in the object on the left are exclusively ORed with the bits
of the value on the right.

<<= Left shift: The bits in the object on the left are shifted to the left by the amount of the value
on the right.

>>= Right shift: The bits in the object on the left are shifted to the right by the amount of the
value on the right. If the object on the left is described as unsigned, the vacated high-order
bits are zeroed. If the object on the left is described as signed, the sign bit is propagated
through the vacated high-order bits. The debugger treats registers as unsigned items.

13.4.2 Logical Operators for the C Grammar

&& Logical conjunction: The logical AND of the value on the left and the value on the right is
produced. If either of the values on the left or right is equal to 0 then the result is 0;
otherwise the result is 1.

|| Logical inclusive disjunction: The logical OR of the value on the left and the value on the
right is produced. If either of the values on the left or right is not equal to 0 then the result
is 1; otherwise the result is 0. If the value on the left is not equal to 0 then the expression
on the right is not evaluated (this is known as short-circuit expression evaluation).

13.4.3 Bit Operators for the C Grammar

& Bit-wise AND: The bits of the value on the left and the value on the right are ANDed.

| Bit-wise OR: The bits of the value on the left and the value on the right are ORed.

^ Bit-wise exclusive OR: The bits of the value on the left and the value on the right are
exclusively ORed.

Operators for the C Grammar 129

Expressions

13.4.4 Relational Operators for the C Grammar

== Equal: If the value on the left is equal to the value on the right then the result is 1;
otherwise the result is 0.

!= Not equal: If the value on the left is not equal to the value on the right then the result is 1;
otherwise the result is 0.

< Less than: If the value on the left is less than the value on the right then the result is 1;
otherwise the result is 0.

<= Less than or equal: If the value on the left is less than or equal to the value on the right
then the result is 1; otherwise the result is 0.

> Greater than: If the value on the left is greater than the value on the right then the result is
1; otherwise the result is 0.

>= Greater than or equal: If the value on the left is greater than or equal to the value on the
right then the result is 1; otherwise the result is 0.

13.4.5 Arithmetic/Logical Shift Operators for the C Grammar

<< Left shift: The bits of the value on the left are shifted to the left by the amount described
by the value on the right.

>> Right shift: The bits of the value on the left are shifted to the right by the amount described
by the value on the right. If the object on the left is described as unsigned, the vacated
high-order bits are zeroed. If the object on the left is described as signed, the sign bit is
propagated through the vacated high-order bits. The debugger treats registers as unsigned
items.

13.4.6 Binary Arithmetic Operators for the C Grammar

+ Addition: The value on the right is added to the value on the left.

_ Subtraction: The value on the right is subtracted from the value on the left.

* Multiplication: The value on the left is multiplied by the value on the right.

/ Division: The value on the left is divided by the value on the right.

% Modulus: The modulus of the value on the left with respect to the value on the right is
produced. The result is the remainder when the value on the left is divided by the value on
the right.

130 Operators for the C Grammar

Open Watcom Debugger Expression Handling

13.4.7 Unary Arithmetic Operators for the C Grammar

+ Plus: The result is the value on the right.

_ Minus: The result is the negation of the value on the right.

~ Bit-wise complement: The result is the bit-wise complement of the value on the right.

! Logical complement: If the value on the right is equal to 0 then the result is 1; otherwise it
is 0.

++ Increment: Both prefix and postfix operators are supported. If the object is on the right, it
is pre-incremented by 1 (e.g., ++x). If the object is on the left, it is post-incremented by 1
(e.g., x++).

_ _ Decrement: Both prefix and postfix operators are supported. If the object is on the right, it
is pre-decremented by 1 (e.g., --x). If the object is on the left, it is post-decremented by 1
(e.g., x--).

& Address of: The result is the address (segment:offset) of the object on the right (e.g.,
&main).

* Points: The result is the value stored at the location addressed by the value on the right
(e.g., *(ds:100), *string.loc). In the absence of typing information, a near pointer is
produced. If the operand does not have a segment specified, the default data segment
(DGROUP) is assumed.

(SS:00FE) = FFFF

var: (SS:0100) = 0152
(SS:0102) = 1240
(SS:0104) = EEEE

% Value at address: The result is the value stored at the location addressed by the value on
the right (e.g., %(ds:100), %string.loc). In the absence of typing information, a far pointer
is produced. If the operand does not have a segment specified, the default data segment
(DGROUP) is assumed.

(SS:00FE) = FFFF

var: (SS:0100) = 0152
(SS:0102) = 1240
(SS:0104) = EEEE

Note that this operator is not found in the C or C++ programming languages.

13.4.8 Special Unary Operators for the C Grammar

sizeof unary_expression

Example:
sizeof tyme
sizeof (*tyme)

sizeof(type_name)

Operators for the C Grammar 131

Expressions

Example:
sizeof(struct tm)

(type_name) unary_expression The type conversion operator (type_name) is used to convert an item from
one type to another. The following describes the syntax of "type_name".

type_name ::= type_spec { ["near" | "far" | "huge"] "*" }
type_spec ::= typedef_name

| "struct" structure_tag
| "union" union_tag
| "enum" enum_tag
| scalar_type { scalar_type }

scalar_type ::= "char" | "int" | "float" | "double"
| "short" | "long" | "signed" | "unsigned"

Example:
(float) 4
(int) 3.1415926

[type_name] unary_expression You can force the debugger to treat a memory reference as a particular type
of value by using a type coercion operator. A type specification is placed inside brackets as
shown above. The basic types are char (character, 8 bits), short (short integer, 16 bits),
long (long integer, 32 bits), float (single-precision floating-point, 32 bits), and double
(double-precision floating-point, 64 bits). Unless qualified by the short or long keyword,
the int type will be 16 bits in 16-bit applications and 32 bits in 32-bit applications (386, 486
and Pentium systems). The character, short integer and long integer types may be treated
as signed or unsigned items. The default for the character type is unsigned. The default
for the integer types is signed.

Example:
[char] (default unsigned)
[signed char]
[unsigned char]
[int] (default is signed)
[short] (default is signed)
[short int] (default is signed)
[signed short int]
[long] (default is signed)
[long int] (default is signed)
[signed long]
[unsigned long int]
[float]
[double]

Note that it is unnecessary to specify the int keyword when short or long are specified.

? Existence test: The "?" unary operator may be used to test for the existence of a symbol.

Example:
?id

The result of this expression is 1 if "id" is a symbol known to the debugger and 0 otherwise.
If the symbol does not exist in the current scope then it must be qualified with its module
name. Automatic symbols exist only in the current function.

132 Operators for the C Grammar

Open Watcom Debugger Expression Handling

13.4.9 Binary Address Operator for the C Grammar

: Memory locations can be referenced by using the binary ":" operator and a combination of
constants, register names, and symbol names. In the Intel 80x86 architecture, a memory
reference requires a segment and offset specification. A memory reference using the ":"
operator takes the following form:

segment:offset

The elements segment and offset can be expressions.

Example:
(ES):(DI+100)
(SS):(SP-20)

13.4.10 Primary Expression Operators for the C Grammar

[] Elements of an array can be identified using subscript expressions. Consider the following
3-dimensional array defined in the "C" language.

Example:
char *ProcessorType[2][4][2] =

{ { { "Intel 8086", "Intel 8088" },
{ "Intel 80186", "Intel 80188" },
{ "Intel 80286", "unknown" },
{ "Intel 80386", "unknown" } },

{ { "NEC V30", "NEC V20" },
{ "unknown", "unknown" },
{ "unknown", "unknown" },
{ "unknown", "unknown" } } };

This array can be viewed as two layers of rectangular matrices of 4 rows by 2 columns.
The array elements are all pointers to string values.

By using a subscript expression, specific slices of an array can be displayed. To see only
the values of the first layer, the following expression can be issued.

Example:
processortype[0]

To see only the first row of the first layer, the following expression can be issued.

Example:
processortype[0][0]

To see the second row of the first layer, the following command can be issued.

Example:
processortype[0][1]

To see the value of a specific entry in a matrix, all the indices can be specified.

Operators for the C Grammar 133

Expressions

Example:
processortype[0][0][0]
processortype[0][0][1]
processortype[0][1][0]

() The function call operators appear to the right of a symbol name and identify a function call
in an expression. The parentheses can contain arguments.

Example:
ClearScreen()
PosCursor(10, 20)
Line(15, 1, 30, ’-’, ’+’, ’-’)

. The "." operator indicates field selection in a structure. In the following example, tyme2
is a structure and tm_year is a field in the structure.

Example:
tyme2.tm_year

-> The "->" operator indicates field selection when using a pointer to a structure. In the
following example, tyme is the pointer and tm_year is a field in the structure to which it
points.

Example:
tyme->tm_year

13.5 Operators for the C++ Grammar

Debugger support for the C++ grammar includes all of the C operators described in the previous section
entitled "Operators for the C Grammar" on page 127. In addition to this, the debugger supports a variety of
C++ operators which are described in the C++ Programming Language manual.

Perhaps the best way to illustrate the additional capabilities of the debugger’s support for the C++ grammar
is by way of an example. The following C++ program encompasses the features of C++ that we will use in
our debugging example.

Example:
// DBG_EXAM.C: C++ debugging example program

struct BASE {
int a;
BASE() : a(0) {}
~BASE(){}
BASE & operator =(BASE const &s)
{

a = s.a;
return *this;

}
virtual void foo()
{

a = 1;
}

};

134 Operators for the C++ Grammar

Open Watcom Debugger Expression Handling

struct DERIVED : BASE {

int b;
DERIVED() : b(0) {}
~DERIVED() {}
DERIVED & operator =(DERIVED const &s)
{

a = s.a;
b = s.b;
return *this;

}
virtual void foo()
{

a = 2;
b = 3;

}
virtual void foo(int)
{
}

};

void use(BASE *p)
{

p->foo();
}

void main()
{

DERIVED x;
DERIVED y;

use(&x);
y = x;

}

Compile and link this program so that the most comprehensive debugging information is included in the
executable file.

13.5.1 Ambiguity Resolution in the C++ Grammar

Continuing with the example of the previous section, we can step into the call to use and up to the
p->foo() function call. Try to set a breakpoint at foo.

You will be presented with a window containing a list of "foo" functions to choose from since the reference
to foo at this point is ambiguous. Select the one in which you are interested.

You may also have observed that, in this instance, p is really a pointer to the variable x which is a
DERIVED type. To display all the fields of x, you can type cast it as follows.

Example:
*(DERIVED *)p

Operators for the C++ Grammar 135

Expressions

13.5.2 The "this" Operator for the C++ Grammar

Continuing with the example of the previous sections, we can step into the call to f->foo() and up to the
b=3 statement. You can use the "this" operator as illustrated in the following example.

Example:
this->a
*this

13.5.3 "operator" Functions in the C++ Grammar

Continuing with the example of the previous sections, we can set breakpoints at C++ operators using
expressions similar to the following:

Example:
operator =

DERIVED & operator =(DERIVED const &s)
{

a = s.a;
b = s.b;
return *this;

}

13.5.4 Scope Operator "::" for the C++ Grammar

We can use the scope operator "::" to identify what it is that we wish to examine. Continuing with the
example of the previous sections, we can enter an address like:

base::foo

In some cases, this also helps to resolve any ambiguity. The example above permits us to set a breakpoint
at the source code for the function foo in the class BASE.

virtual void foo()
{

a = 1;
}

Here are some more interesting examples:

derived::foo
derived::operator =

The first of these two examples contains an ambiguous reference so a prompt window is displayed to
resolve the ambiguity.

136 Operators for the C++ Grammar

Open Watcom Debugger Expression Handling

13.5.5 Constructor/Destructor Functions in the C++ Grammar

We can also examine the constructor/destructor functions of an object or class. Continuing with the
example of the previous sections, we can enter expressions like:

Example:
base::base
base::~base

The examples above permit us to reference the source code for the constructor and destructor functions in
the class BASE.

13.6 Operators for the FORTRAN Grammar

The debugger supports most FORTRAN 77 operators and includes an additional set of operators for
convenience. The additional operators are patterned after those available in the C programming language.

The grammar that the debugger supports is close to that of the FORTRAN 77 language but there are a few
instances where space characters must be used to clear up any ambiguities. For example, the expression

1.eq.x

will result in an error since the debugger will form a floating-point constant from the "1." leaving the string
"eq.x". If we introduce a space character after the "1" then we clear up the ambiguity.

1 .eq.x

Unlike FORTRAN, the parser in the debugger treats spaces as significant characters. Thus spaces must not
be introduced in the middle of symbol names, constants, multi-character operators like .EQ. or //, etc.

Operators are presented in order of precedence, from lowest to highest. Operators on the same line have
the same priority.

Operators for the FORTRAN Grammar 137

Expressions

Lowest Priority

Assignment Operators
= += -= *= /= %= &= |= ^= <<= >>=

Logical Operators
.EQV. .NEQV.
.OR.
.AND.
.NOT.

Bit Operators
|
^
&

Relational Operators
.EQ. .NE. .LT. .LE. .GT. .GE.

Shift and Concatenation Operators
<< >> //

Arithmetic Operators
+ -
* / %
** (unsupported)

Unary Operators
+ -
~ ++ -- & * %
[type_name] unary_expr
?

Binary Address Operator
:

Highest Priority

Parentheses can be used to order the evaluation of an expression.

In addition to the operators listed above, a number of primary expression operators are supported. These
operators are used in identifying the object to be operated upon.

() subscripting, substringing, or function call

. field selection

-> field selection using a pointer

The following built-in functions may be used to convert the specified argument to a particular type.

INT() conversion to integer
REAL() conversion to real
DBLE() conversion to double-precision
CMPLX() conversion to complex
DCMPLX() conversion to double-precision complex

The following sections describe the operators presented above.

138 Operators for the FORTRAN Grammar

Open Watcom Debugger Expression Handling

13.6.1 Assignment Operators for the FORTRAN Grammar

= Assignment: The value on the right is assigned to the object on the left.

+= Additive assignment: The object on the left is augmented by the value on the right.

-= Subtractive assignment: The object on the left is reduced by the value on the right.

*= Multiplicative assignment: The object on the left is multiplied by the value on the right.

/= Division assignment: The object on the left is divided by the value on the right.

%= Modulus assignment: The object on the left is updated with MOD(left,right). The result is
the remainder when the value of the object on the left is divided by the value on the right.

&= Bit-wise AND: The bits in the object on the left are ANDed with the bits of the value on
the right.

|= Bit-wise inclusive OR: The bits in the object on the left are ORed with the bits of the value
on the right.

^= Bit-wise exclusive OR: The bits in the object on the left are exclusively ORed with the bits
of the value on the right.

<<= Left shift: The bits in the object on the left are shifted to the left by the amount of the value
on the right.

>>= Right shift: The bits in the object on the left are shifted to the right by the amount of the
value on the right. If the object on the left is described as unsigned, the vacated high-order
bits are zeroed. If the object on the left is described as signed, the sign bit is propagated
through the vacated high-order bits. The debugger treats registers as unsigned items.

13.6.2 Logical Operators for the FORTRAN Grammar

.EQV. Logical equivalence: The logical equivalence of the value on the left and the value on the
right is produced.

.NEQV. Logical non-equivalence: The logical non-equivalence of the value on the left and the
value on the right is produced.

.OR. Logical inclusive disjunction: The logical OR of the value on the left and the value on the
right is produced.

.AND. Logical conjunction: The logical AND of the value on the left and the value on the right is
produced.

.NOT. Logical negation: The logical complement of the value on the right is produced.

Operators for the FORTRAN Grammar 139

Expressions

13.6.3 Bit Operators for the FORTRAN Grammar

| Bit-wise OR: The bits of the value on the left and the value on the right are ORed.

^ Bit-wise exclusive OR: The bits of the value on the left and the value on the right are
exclusively ORed.

& Bit-wise AND: The bits of the value on the left and the value on the right are ANDed.

13.6.4 Relational Operators for the FORTRAN Grammar

.EQ. Equal: If the value on the left is equal to the value on the right then the result is 1;
otherwise the result is 0.

.NE. Not equal: If the value on the left is not equal to the value on the right then the result is 1;
otherwise the result is 0.

.LT. Less than: If the value on the left is less than the value on the right then the result is 1;
otherwise the result is 0.

.LE. Less than or equal: If the value on the left is less than or equal to the value on the right
then the result is 1; otherwise the result is 0.

.GT. Greater than: If the value on the left is greater than the value on the right then the result is
1; otherwise the result is 0.

.GE. Greater than or equal: If the value on the left is greater than or equal to the value on the
right then the result is 1; otherwise the result is 0.

13.6.5 Arithmetic/Logical Shift Operators for the FORTRAN Grammar

<< Left shift: The bits of the value on the left are shifted to the left by the amount described
by the value on the right.

>> Right shift: The bits of the value on the left are shifted to the right by the amount described
by the value on the right. If the object on the left is described as unsigned, the vacated
high-order bits are zeroed. If the object on the left is described as signed, the sign bit is
propagated through the vacated high-order bits. The debugger treats registers as unsigned
items.

13.6.6 Concatenation Operator for the FORTRAN Grammar

// String concatenation: The concatenation of the character string value on the left and right
is formed.

140 Operators for the FORTRAN Grammar

Open Watcom Debugger Expression Handling

13.6.7 Binary Arithmetic Operators for the FORTRAN Grammar

+ Addition: The value on the right is added to the value on the left.

_ Subtraction: The value on the right is subtracted from the value on the left.

* Multiplication: The value on the left is multiplied by the value on the right.

/ Division: The value on the left is divided by the value on the right.

% Modulus: The modulus of the value on the left with respect to the value on the right is
produced. The result is the remainder when the value on the left is divided by the value on
the right.

** Exponentiation: This operation is not supported by the debugger.

13.6.8 Unary Arithmetic Operators for the FORTRAN Grammar

+ Plus: The result is the value on the right.

_ Minus: The result is the negation of the value on the right.

~ Bit-wise complement: The result is the bit-wise complement of the value on the right.

++ Increment: Both prefix and postfix operators are supported. If the object is on the right, it
is pre-incremented by 1 (e.g., ++x). If the object is on the left, it is post-incremented by 1
(e.g., x++).

_ _ Decrement: Both prefix and postfix operators are supported. If the object is on the right, it
is pre-decremented by 1 (e.g., --x). If the object is on the left, it is post-decremented by 1
(e.g., x--).

& Address of: The result is the address (segment:offset) of the object on the right (e.g.,
&main).

* Points: The result is the value stored at the location addressed by the value on the right
(e.g., *(ds:100), *string.loc). In the absence of typing information, the value on the right is
treated as a pointer into the default data segment (DGROUP) and a near pointer is
produced.

(SS:00FE) = FFFF

var: (SS:0100) = 0152
(SS:0102) = 1240
(SS:0104) = EEEE

% Value at address: The result is the value stored at the location addressed by the value on
the right (e.g., %(ds:100), %string.loc). In the absence of typing information, the value on
the right is treated as a pointer into the default data segment (DGROUP) and a far pointer is
produced.

(SS:00FE) = FFFF

var: (SS:0100) = 0152
(SS:0102) = 1240
(SS:0104) = EEEE

Operators for the FORTRAN Grammar 141

Expressions

Note that this operator is not found in the FORTRAN 77 programming language.

13.6.9 Special Unary Operators for the FORTRAN Grammar

? Existence test: The "?" unary operator may be used to test for the existence of a symbol.

?id

The result of this expression is 1 if "id" is a symbol known to the debugger and 0 otherwise.
If the symbol does not exist in the current scope then it must be qualified with its module
name. Automatic symbols exist only in the current subprogram.

13.6.10 Binary Address Operator for the FORTRAN Grammar

: Memory locations can be referenced by using the binary ":" operator and a combination of
constants, register names, and symbol names. In the Intel 80x86 architecture, a memory
reference requires a segment and offset specification. A memory reference using the ":"
operator takes the following form:

segment:offset

The elements segment and offset can be expressions.

Example:
(ES):(DI+100)
(SS):(SP-20)

13.6.11 Primary Expression Operators for the FORTRAN Grammar

() Elements of an array can be identified using subscript expressions.

. The "." operator indicates field selection in a structure. This operator is useful in mixed
language applications where part of the application is written in the C or C++ programming
language. In the following example, tyme2 is a structure and tm_year is a field in the
structure.

tyme2.tm_year

-> The "->" operator indicates field selection when using a pointer to a structure. This
operator is useful in mixed language applications where part of the application is written in
the C or C++ programming language. In the following example, tyme is the pointer and
tm_year is a field in the structure to which it points.

tyme->tm_year

142 Operators for the FORTRAN Grammar

Appendices

Appendices

144

Debugger Commands

A. Debugger Commands

This section describes the syntax of debugger commands as well as a description of each of the debugger
commands.

A.1 Syntax Definitions

A debugger command may contain any of the following syntax elements:

• A word in angle brackets, like <anything> is a defined term. Its definition will appear after the
syntax description of the command.

• [x] indicates that "x" is an optional item. It may or may not be included in the command.

• [x|y|z] indicates that on of x, y or z should be included in the command.

• [x [x [...]]] indicates that x may be repeated zero or more times in the command.

• CApital indicates that ca,cap,capi,... are accepted short forms for the command "capital".

• (GUI only) indicates that this command is only available in a GUI debugger.

• (character-based) indicates that this command is only available in a character mode debugger.

• <expr> indicates an expression. These may include any of the variables, etc in the program being
debugged, and are evaluated in the current program context. See "Open Watcom Debugger
Expression Handling" on page 119.

• <integer> is an integer constant

• <intexpr> is an an expression which evaluates to an integral value. See "Open Watcom Debugger
Expression Handling" on page 119.

• <command> is any debugger command or group of debugger commands.

You can group debugger commands with braces and separate them with semi-colons. The resulting
compound command may be considered as an atomic command.

{<command>;<command>;<command>}

• <address> is any expression which evaluates to an address. See "Open Watcom Debugger
Expression Handling" on page 119.

• <string> is a string of text, optionally enclosed in braces. For example,

this_is_a_string
{so is this}

Syntax Definitions 145

Appendices

• <wndname> is the name of a window. Valid window names (with acceptable short forms indicated
in capitals) are:

• ASsembly
• ALl
• BReak
• Calls
• Watch
• FIle
• FPu
• FUnctions
• FILEScope
• LOCals
• LOG
• MEmory
• MOdules
• Register
• SOurce
• STack
• Thread
• IO
• Globals
• Variable
• BInary
• IMage
• GLobalfunctions
• Accelerators
• TMPFile
• REPlay
• CUrrent

• <file> represents any valid operating system file name. For example,

c:\autoexec.bat

• <path> represents any valid operating system directory path. For example,

c:\dir1\dir2

A.2 Command Summary

A summary of each command follows.

A.2.1 Accelerate

This command behaves as if a menu item from the main menu was selected:

Accelerate main <menu> {<menu_string>}

This command behaves as if the named menu item in the floating pop-up menu for the current window was
selected:

Accelerate {<menu_string>}

146 Command Summary

Debugger Commands

<menu> the string appearing on the main menu bar (File, Run, Break, Code, etc)

<menu_string>
is enough of the text appearing in a menu to uniquely identify it.

For example:

accelerate main run {until return}

behaves as if "Until return" is selected from the run menu

accelerate {Home}

behaves as if "home" were picked from the floating pop-up menu of the current window.

A.2.2 Break

This command prints a list of all breakpoints into the log window:

Break

This command sets a break point. See the section entitled "Breakpoints" on page 71 for details about
breakpoint operation.

Break [|/Set|/Byte|/Word|/DWord|/Modify]

<address> [{<do_command>} [{ <condition> } [<countdown>]]]

This command deactivates a breakpoint:

Break /Deactivate <brkid>

This command enables a breakpoint:

Break /Activate <brkid>

This command clears a breakpoint:

Break /Clear <brkid>

This command toggles a breakpoint through the active/inactive/deleted states:

Break /Toggle <brkid>

This command turns on the resume option in the breakpoint:

Break /Resume <brkid>

This command turns off the resume option in the breakpoint:

Break /UnResume <brkid>

This command turns on/off the breakpoint for appropriate image(DLL) load:

Break /Image [/Clear] <image(DLL) name>

The Break options are:

Command Summary 147

Appendices

/Set (default) the breakpoint triggers when <address> is executed
/Byte the breakpoint triggers when the byte at <address> is modified
/Word the breakpoint triggers when the word at <address> is modified
/DWord the breakpoint triggers when the double word at <address> is modified
/Modify the breakpoint triggers when integer at <address> is modified
<condition> an expression that must be true (non-zero value) before the breakpoint stops program

execution
<countdown> an integer. The breakpoint will not stop program execution until <countdown> is

decremented to zero.

Note: If you specify both <condition> and <countdown>, <countdown>
decrements only when <condition> evaluates to true.

<do_command>
a command that is executed each time the breakpoint stops program execution

<brkid> option can be three possible values:

<address> Perform the operation on breakpoint with the given address.

* Perform the operation on all breakpoints.

#<integer> Names a breakpoint by its index. This index can be discovered on the title
line of the Breakpoint dialog.

Some examples of the break command and a description follow:

This command sets a breakpoint at "foo" the 20th time that i equals 10. When this occurs ’do j7’ is
executed:

Break /Set foo {do j7} {i10} 20

This command clears the breakpoint at foo:

Break /Clear foo

This command activates breakpoint #1:

Break /Activate #1

This command deactivates all breakpoints:

Break /Deactivate *

A.2.3 Call

Use the Call command to call a routine. The Call command options are:

Call [/Far|/Interrupt|/Near]

<address>
[([<parm>[,<parm>[...]]])] [/|<printlist>]

This command calls the routine at <address> with parameters.

148 Command Summary

Debugger Commands

/Far Use a far call instruction.

/Near Use a near call instruction.

/Interrupt Call the routine as if it were an interrupt handler.

<parm> is [/<location>] <expr>

<location> is [/|<regset>]

/ means to put the parm on the stack.

/<regset> means to put the parm into the named registers.

<regset> is a register aggregate. See "Open Watcom Debugger Expression Handling" on
page 119.

<printlist> See the print command for details.

Some examples of the Call command follow: This command calls the function foo:

call foo

This command calls the function bar passing the parameters 1, 2, and 3:

call bar(1,2,3)

This command calls foo putting 1 on the stack, 2 in AX and 3 in CX:BX printing out the value of AX and
DX in decimal and hexadecimal respectively on return:

call /near foo(// 1, /ax 2, /[cx bx] 3) {%d %x} ax,dx

The Call command only uses very basic symbolic information - it’s designed that way so that it can work
even when no symbolic information is available. This has a number of implications. The first is that the
debugger pays no attention to any information on where parameters are stored. For example, in 32-bit
applications, unless explictly instructed otherwise, the first parm is placed in EAX, the second in EDX, and
so on (as defined by the "set call" command). That means that you have to do something like:

call foo(// &a, // 3)

to get things on to the stack. This leads to a second, very important consideration.

The debugger has no idea of the memory model that the program is compiled in (recall that the 32-bit
compiler does support large memory models and far pointers, even if we don’t supply versions of the
libraries for it). That means that the debugger has no idea on whether the address of a symbol should be far
or near. It always assumes far, since that never loses information. A far pointer would be truncated to a
near pointer when moved into a 32-bit register like EAX but not so when pushed onto the stack. In this
case, // &a and // 3 cause 48-bit far pointers to be pushed onto the stack (they are actually pushed as 64
bits for alignment reasons). Thus the pointer to b is in the wrong place for the routine to access it
(assuming it is expecting near pointers) and this will likely cause a task exception. To avoid this problem
and properly pass arguments to the routine, you need to do the following:

call foo(// (void near *)&a, // (void near *)3)

This forces the debugger to push near pointers onto the stack.

Command Summary 149

Appendices

Similar considerations apply for the 16-bit case.

A.2.4 CAPture

Use the Capture command to execute a command and put the resulting program output into a window. The
format of the command follows:

CAPture <command>

For example, this command calls a routine, foo, and puts its output into a debugger window.

capture call foo

A.2.5 COnfigfile

COnfigfile

Used by the debugger to save and restore the configuration. When "configfile" appears in a command file,
it identifies that file as the default configuration file. The debugger will overwrite the command file when
autosaving the current configuration. Also, the name of this file is displayed in the filename field when the
"Save Setup" dialog initially appears.

If more than one file is encountered containing the "configfile" command, the last one seen is used to
establish the configuration file name.

A.2.6 Display

The display command allows you to open any window. The general Display command is:

Display <wndname> [/Open|/Close|/New|/MInimize|/MAximize|/Restore]
[<ord>,<ord>,<ord>,<ord>]

This command causes the debugger screen to repaint:

Display

This command displays the toolbar as either fixed (default) or floating:

Display TOolbar [/Open] [/FLoating/Fixed] [<ord>]

This command closes the toolbar:

Display TOolbar [/Close]

This command opens the status line:

Display Status [/Open]

This command closes the status line:

Display Status /Close

This command brings a window to the front:

Display <wndname>

150 Command Summary

Debugger Commands

The options for the Display command follow:

<ord> The height to be used for toolbar buttons.

<ord>,<ord>,<ord>,<ord>
These are the x and y coordinates of the top left corner, and the width and the height of the
window respectively. 0,0,10000,10000 is a window covering the entire screen.

/Open Open a new window or resize an existing one.

/New Open a new window regardless of an existing one.

/Close Close the window.

/MInimize Iconize the window.

/MAximize Make the window full screen size.

/REstore Restore a window from a minimize or maximize.

Some examples of the display command follow: This command opens a register window in the top left
quarter of the screen:

display register /open 0,0,5000,5000

This command minimizes the source window if it is open:

display source /minimize

A.2.7 DO (or /)

Use the DO command to evaluate an arbitrary C/C++ or FORTRAN expression. The format of the
command is:

DO <expr>

For example:

DO i = 10

A.2.8 ERror

Use the Error command to display a string as an error message. The format of the command is:

ERror <string>

For example:

error {An error has been detected}

Command Summary 151

Appendices

A.2.9 Examine

Use the Examine command to examine memory at a specific address.

Examine [/<type>] [<address>] [,<follow> [,<len>]]

where "<type>" is one of

Byte
Word
Dword
Qword
Char
Short
Long
__int64
Unsigned_Char
Unsigned_Short
Unsigned_Long
Unsigned___int64
0:16_Pointer
16:16_Pointer
0:32_Pointer
16:32_Pointer
Float
Double
Extended_Float

To show an assembly window at a specific address:

Examine /Assembly [<address>]

To show a source window at a specific address

Examine /Source [<address>]

To add an address to the I/O window as a byte, word, or dword:

Examine [/IOByte|/IOWord|/IODword] [<address>]

The options for the Examine command follow:

/<type> where "<type>" is one of Byte, Word, Dword, Qword, Char, Short, Long,
__int64, Unsigned_Char, Unsigned_Short, Unsigned_Long,
Unsigned___int64, 0:16_Pointer, 16:16_Pointer, 0:32_Pointer,
16:32_Pointer, Float, Double, or Extended_Float. Set the initial display
type of the memory window.

/IOByte /IOWord /IODword
Set the initial display type of the line in the I/O window.

<address> the address to examine.

<follow> an expression which will be used if the memory window’s Repeat function is chosen.

<len> an integer expression indicating the length of memory to examine.

For example, this command opens a memory window positioned at the address of "foo". The initial display
type will be 2 byte words. If the Repeat menu item is used, it will follow a near pointer 4 bytes past the
beginning of the window *(.+$). The window will display 16 bytes of data at a time:

152 Command Summary

Debugger Commands

examine /word foo,*(.+4),16

A.2.10 Flip

Use the Flip command to configure screen flipping. See the section entitled "The Options Dialog" on page
32 for details

Flip ON
Flip OFf

A.2.11 FOnt

Use the Font command to set the font for the specified window. The command is:

FOnt <wndname> <fontinfo>

<wndname> the name of the affected window

<fontinfo> operating system specific font data.

A.2.12 Go

Use the Go command to start or continue program execution. Execution then resumes at the specified
address or at the location defined by the current contents of the CS:IP or CS:EIP register pair. The format
of the Go command is:

Go [/Until] [/Keep] [/Noflip] [[<start>,]<stop>]

The options are:

/Until skips breakpoints until the specified stop address is reached.

/Keep allows you to keep a previous temporary breakpoint. If you keep the previous breakpoint
you cannot create a new one.

/Noflip keeps the debugger from flipping to the application’s screen.

<start> the <address> at which to start execution (optional).

<stop> the <address> at which to stop execution.

Some examples of the Go command are:

This command will resume execution until function "foo" is executed without flipping to the application
screen:

go /noflip foo

This command starts execution at "foo" and runs until "bar" is executed.

go foo,bar

Command Summary 153

Appendices

A.2.13 Help

Bring up the help screen:

Help

A.2.14 HOok

Use the Hook command to execute a command when a defined event occurs. The format of the Hook
command is:

HOok <event> <command>

<event> can be any of the following:

PROGStart a program is loaded

PROGEnd a program terminates

DLLStart a DLL is loaded

DLLEnd a DLL is unloaded

EXECStart program execution is beginning

EXECEnd program execution is stopped

Sourceinfo the current location being examined has debugging information

Assemblyinfo the current location being examined has no debugging information

Modulechange the current location being examined has changed modules

This example causes the locals and source window to come to the front whenever a region with symbolic
debugging information is entered:

hook sourceinfo {display locals; display source}

A.2.15 IF

Use the If command to evaluate an expression and then, depending on the results, execute a list of
commands. The format of the If command is:

IF <expr> { <command> }
[ELSEIF <expr> { <command> } [ELSEIF <expr> { <command> } [...]]]
[ELSE { <command> }]

If the expression results in a non-zero value, the list of debugger commands contained after the IF
expression are executed. Otherwise, the list of commands that appear after the ELSEIF expression are
executed.

154 Command Summary

Debugger Commands

A.2.16 INvoke (or <)

Use the Invoke command to invoke a file containing a number of debugger commands. The format of the
Invoke command is:

INvoke <file> [<string> [<string> [...]]]
< <file> [<string> [<string> [...]]]

<file> is the name of the command file to invoke.

<string> will be passed as a parameter. These parameters may be referenced in the command file as
<1>, <2>, etc.

A.2.17 Log (or >)

Use the Log command to send the Dialog window output to a specified file. The following commands start
logging to a file:

Log <file>
Log /Start <file>
> <file>

The following commands start appending log information to a file.

Log > <file>
>> <file>
Log /Append <file>

The following commands stop logging:

Log
>

A.2.18 MOdify

Use the Modify command to change memory at an address to the values specified by the list of expressions.

MOdify [/Byte|/Pointer|/Word|/Dword|/IOByte|/IOWord|/IODword] <address>[,<expr>[...]]

The options for the modify command are:

/Byte /Pointer /Word /Dword Control the size of memory to be modified.

/IOByte /IOWord /IODword Control the size of the I/O port to be modified.

<address> The address to modify.

<expr> The values to be placed in memory.

This command changes the 3 bytes at location "foo" to the values 1, 2 and 3:

modify /byte foo 1,2,3

This command changes the 4 bytes at location "foo" to the value 12345678 hex:

modify /dword foo 0x12345678

Command Summary 155

Appendices

A.2.19 NEW

Use the New command to initialize various items. The format of the New command is:

NEW [<args>]
NEW /Program [[:<symfile>] <progfile> [<args>]]
NEW /Restart [<args>]
NEW /STDIn <file>
NEW /STDOut <file>
NEW /SYmbol <file> [seg [,seg [...]]

<symfile> represents a file containing the symbolic information.

<progfile> represents the executable file.

<args> represent the arguments to be passed to the program.

/Restart Reload the current application and place it into an initial state so that you may begin
execution again. The application may have already partially or completely executed.

/STDIn associate the standard input file handle with a particular file or device.

/STDOut associate the standard output file handle with a particular file or device.

/Symbol load additional symbolic debugging information and specify the mapping between the
linker addresses and the actual execution addresses.

A.2.20 PAint

Use the Paint command to define window or dialog colours. To define the colour for windows, use the
following command:

PAint [Status|<wndname>] <wndattr> <color> ON <color>

To define the colour for dialogs in the character-based version of the debugger, use the following
command:

PAint DIalog <dlgattr> <color> ON <color>

The paint options are as follows:

<wndattr> allows you to define the window attributes. You can choose from the following items:

MEnu Plain menu text (character-based)

MEnu STandout menu accelerator key (character-based)

MEnu Disabled grayed menu item (character-based)

MEnu Active menu item under the cursor (character-based)

MEnu Active STandout menu accelerator key under the cursor (character-based)

MEnu Frame frame of the menu (character-based)

156 Command Summary

Debugger Commands

MEnu Disabled Active grayed menu item under the cursor (character-based)

TItle Disabled a non active window’s title

Frame Active the frame of the active window (character-based)

Frame Disabled the frame an inactive window (character-based)

ICon an icon

Plain normal text within a window

Active window text under the cursor

SElected window text being selected

STandout window text the debugger wishes to highlight

Active STandout window text the debugger wishes to highlight under the cursor

BUtton the gadgets on the left side of a window (character-based)

<dlgattr> option allows you to define the dialog attributes. The possible options are:

Plain normal text

Frame the dialog frame

SHadow the shadow of a button

BUtton Plain normal button text

BUtton STandout button accelerator key character

BUtton Active a button which has focus

BUtton Active STandout button accelerator key character of a button with focus

<color> You can choose from the following colours:

• BLAck

• BLUe

• GREEn

• Cyan

• Red

• MAgenta

• BROwn

Command Summary 157

Appendices

• White

• GREY

• GRAy

• BRIght BLUe

• BRIght GREEn

• BRIght Cyan

• BRIght Red

• BRIght MAgenta

• Yellow

• BRIght BROwn

• BRIght White

Some examples of the paint command follow:

paint all plain black on white
paints plain text black on white in all windows.
paint dialog button standout bright green on yellow

A.2.21 Print (or ?)

Use the Print command to prompt for an expression and then print it to the log window. Use this command
to examine the values of variables and expressions. The Print command is:

Print [/Program] [<printlist>]
Print /Window [<exprlist>]

/Window opens up a watch window containing the listed expressions.

/Program print the results to the application’s screen.

<printlist> is [<format>] [<exprlist>]

<exprlist> is [<expr> [,<expr> [...]]]

<format> is a printf like format string. It consists of plain text intermixed with control sequences,
which will be substituted with values from the expression list. The control sequences are:

%i The corresponding argument is printed out as a signed decimal integer
value.

%d The corresponding argument is printed out as a signed decimal integer
value.

%u The corresponding argument is printed out as an unsigned decimal integer
value.

158 Command Summary

Debugger Commands

%x The corresponding argument is printed out as an unsigned hexadecimal
integer value. Letter digits are printed in lower case (a-f).

%X The corresponding argument is printed out as an unsigned hexadecimal
integer value. Letter digits are printed in upper case (A-F).

%o The corresponding argument is printed out as an unsigned octal integer
value.

%p The corresponding argument is printed out as a pointer (segment:offset)
value in hexadecimal notation.

%c The corresponding argument is printed out as a single character value.

%s The corresponding argument is printed out as a C/C++ string value. The
argument must point to a string of characters terminated by a byte whose
value is zero.

%% To print out a percentage symbol, the "%" must be doubled up (i.e., %%).

%f The corresponding argument is printed out in floating-point representation.
If the floating-point value has a very large or small magnitude, you should
use one of "g", "G", "e" or "E" formatting.

%g The corresponding argument is printed out in floating-point representation.
Numbers of very large or small magnitude are printed out in scientific "E"
notation (e.g., 1.54352e+16). The exponent letter is printed in lower case.

%G The corresponding argument is printed out in floating-point representation.
Numbers of very large or small magnitude are printed out in scientific "E"
notation (e.g., 1.54352E+16). The exponent letter is printed in upper case.

%e The corresponding argument is printed out in scientific "E" notation (e.g.,
1.23456e+02). The exponent letter is printed in lower case.

%E The corresponding argument is printed out in scientific "E" notation (e.g.,
1.23456E+02). The exponent letter is printed in upper case.

%r The corresponding argument is printed out in the current default numeric
radix.

%a The corresponding argument is printed out as a symbol reference
(symbol_name+offset) when possible; otherwise it is printed out as a
pointer (segment:offset) value in hexadecimal notation.

%l The corresponding argument is printed out as a line number reference
(module_name@line_number+offset) when possible; otherwise it is printed
out as a pointer (segment:offset) value in hexadecimal notation.

Some examples of the print command follow. This command prints the value of "i":

? i

This command prints "decimal=100 hex=0x64":

Command Summary 159

Appendices

print {decimal=%d hex=%x} 100,100

This command opens a watch window and displays the value of argv[0]:

print /window argv[0]

A.2.22 Quit

Use the Quit command to leave the debugger.

A.2.23 RECord

Use the Record command to add a command to the replay window. This command is for internal use only.
The format of the command is:

REcord<expr> <command>

A.2.24 Register

The format of the Register command is:

Register <intexpr>

If intexpr is negative, this is equivalent to using the menu item Undo/Undo -<intexpr> times. If intexpr is
positive, this is equivalent to using the menu item Undo/Redo <intexpr> times.

A.2.25 REMark (or *)

Use the Remark command to enter lines of comments. The format of the command is:

REMark <string>

A.2.26 Set

These commands are used internally by the debugger to save and restore the configuration. The syntax is:

160 Command Summary

Debugger Commands

Set AUtosave [ON|OFf]
Set ASsembly [Lower|Upper] [Outside|Inside] [Source|NOSource] [Hexadecimal|Decimal]
Set Variable [Entire|Partial] [CODe|NOCODe] [INherit|NOINherit] [COMpiler|NOCOMpiler]
[PRIvate|NOPRIvate] [PROtected|NOPROTected] [Members|NOMembers]
Set FUnctions [Typed|All]
Set GLobals [Typed|All]
Set REGister [Hexadecimal|Decimal] [Extended|Normal]
Set Fpu [Hexadecimal|Decimal]
Set BEll [ON|OFf]
Set BReakonwrite [ON|OFf]
Set Call [/Far|/Interrupt|/Near] [([<location> [,<location> [...]]])]
Set Dclick <expr>
Set Implicit [ON|OFf]
Set INput <wndname>
Set Radix <expr>
Set RECursion [ON|OFf]
Set SEarch [CASEIgnore|CASEREspect] [Rx|NORx] <string>
Set SOurce [/Add] [<path> [<path>] [...]]]
Set SYmbol [/Add|/Ignore|/Respect] [<lookspec> [<lookspec> [...]]]
Set Tab <intexpr>
Set Level [Assembly|Mixed|Source]
Set LAnguage [CPP|C|FORTRAN]
Set SUpportroutine <string>
Set MAcro <wndname> <key> <command>
Set DOntexpandhex [ON|OFf]

<location> see call command.

<lookspec> [/Ignore|/Respect] <string>

A.2.27 SHow

The Show commands are used internally by the debugger to save and restore its configuration. The syntax
is:

SHow Paint
SHow Display
SHow Font
SHow Set
SHow Set AUtosave
SHow Set ASsembly
SHow Set Variable
SHow Set FUnctions
SHow Set GLobals
SHow Set REGister
SHow Set Fpu
SHow Set BEll
SHow Set BReakonwrite
SHow Set Call
SHow Set Dclick
SHow Set Implicit
SHow Set INput
SHow Set Radix
SHow Set RECursion
SHow Set SEarch
SHow Set SOurce
SHow Set SYmbol
SHow Set Tab
SHow Set Level
SHow Set LAnguage
SHow Set MAcro
SHow Set SUpportroutine
SHow Flip
SHow Hook
SHOW DOntexpandhex

Command Summary 161

Appendices

A.2.28 SKip

Use the Skip command to set CS:EIP to a specific address. The format of the command is:

SKip <address>

A.2.29 STackpos <intexpr>

The Stackpos command is the same as using Undo/Unwind. The <intexpr> allows you to define the
number of times to undo or unwind.

A.2.30 SYstem (or !)

Use the System command to spawn an operating shell to execute a given string. The format of the system
command is:

SYstem [/Remote|/Local] <string>

/Remote the shell is started on the program side of a remote debug link.

/Local the shell is started on the debugger side of a remote debug link.

A.2.31 THread (or ~)

Use the Thread command to manipulate the threads of execution of a multi-threaded application under
OS/2 or NetWare 386. The format of the Thread command is:

THread [/Show|/Freeze|/Thaw|/Change] [<threadid>]

/Show display the status of the current thread.

/Freeze freeze a thread and make it unrunnable.

/Thaw make a frozen thread runnable.

/Change to select a specific thread.

<threadid> is the identification number of the thread.

A.2.32 Trace

Use the Trace command to step through the execution of your program. The Trace command is:

Trace [/Assembly|/Mixed|/Source] [/Into|/Next|/Over]

/Assembly trace through your assembly code on instruction at a time.

/Mixed trace execution of the application one source statement at a time, or one instruction at a
time when no source text is available.

162 Command Summary

Debugger Commands

/Source trace execution of the application one source statement at a time.

/Into continue execution to the next statement or assembly instruction. If the current statement
or instruction invokes a routine, then the next statement or instruction is the first one called
in the routing.

/Next continue execution to the next statement or assembly instruction that immediately follows
the current statement or instruction in memory. If the current statement or instruction is
one that branches, be sure that the execution path eventually executed the statement or
instruction that follows. If the program does not executed this point, the program may
execute to completion.

/Over continue execution to the next statement or assembly instruction. If the current statement
or instruction invokes a routine, then the next statement or instruction is the one that
follows the invocation of the routine.

A.2.33 Undo

The format of the Undo command is:

Undo <intexpr>

If intexpr is positive, this is equivalent to using the menu item Undo/Undo <intexpr> times. If intexpr is
negative, this is equivalent to using the menu item Undo/Redo -<intexpr> times.

A.2.34 View

Use the View command to show a file in a window. The format of the command is:

View [/Binary] [<file>|<module>]

/Binary show the file contents in binary.

<file> the file to be shown.

<module> the module to be shown. The default is the current module.

A.2.35 While

Use the While command to permit the execution of a list of commands while the specified expression is
true. The While command is:

While <expr> { <command> }

A.2.36 WIndow

This command operates on the current window. It is useful when defining accelerators that perform
window operations.

Command Summary 163

Appendices

WIndow CLose
close the window

WIndow CURSORStart
move the cursor to start of line

WIndow CURSOREnd
move the cursor to end of line

WIndow CURSORDown
move the cursor down one line

WIndow CURSORLeft
move the cursor left

WIndow CURSORRight
move the cursor right

WIndow CURSORUp
move up one line

WIndow Dump
dump the window to a file

WIndow Log dump the window to a log window

WIndow FINDNext
find the next occurrence of the current search string

WIndow FINDPrev
find the previous occurrence of the current search string

WIndow Next make another window the current window

WIndow PAGEDown
move the window down one page

WIndow PAGEUp
move the window up one page

WIndow POpup
show the window’s floating pop-up menu

WIndow SEarch
search for a given string

WIndow SCROLLDown
scroll the window down one line

WIndow SCROLLUp
scroll the window up one line

WIndow SCROLLTop
scroll the window to the very top

164 Command Summary

Debugger Commands

WIndow SCROLLBottom
scroll the window to the very bottom

WIndow TABLeft
move to the previous tabstop

WIndow TABRight
move to the next tabstop

WIndow MAXimize
maximize the window

WIndow MINimize
minimize the window

WIndow REStore
restore the window

WIndow TIle tile all windows

WIndow CAscade
cascade all windows

WIndow PRevious
move to the previous window

Command Summary 165

Appendices

166 Command Summary

Predefined Symbols

B. Predefined Symbols

The Open Watcom Debugger defines a number of symbols which have special meaning. Each of the
registers is designated by a special name. Note that the registers listed here are applicable when the target
is an x86 platorm. For other platforms, the register set is different.

eax 32-bit EAX register (32-bit mode only)
ax 16-bit AX register
al 8-bit AL register
ah 8-bit AH register
ebx 32-bit EBX register (32-bit mode only)
bx 16-bit BX register
bl 8-bit BL register
bh 8-bit BH register
ecx 32-bit ECX register (32-bit mode only)
cx 16-bit CX register
cl 8-bit CL register
ch 8-bit CH register
edx 32-bit EDX register (32-bit mode only)
dx 16-bit DX register
dl 8-bit DL register
dh 8-bit DH register
eip Instruction pointer register (32-bit mode only)
ip Instruction pointer register
esi Source index register (32-bit mode only)
si Source index register
edi Destination index register (32-bit mode only)
di Destination index register
esp Stack pointer register (32-bit mode only)
sp Stack pointer register
ebp Base pointer register (32-bit mode only)
bp Base pointer register
cs Code segment register
ds Data segment register
es Extra segment register
fs Segment register (32-bit mode only)
gs Segment register (32-bit mode only)
ss Stack segment register
fl Flags register
efl Flags register (32-bit mode only)
fl.flg_bit_name Individual bits in Flags register

flg_bit_name ::= "c" | "p" | "a" | "z" | "s" | "i" | "d" | "o"

efl.flg_bit_name Individual bits in Flags register

flg_bit_name ::= "c" | "p" | "a" | "z" | "s" | "i" | "d" | "o"

Predefined Symbols 167

Appendices

The following table lists the full name for each of the flags register bits:

fl.o, efl.o overflow flag
fl.d, efl.d direction flag
fl.i, efl.i interrupt flag
fl.s, efl.s sign flag
fl.z, efl.z zero flag
fl.a, efl.a auxiliary carry flag
fl.p, efl.p parity flag
fl.c, efl.c carry flag

st0 - st7 Numeric Data Processor registers (math coprocessor registers)
cw 8087 control word (math coprocessor control word)
cw.cw_bit_name Individual bits in the control word

cw_bit_name ::= "ic" | "rc" | "pc" | "iem" | "pm" |

"um" | "om" | "zm" | "dm" | "im"

The following table lists the full name for each of the control word bits:

cw.ic infinity control

0 = projective
1 = affine

cw.rc rounding control (2 bits)

00 = round to nearest or even
01 = round down (towards negative infinity)
10 = round up (towards positive infinity)
11 = chop (truncate toward zero)

cw.pc precision control (2 bits)

00 = 24 bits
01 = reserved
10 = 53 bits
11 = 64 bits

cw.iem interrupt enable mask (8087 only)

0 = interrupts enabled
1 = interrupts disabled (masked)

cw.pm precision (inexact result) mask
cw.um underflow mask
cw.om overflow mask
cw.zm zero-divide mask
cw.dm denormalized operand mask
cw.im invalid operand mask

sw 8087 status word (math coprocessor status word)

168 Predefined Symbols

Predefined Symbols

sw.sw_bit_name Individual bits in the status word

sw_bit_name ::= "b" | "c3" | "st" | "c2" | "c1" |

"c0" | "es" | "sf" | "pe" | "ue" |
"oe" | "ze" | "de" | "ie"

The following table lists the full name for each of the status word bits:

sw.b busy
sw.c3 condition code bit 3
sw.st stack stop pointer (3 bits)

000 = register 0 is stack top
001 = register 1 is stack top
010 = register 2 is stack top

.

.

.
111 = register 7 is stack top

sw.c2 condition code bit 2
sw.c1 condition code bit 1
sw.c0 condition code bit 0
sw.es error summary (287, 387 only)
sw.sf stack fault (387 only)
sw.pe precision (inexact result) exception
sw.ue underflow exception
sw.oe overflow exception
sw.ze zero-divide exception
sw.de denormalized operand exception
sw.ie invalid operation exception

mm0 - mm7 MMX registers

mm0.b0 - mm0.b7 MMX register component bytes
mm0.w0 - mm0.w3 MMX register component words
mm0.d0 - mm0.d1 MMX register component doublewords

xmm0 - xmm7 XMM registers (SSE registers)

xmm0.b0 - xmm0.b15 XMM register component bytes
xmm0.w0 - xmm0.w7 XMM register component words
xmm0.d0 - xmm0.d3 XMM register component doublewords
xmm0.q0 - xmm0.q1 XMM register component quadwords

The debugger permits the manipulation of register contents using any of the operators described in the
following chapter. By default, these predefined names are accessed just like any other variables defined by
the user or the application. Should the situation ever arise where the application defines a variable whose
name conflicts with that of one of these debugger variables, the module specifier _dbg may be used to
resolve the ambiguity. For example, if the application defines a variable called cs then _dbg@cs can be
specified to resolve the ambiguity. The "_dbg@" prefix indicates that we are referring to a debugger
defined symbol rather than an application defined symbol.

Predefined Symbols 169

Appendices

The flags register, the 8087 control word, and the 8087 status word can be accessed as a whole or by its
component status bits.

Example:
/fl.c=0
/cw.um=0
?sw.oe

In the above example, the "carry" flag is cleared, the 8087 underflow mask of the control word is cleared,
and the 8087 overflow exception bit of the status word is printed.

The low order bit of the expression result is used to set or clear the specified flag.

Example:
fl.c=0x03a6

In the above example, the "carry" flag is cleared since the low order bit of the result is 0.

Similarly, the MMX and XMM registers can be accessed as a whole or by their component bytes, words,
doublewords and quadwords (in the case of the 128-bit XMM registers).

Example:
/mm0.b1=1
?mm0.d0

In the above example, the second byte of the first MMX register is set to 1, then the first doubleword of the
same register is printed.

The debugger also defines some other special names.

dbg$32 This debugger symbol represents the mode in which the processor is running.

0 16-bit mode
1 32-bit mode

dbg$bp This debugger symbol represents the register pair SS:BP (16-bit mode) or SS:EBP (32-bit
mode).

Example:
? dbg$bp

dbg$code This debugger symbol represents the current code location under examination. The dot
address "." is either set to dbg$code or dbg$data, depending on whether you were last
looking at code or data.

dbg$cpu This debugger symbol represents the type of central processing unit which is in your
personal computer system.

0 Intel 8088, 8086 or compatible processor
1 Intel 80188, 80186 or compatible processor
2 Intel 80286 or compatible processor
3 Intel 80386 or compatible processor

170 Predefined Symbols

Predefined Symbols

4 Intel 80486 or compatible processor
5 Intel Pentium processor
6 Intel Pentium Pro/II/III processor
15 Intel Pentium 4 processor

dbg$ctid This debugger symbol represents the identification number of the current execution thread.
Under environments which do not support threading, the current thread ID is always 1. The
current execution thread can be selected using the Thread window or the Thread command.

dbg$data This debugger symbol represents the current data location under examination. The dot
address "." is either set to dbg$code or dbg$data, depending on whether you were last
looking at code or data.

dbg$etid This debugger symbol represents the identification number of the thread that was executing
when the debugger was entered. Under environments which do not support threading, the
executing thread ID is always 1.

dbg$fpu This debugger symbol represents the type of numeric data processor (math coprocessor)
that is installed in your personal computer system.

0 No coprocessor is installed
1 An Intel 8087 is installed
2 An Intel 80287 is installed
3 An Intel 80387 is installed
4 An Intel 80486 processor, supporting coprocessor instructions, is installed
5 An Intel Pentium processor integrated FPU is installed
6 An Intel Pentium Pro/II/III processor integrated FPU is installed
15 An Intel Pentium 4 processor integrated FPU is installed
255 An 80x87 emulator is installed

dbg$ip This debugger symbol represents the register pair CS:IP (16-bit mode) or CS:EIP (32-bit
mode).

Example:
? dbg$ip

dbg$monitor This debugger symbol represents the type of monitor adapter which is in use.

0 IBM Monochrome Adapter
1 IBM Colour Graphics Adapter (CGA)
2 IBM Enhanced Graphics Adapter (EGA)
3 IBM Video Graphics Array (VGA)

dbg$ntid This debugger symbol represents the identification number of the next execution thread.
To iterate through all of the threads in a process, you can execute thread dbg$ntid
repetitively until you are back to the original thread. Under environments which do not
support threading, the next thread ID is always 1. To show the execution stack for all
threads (in the Log window), you can execute the following commands:

Predefined Symbols 171

Appendices

Example:
/orig_tid = dbg$ctid
/curr_tid = dbg$ctid
while curr_tid != 0 {

print {----- Next Thread %x -----} curr_tid;
show calls;
/curr_tid = dbg$ntid;
thread curr_tid;
if(curr_tid == orig_tid) {

/curr_tid = 0;
};

}

dbg$os This debugger symbol represents the operating system that is currently running the
application.

0 Unknown Operating System
1 DOS
2 OS/2
3 386|DOS-Extender from Phar Lap Software, Inc.
5 NetWare 386 from Novell, Inc.
6 QNX from QNX Software Systems.
7 DOS/4GW from Tenberry Software, Inc., or CauseWay (both included in

the Open Watcom C/C++(32) and Open Watcom FORTRAN 77/32
packages)

8 Windows 3.x from Microsoft Corporation
10 Windows NT/2000/XP or Windows 9x from Microsoft Corporation
12 QNX 6.x ’Neutrino’
13 GNU/Linux
14 FreeBSD

dbg$pid (OS/2, NetWare 386, Linux, QNX, Windows NT, Windows 95 only) This debugger
symbol contains the process identification value for the program being debugged.

dbg$psp (DOS only) This debugger symbol contains the segment value for the DOS "program
segment prefix" of the program being debugged.

dbg$radix This debugger symbol represents the current default numeric radix.

dbg$remote This debugger symbol is 1 if the "REMotefiles" option was specified and 0 otherwise.

dbg$sp This debugger symbol represents the register pair SS:SP (16-bit mode) or SS:ESP (32-bit
mode).

Example:
? dbg$sp

dbg$loaded This debugger symbol is 1 if a program is loaded. Otherwise, it is 0.

dbg$nil This debugger symbol is the null pointer value.

dbg$src This debugger symbol is 1 if you are currently debugging in an area that contains
debugging information.

172 Predefined Symbols

Wiring For Remote Debugging

C. Wiring For Remote Debugging

This appendix describes both serial and parallel port cable wiring for remote debugging.

C.1 Serial Port Wiring Considerations

If you plan to use the serial port Debug Server "SERSERV", a cable must connect the serial ports of the
two computer systems. The following diagram illustrates the wiring between the two serial ports. If your
computer systems have more than one serial port, any serial port may be used.

Task Machine Debugger Machine

Serial Serial
Connector Connector

Pin # Pin #
1 (PG) <---------->1 (PG)

2 (TxD)<---------->3 (RxD)

3 (RxD)<---------->2 (TxD)

------- 4 (RTS) 4 (RTS) -------
| |
------> 5 (CTS) 5 (CTS) <------

------> 6 (DSR) 6 (DSR) <------
| |
| 7 (SG) <---------->7 (SG) |
| |
|------> 8 (DCD) 8 (DCD) <------|
| |
------ 20 (DTR) 20 (DTR) -------

Figure 26. Serial Port Wiring Scheme

Note that the wiring is symmetrical (i.e., either end of the cable can be plugged into either PC). This
particular arrangement of the wiring is sometimes called a "null modem" (since pins 2 and 3 are crossed
and no modem is involved).

C.2 Parallel Port Wiring Considerations

If you plan to use the parallel port Debug Server "PARSERV" or "PARSERVW", a cable must connect the
parallel ports of the two computer systems. Three cabling methods are supported - the LapLink cable, the
Flying Dutchman cable, and Watcom’s own design. There are two advantages to using the LapLink or
Flying Dutchman cable:

1. They are commercially available (you may already own one).

Parallel Port Wiring Considerations 173

Appendices

2. They may work with more PC "compatibles" than Watcom’s cable. Watcom’s cabling requires
8 bi-directional data lines in the parallel port and some PC "compatibles" do not support this.

The disadvantage with the LapLink and Flying Dutchman cables is that they are slower than Watcom’s
cable since only 4 bits are transmitted in parallel versus 8 bits for Watcom’s. Thus Watcom’s cable is
faster but it will have to be custom made.

The LapLink cable is available from:

Travelling Software, Inc.
18702 North Creek Parkway
Bothell, Washington,
U.S.A. 98011
Telephone: (206) 483-8088

The Flying Dutchman cable is available from:

Cyco,
Adm. Banckertweg 2a,
2315 SR Leiden,
The Netherlands.

The following diagram illustrates Watcom’s cable wiring between the two parallel ports.

Task Machine Debugger Machine
Parallel Connector Parallel Connector

Pin Number Pin Number
1 <--------------> 2
2 <--------------> 1
3 <--------------> 14
4 <--------------> 16
5 <--------------> 15
6 <--------------> 13
7 <--------------> 12
8 <--------------> 10
9 <--------------> 11

10 <--------------> 8
11 <--------------> 9
12 <--------------> 7
13 <--------------> 6
14 <--------------> 3
15 <--------------> 5
16 <--------------> 4
17 <--------------> 17
18 <--------------> 18

Figure 27. Watcom Cable Wiring Scheme

The following diagram illustrates the LapLink cable wiring between the two parallel ports.

174 Parallel Port Wiring Considerations

Wiring For Remote Debugging

Task Machine Debugger Machine

Parallel Connector Parallel Connector

Pin Number Pin Number
2 --------------> 15
3 --------------> 13
4 --------------> 12
5 --------------> 10
6 --------------> 11

10 <-------------- 5
11 <-------------- 6
12 <-------------- 4
13 <-------------- 3
15 <-------------- 2
25 <--------------> 25

Figure 28. LapLink Cable Wiring Scheme

The following diagram illustrates the Flying Dutchman cable wiring between the two parallel ports.

Task Machine Debugger Machine
Parallel Connector Parallel Connector

Pin Number Pin Number
1 --------------> 11
2 --------------> 15
3 --------------> 13
4 --------------> 12
5 --------------> 10

10 <-------------- 5
11 <-------------- 1
12 <-------------- 4
13 <-------------- 3
15 <-------------- 2

Figure 29. Flying Dutchman Cable Wiring Scheme

For the IBM PC and PS/2, the connectors are standard "male" DB-25 connectors. Note that, in all cases,
the wiring is symmetrical (i.e., either end of the cable can be plugged into either PC).

Note: Although the wiring is different for all three cables, the Open Watcom parallel communications
software can determine which one is in use.

Parallel Port Wiring Considerations 175

Appendices

176 Parallel Port Wiring Considerations

Remote File Operations (DOS, NT, OS/2 Only)

D. Remote File Operations (DOS, NT, OS/2 Only)

Use the Remote File e Xchange program (RFX) to manipulate files on a personal computer which is
connected to your personal computer using a debugger remote link. You should consult the chapter entitled
"Remote Debugging" on page 89 to familiarize yourself with the concepts of remote debugging. The types
of file operations that are supported on both local and remote machines include:

1. creating, listing and removing directories

2. setting the current drive and directory

3. display, renaming, erasing, and copying files (including PC to PC file transfers).

To run RFX, set up your machines as if you are about to do remote debugging. Start the remote debug
server, then start RFX using the the following syntax.

RFX trap_file[;trap_parm] [rfx_cmd]

The name of a trap file must be specified when running RFX. See "Remote Debugging" on page 89.

See the section entitled "Specifying Files on Remote and Local Machines" on page 100 for an explanation
of remote and local file names.

You are now ready to copy files back and forth between machines.

D.1 RFX Commands

When RFX is run without specifying a command, the DOS, NT or OS/2 prompt will change as illustrated
in the following example.

Example:
Mon 11-06-1989 15:17:05.84 E:\DOC\UG
E>rfx par
[RFX] Mon 11-06-1989 15:17:12.75 @LE:\DOC\UG
[RFX] E>

Note that the current drive specifier "E" in "E:\DOC\UG" has changed to "@LE" indicating that the current
drive is the local "E" drive.

Any command can be typed in response to the prompt. RFX recognizes a special set of commands and
passes all others on to DOS, NT or OS/2 for processing. The following sections describe RFX commands.

RFX Commands 177

Appendices

D.2 Set Current Drive - drive:

drive:

The current drive and locale can be set using this command. The "@L" or "@R" prefix may be used to
specify the locale (local or remote).

Example:
d:

Make the "D" disk of the current locale (local or remote) the current drive. Since the locale is not specified,
it remains unchanged.

Example:
@rc:

Make the "C" disk of the remote machine the current drive. Both locale and disk are specified.

Example:
@le:

Make the "E" disk of the local machine the current drive. Both locale and disk are specified.

D.3 Change Directory - CHDIR, CD

chdir dir_spec
cd dir_spec

This command may be used to change the current directory of any disk on the local or remote machine. CD
is a short form for CHDIR. The "@L" or "@R" prefix may be used to specify the locale (local or remote).

Example:
cd \tmp

Make the "TMP" directory of the current drive the current directory.

Example:
cd d:\etc

Make the "ETC" directory of the "D" disk of the current locale (local or remote) the current directory of
that drive.

178 Change Directory - CHDIR, CD

Remote File Operations (DOS, NT, OS/2 Only)

Example:
cd @rc:\demo

Make the "DEMO" directory of the "C" disk of the remote machine the current directory of that drive.
Both locale and disk are specified.

Example:
cd @le:test

Make the "TEST" subdirectory of the current directory of the "E" disk of the local machine the current
directory of that drive. Both locale and disk are specified.

D.4 Copy Files - COPY

copy [/s] src_spec [dst_spec] [/s]

The COPY command operates in a manner very similar to the DOS "COPY" and "XCOPY" commands.
Files may be copied from the local machine to the local or remote machine. Similarly files may be copied
from the remote machine to the local or remote machine. If /s is specified then subdirectories are copied as
well. Directories will be created as required for the destination files. If dst_spec is not specified then the
default destination will be the current directory of the other locale (i.e., remote, if the file’s locale is local
or, local, if the file’s locale is remote).

Example:
copy *.for @rd:\tmp

All files of type "FOR" in the current directory are copied to the "TMP" directory of the "D" disk on the
remote machine. If the current locale is the local machine then files are copied from the local machine to
the remote machine. If the current locale is the remote machine then files are copied from the remote
machine to the remote machine.

Note: If your default drive is set to one of the disks on the local machine then the locale is local (e.g.,
@LC:, @LD:, @LE:, etc.). If your default drive is set to one of the disks on the remote machine then
the locale is remote (e.g., @RC:, @RD:, @RE:, etc.). If your DOS, NT or OS/2 prompt contains the
current drive and directory then it will be easy to identify which locale is current.

Example:
copy @rd:\tmp*.for

All files of type "FOR" in the "TMP" directory of the "D" disk on the remote machine are copied to the
current directory of the local machine. Whenever a destination is not specified, the current directory of the
opposite locale is used. If the source locale is the remote machine then files are copied from the remote to
the local machine. If the source locale is the current machine then files are copied from the local to the
remote machine.

Copy Files - COPY 179

Appendices

Example:
copy @rc:\watcom*.* /s

All files and subdirectories of the "WATCOM" directory of the "C" disk on the remote machine are copied
to the current directory of the local machine. Whenever a destination is not specified, the current directory
of the opposite locale is used. If the source locale is the remote machine then files are copied from the
remote to the local machine. If the source locale is the current machine then files are copied from the local
to the remote machine. Subdirectories are created as required.

Note: The "COPY" command is most effectively used when copying files from one machine to the
other. Copying of large amounts of files from one place on the remote machine to another place on the
remote machine could be done more effectively using the remote machine’s DOS, NT or OS/2. This
would eliminate the transfer of data from the remote machine to the local machine and back to the
remote machine.

D.5 List Directory - DIR

dir [/w] dir_spec [/w]

This command may be used to list the directories of any disk on the local or remote machine. Any of the
DOS, NT or OS/2 "wild card" characters ("?" and "*") may be used. If /w is specified then file names are
displayed across the screen ("wide") and the file creation date and time are omitted.

Example:
dir \tmp

List the names of files in the "TMP" directory of the current drive.

Example:
dir d:\etc

List the names of files in the "ETC" directory of the "D" disk of the current locale (local or remote).

Example:
dir @rc:\demo

List the names of files in the "DEMO" directory of the "C" disk of the remote machine. Both locale and
disk are specified.

Example:
dir @le:test

List the names of files in the "TEST" subdirectory of the current directory of the "E" disk of the local
machine. If no "TEST" subdirectory exists then the names of all files named "TEST" will be listed. Both
locale and disk are specified.

180 List Directory - DIR

Remote File Operations (DOS, NT, OS/2 Only)

Example:
dir @le:test.*

List the names of all files named "TEST" in the current directory of the "E" disk of the local machine. Both
locale and disk are specified.

D.6 Erase File - ERASE, DEL

erase [/s] file_spec [/s]
del [/s] file_spec [/s]

This command may be used to erase files from the directories of any disk on the local or remote machine.
DEL is a short form for ERASE. Any of the DOS, NT or OS/2 "wild card" characters ("?" and "*") may be
used. If /s is specified then subdirectories are also processed.

Example:
erase \tmp*.*

Erase all the files in the "TMP" directory of the current drive.

Example:
erase d:\etc*.lst

Erase all files of type "LST" in the "ETC" directory of the "D" disk of the current locale (local or remote).

Example:
erase @rc:\demo*.obj

Erase all files of type "OBJ" in the "DEMO" directory of the "C" disk of the remote machine. Both locale
and disk are specified.

Example:
erase @le:trial.*

Erase all files named "TRIAL" of any type in the current directory of the "E" disk of the local machine.
Both locale and disk are specified.

D.7 Exit from RFX - EXIT

exit

This command may be used to exit from RFX and return to the invoking process.

Exit from RFX - EXIT 181

Appendices

D.8 Make Directory - MKDIR, MD

mkdir dir_spec
md dir_spec

This command may be used to create a directory on any disk on the local or remote machine. MD is a short
form for MKDIR. The "@L" or "@R" prefix may be used to specify the locale (local or remote).

Example:
md \tmp

Create a "TMP" directory in the root of the current drive.

Example:
md d:\etc

Create an "ETC" directory in the root of the "D" disk of the current locale (local or remote).

Example:
md @rc:\demo

Create a "DEMO" directory in the root of the "C" disk of the remote machine. Both locale and disk are
specified.

Example:
md @le:test

Create a "TEST" subdirectory in the current directory of the "E" disk of the local machine. Both locale and
disk are specified.

D.9 Rename - RENAME, REN

rename file_spec new_name
ren file_spec new_name

This command may be used to rename a file in any directory on any disk on the local or remote machine.
REN is a short form for RENAME. The "@L" or "@R" prefix may be used to specify the locale (local or
remote). Unlike the DOS "RENAME" command, a file can be moved to a different directory if the
directory is specified in new_name.

182 Rename - RENAME, REN

Remote File Operations (DOS, NT, OS/2 Only)

Example:
ren test.tmp test1.tmp

Rename the file "TEST.TMP" in the current directory of the current drive to "TEST1.TMP".

Example:
ren d:\etc\test.tmp test1.tmp

Rename the file "TEST.TMP" in the "ETC" directory of the "D" disk of the current locale (local or remote)
to "TEST1.TMP".

Example:
ren @rc:\demo\test.tmp test1.tmp

Rename the file "TEST.TMP" in the "DEMO" directory of the "C" disk of the remote machine to
"TEST1.TMP". Both locale and disk are specified.

Example:
ren @le:trial.dat trial1.dat

Rename the file "TRIAL.DAT" in the current directory of the "E" disk of the local machine to
"TRIAL1.DAT". Both locale and disk are specified.

Example:
ren @le:trial.dat ..\trial1.dat

Rename the file "TRIAL.DAT" in the current directory of the "E" disk of the local machine to
"TRIAL1.DAT" and move it to the parent directory. Both locale and disk are specified.

D.10 Remove Directory - RMDIR, RD

rmdir [/s] dir_spec [/s]
rd [/s] dir_spec [/s]

This command may be used to remove one or more directories on any disk on the local or remote machine.
RD is a short form for RMDIR. The "@L" or "@R" prefix may be used to specify the locale (local or
remote). If /s is specified then subdirectories are also removed. Before a directory can be removed, it must
not contain any files.

Example:
rd \tmp

Remove the "TMP" directory from the root of the current drive.

Remove Directory - RMDIR, RD 183

Appendices

Example:
rd d:\etc

Remove the "ETC" directory from the root of the "D" disk of the current locale (local or remote).

Example:
rd @rc:\demo

Remove the "DEMO" directory from the root of the "C" disk of the remote machine. Both locale and disk
are specified.

Example:
rd @le:test

Remove the "TEST" subdirectory from the current directory of the "E" disk of the local machine. Both
locale and disk are specified.

D.11 Display File Contents - TYPE

type dir_spec

This command may be used to list the contents of a file on any disk on the local or remote machine. The
"@L" or "@R" prefix may be used to specify the locale (local or remote). Unlike the DOS "TYPE"
command, DOS, NT or OS/2 "wild card" characters ("?" or "*") may be used.

Example:
type \tmp\test.dat

List the contents of the file "TEST.DAT" in the "TMP" directory of the current drive.

Example:
type d:\etc*.lst

List the contents of all files of type "LST" in the "ETC" directory of the "D" disk of the current locale (local
or remote).

Example:
type @rc:\demo\test.c

List the contents of the file "TEST.C" in the "DEMO" directory of the "C" disk of the remote machine.
Both locale and disk are specified.

Example:
type @le:trial.*

List the contents of all files named "TRIAL" of any type in the current directory of the "E" disk of the local
machine. Both locale and disk are specified.

184 Display File Contents - TYPE

Remote File Operations (DOS, NT, OS/2 Only)

D.12 RFX Sample Session

Run serial port server on remote PC specifying a port 1 and a maximum baud rate of 38,400 baud.

Tue 11-07-1989 15:29:24.19 C:\
C>serserv 1.38

Run RFX on local PC.

Tue 11-07-1989 15:30:53.18 E:\DOC\UG
E>rfx ser
Link at 38400 baud

List directory of remote machine’s "F" drive.

[RFX] Tue 11-07-1989 15:30:59.33 @LE:\DOC\UG
[RFX] E>dir @rf:
CLIB <DIR> 02-01-89 06:43p
MATH <DIR> 02-01-89 06:51p
PCLINT <DIR> 03-09-89 04:05p

3 File(s) 16748544 bytes free

Switch to remote machine’s "F" drive and list files.

[RFX] Tue 11-07-1989 15:31:11.80 @LE:\DOC\UG
[RFX] E>@rf:
[RFX] Tue 11-07-1989 15:31:22.51 @RF:\
[RFX] F>dir
CLIB <DIR> 02-01-89 06:43p
MATH <DIR> 02-01-89 06:51p
PCLINT <DIR> 03-09-89 04:05p

3 File(s) 16748544 bytes free

Change to subdirectory and list files.

RFX Sample Session 185

Appendices

[RFX] Tue 11-07-1989 15:31:27.73 @RF:\
[RFX] F>cd clib
[RFX] Tue 11-07-1989 15:31:47.83 @RF:\CLIB
[RFX] F>dir
. <DIR> 02-01-89 06:43p
.. <DIR> 02-01-89 06:43p
MKCLIB BAT 95 12-20-88 04:24p
MKMODEL BAT 128 02-01-89 04:32p
MDEF INC 1831 12-08-88 12:23p
STRUCT INC 2487 12-20-88 05:45p
CLIB MIF 559 02-01-89 04:42p
H <DIR> 02-01-89 06:44p
SCSD <DIR> 02-01-89 06:44p
BCSD <DIR> 02-01-89 06:44p
SCBD <DIR> 02-01-89 06:44p
BCBD <DIR> 02-01-89 06:44p
BCHD <DIR> 02-01-89 06:44p
ANSI <DIR> 02-01-89 06:44p
DOS <DIR> 02-01-89 06:47p
A <DIR> 02-01-89 06:50p
C <DIR> 02-01-89 06:50p
CGSUPP <DIR> 02-01-89 06:50p

18 File(s) 16748544 bytes free

List directory of local machine.

[RFX] Tue 11-07-1989 15:31:51.57 @RF:\CLIB
[RFX] F>dir @l..\tools*.c
CALENDAR C 4378 04-17-89 08:17p
CLRSCRN C 233 04-17-89 08:17p
ERR C 198 04-17-89 08:30p
MAIN C 142 04-17-89 09:14p
SAMPLE1 C 83 04-14-89 03:56p
SAMPLE2 C 83 04-14-89 03:57p
SAMPLE3 C 86 04-14-89 03:58p
SAMPLE4 C 132 04-14-89 04:05p
SAMPLE5 C 131 04-14-89 04:05p
SUB1 C 108 11-03-89 05:11p
SUB2 C 108 11-03-89 05:11p
TEST C 236 05-08-89 07:02p

12 File(s) 8292352 bytes free

Copy file from local machine to current directory of remote machine.

[RFX] Tue 11-07-1989 15:32:21.99 @RF:\CLIB
[RFX] F>copy @l..\tools\test.c
E:..\TOOLS\TEST.C

1 Files copied 0 Directories created

Confirm presence of file.

[RFX] Tue 11-07-1989 15:32:41.22 @RF:\CLIB
[RFX] F>dir *.c
TEST C 236 05-08-89 07:02p

1 File(s) 16746496 bytes free

Leave RFX.

186 RFX Sample Session

Remote File Operations (DOS, NT, OS/2 Only)

[RFX] Tue 11-07-1989 15:32:46.99 @RF:\CLIB
[RFX] F>exit

Tue 1989-11-07 15:32:57.20 E:\DOC\UG
E>

RFX Sample Session 187

Index

window 38
Accelerator menu item 36

. Accelerator Pop-up menu
Delete 39
Modify 39
New 39.wdrc 113-114
TD Keys 39
WD Keys 39

accelerators 29, 38
Action menu 27, 37, 1123
Address menu item 66
All Modules menu item 43
Application menu item 36
arguments32-bit application debugging 109

changing 3132-bit debugging
arraytrap file 16

expand 62386|DOS-Extender 109, 172
traversing in memory 68version 109
view slices 62387

assemblyexamining 84
debugging 81modifying 84
examining 82
inspecting operands 82
setting break points 82
window 828

Assembly menu item 5, 35, 46, 48, 56, 67, 74
Assembly options 34
Assembly Pop-up menu

8087 Break 82
examining 84 Enter Function 82
modifying 84 Hex 83
registers 168 Home 83

Inspect 82
No source 83
Show/Address 82

@ Show/Functions 82
Show/Module 83
Show/Source 82

At Cursor menu item 72@@routine_name 120
@L 100
@R 100
@routine_name 120

B

A backward execution
over call 56
over simple statement 54

Bell 32About menu item 37
BreakAccelerate command 146

window 74Accelerator
Break All menu item 46for menu items 27
Break command 147for pop-up menu 26

189

Index

Break menu status 77
At Cursor 72 toggling 72
Clear All 73 up call stack 57
Disable All 73 window 74
Enable All 73 breakpoints 4
New 73 buttons 4, 25
On Debug Message 73 Byte menu item 85-86
On Image Load 73
Restore 73
Save 73
Toggle 72 C
View All 73

Break menu item 5, 44-45, 48, 57, 62, 72, 82
Break on write 32

cableBreak on Write menu item 66
Flying Dutchman 173Break Pop-up menu
LapLink 173Assembly 74
WatcomDelete 74
Watcom’s own 173Disable 74

Call command 148Enable 74
callsModify 74

displaying stack 57New 74
unwinding stack 4, 28, 30, 55, 57Source 74
window 57breakpoint

Calls menu item 35at cursor position 73
Calls Pop-up menuchanging 74

Break 57clearing 72
Goto 57clearing all 73
Unwind 57condition 71, 76

CAPture command 150countdown 71, 76
case insensitive searching 32counting 76
CauseWay 105, 109-110, 172creating new 74
changing memory 36defined 71
char 132deleting 74, 77
CHecksize option 19disabling 72, 74
Class/Show Functions menu item 64disabling all 73
Class/Show Generated menu item 64displaying 73
Class/Show Inherited menu item 64enabling 72, 74
Class/Show Private menu item 64enabling all 73
Class/Show Protected menu item 64executing debugger commands 76
Class/Show Static menu item 64finding assembly code 74
Clear All menu item 46, 73finding source code 74
codein assembly code 82

skipping 53on debug message 73
Code menu 35on execute 71, 76

Assembly 35on image load 73
Calls 35on write 44, 62, 66, 71, 76
Functions 35restoring 73
Images 35saving 73
Modules 35setting 73
Replay 35setting in caller 57
Source 35setting simple 72
Threads 35specifying address 75

CodeView keyboard emulation 29state 72

190

Index

Color option 18 modifying 84
Colour option 18 CPU Register
COlumns option 16, 20-21 window 81
command Cursor Follow menu item 66

Accelerate 146 CW.TRP 110
Break 147 CWD, environment variable 113-114
Call 148 CWSTUB.EXE 110
CAPture 150 Cyco 173
COnfigfile 150
Display 150
DO (or /) 151
ERror 151 D
Examine 152
Flip 153
FOnt 153

Data menu 35Go 153
File Variables 35Help 154
FPU Registers 36HOok 154
Globals 35IF 154
I/O Ports 36INvoke (or <) 155
Locals 35Log (or >) 155
Log 36MOdify 155
Memory at 36NEW 156
MMX Registers 36PAint 156
Registers 35Print (or ?) 158
Stack 36Quit 160
Watches 35RECord 160
XMM Registers 36Register 160

_dbg@ 169REMark (or *) 160
_dbg 169Set 160
dbginst.exe 94SHow 161
DBGLIB.REX 110SKip 162
dbgport.sys 94STackpos <intexpr> 162
debug compiler options 9summary 146
debug kernel 89syntax 145
debug linker options 10SYstem (or !) 162
debug registersTHread (or ~) 162

disabling 113Trace 162
using 113Undo 163

Debug Startup menu item 54View 163
debuggingWhile 163

32-bit DOS applications 109WIndow 163
at assembly level 81Command menu item 31
DLLs 49common menu items 4
mouse events 16COnfigfile command 150
Novell NLM 111configuration
postmortem dump under QNX 114automatic saving of 32
preparing application for 9saving 32
remote 89Console option 20-21
windows applications 112Contents menu item 37

debugging an OS/2 exception handler 16context sensitivity 4
debugging DLLs 112control-key shortcuts 26
debugging information 49Coprocessor
debugging under Linux 113examining 84

191

Index

debugging under QNX 114 Examine 119
Delete menu item 5, 39, 63, 74, 83 Examine command 152
Delete Symbols menu item 50 exception handler
dialogs OS/2 16

general description 28 Execute to menu item 53
DIp option 18 Exit menu item 31
Disable All menu item 73 expression
Disable menu item 74 evaluate 61
display expressions

changing columns 16 aggregate 126
changing lines 16, 18 C operators 127

Display command 150 C++ operators 134
DLL character constant 125

debugging 49, 112 coercing types 127, 132
showing list of 49 complex constant 124

DO (or /) command 151 control word register 126
DOS extenders current module 120

386|DOS-Extender 109, 172 current routine 120
CauseWay 109, 172 _dbg module 126
debugging 109 _dbg@cs 126
DOS/4GW 109, 172 evaluating 45
trap option 16 flags 126

DOS/4GW 109, 172 flags register 126
version 109 floating point registers 126

DOS4G.EXE 110 FORTRAN operators 137
DOS4GW.EXE 110 function 120
double 132 handling of 119
Double menu item 86 image@module@routine_name 120
DOwnload option 17 instruction pointer 126
dumper 114 integer constant 123
dumper command 114 line numbers 122
DWord menu item 85-86 memory references 125
DYnamic option 16 module 120

module@routine_name 120
offset 125
pre-defined variables 126
procedure 120E
real constant 124
referencing memory 125
register aggregate 126

Edit menu item 62-63 registers 126
EGA lines 18 routine 120
Ega43 option 18 rules 119
Enable All menu item 73 segment 125
Enable menu item 74 segment registers 126
Enter Function menu item 44, 82 status word register 126
environment variables symbol name 120

CWD 113-114 type enforcement 127, 132
HOME 114, 116 watching 45
PATH 16-17, 91, 95-97, 110 Extended menu item 81
WD 21-22 extensions
WD_PATH 113-114, 116 .TRP 16

ERror command 151
ESP 36

192

Index

F G

Far Follow menu item 66 global variables
Fastswap option 20 displaying 47
features 3 showing list 47
FieldOnTop menu item 63 Globals
file window 47

viewing 45 Globals menu item 5, 35, 50
window 45 Globals options 34

File menu 31 Globals Pop-up menu
Command 31 Raw Memory 47
Exit 31 Typed Symbols 47
Load Setup 31 Watch 47
Open 31 GNU/Linux 172
Options 31 Go command 153
Save Setup 31 Go menu item 53
Source Path 31 Goto menu item 56-57
System 31 graphics applications
View 31 debugging 111
Window Options 31

file operations
remote 177

File options 34 H
File Variables

window 61
File Variables menu item 35

Help command 154Find menu item 43, 45
Help menu 37Flip command 153

About 37float 132
Contents 37Float menu item 85-86
On Help 37Flying Dutchman cable 173
Search 37FOnt command 153

Hex menu item 81, 83-86FPU
HOME environment variable 114, 116window 84
Home menu item 45, 55, 66, 83FPU Pop-up menu
HOok command 154Hex 84

Modify 84
FPU Registers menu item 36
Freeze menu item 58

IFunctions
inspecting 44
showing list of 45, 48
window 48 I/O

Functions menu item 5, 35, 46, 50 window 83
Functions options 34 I/O Pop-up menu
Functions Pop-up menu Delete 83

Assembly 48 Modify 83
Break 48 New 83
Source 48 Read 84
Typed Symbols 48 Type 84

193

Index

Write 84 debugging 113
I/O ports Load Setup menu item 31

reading 83 local file specifier prefix
writing 83 @L 100

I/O Ports menu item 36 Local variables 35
IF command 154 LOcalinfo option 17
Images Locals

showing list of 49 window 61
window 49 Locals menu item 35

Images menu item 35 locating source code 11
Images Pop-up menu Log

Delete Symbols 50 window 38
Functions 50 Log (or >) command 155
Globals 50 Log menu item 36
Modules 50 long 132
New Symbols 50 loops

infinite loop running to completion 53
interrupting 105

Inspect menu item 4, 44, 62, 81-82, 85-86
instruction pointer

repositioning 53 M
int 132
Internet 100
Internet Protocol

Match menu item 43remote debugging 99
memoryinterrupting a running program 105

break on write 66INvoke (or <) command 155
changing 36invoke files 32
display 65Invoke option 16
displaying 36IP address 99
examine array 66
examine new address 66
follow pointers 66
modify 65-66K
set display type 67
window 65

Memory at... menu item 36
keep 153 Memory Pop-up menu
keyboard equivalents 29, 38 Address 66

for menu items 27 Assembly 67
for pop-up menu 26 Break on Write 66

Cursor Follow 66
Far Follow 66
Home 66
Left 66L
Modify 66
Near Follow 66
Previous 66

LapLink cable 173 Repeat 66
Left menu item 66 Right 66
LInes option 16 Segment Follow 66
linked lists Type/0:16 Pointer 67

following in memory 68 Type/0:32 Pointer 67
Linux 172 Type/16:16 Pointer 67

customization 113

194

Index

Type/16:32 Pointer 67 Modify 119
Type/__int64 67 MOdify command 155
Type/Byte 67 Modify menu item 4, 39, 66, 74, 81, 83-86
Type/Char 67 Modify... menu item 62
Type/Double 67 modules
Type/Dword 67 showing list of 46
Type/Extended Float 67 window 46
Type/Float 67 Modules menu item 35, 50
Type/Long 67 Modules options 34
Type/Qword 67 Modules Pop-up menu
Type/Short 67 Assembly 46
Type/Unsigned __int64 67 Break All 46
Type/Unsigned Char 67 Clear All 46
Type/Unsigned Long 67 Functions 46
Type/Unsigned Short 67 Show All 46
Type/Word 67 Source 46

menu Monochrome option 18
accelerator 26 mouse
accelerators 27 sharing 16
Action 27 mouse events
alt-key shortcuts 27 debugging 16
Assembly 5 Multi-media extension registers
Break 5 examining 85
control-key shortcuts 26 modifying 85
Delete 5
Functions 5
Globals 5
Inspect 4 N
keyboard equivalents 27
Modify 4
New 5

name completion 53, 75shortcuts 26-27
Named PipesShow 5

remote debugging 97Source 5
Near Follow menu item 66Type 5
NetWare 386 172Watch 5
NEW command 156menus 27
new features 3Microsoft Corp 172
New menu item 5, 39, 61, 63, 73-74, 83, 119MMX
New Symbols menu item 50examining 85
Next menu item 36, 43modifying 85
Next Sequential menu item 53window 85
NLMMMX Pop-up menu

debugging Novell 111Byte 85
showing list of 49DWord 85

No source menu item 83Float 85
NOCHarremap option 19Hex 85
NOExports option 17Inspect 85
noflip 153Modify 85
NOFpu option 18QWord 85
NOGraphicsmouse option 20Signed 85
NOInvoke option 16Word 85
NOMouse option 16MMX registers 169
NOSYmbols option 18MMX Registers menu item 36

195

Index

Novell 172 REMotefiles 17
Novell NLM setting 31

debugging 111 Swap 19
Novell SPX remote debugging 93 TRap 16
null modem wiring 173 Two 18

Variables window 34
Vga50 18
Watches window 34
XConfig 21O

Options menu item 31
Options/Whole Expression menu item 65
OS/2

On Debug Message menu item 73 remote debugging 98
On Help menu item 37 OS/2 exception handler 16
On Image Load... menu item 73 OutputDebugString 73
on top 63 overview 3
Once argument 93 Overwrite option 18
Open menu item 31
Open Watcom Debugger

overview 3
option P

Bell 32
Break on write 32

options
Assembly window 34 Page option 19
CHecksize 19 PAint command 156
Color 18 parallel port
Colour 18 wiring 173
COlumns 16, 20-21 parallel port remote debugging 94
Console 20-21 parameters
default 22 changing 31
dialog 32 PATH environment variable 16-17, 95-97, 110
DIp 18 PATH, environment variable 91
DOwnload 17 PEDHELP.EXP 110
DYnamic 16 Phar Lap Software, Inc 109, 172
Ega43 18 RUN386.EXE 110
Fastswap 20 TNT.EXE 110
File window 34 platforms supported 3
Functions window 34 PLS.TRP 110
Globals window 34 PLSHELP.EXP 110
Invoke 16 pmd.trp 115
LInes 16 pointer
LOcalinfo 17 display as array 65
Modules window 34 display as string 64
Monochrome 18 display value 64
NOCHarremap 19 follow 62
NOExports 17 follow in memory 66
NOFpu 18 show as array 62
NOGraphicsmouse 20 show code at 63
NOInvoke 16 show memory at 63
NOMouse 16 postmortem dump
NOSYmbols 18 QNX 114
Overwrite 18 predefined symbol
Page 19 dbg$32 170

196

Index

dbg$bp 170 tracing over 32
dbg$code 170 Redo menu item 55
dbg$cpu 170 Register command 160
dbg$ctid 171 Register Pop-up menu
dbg$data 171 Extended 81
dbg$etid 171 Hex 81
dbg$fpu 171 Inspect 81
dbg$ip 171 Modify 81
dbg$loaded 172 registers 36
dbg$monitor 171 control word 168
dbg$nil 172 cw 168
dbg$ntid 171 displaying 32-bit 81
dbg$os 172 displaying in decimal 81
dbg$pid 172 displaying memory 81
dbg$psp 172 examining 81
dbg$radix 172 flags 168
dbg$remote 172 floating point 168
dbg$sp 172 mm0 - mm7 169
dbg$src 172 MMX 169

Previous menu item 43, 66 modifying 81
Print (or ?) command 158 st0 - st7 168
program status word 168

arguments 31 sw 168
interrupting 105 XMM 169
preparing for debugging 9 xmm0 - xmm7 169
restarting 31, 54 Registers menu item 35
running to specified address 53 REMark (or *) command 160

remote debugging 89
Novell SPX 93
Once argument 93
over parallel port 94Q
over serial port 95
parallel port wiring 173
serial port wiring 173

QNX 172 with Internet Protocol 99
customization 114 with Named Pipes 97
debugging 114 with OS/2 98

QNX Software Systems 172 with TCP/IP 99
Quit command 160 with Windows 96
QWord menu item 85-86 with Windows NT 98

remote file operations 177
remote file specifier prefix

@R 100
R remote trap files 89

REMotefiles option 17
Repeat menu item 66
Replay 4Radix

window 56default 33
Replay menu item 35setting 33
Replay Pop-up menuRaw Memory menu item 47

Assembly 56Read menu item 84
Goto 56RECord command 160
Source 56recording debug session 56

replaying debug session 56Recursive functions

197

Index

Restart 31 ignoring case 32
Restart menu item 54 Search menu
restarting program 54 All Modules 43
Restore menu item 54, 73 Find 43
restoring debug session 56 Match 43
resuming execution 53 Next 43
return to caller 53 Previous 43
reverse execution 3 Search menu item 37

over call 56 search order
over simple statement 54 Linux 114

Rewind Stack menu item 55 QNX 116
RFX searching 43

running 177 ignoring case 44
RFX see also incrementally 43

remote file operations 177 Segment Follow menu item 66
RFX utility program 177 selecting text 27
Right menu item 66 serial port remote debugging 95
RSI.TRP 110 serial port wiring 173
run 53 service name

to cursor position 53 tcplink 99
until function entered 45 Set command 160
until loop completes 53 Set LAnguage 119
until return 53 settings 11, 31

Run menu 53 automatic saving of 32
Debug Startup 54 saving 32
Execute to 53 short 132
Go 53 shortcuts 29, 38
Next Sequential 53 for menu items 27
Restart 54 for pop-up menu 26
Restore 54 Show All menu item 46
Run to Cursor 53 SHow command 161
Save 54 Show menu item 5
Skip to Cursor 53 SHow Set LAnguage 119, 125
Step Over 53 Show/Address menu item 45, 82
Trace Into 53 Show/Assembly menu item 45
Until Return 53 Show/Functions menu item 45, 82

Run to Cursor menu item 44, 53 Show/Line menu item 45
RUN386.EXE 110 Show/Module menu item 45

Show/Module... menu item 83
Show/Pointer Code menu item 63
Show/Pointer Memory menu item 63
Show/Raw Memory menu item 62S
Show/Source menu item 82
Show/Type menu item 63
signed 132

Save menu item 54, 73 Signed menu item 85-86
Save Setup menu item 31 SKip command 162
saving debug session 54 Skip to Cursor menu item 53
screen skipping code 53

number of columns 16 socket port number 99
number of lines 16, 18 default 99

scroll bars 25 Source
search locating files 31

entering strings 43 window 44

198

Index

source code for commands 145
displaying line number 45 SYSTEM 19
examining a module 45 SYstem (or !) command 162
examining at address 45 System menu item 31
going to line number 45
locating 11

Source menu item 5, 35, 46, 48, 56, 74
Source Path menu item 31 T
Source Pop-up menu

Break 44
Enter Function 44

TCP/IPFind 45
remote debugging 99Home 45

TCP/IP services 99Inspect 44
TCP/IP socket 99Run to Cursor 44
tcplink service name 99Show/Address 45
TCPSERV 99Show/Assembly 45
TD Keys menu item 39Show/Functions 45
Tenberry Software, Inc 109, 172Show/Line 45

DOS4G.EXE 110Show/Module 45
DOS4GW.EXE 110Watch 45

textSP 36
selecting 27stack

Thaw menu item 58display 65
Options/Expand window 65

menu 65Stack menu item 36
item’ 65stack unwinding 4

ThreadSTackpos <intexpr> command 162
window 58Status

THread (or ~) command 162window 37
Thread Pop-up menuStep Over menu item 53

Freeze 58stepping
Switch to 58into calls 53
Thaw 58over calls 53

threadsstring
displaying 57display pointer 64
freezing 58display pointer as 64
state 58strings
switching to 58entering search 43
thawing 58finding 43

Threads menu item 35matching incrementally 43
TNT.EXE 110support files
To File menu item 36dbg 113, 116
To Log menu item 36hlp 113, 116
Toggle menu item 72prs 113, 116
Toolbarsearch order 114, 116

window 28sym 113, 116
Trace command 162trp 113, 116
Trace Into menu item 53Swap option 19
Trace OverSwitch to menu item 58

recursive functions 32symbol completion 53, 75
tracepointsymbols 53, 75

defined 71predefined 167
tracingsyntax

199

Index

into calls 53 Undo menu 54
over calls 53 Home 55

trap file 16, 115 Redo 55
CW.TRP 110 Rewind Stack 55
PLS.TRP 110 Undo 55
pmd.trp 115 Unwind Stack 55
remote 89 Undo menu item 55
RSI.TRP 110 undoing changes 54

TRap option 16, 115 unsigned 132
Travelling Software 173 until 153
TRP extension 16 Until Return menu item 53
Turbo keyboard emulation 29 Unwind menu item 57
Two option 18 Unwind Stack menu item 55
type unwinding call stack 55

show item user interface 3
show item’s type 63

Type menu item 5, 84
Type/0:16 Pointer menu item 67
Type/0:32 Pointer menu item 67 V
Type/16:16 Pointer menu item 67
Type/16:32 Pointer menu item 67
Type/__int64 menu item 67

variableType/All Decimal menu item 64
break on write 62Type/All Hex menu item 64
display type 63Type/Array... menu item 62, 64
file scope 61Type/Byte menu item 67
inspect 62Type/Char menu item 67
modify 62Type/Character menu item 64
show raw storage 63Type/Decimal menu item 64
typecast 61, 63Type/Double menu item 67
watch 62Type/Dword menu item 67
window 61Type/Extended Float menu item 67

Variable Pop-up menuType/Float menu item 67
Break 62Type/Hex menu item 64
Class/Show Functions 64Type/Long menu item 67
Class/Show Generated 64Type/Pointer menu item 64
Class/Show Inherited 64Type/Qword menu item 67
Class/Show Private 64Type/Short menu item 67
Class/Show Protected 64Type/String menu item 64
Class/Show Static 64Type/Unsigned __int64 menu item 67
Delete 63Type/Unsigned Char menu item 67
Edit 63Type/Unsigned Long menu item 67
FieldOnTop 63Type/Unsigned Short menu item 67
Inspect 62Type/Word menu item 67
Modify 62typecast 61, 63
New 63Typed Symbols menu item 47-48
Options/Expand ’this’ 65
Options/Whole Expression 65
Show/Pointer Code 63
Show/Pointer Memory 63U
Show/Raw Memory 62
Show/Type 63
Options/Expand

Undo command 163 Type/All Decimal 64

200

Index

Type/All Hex 64 I/O 83
Type/Array 64 Images 49
Type/Character 64 Locals 61
Type/Decimal 64 Log 38
Type/Hex 64 maximizing 25
Type/Pointer 64 Memory 65
Type/String 64 minimizing 25
Watch 62 MMX 85

Variables Modules 46
break on write 44 moving 26
displaying 47 options 33
global 35 Replay 56
inspecting 44 resizing 26
local 35, 61 restoring 25
static 35 Source 44
stopping on write 71 Stack 65
watching 35 Status 37

Variables options 34 System Menu 25
VGA lines 18 Thread 58
Vga50 option 18 Toolbar 28
View All menu item 73 Variable 61
View command 163 Watches 61
View menu item 31 XMM 85

zooming 26
WIndow command 163
Window menu 36

Accelerator 36W
Application 36
Next 36
To File 36

Watch menu item 5, 45, 47, 61-62 To Log 36
Watches Zoom 36

window 61 Window Options menu item 31
Watches menu item 35 Windows
watchpoint 71 enhanced mode 96

defined 71 Microsoft 112
WD environment variable 21-22 remote debugging 96
WD Keys menu item 39 Windows 3.x 172
WD_PATH environment variable 114, 116 Microsoft 112
WD_PATH, environment variable 113-114 Windows 95 172
While command 163 Windows NT 172
window remote debugging 98

Accelerator 38 wiring
Assembly 82 null modem 173
Break 74 parallel port 173
Calls 57 serial port 173
closing 25 Word menu item 85-86
CPU Register 81 Write menu item 84
current 26
File 45
File Variables 61
FPU 84
Functions 48
Globals 47

201

Index

X

XConfig option 21
XMM

examining 85
modifying 85
window 85

XMM Pop-up menu
Byte 86
Double 86
DWord 86
Float 86
Hex 86
Inspect 86
Modify 86
QWord 86
Signed 86
Word 86

XMM registers 169
XMM Registers menu item 36
XMM/SSE registers

examining 85
modifying 85

Z

Zoom menu item 36

202

