Open Watcom FORTRAN 77

User’s Guide

Version 2.0

Uien Watcom

Notice of Copyright

Copyright 00 2002-2023 the Open Watcom Contributors. Portions Copyright O 1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit https://github.com/open-watcom/open-watcom-v2 .

Preface

The Open Watcom FORTRAN 77 Optimizing Compiler (Open Watcom F77) is an implementation of the
American National Standard programming language FORTRAN, ANSI X3.9-1978, commonly referred to
as FORTRAN 77. The language level supported by this compiler includes the full language definition as
well as significant extensions to the language. Open Watcom F77 evolved out of the demands of our users
for a companion optimizing compiler to Open Watcom’s WATFOR-77 "load-and-go" compiler.

The "load-and-go" approach to processing FORTRAN programs emphasizes fast compilation rates and
quick placement into execution of FORTRAN applications. Thistype of compiler is used heavily during
the debugging phase of the application. At this stage of application development, the "load-and-go"
compiler optimizes the programmer’stime ... not the program’stime. However, once parts of the
application have been thoroughly debugged, it may be advantageous to turn to a compiler which will
optimize the execution time of the executable code.

Open Watcom F77 is ahighly optimizing compiler based on the code generation technology that was
developed for Open Watcom'’s highly-praised C and C++ optimizing compilers. Open Watcom F77 isa
traditional compiler in the sense that it creates abject files which must be linked into an executable
program.

The Open Watcom FORTRAN 77 User’ s Guide describes how to use Open Watcom FORTRAN 77 with
DOS, 0S/2, Windows 3.x, Windows NT, and Windows 95.

Acknowledgements

This book was produced with the Open Watcom GML el ectronic publishing system, a software tool
developed by WATCOM. In this system, writers use an ASCI| text editor to create source files containing
text annotated with tags. These tags label the structural elements of the document, such as chapters,
sections, paragraphs, and lists. The Open Watcom GML software, which runs on avariety of operating
systems, interprets the tags to format the text into a form such as you see here. Writers can produce output
for avariety of printers, including laser printers, using separately specified layout directives for such things
as font selection, column width and height, number of columns, etc. The result istype-set quality copy
containing integrated text and graphics.

We would like to thank IMSL of Houston, Texas for providing us with copies of their Mathematics and
Statistics libraries. The IMSL Math Library is a collection of subprograms for mathematical problem
solving and the Satistics Library is a collection of subprograms for statistical analysis. The self test
procedures provided with these libraries proved to be an immense help in testing Open Watcom F77 on the
personal computer.

We also used the "FORTRAN Compiler Validation System, Version 2.0" to test the conformance of Open
Watcom F77 with the full FORTRAN 77 language standard. This package is provided by the National
Technical Information Service of the U.S. Department of Commerce in Springfield, Virginia. The
validation system was developed by the Federal Software Testing Center.

If you find problems in the documentation or have some good suggestions, we would like to hear from you.

July, 1997.

Trademarks Used in this Manual

AutoCAD Development System is atrademark of Autodesk, Inc.
DOS/4G is atrademark of Tenberry Software, Inc.

IBM Developer’s WorkFrame/2, Presentation Manager, and OS/2 are trademarks of International Business
Machines Corp. IBM isaregistered trademark of International Business Machines Corp.

Intel and Pentium are registered trademarks of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. WindowsNT isa
trademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.
Phar Lap, 286|DOS-Extender, and 386|DOS-Extender are trademarks of Phar Lap Software, Inc.
QNX isatrademark of QNX Software Systems Ltd.

WATCOM is atrademark of Sybase, Inc. and its subsidiaries.

Table of Contents

Open Watcom FORTRAN 77 USEI S GUITEoouiiuiiiiieiierieie et sttt st s sb e sae b e e

1 About ThisManua

2 Open Watcom FORTRAN 77 COMPIler OPLIONSco.eovruirieiirieierieerieesieiesi s
2.1 Open Watcom F77 OptioNS SUMIMEIYc..eoviuereriereeiereeie et sesse e e se st e sbesesbeseesesessesesseseesesens

2.2 Compiler Options

3 The Open Watcom FORTRAN

44012101 =

3.1 Open Watcom FORTRAN 77 Command Line FOIMALcccoereiririenineneresese e
3.2 WFC/WFC386 Environment VariableSccocireiieirieirineeseee s
3.3 Open Watcom FORTRAN 77 Command Line EXaMPIESccccoeiiiiiriiniene e

3.4 Compiler Diagnostics

3.5 Open Watcom FORTRAN 77 INCLUDE Fil€ ProCESSINGccoveerieerieerieesieesiesese st

4 The Open Watcom FORTRAN

TT LIDIAIIES ..ottt e e ee e et e st e e st eseete e e sereessareeesaneeesanes

4.1 Open Watcom FORTRAN 77 80x87 Emulator Librariesccocvvveverereeneeeeeese s e sese s
4.2 The "NO87" EnVironmMeNnt Variablccccvcieiiiiieieseeiee ettt s se e snenes

5 Open Watcom FORTRAN 77 COMPIler DIFECHIVEScoviriirieieeieeee et

5.1 Introduction

5.2 The EJECT Compiler Dir
5.3 The INCLUDE Compiler
5.4 The PRAGMA Compiler

(< 011 AV TSRO
(D I1 (= o1 (AT
DITECLIVE ...ttt ettt e et e s et e s st e s e be e s seaaeessateeseteeesanes

5.5 The DEFINE COMPIlEr DIFECLIVEcouiiiiiiiiiiieete ettt st s bbb snenes
5.6 The UNDEFINE COMPIlEr DIFECLIVEc.eiuiiiiieiiiiieierestereste sttt sttt sttt seene e

5.7 The IFDEF, IFNDEF and

ENDIF Compiler DIrECLVE ..c.voveeeeeeeeeeceecece e

5.8 The ELSE COMPIIEr DIFECLIVEecuviviiieiieieicie e seesie e seeseeaeee e s s ses e e stestesnestestesae st e e aesaensenseneenensens
5.9 The ELSEIFDEF and EL SEIFNDEF Compiler DIr€CHIVEcccceevieievieieieseeieee e ese e sre e e
5.10 Debugging statements ("D" iN COlUMN 1)cooiiiieiieie e e et sne e sneens
5.11 General Notes About COMPIler DIFECHIVEScc.iieiierieieeieeeeeeere et

6 Open Watcom FORTRAN 77 File HAaNAIINGc.coviiriiiriireereeeeere ettt

6.1 Record ACCESSc......
6.2 Record Format

B6.2.1 FORMATTED RECOISeeeieeiee it et seeee et eeete e e s eeeesateeesaeseesseseessasesesanseessnseesaasesesasneesarenens
6.2.2 UNFORMATTED RECOITSvviieiiieiiitecetie st stee et sressteesbesstessvessatesssessasessbessnnessbessnsesssessanes
6.2.3 FIleSWith NO RECOIA SLIUCLUIEcveiieviiceie ettt s ae s sbe s b be s st e s sressnee s sres

6.3 Attributes of Files
6.3.1 Record Type
6.3.2 Record Size

6.3.3 Print File Attributes
6.3.4 Input/Output Buffer

6.3.5 File Sharing

6.4 File Namesin the FAT Fi

Sz e e e e e s e b e e e s ae e s eeesaareesaaaes

[€ SYSLEIM .o b e

6.4.1 Special DOS DEVICEINAIMESccoiiiririirieiereeie ettt b e st se et e b seesesaenesaeneas
6.4.2 Examples of FAT File SPECITiCaliONSccceieiereeieeisire st e sre e
6.5 File Namesin the High Performance File SYSIEM ...t
6.5.1 Special OS/2 DEVICEINGIMESocviiiiieieie ettt e ettt st e et e e e ese e e e neeresaesnesbenrees
6.5.2 Examples of HPFS File SPECITiCAIONSccoiiiirieiiieeeeeeere st

6.6 Establishing Connections
6.7 A Preconnection Tutorial

Between UnitSand FilES ...t

(620

23
23
24
24
25
27

29
31
32

33
33
33

35
35
36
36
37
37
37
38

39
39
39
40
40
41
41
42
43

GRES

45
46
47
47
47
48
51

Table of Contents

6.8 L0OgiCal Fil@ NAME SUPPOITccviiteriiieiieie sttt ettt sttt st se e e e e e aeese et sbesbesaennens

6.9 Terminal or Console Device Support

6.10 PriNter DEVICE SUPPOITooviteieterieteriete sttt sttt sttt sttt b ettt se et e b e b e bt s be st sbe st s be st sbe e b s
6.11 Serial DEVICE SUPPOITooviectiietirieieriei sttt ettt b et b et bbbt eb e
6.12 File HaNdIING DEFAUITScooiiiiierieierete ettt st bbb

7 The Open Watcom F77 SUDProgram LIibIaryccccocceeerieeeniese s seeie e e e s es
7.1 SUBFOULINGE FEXIT ettt ettt bbbt sttt

7.2 INTEGER Function FGETCMD
7.3 INTEGER Function FGETENV
7.4 INTEGER Function FILESIZE
7.5 Subroutine FINTR and FINTRF
7.6 INTEGER Function FLUSHUNIT ..
7.7 INTEGER Function FNEXTRECL .
7.8 INTEGER Function FSIGNAL
7.9 INTEGER Function FSPAWN
7.10 INTEGER Function FSYSTEM

7.11 SUBFOULINE FTRACEBAGCK ..ottt ettt et sttt st sae e sae s e besbe et e saaesbesnsesbesasesbeennesneenees
7.12 SUDIOULINE GETDAT vttt ettt ettt ettt ettt ebe et e saa e s b e e atesbeesesbeestesaeesbesaeesbesasesbesnsesbeensesreenees
7. 13 SUDIOULINE GETTIM .ottt ettt et st e et e s be e sbeeeate e sbeesaseebeesabeenbeesabesseesaneens
7.14 INTEGER Function GROWHANDLESoooiiicecteceeeeete ettt st sbe e b ens

7.15 Functions IARGC and IGETARG .

7.16 MEN EITOF FUNCLIONS ...ttt ettt ettt e st e s et e s st e e s s ab e e s snbe e s st e s s sabnessnbeessanaesssrens

7.17 INTEGER Function SEEKUNIT ...

7.18 INTEGER Function SETIMP/Subroutine LONGIMPoo ottt
7.19 INTEGER FUNCtion SETSY SHANDLEooooeeieee ettt ettt e s st ssaes s bessaeesnnee e
7.20 INTEGER* 2 FUNCEION SY SHANDLEoueiitieie ettt sttt st st snee b e
7.21 REAL FUNCEHON URAND ..ottt ettt ettt b e aae b eate st e eabesbeentesbeensesaeensesnnessesnens

7.22 Default Windowing Functions

7.22.1 AWFDEIEIEONCIOSE ...oooteicieetie ittt e ettt e et e et e e s teeebe e sabeeebeesaeeesbeesaeeeabeesasesabeesareeseesseean
7.22.2 AWESELADOULDIG ...ttt ettt sttt
7.22.3 AWFSEEAPPTILIE ettt s b e b e et b b e st et et e e e e eneenas
T.22.4 AWESEICONTIEIE .vveeree ittt ettt ettt e et e s be e s beesate e sbeeeaseebessabesnbessabeeseesnreens
RS X o 1Y B 10110 1Yo OSSR
A S X o VY B A T= Lo I

8 Data Representation On X86-based PlatfOrMScccvcieiriece e
B.LLOGICAL™ L DAATYPE eevvveeeerrriereerisereseesssesesessesessssssesssessssssesessssssesesssssesesessssssesessssssesessssssesesensssns
8.2 LOGICAL and LOGICAL*4 DAATYPES ..eccervrerrrrereririeseesessetesesessssesssessssssesessssssesassssssesesssssssesssenes
B.3INTEGER* L DAATYPE .eevervrvereririirterisesesiesesesesessesesessssesesessssssesessssssesessssssesesessssssesessssssesessssssesessssssns
8.4 INTEGER* 2 DAATYPE .vevvrvivereririsrsierisisessetesesessssesasessssesasessssssesessssssesessssssesessssssssesassssssesessssssesassssssns

8.5INTEGER and INTEGER*4 Data Ty
8.6 REAL and REAL*4 Data Types

PES teteeetetee ettt ettt ettt s e

8.7 DOUBLE PRECISION and REAL*8 Data TYPESccevereetereeiereeterieiesieieseeiesseesieesse s sesresesseseeseseas
8.8 COMPLEX, COMPLEX*8, and DOUBLE COMPLEX Daa TYPEScccceeerrererrereriereniereeieseeieseeienens
8.9 COMPLEX* 16 DB TYPE ..o.viivierertereireieseereieeeetese st sse s s e sr et e ss s s s e e e e e seenessesneanesrennennens
8.10 CHARACTER DEA TYPE ..uverveeurerreeiestiesiesseeseesseesssseessesssessessssssessssssessessesssessesssesssessesssessessesssesnees

8.11 Storage Organization of Data Types

8.12 Floating-point Accuracy On x86-based PlatfOrmMsSccccccieiiiecise e
8.13 Foating-point Exceptions On x86-based Platformsccceccvieeve e
8.14 Compiler Options Relating to FIOating-POiNtccoioeririerieeeeeeeere s

8.15 Floating-point Exception Handling

Vi

Table of Contents

G o) A o oot U

O MEMONY IMOELS ...ttt bbb e b e b e bt e bt e e e b e b e e b e b s b e st e enis
LS 00 1 11 o [FTox £ o o
LS 2 ©e o L= 1V o [=.
LS T I T = 1Y, oo =
9.4 Summary of MemMOry MOGEIScccvciviiiiirese sttt e e ne e enens
S Y TG o AV =00 VY, oo =
9.6 Linking Applications for the Various Memory MOEISccoooeviieieveciceeeecese e
O.7 MEMOIY LAYOULveeieeeiiee ittt eiee sttt sstee et e st sttt e sae e et e s st e et esateebe e sabe e abeesaee e beesnseenbeesnteenseennreans

10 Assembly Language CONSIAEILIONSccccouriiririrerietestesie st ste st e see e e e e e s b ae s sbesbesaesbesbeseessanean
0 80 I 1 g o [FTox o) o [OOSR
10.2 CalliNG CONVENTIONSc.eevirieiireiiirieiesteestee ettt sttt se st ss et b e sb e eb s b e s e bt beb e seesesbese b e ne b e e nenes

10.2.1 Processing Function Return Vaues with N0 80X87 ..o
10.2.2 Processing Function Return Vaues Using an 80X87ccoeovieereienienenersienesesese e
10.2.3 Processing AItErNate REIUMNSccviivierieiereceeeeeee ettt st e e eeneene e e eseerensenes
10.2.4 Alternate Method of Passing CharaCter ArgUMENLScccceveverereesiesieseeseeseeeeseeeeesse e srenes
10.2.4.1 CharaCter FUNCLIONScccoiveieieriieieieiesisiet ettt

10.3 Writing Assembly Language SUDProgramsooeieiericieneneeeeer st enen
10.3.1 Returning Values from Assembly Language FUNCLIONScccooerinineninene e

I =0 10 TPV PSP
0 1 T [T o o SRR
112 AUXITTBIY PIraOIMESccveeiiiieiirieiereeiesee sttt b sttt b et b e b e bt b et eb et e bt tenes

11.2.1 Specifying Symbol AtFDULES ..o e
L1122 AHASINBIMES ...ttt r et n e r et n et n e
11.2.3 PredefiNed ATIGSEScvoreiereiiesreee st
11.2.3. 1 Predefined " COECI" AlIBScvcueiririeicierire e
11.2.3.2 Predefined " pasCal” AlIBS ...ttt
11.2.3.3 Predefined " WatCall" AlI@S ..ot
11.2.4 Alternate NamesS for SYMDOISoouoieiiiee e e
11.2.5 Describing Calling INfOrMELTONc.coiiieirieiieesieeree e
11.2.5.1 Loading Data SEgment REJISIENcoviiiiriereiereee e e
11.2.5.2 Defining Exported Symbolsin Dynamic Link Libraries ...,
11.2.5.3 Defining Windows Callback FUNCLIONSc.cooveiriiiriiiniiricreeree s
11.2.6 Describing Argument INFOrMatioNcccvceiereeieceeeee e
11.2.6.1 Passing Arguments to Nnon-FORTRAN SUDPrOgramscccvcevvveveereereeieesesesesesessenes
11.2.6.2 Passing ArgumMentS in REJISLEISc.cicieieiieiececere ettt sttt s a e e e ene e s s
11.2.6.3 Forcing Arguments into SPecific REGISIErS ..o i
11.2.6.4 Passing Arguments to In-Line SUbprogramsccoeieiiienenereeeeeeeesere e
11.2.6.5 Removing Arguments from the SEaCKc.ooooiiri e
11.2.6.6 Passing ArgumentSin REVEISE OFUErooiirieirieirieereeereeer et
11.2.7 Describing Subprogram Return INfOrmationcoveireineiniineseeeseeeseeese s
11.2.7.1 Returning Subprogram Values in REJISIENSccooeiieiriirenesees e
11.2.7.2 Returning Structures and CompleX NUMDEIScccocvvieieiirienieneeeeeeeeesese e
11.2.7.3 Returning Floating-PoiNt DELAccceeeevririeresereseseseseseesieseeseesee e seesesessesnessessesns
11.2.8 A Subprogram that NEVEr REIUMNScccueieiereeeeieesee ettt e e sne st
11.2.9 Describing How Subprograms Use Variablesin Commoncccceveveveeieiesieeiesnne s
11.2.10 Describing the Registers Modified by a Subprogram ...,
11.2.11 Auxiliary Pragmas and the 80X87cceieriieieieerrene st
11.2.11.1 Using the 80X87 t0 PaSS ATQUIMENLSccccereeuirieririeiereeiereeesree s

Vi

Table of Contents

11.2.11.2 Using the 80x87 to Return SUbprogram ValUEScccceererininienie i 141
11.2.11.3 Preserving 80x87 Floating-Point Registers ACross Callscccocvvrvenenenenene e 141

17 o1 B o] o Lo OO PSPPSR P TSP 143
2V = 0 T 1Y oo (= 145
2 R T 1o [U o (o ISP PSSP 145
12.2 COUE MOUELS ...ttt b et e b bt e b b et se b bbbt es 145
12.3 DAAMOTEIS ...c.eeeiiiecieie et b bbbt 145
12.4 Summary of MemMOry MOEIS ..ot e e 146
125 Flat MEMOIY MOUEL ...ttt b e bbb bbb e et et e e e e et e e enennas 146
12.6 MiXed MEMOIY MOUE!ooiieiiciieeeee bbb bbb 146
12.7 Linking Applications for the Various Memory MOEIS ... 146
T12.8 MEMOIY LBYOUL ...ttt er e b e et erenn b en e nenrenneanes 147
13 Assembly Language CONSIAEIGLONScccecveeeeeiriresreseseestestesieseessesseseeseeseeesessessessesssssessesssssessessessensen 149
ST R T 11 o [F o (o ISP PRSP 149
JCTZ A @ | 1T aTo J @001V 014 o]t =T 149
13.2.1 Stack-Based Calling CONVENLIONcceeiiiieiiiiesie et see s s te e e e se e nne e 150
13.2.2 Processing Function Return Values with N0 80X87ccoevirireieiieneeee e 150
13.2.3 Processing Function Return Values Using an 80X87 ccccceeeereririenenie e 151
13.2.4 Processing AlTErNate REIUIMNScooiiiiriiirieeriecsee ettt 151
13.2.5 Alternate Method of Passing Character ArgUMENLScccovereeerieieniereseesie e 152
13.2.5.1 CharaCter FUNCLIONSccueoieieeeeieeee et see st s enee e e ese s e eseseessesneseesseseeseenean 152

13.3 Writing Assembly Language SUDPIOGIaIMIScocreririiririereriereeieseeie s s seeeseeesbe et sessesesseseeneseas 153
13.3.1 Using the Stack-Based Calling CONVENLIONcc.coeirirenenere e seeseee e sre e 154
13.3.2 Returning Values from Assembly Language FUNCLIONScccooovrenivievenese e 156

e =0 1 = T SRS 163
LA L INEFOTUCTION ..ttt ettt ettt b et r et b et bt b e se bt se b se bt ne bt e bt R et e b et e b et eb e e erennere e 163
N S LT VA o o | 1= TSSOSO 164
14.2.1 Specifying Symbol AIDULES ..o 164
TA.2.2 AlIASINBIMES ..ottt sttt a e e bt e e e bt e e e bt e sene s et et e s e se st et ese e s e senane 164
14.2.3 PredefiNed ATIBSEScoooiereeeerereece ettt sttt s e st s e sea e e e tete e e e 166
14.2.3. 1 Predefined " CHECI" AlIBS ...c.ooviiiieeireieree et 166
14.2.3.2 Predefined " PasCal” AlIBSccccvceeeiieie s ses ettt 167
14.2.3.3 Predefined "__StACEAll" AlIBSccocvirereirrieeie e 167
14.2.3.4 Predefined " SYSCall” AlIESccocviieiiirsieesee et 167
14.2.3.5 Predefined " watcall” Alias (register calling convention)c.ccccecvvvevvveeveveesiennenn 168
14.2.3.6 Predefined " watcall" Alias (stack calling convention)ccoeveneneneicieneecenene 168

14.2.4 Alternate Names for SYMDOISoouoiuiiiiee e e 169
14.2.5 Describing Calling INfOrMELTONco.ciiieirieiiieisieeeeese e 170
14.2.5.1 Loading Data SEgment REJISIENcoviiiiiireereee e s 171
14.2.5.2 Defining Exported Symbolsin Dynamic Link Librariescccceoveineineinencnecnne 172

14.2.6 Describing Argument INfOrMELIONcooveirieirieinerere e 172
14.2.6.1 Passing Arguments to non-FORTRAN SUDPrOgramsccccvevererereeeeesieseseseseeseenens 173
14.2.6.2 Passing ArgumentS in REJISLEISc.cvveiveeeieeieceeere et te e s sa e e e ene s e 175
14.2.6.3 Forcing Arguments into SPeCifiC REGISIErSccviiveiirere e s 177
14.2.6.4 Passing Argumentsto In-Line Subprograms ... scese e 178
14.2.6.5 Removing Arguments from the SEaCKcceieiiiinii e 179
14.2.6.6 Passing Arguments in REVEISE OFTErcccoiriiriereiereee et s 179

viii

Table of Contents

14.2.7 Describing Subprogram Return INfOrmationccccooeeerininenine e
14.2.7.1 Returning Subprogram ValueSin REJISIENScccoiiiirirerereeee s
14.2.7.2 Returning Structures and Complex NUMDEX'S ...
14.2.7.3 Returning Floating-POINt DaLacceviirieiriiinieenieseee st

14.2.8 A Subprogram that NeVer REIUIMNScoveiriiiriierieerieesieesie et

14.2.9 Describing How Subprograms Use Variables in ComMMmONccoeeeverenenenenniense e

14.2.10 Describing the Registers Modified by a Subprogram ...

14.2.11 Auxiliary Pragmas and the BOX87cccceeeveieerieieceeesese st e s ste e sae s e et e s
14.2.11.1 Using the 80X87 t0 Pass ATQUMENLSccccueveeeeeresestesiesiestesteseeseeaeeeseeessessesnessessesns
14.2.11.2 Using the 80x87 to Return SUbprogram ValUEScccceererininienie e
14.2.11.3 Preserving 80x87 Floating-Point Registers ACross Callscccocvvrennenenene e

APPENTICES ...ttt b bt bt e b e R e R R R R E SRR £ Rt R R R R e R R e R e R e R a e bt b e b e en s

A. Use Of ENVIFONMENE VANTBIIESeeceiiirii ettt ettt et e st s st s s s s saae s saeseaeesbessbesssessnbessreesnneesns
ALLFINCLUDEooiiicee ettt ettt st st eete s aeesbe e aae s beetesbeentesbeenbesbeenbesbeenbesbeenbesaeessesnnesresnnes
0 I OO
R I 1 2 OO RR
Y R I 1 =] 510 S TR
F N I 1 = 1A 1 N O
F T I 1 =10 5 O
F A I 1 =] 7 R
F N T L SRR
N I N I RO
R O IV =R
ALLLWATECOM ..ottt ettt sttt et et e sae e be s aeesbeeatesbeeaaesheesbesbeeabesbeenbesbeenbesbeenbesaeenresnnesreannas
ALT2WECL ettt ettt ettt s h e et s b et e s b e e b e e be e b e ehe e beeae e e bt e e she e beshe e beeae e beehaeabeeareebeenreereennas
ALLSWWECLSBBOooveeiiiieeiteciee ettt et et e et e e beeasesbe e s e sbeesbesaeesbesaae b e sbae b e sasa b e eateabeenesebeensesbeensesaeetesaees
AL LA WGCGMEMORY ..ottt ettt ettt ettt et et et e et et e saeeebeeaeesbeaneesbeeatesbeeatesbeenbesbeenbesreenbesreenreanes
0 ST R
F N ST 0 L P
ALLTWWEC ettt ettt e et e et e et ae e et e e s heeeabeeebessabe e beesabeeabeeeaseeabessaseenbessnseenbeesnteeseessreens
F N RV LY L O < TR
R 0 V1Y RO
O V1Y R
AL2ZLWLANG ..ottt et e et et e e be et e s beebeshe e besaeesbesheesbeebaebeeas e beeabeebeenreebeenseereeteaaeebenaeas

B. Open Watcom F77 DiagNOStiC MESSAOEScecveiierierieieieeeeseseetesessessestessessessessessessessessessessesesessessenses
B.1 SUDProgram AFQUMENTSccoieiiiieiereeeeieee ettt sttt et e e et ae st e be b sbesae st e s besee e et s
B.2 BIOCK Data SUDPIOGIEMSooviiuiiiiierieseeieie ettt sttt sae st se et b se e e e bt ebeeaesaeebesbesaesbe e es
B.3 Source FOrmat and CONLENEScoererirerierieriesie ettt sbe st e et be et e bese e e e e e e e e eaeenesaeene
B.4 COMMON BIOCKS ...cuvitiietiietisieiisietisteesteesteesteessesassesassesaesesaesessesessesessesessasessensssensesessesessesessesessanes
S 000 =] £ PSSR
B.6 COMPILES OPLIONS ...eueieiuiitiieteeetese ettt b bbb bbbt b et b e b e b s b e s b neens
B.7 COMPILEL EITOIS ..vieitiieeiiieeiisie sttt ettt b et b e bbb bbbt b e bbb e s et e et e s e be e enan
B.8 CharaCter VariahlESooccuieceiieire ettt bbbt
B.O DAta INIIAliZAHIONceivieiiiiieieeeseese ettt ettt ettt eer et neneenn
B.10 DIMeNSIONEd VA DIESooveuiiieiiieiiee ettt bbb
0 I D 10 0TS
B.12 Equivalence and/Or COMMIONccccirereriaeriesieseesie e seesseseesee e esessessessesbesaesaesbesaeseessesseseessenseneeneens
B.13 END SEBIEITIENL ..oveviiieeiiieiesieisteeetesestesteteseesesaesesaesessesessesessessssessesessesessesessesessessssesessessssensssensesessases

Table of Contents

[o 1 = Lo TSSO 218
B.15 EqQUIVAIENCEA VaITADIES ..ottt et ettt st b e bbb e 219
B.16 EXPONENTIBLIONeuvivieetiieiiiteiest ettt ettt sttt sttt s b b s bt e bt e bt sb e s e e e s e b e e b ene b e e ens 219
T o N S - = 107 o | ST 220
0 . T 0 PSR 220
B.19 GOTO and ASSIGN SEAEMENESooveiiieirieieierere sttt et et et 223
B.20 HOHENTN CONSLBNESceueeeereeireseereieesesre st 223
B.2L IF SEAEEMENLSveeereeerereere vt st r e e r e ne s e sr e e e e R e e r e e reneereneereneerennene e 223
BL22 1O LISES ueeteteiresteteeses ettt b et R e R R Rt R Rt R n s 224
B.23 IMPLICIT SEBEMENLSvcviuiirieieieiresietetses ettt sttt b et b b bt e st b et ne b b en e e nnes 226
B.24 INPUL/OULPUL ...ttt stttk e bt e b bt e bbb b b e et b et et 226
B.25 Program TEMMINGLONc.coeiieieieieeeeeiene sttt b e b b sbe b sbesbesee s et e e e e e e eneenes 231
B.26 Library ROULINESc.ccoiiiitieitireet ettt b bbbt a et b b s bbb e s 232
B.27 MIXEU MOUEeeiiiiciee ettt sttt sttt b et e b b et e et e b ettt e e e es 233
B.28 MEMOIY OVEITIOWviiitiiitiieeieree ettt b bbbt b et e s 234
B.29 Par@NtNESESeiuiiieiieiiisiisesieseeee et et st st s st ee st e e st et e e et eneesenre e aeetente e et e e st et et e e e e enennennennens 235
B.30 PRAGMA COMPIIEr DIFECHIVE ...uveeeeeeeeeeeeeeeese e s ste st sie st e e se e ne s e eseesessessessessesseseensessessens 236
B.31 RETURN SEEEMENLceiviveriiireriereiresrereeese st n s s sn s snenene s 237
B.32 SAVE SEALEIMENEcveveiiiiiteieesisieiei ettt st e e bt b bt se bbb e b b s 237
B.33 StAEMENE FUNCLIONScviiieiieiisieest et 237
B.34 SOUICE MENAJEIMENToeiieiiiiiiete ettt et st b et e s b e e b e sb e e b e ebeeseeaeensesneesreenneseeennens 238
B.35 Structured Programming FEALUIESco.coeiereeieieeeeeesiese ettt e se e se e e e sre b saesne 239
B.36 SUDDIOGIAIMS ...cviueitiietereetere et sttt sttt sttt sttt b et bt b e st b e seeb e seeb e se e bt seebese e st s b ene e b e e e b e e ebeneebeneebesnebennas 243
B.37 SUDSCIiPLS 8N SUDSIIINGS ...c.vevieeiiriiiriiieieieiesie ettt bbbt 245
B.38 Statements and Statement NUMDESS ..ot 246
B.39 SUDSCHIPLEd VATADIES ...ttt 249
O IS 1= Q= o S 250
B.41 TYPE STAEMENTS ...cveiieieiceeeee et et e e s e s et e s et e eseesbeeseesseensesseesesneesaesneesaeensessennsensenns 252
B.A2 VATADIE NAIMES ..ottt etttk b ettt b e 253

Open Watcom FORTRAN 77 User’s
Guide

Open Watcom FORTRAN 77 User’s Guide

1 About This Manual

Thismanual contains the following chapters:

Chapter 1 —

Chapter 2 —

Chapter 3—

Chapter 4 —

Chapter 5—

Chapter 6 —

Chapter 7 —

Chapter 8 —

Chapter 9 —

"About This Manual".
This chapter provides an overview of the contents of this guide.

"Open Watcom FORTRAN 77 Compiler Options' on page 5.

This chapter also provides a summary and reference section for the valid compiler options.

"The Open Watcom FORTRAN 77 Compiler" on page 23.

This chapter describes how to compile an application from the command line, describes
compiler environment variables, provides examples of command line use of the compiler,
and and describes compiler diagnostics.

"The Open Watcom FORTRAN 77 Libraries' on page 29.

This chapter describes the Open Watcom FORTRAN 77 run-time libraries.

"Open Watcom FORTRAN 77 Compiler Directives' on page 33.

This chapter describes compiler directives including INCLUDE file processing.

"Open Watcom FORTRAN 77 File Handling" on page 39.

This chapter describes run-time file handling.

"The Open Watcom F77 Subprogram Library" on page 59.

This chapter describes subprograms available for special operations.

"Memory Models' on page 97.

This chapter describes the Open Watcom FORTRAN 77 memory models (including code
and data models), the tiny memory model, the mixed memory model, linking applications
for the various memory models, creating a tiny memory model application, and memory
layout in an executable.

"Assembly Language Considerations' on page 101.

This chapter describes issues relating to 16-bit interfacing such as parameter passing
conventions.

Chapter 10 — "Pragmas’ on page 113.

This chapter describes the use of pragmas with the 16-bit compilers.

About This Manual

3

Open Watcom FORTRAN 77 User’s Guide

4

Chapter 11 — "Memory Models' on page 145.
This chapter describes the Open Watcom FORTRAN 77 memory models (including code
and data models), the flat memory model, the mixed memory model, linking applications
for the various memory models, and memory layout in an executable.

Chapter 12 — "Assembly Language Considerations" on page 149.

This chapter describes issues relating to 32-bit interfacing such as parameter passing
conventions.

Chapter 13— "Pragmas" on page 163.
This chapter describes the use of pragmas with the 32-bit compilers.
Appendix A. — "Use of Environment Variables' on page 197.

This appendix describes all the environment variables used by the compilers and related
toals.

Appendix B. — "Open Watcom F77 Diagnostic Messages' on page 207.

This appendix lists all of the Open Watcom F77 diagnostic messages with an explanation
for each.

About This Manual

2 Open Watcom FORTRAN 77 Compiler Options

Source files can be compiled using either the IDE, command-line compilers or IBM WorkFrame/2. This
chapter describes all the compiler options that are available.

For information about compiling applications from the IDE, see the Open Watcom Graphical Tools User’s
Guide.

For information about compiling applications from the command line, see the chapter entitled "The Open
Watcom FORTRAN 77 Compiler" on page 23.

For information about creating applications using IBM WorkFrame/2, refer to IBM’s OS/2 Programming
Guide for more information.

2.1 Open Watcom F77 Options Summary

In this section, we present a terse summary of the Open Watcom F77 options. The next section describes
these options in more detail. This summary is displayed on the screen by simply entering the "WFC" or
"WFC386" command with no arguments.

Compiler options: Description:

0 (16-bit only) assume 8088/8086 processor
1 (16-bit only) assume 188/186 processor

2 (16-bit only) assume 286 processor

3 assume 386 processor

4 assume 486 processor

5 assume Pentium processor

6 assume Pentium Pro processor

[NOJALign align COMMON segments
[NOJAUtomatic all local variables on the stack

BD (32-bit only) dynamic link library

BM (32-bit only) multithread application
[NO]BOunds generate subscript bounds checking code
BW (32-bit only) default windowed application
[NOJCC carriage control recognition requested for output devices such as the console
CHlnese Chinese character set

[NO]COde constants in code segment

D1 include line # debugging information

D2 include full debugging information
[NO]DEBug perform run-time checking

DEFine=<macro>
[NO]DEPendency

[NO]DEScriptor
Dl sk

define macro

generate file dependencies

pass character arguments using string descriptor
write listing file to disk

Open Watcom F77 Options Summary

Open Watcom FORTRAN 77 User’s Guide

DT=<size>
[NOJERrorfile
[NOJEXPIicit

[NOJEXtensions

[NOJEZ

FO=<obj_default>

[NOJFORmat
FPC

FPD

FPI

FPI187

FPR

FP2

FP3

FP5

FP6

[NOJF Sfloats
[NO]GSfloats
HC

HD

HW
[NOJINCList

INCPath=[d:]path

[NO]I Promote
Japanese
KOrean
[NO]JLFwithff
[NO]JLIBinfo
[NOJLI st
[NO]MANgle
MC

MF

MH

ML

MM

MS

OB

oBP

oC

oD

ODO

OF

OH

ol

OK

oL

OL+

oM

ON

oP

OR

oS

set data threshold

generate an error file

declare type of all symbols

iSSue extension messages

(32-bit only) Easy OMF-386 object files

set default object file name

relax format type checking

generate callsto floating-point library

enable generation of Pentium FDIV bug check code
generate inline 80x87 instructions with emulation
generate inline 80x87 instructions
floating-point backward compatibility

generate inline 80x87 instructions

generate inline 80387 instructions

optimize floating-point for Pentium

optimize floating-point for Pentium Pro

FS not fixed

GSnot fixed

Codeview debugging information

DWARF debugging information

Open Watcom debugging information

write content of INCLUDE filesto listing
[d:]path... path for INCLUDE files

promote INTEGER* 1 and INTEGER* 2 argumentsto INTEGER*4
Japanese character set

Korean character set

LF with FF

include default library information in object file
generate alisting file

mangle COMMON segment names

(32-bit only) compact memory model

(32-bit only) flat memory model

(16-bit only) huge memory model

large memory model

medium memory model

(32-bit only) small memory model

(32-bit only) base pointer optimizations

branch prediction

do not convert "call" followed by "ret" to "jmp"
disable optimizations

DO-variables do not overflow

always generate a stack frame

enable repeated optimizations (longer compiles)
generate statement functionsin-line

enable control flow prologues and epilogues
perform loop optimizations

perform loop optimizations with loop unrolling
generate floating-point 80x87 math instructionsin-line
numeric optimizations

precision optimizations

instruction scheduling

optimize for space

Open Watcom F77 Options Summary

Open Watcom FORTRAN 77 Compiler Options

oT
OX

PRint
[NO]Quiet
[NOJReference
[NOJRESource
[NO]SAve
[NOJsC
[NO]SEpcomma
[NOJSG
[NOJSHort
[NOJSR
[NO]SSfloats
[NO]STack
[NO]SYntax
[NOJTErminal
[NO]TRace
TYpe
[NOJWArnings
[NOJwILd
[NOJWIndows
[NO]XFloat
[NO]XLine

optimize for time

equivalent to OBP, ODO, Ol, OK, OL, OM, OR, and OT (16-bit) or OB, OBP, ODO,

Ol, OK, OL, OM, OR, and OT (32-hit)
writelisting file to printer

operate quietly

issue unreferenced warning

messages in resource file

SAVE local variables

(32-bit only) stack calling convention
allow comma separator in formatted input
(32-bit only) automatic stack growing

set default INTEGER/LOGICAL sizeto 2/1 bytes
save/restore segment registers

(16-bit only) SSis not default data segment
generate stack checking code

syntax check only

messages to terminal

generate code for run-time traceback
write listing file to terminal

iSsue warning messages

relax wild branch checking

(16-bit only) compile code for Windows
extend floating-point precision

extend line length to 132

A summary of the option defaults follows:

0

5

ALign
NOAUtomatic
NOBOunds
NOCC
NOCOde
NODEBug
DEPendency
DEScriptor
DT=256
ERrorfile
NOEXPIlicit
NOEXtensions
NOEZ
NOFORmat
FPI

FP2

FP3

NOFPD
FSfloats
NOF Sfloats
GSfloats
NOINCList
NOI Promote

16-hit only
32-bit only

32-bit only
16-bit only
32-bit only

all but flat memory model
flat memory model only

Open Watcom F77 Options Summary

7

Open Watcom FORTRAN 77 User’s Guide

NOLFwithff

LIBinfo

NOLI St

NOMAnNgle

ML 16-bit only
MF 32-bit only
NOQuiet

Reference

NORESource

NOSAve

NOSC 32-bit only
NOSEpcomma

NOSG 32-bit only
NOSHort

NOSR

NOSSfloats 16-bit only
NOSTack

NOSYntax

TErminal

NOTRace

WArnings

NOWILd

NOWI ndows 16-bit only
NOXFloat

NOXLine

2.2 Compiler Options

8

Compiler options may be entered in one of two places. They may be included in the optionslist of the
command line or they may be included as comments of the form "C$option", "c$option", or "*$option” in
the source input stream. The compiler recognizes these special comments as compiler directives.

Some options may only be specified in the options list of the command line. Unless otherwise stated, an
option can appear on the command line only. We also indicate what the default is for an option or group of
options.

When specifying optionsin the sourcefile, it is possible to specify more than one option on aline. For
example, the following source line tells Open Watcom F77 to not issue any warning or extension messages.

Example:
*$nowar n noext

Note that only the first option must contain the "*$", "C$", or "c$" prefix.

Short forms are indicated by upper case letters.

Option: Description:

0 (16-bit only) Open Watcom F77 will make use of only 8088/8086 instructionsin the

generated object code. The resulting code will run on 8086 and all upward compatible
processors. Thisisthe default option for the 16-bit compiler.

Compiler Options

Open Watcom FORTRAN 77 Compiler Options

[NOJALign

(16-bit only) Open Watcom F77 will make use of 188/186 instructions in the generated
object code whenever possible. The resulting code probably will not run on 8086
compatible processors but it will run on 186 and all upward compatible processors.

(16-bit only) Open Watcom F77 will make use of 286 instructionsin the generated object
code whenever possible. The resulting code probably will not run on 8086 or 186
compatible processors but it will run on 286 and all upward compatible processors.

Open Watcom F77 will assume a 386 processor and will generate instructions based on 386
instruction timings.

Open Watcom F77 will assume a 486 processor and will generate 386 instructions based on
486 instruction timings. The code is optimized for 486 processors rather than 386
processors.

Open Watcom F77 will assume a Pentium processor and will generate 386 instructions
based on Pentium instruction timings. The code is optimized for Pentium processors rather
than 386 processors. Thisisthe default option for the 32-bit compiler.

Open Watcom F77 will assume a Pentium Pro processor and will generate 386 instructions
based on Pentium Pro instruction timings. The codeis optimized for Pentium Pro
processors rather than 386 processors.

The "aign" option tells the compiler to allocate all COMMON blocks on paragraph
boundaries (multiples of 16). If you do not want COMMON blocks to be aligned, specify
"noalign”. The defaultis"align”.

[NOJAUtomatic

BD

BM

[NO]BOunds

BW

[NOJCC

The "automatic" option tells the compiler to allocate al local variables, including arrays, on
the stack. Thisis particularly useful for recursive functions or subroutines that require a
new set of local variables to be allocated for each recursive invocation. Note that the
"automatic" option may significantly increase the stack requirements of your application.

Y ou can increase your stack size by using the "STACK" option when you link your
application.

(32-bit only, OS/2 and Windows NT only) This option causes the compiler to imbed the
appropriate DLL library name in the object file and to include the appropriate DLL
initialization code sequence when the application is linked.

(32-bit only, OS/2 and Windows NT only) This option causes the compiler to imbed the
appropriate multi-thread library name in the object file.

The "bounds" option causes the generation of code that performs array subscript and
character substring bounds checking. Note that this option may significantly reduce the
performance of your application but is an excellent way to eliminate many programming
errors. The default option is"nobounds".

(OS2, Windows 3.x, and Windows NT only) This option causes the compiler to import a
special symbol so that the default windowing library codeis linked into your application.

The "cc" option specifies that the output to devices contains carriage control information

that isto be interpreted appropriately for the output device (e.g., console device). ASA
carriage control characters are converted to ASCII vertical spacing control characters.

Compiler Options 9

Open Watcom FORTRAN 77 User’s Guide

CHInese

[NO]COde

D1

D2

[NO]DEBug

Note that a blank carriage control character will automatically be generated for list-directed
output and will be interpreted as a single-line spacing command.

This option is part of the national language support provided by Open Watcom F77. It
instructs the compiler that the source code contains characters from the Traditional Chinese
character set. Thisincludes double-byte characters. This option enables the use of Chinese
variable names. The compiler’s run-time system will ensure that character strings are not
split in the middle of a double-byte character when output spans record boundaries (as can
happen in list-directed output).

The "code" option causes the code generator to place character and numeric constantsin
code segment. Data generated for FORMAT statements will also be placed in the code
segment. The default option is "nocode".

Line number information is included in the object file ("type 1 debugging information").
This option provides additional information to Open Watcom Debugger (at the expense of
larger object files and executable files). Line numbers are handy when debugging your
application with Open Watcom Debugger.

In addition to line number information, local symbol and data type information is included
in the object file ("type 2 debugging information™). Although global symbol information
can be made available to Open Watcom Debugger through a Open Watcom Linker option,
local symbol and typing information must be requested when the source file is compiled.
This option provides additional information to Open Watcom Debugger (at the expense of
larger object files and executable files). However, it will make the debugging chore
somewhat easier.

The "debug" option causes the generation of run-time checking code. Thisincludes
subscript and substring bounds checking as well as code that allows a run-time traceback to
be issued when an error occurs. The default option is "nodebug".

DEFine=<macro>

This option is equivalent to specifying the following "define" compiler directive.
*$def i ne <macro>

The macro specified by the "define" option or compiler directive becomes defined. The
definition status of the specified macro can be checked using the "ifdef", "ifndef",
"elseifdef" or "elseifndef" compiler directives. This allows source code to be conditionally
compiled depending on the definition status of the macro.

Themacro i 86__ isaspecia macro that is defined by the compiler and identifies the
target as a 16-bit Intel 80x86 compatible environment.

Themacro 386 __ isaspecial macro that is defined by the compiler and identifies the
target as a 32-bit Intel 386 compatible environment.

Themacro __stack_conventi ons__ isaspecia macro that is defined by the 32-bit
compiler when the "sc" compiler option is specified to indicate that stack calling
conventions are to be used for code generation.

Themacro __ f pi __ isaspecial macro that is defined by the compiler when one of the
following floating-point optionsis specified: "fpi" or "fpi87".

10 Compiler Options

Open Watcom FORTRAN 77 Compiler Options

[NO]DEPendency

The "dependency" option specifies that file dependencies are to be included in the object
file. Thisisthe default option. This option is used by the Open Watcom Integrated
Development Environment to determine if an object file is up-to-date with respect to the
source files used to build it. Y ou can specify the "nodependency™ option if you do not want
file dependencies to be included in the object file.

[NO]DEScriptor

Dlsk

DT=<size>

The "descriptor” option specifies that string descriptors are to be passed for character
arguments. Thisisthe default option. Y ou can specify the "nodescriptor" option if you do
not want string descriptors to be passed for character arguments. Instead, the pointer to the
actual character data and the length will be passed as two arguments. The arguments for
the length will be passed as additional arguments following the normal argument list. For
character functions, the pointer to the data and the length of the character function will be
passed as the first two arguments.

When this option is used in conjunction with the "list" option, the listing file is written to
the current directory of the default disk. The listing file name will be the same asthe
source file name but the file extension will be . | st . By default, listing files are written to
disk. The"disk" option will override any previoudly specified "type" or "print" option.

The "data threshold" option is used to set the minimum size for data objects to be included
in the default data segment. Normally, all data objects smaller than 256 bytesin size are
placed in the default data segment. When thereis alarge amount of static data, it is often
useful to set the data threshold size so that all objects of the specified size or larger are
placed into another segment. For example, the option:

- DT=100

causes all data objects of 100 bytes or more to be placed in afar data segment. The "data
threshold" only applies to the large and huge memory models where there can be more than
one data segment. The default datathreshold valueis 256.

[NOJERrorfile This option is used to control whether error messages are output to a separate error file.

[NOJEXPlicit

Theerror fileisadisk file of type . er r and isproduced if any diagnostic messages are
issued by the compiler. Specifying "noerrorfile" prevents the creation of an error file. By
default, an error fileis created.

If an error file exists before compilation begins, it will be erased. 1f no diagnostic messages
are produced then an error file will not be created even though the "errorfile" optionis
selected. This option has no effect on the inclusion of diagnostic messagesin the source
listing file or the production of diagnostic messages on the screen.

The "explicit" option requires the type of al symbolsto be explicitly declared. An error
message will beissued by the compiler if a symbol that does not appear in atype
declaration statement is encountered. Specifying this option is equivalent to using the
IMPLICIT NONE statement. By default, symbols do not have to be explicitly typed.

[NOJEXtensions

This option is used to control the printing of extension messages. This option may be
specified on the command line or it may be placed anywhere in the source input stream. In
a source file, the option appears as a comment line and takes the following form.

*$[NO| EXt ensi ons

Compiler Options 11

Open Watcom FORTRAN 77 User’s Guide

The "extensions" option enables the printing of extension messages, while "noextensions"
disables the printing of these messages. By default, extension messages are not printed.

[NOJEZ (32-hit only) Open Watcom F77 will generate an object file in Phar Lap Easy OMF-386
(object module format) instead of the default Microsoft OMF. The default option is
"noez".

FO=<obj_default>
By default, the object file name is constructed from the source file name. Using the "fo"
option, the default object file drive, path, file name and extension can be specified.

Example:
Cwf c386 report -fo=d:\prograns\obj\

A trailing "\" must be specified for directory names. If, for example, the option was

specified as "-fo=d:\programs\obj" then the object file would be called
D: \ PROGRANMS\ OBJ. OBJ.

A default extension must be preceded by a period (".").

Example:
Cwf c386 report -fo=d:\prograns\obj\.dbo

[NOJFORmat The "format" option suppresses the run-time checking that ensures that the type of an
input/output list item matches the format edit descriptor in aformat specification. This
allows an input/output list item of type INTEGER to be formatted using an F, E or D edit
descriptor. It aso allows an input/output list item of a floating-point type to be formatted
using an | edit descriptor. Normally, this generates an error. The "format" option is
particularly useful for applications that use integer arrays to store integer and floating-point
data. The default option is"noformat".

FPC All floating-point arithmetic is done with calls to a floating-point emulation library. This
option should be used when speed of floating-point emulation is favoured over code size.

FPI (16-bit only) Open Watcom F77 will generate in-line 80x87 numeric data processor
instructions into the object code for floating-point operations. Depending on which library
the code is linked against, these instructions will be left asis or they will be replaced by
special interrupt instructions. In the latter case, floating-point will be emulated if an 80x87
isnot present. Thisisthe default floating-point option if noneis specified.

(32-hit only) Open Watcom F77 will generate in-line 80x87 numeric data processor
instructions into the object code for floating-point operations. When any module
containing floating-point operations is compiled with the "fpi" option, coprocessor
emulation software will beincluded in the application when it islinked. Thus, an 80x87
coprocessor need not be present at run-time. Thisisthe default floating-point option if
none is specified.

FPI87 (16-bit only) Open Watcom F77 will generate in-line 80x87 numeric data processor
instructions into the object code for floating-point operations. An 80x87 coprocessor must
be present at run-time. If the"2" option is used in conjunction with this option, Open
Watcom F77 will generate 287/387 compatible instructions; otherwise Open Watcom F77
will generate 8087 compatible instructions.

12 Compiler Options

Open Watcom FORTRAN 77 Compiler Options

FP2

FP3

FP5

FP6

(32-bit only) Open Watcom F77 will generate in-line 80x87 numeric data processor
instructions into the object code for floating-point operations. When the "fpi87" option is
used exclusively, coprocessor emulation software is not included in the application when it
islinked. A 80x87 coprocessor must be present at run-time.

16-bit Notes:

1. When any modulein an application is compiled with a particular "floating-point”
option, then all modules must be compiled with the same option.

2. Different math libraries are provided for applications which have been compiled
with a particular floating-point option. See the chapter entitled "The Open
Watcom FORTRAN 77 Libraries' on page 29.

32-bit Notes:

1. When any modulein an application is compiled with the "fpc" option, then all
modules must be compiled with the "fpc" option.

2. When any module in an application is compiled with the "fpi" or "fpi87" option,
then all modules must be compiled with one of these two options.

3. If you wish to have floating-point emulation software included in the
application, you should select the "fpi" option. A 387 coprocessor need not be
present at run-time.

4. Different math libraries are provided for applications which have been compiled
with a particular floating-point option. See the chapter entitled "The Open
Watcom FORTRAN 77 Libraries' on page 29.

Open Watcom F77 will generate in-line 80x87 numeric data processor instructions into the
object code for floating-point operations. For Open Watcom compilers generating 16-bit,
thisisthe default. For 32-bit applications, use this option if you wish to support those few
386 systems that are equipped with an 80287 numeric data processor ("fp3" isthe default
for Open Watcom compilers generating 32-bit code). However, for 32-bit applications, the
use of this option will reduce execution performance.

Open Watcom F77 will generate in-line 387-compatible numeric data processor
instructions into the object code for floating-point operations. For 16-bit applications, the
use of this option will limit the range of systems on which the application will run but there
are execution performance improvements.

Open Watcom F77 will generate in-line 387-compatible numeric data processor
instructions into the object code for floating-point operations. The sequence of
floating-point instructions will be optimized for greatest possible performance on the Intel
Pentium processor. For 16-bit applications, the use of this option will limit the range of
systems on which the application will run but there are execution performance
improvements.

Open Watcom F77 will generate in-line 387-compatible numeric data processor
instructions into the object code for floating-point operations. The sequence of
floating-point instructions will be optimized for greatest possible performance on the Intel
Pentium Pro processor. For 16-bit applications, the use of this option will limit the range of

Compiler Options 13

Open Watcom FORTRAN 77 User’s Guide

systems on which the application will run but there are execution performance
improvements.

[NOJFPD A subtle problem was detected in the FDIV instruction of Intel’s original Pentium CPU. In
certain rare cases, the result of a floating-point divide could have less precision than it
should. Contact Intel directly for more information on the issue.

As aresult, the run-time system startup code has been modified to test for afaulty Pentium.
If the FDIV instruction is found to be flawed, the low order hit of the run-time system
variable __ chi pbug will be set.

If the FDIV instruction does not show the problem, the low order bit will be clear. If the
Pentium FDIV flaw isaconcern for your application, there are two approaches that you
could take:

1. Youmay testthe__chi pbug variablein your codein al floating-point and
memory models and take appropriate action (such as display a warning message
or discontinue the application).

2. Alternately, you can use the "fpd" option when compiling your code. This
option directs the compiler to generate additional code whenever an FDIV
instruction is generated which tests the low order bit of __chi pbug and, if on,
calls the software workaround code in the math libraries. If the bit is off, an
in-line FDIV instruction will be performed as before.

If you know that your application will never run on a defective Pentium CPU, or your
analysis shows that the FDIV problem will not affect your results, you need not use the
"fpd" option.

FPR Use this option if you want to generate floating-point instructions that will be compatible
with version 9.0 or earlier of the compilers. For more information on floating-point
conventions see the sections entitled "Using the 80x87 to Pass Arguments" on page 138 and
"Using the 80x87 to Pass Arguments' on page 189.

[NOJFSfloats The "fsfloats" option enables the use of the FS segment register in the generated code. This
isthe default for all but the flat memory model. In the flat memory model, the default is
"nofsfloats’ (the FS segment register is not used in the generated code).

[NO]GSfloats The "gsfloats" option enables the use of the GS segment register in the generated code.
Thisisthe default. If you would like to prevent the use of the GS segment register in the
the generated code, specify the "nogsfloats" option.

HC The type of debugging information that isto be included in the object fileis"Codeview".
The default type of debugging information is"Dwarf" (HD). If you wish to use the
Microsoft Codeview debugger, then choose the "HC" option. When linking the
application, you must aso choose the appropriate Open Watcom Linker DEBUG directive.
See the Open Watcom Linker User’s Guide for more information.

HD The type of debugging information that isto be included in the object fileis"Dwarf". This
is the default type of debugging information. If you wish to use the Microsoft Codeview
debugger, then choose the "HC" option. When linking the application, you must also
choose the appropriate Open Watcom Linker DEBUG directive. See the Open Watcom
Linker User’s Guide for more information.

14 Compiler Options

Open Watcom FORTRAN 77 Compiler Options

HW

[NOJINCList

The type of debugging information that isto be included in the object fileis"Open
Watcom". The default type of debugging information is"Dwarf" (HD). If you wish to use
the Microsoft Codeview debugger, then choose the "HC" option. When linking the
application, you must also choose the appropriate Open Watcom Linker DEBUG directive.
See the Open Watcom Linker User’s Guide for more information.

Thisoption is used to control the listing of the contents of INCLUDE filesto the listing
file. The"inclist" option enablesthe listing of INCLUDE files, while "noinclist" disables
the listing of thesefiles. The default option is"noinclist".

INCPath=[d:]path

[d:]path... Thisoption isused to specify directories that are to be searched for include files.
Each path is separated from the previous by a semicolon (";"). These directories are
searched in the order listed before those in the FINCL UDE environment variable.

[NO]IPromote The "ipromote" option causes the compiler to promote the INTEGER* 1 and INTEGER* 2

Japanese

KORean

[NOJL Fwithff

arguments of some INTEGER* 4 intrinsics without issuing an error diagnostic. Thisallows
code such as the following to be compiled without error:

Example:

Thisworks for the following intrinsic functions: ABS(), IABS(), DIM(), IDIM(), SIGN(),
ISIGN(), MAX(), AMAXO0(), MAXO(), MIN(), AMINO(), and MINO(). When the
"ipromote" option is specified, all integer arguments that are passed to these functions are
promoted to INTEGER* 4.

Thisoption is part of the national language support provided by Open Watcom F77. It
instructs the compiler that the source code contains characters from the Japanese character
set. Thisincludes double-byte characters. This option enables the use of Japanese variable
names. The compiler’s run-time system will ensure that character strings are not split in the
middle of a double-byte character when output spans record boundaries (as can happen in
list-directed output).

Thisoption is part of the national language support provided by Open Watcom F77. It
instructs the compiler that the source code contains characters from the Korean character
set. Thisincludes double-byte characters. This option enables the use of Korean variable
names. The compiler’s run-time system will ensure that character strings are not split in the
middle of a double-byte character when output spans record boundaries (as can happen in
list-directed output).

This option is used to control whether aline-feed character (LF=CHAR(10)) isto be
emitted before aform-feed character (FF=CHAR(12)) is emitted. This option appliesto
carriage control handling. Normally, the run-time system will emit only aform-feed
character to cause a page gject when the ASA control character "1" isfound in the first
column of arecord. The "Ifwithff" option will cause the run-time system to emit a
line-feed character and then aform-feed character.

Compiler Options 15

Open Watcom FORTRAN 77 User’s Guide

[NOJLIBinfo

[NOJLISt

[NO]MANgle

MC

MF

MH

ML

The "Ifwithff" option will have little effect on printers, but it will change the appearance of
output to the screen by eliminating overwritten text when form-feed characters are not
handled by the output device. The default option is "nolfwithff".

Thisoption is used to control the inclusion of default library information in the object file.
The "libinfo" option enables the inclusion of default library information, while "nolibinfo"
disables the inclusion of thisinformation. The default option is"libinfo".

This option may be specified on the command line or it may be placed anywhere in the
source input stream. On the command line, this option is used to control the creation of a
listing file. The"list" option causes alisting file to be created while "nolist" requests that
no listing file be created. The default option is"nolist".

In a source file, the option appears as a comment line and takes the following form.
*$[NQ LI St

Specifying *$LIST causes the source lines that follow this option to be listed in the source
listing file while * $NOLIST disables the listing of the source lines that follow. This option
cannot appear on the same source line with other options.

Thisoption is used to alter COMMON block segment and class names.

Example:
REAL R, S
COMON /BLK/ R, S
END

For anamed COMMON block called "BLK", the default convention is to name the
segment "BLK" and the class "BLK".

BLK SEGVENT PARA COWMMON USE32 ' BLK

When you use the "mangle” option, the segment is named "_COMMON_BLK" and the
classisnamed"_COMMON_BLK_DATA".

_ COMMVON_BLK SEGMVENT PARA COMMON USE32 ' _COMMON_BLK_DATA'

(32-bit only) The "compact" memory model (small code, big data) is selected. The various
models supported by Open Watcom F77 are described in the chapters entitled "Memory
Models' on page 97 and "Memory Models" on page 145.

(32-bit only) The "flat" memory model (code and data up to 4 gigabytes) is selected. The
various models supported by Open Watcom F77 are described in the chapters entitled
"Memory Models’ on page 97 and "Memory Models’ on page 145. Thisisthe default
memory model option.

(16-bit only) The "huge" memory model (big code, huge datd) is selected. The various
models supported by Open Watcom F77 are described in the chapters entitled "Memory
Models' on page 97 and "Memory Models" on page 145.

The "large" memory model (big code, big data) is selected. The various models supported
by Open Watcom F77 are described in the chapters entitled "Memory Models' on page 97
and "Memory Models" on page 145. Thisisthe default 16-bit memory model option.

16 Compiler Options

Open Watcom FORTRAN 77 Compiler Options

MM

MS

OB

OBP

ocC

oD

OoDO

OF

The "medium” memory model (big code, small data) is selected. The various models
supported by Open Watcom F77 are described in the chapters entitled "Memory Models'
on page 97 and "Memory Models' on page 145.

(32-bit only) The "small" memory model (small code, small data) is selected. The various
models supported by Open Watcom F77 are described in the chapters entitled "Memory
Models' on page 97 and "Memory Models" on page 145.

(32-bit only) This option allows the use of the ESP register as a base register to reference
local variables and subprogram arguments in the generated code. This can reduce the size
of the prol ogue/epilogue sequences generated by the compiler thus improving overall
performance. Note that when this option is specified, the compiler will abort when thereis
not enough memory to optimize the subprogram. By default, the code generator uses more
memory-efficient algorithms when alow-on-memory condition is detected.

This option causes the code generator to try to order the blocks of code emitted such that
the "expected" execution path (as determined by a set of simple heuristics) will be straight
through, with other cases being handled by jumps to separate blocks of code "out of line".
Thiswill result in better cache utilization on the Pentium. |f the heuristics do not apply to
your code, it could result in a performance decrease.

This option may be used to disable the optimization wherea"CALL" followed by a"RET"
(return) is changed into a"JMP" (jump) instruction. This option isrequired if you wish to

link an overlayed program using the Microsoft DOS Overlay Linker. The Microsoft DOS

Overlay Linker will create overlay callsfor a"CALL" instruction only. This option is not

required when using the Open Watcom Linker. Thisoption is not assumed by default.

Non-optimized code sequences are generated. The resulting code will be much easier to
debug when using Open Watcom Debugger. By default, Open Watcom F77 will select
"od" if "d2" is specified.

Optimized DO-loop iteration code is generated. Caution should be exercised with the use
of this option since the case of an iterating value overflowing is assumed to never occur.
The following example should not be compiled with this option since the terminal value of
I X wraps from a positive integer to a negative integer.

Example:

I NTEGER*2 | X
DO | X=32766, 32767

ENDDO

Thevalues of | X are 32766, 32767, -32768, -32767, ... since | XisINTEGER*2 (a 16-hit
signed value) and it never exceeds the terminal value.

This option selects the generation of traceable stack frames for those functions that contain
calls or require stack frame setup. To use Open Watcom's "Dynamic Overlay Manager"
(DOS only), you must compile all modules using the "of" option. For near functions, the
following function prologue sequence is generated.

16-hit:

Compiler Options 17

Open Watcom FORTRAN 77 User’s Guide

push BP
mov BP, SP

32-hit:

push EBP
nmov EBP, ESP

For far functions, the following function prologue sequence is generated.

16-bit:
inc BP
push BP
mov BP, SP
32-hit:
inc EBP
push EBP

nmov EBP, ESP

The BP/EBP value on the stack will be even or odd depending on the code model. For
16-bit DOS systems, the Dynamic Overlay Manager uses thisinformation to determine if
the return address on the stack is a short address (16-bit offset) or long address (32-bit
segment:offset). This option is not assumed by default.

OH This option enables repeated optimizations (which can result in longer compiles).

0] This option causes code for statement functions to be generated in-line.

OK This option enables flowing of register save (from prologue) down into the subprogram’s
flow graph.

oL L oop optimizations are performed. This includes moving loop-invariant expressions

outside the loops. Thisoption is not assumed by default.

OL+ L oop optimizations are performed including loop unrolling. Thisincludes moving
loop-invariant expressions outside the loops and can cause loops to be turned into
straight-line code. This option is not assumed by default.

oM Generate inline 80x87 code for math functions like sin, cos, tan, etc. If thisoption is
selected, it is the programmer’ s responsibility to make sure that arguments to these
functions are within the range accepted by the f si n, f cos, etc. instructions since no
run-time check is made.

If the "ot" option is also specified, the exp function is generated inline aswell. Thisoption
is not assumed by default.

ON This option alows the compiler to perform certain numerical calculationsin amore
efficient manner. Consider the following example.

Z1
Z2

X1/Y
X2 1Y

18 Compiler Options

Open Watcom FORTRAN 77 Compiler Options

OP

OR

0S

oT

OX

PRint

If the"on" option is specified, the code generator will generate code that is equivalent to
the following.

T=1/Y
Z1 = X1 * T
Z2 = X2 * T

Since floating-point multiplication is more efficient that division, the code generator
decided to first compute the reciprocal of Y and then multiply X1 and X2 by the reciprocal
of Y.

Note that this optimization may produce less dightly different results since some, for
certain values, precision islost when computing the reciprocal. By using this option, you
areindicating that you are willing to accept the lossin precision for the gainin
performance.

By default, floating-point variables may be cached in 80x87 floating-point registers across
statements when compiling with the "fpi" or "fpi87" options. Floating-point register
temporaries use 64 bits of precision in the mantissa whereas single and double-precision
variables use fewer bits of precision in the mantissa. The use of this option will force the
result to be stored in memory after each FORTRAN statement is executed. Thiswill
produce less accurate but more predictable floating-point results. The code produced will
also be less efficient when the "op" option is used.

Example:
XMAX = X + Y/ Z
YMAX = XMAX + Q

When the "op" option is used in conjunction with the "fpi* or "fpi87" option, the compiler's
code generator will update XMAX before proceeding with the second statement. In the
second statement, the compiler will reload XMAX from memory rather than using the result
of the previous statement. The effect of the "op" option on the resulting code can be seen
by the increased code size statistic as well as through the use of the Open Watcom
Disassembler. Thisoption is not assumed by default.

This option enables reordering of instructions (instruction scheduling) to achieve better
performance on pipelined architectures such asthe 486. Selecting this option will make it
dightly more difficult to debug because the assembly language instructions generated for a
source statement may be intermixed with instructions generated for surrounding statements.
This option is not assumed by default.

Space is favoured over time when generating code (smaller code but possibly slower
execution). By default, Open Watcom F77 selects a balance between "space” and "time".

Timeisfavoured over space when generating code (faster execution but possibly larger
code). By default, Open Watcom F77 selects a balance between "space" and "time".

Specifying the "ox" option is equivalent to specifying the "ob" (32-bit only), "obp", "odo",
"oi", "ok", "ol", "om", "or", and "ot" options.

Thisoption is used to direct the listing file to the printer (device name "PRN") instead of

thedisk. The"print" option will override any previously specified "type" or "disk" option.
The default isto create alisting file on the disk.

Compiler Options 19

Open Watcom FORTRAN 77 User’s Guide

[NOJQuiet The"quiet" option suppresses the banner and summary information produced by the
compiler. Only diagnostic messages will be displayed. The default option is"noquiet".

[NO]Reference
When the "reference” option is specified, warning messages will beissued for all
unreferenced symbols. In a source file, the option appears as a comment line and takes the
following form.

*$[N Ref er ence

This option is most useful when used in an include file that isincluded by several
subprograms. Consider an include file that defines many parameter constants and only a
few are referenced by any one subprogram. If thefirst line of theincludefileis

*$nor ef er ence

and thelast lineis

*$r ef erence

warning messages for all unused parameter constants in the include file would be
suppressed. The default option is "reference”.

[NOJRESource
The "resource" option specifies that the run-time error messages are contained as resource
information in the executable file. All messageswill be extracted from the resource area of
the executabl e file when they are required; no messages will be linked with the application.
The default option is "noresource”.

[NO]SAve The "save" option is used to instruct Open Watcom F77 to "save" all local variables of
subprograms. All local variables are treated as if they had appeared in FORTRAN 77
SAVE statements. By default, local variables are not saved unless named in a SAVE
statement (i.e., "nosave” is the default option).

[NOJSC (32-bit only) If the "sc" option is used, Open Watcom F77 will pass all arguments on the
stack. The resulting code will be larger than that which is generated for the register method
of passing arguments. The default optionis"nosc".

[NO]SEpcomma
The "sepcomma’ option alows the comma (*,") to be used as field separator in formatted
input. Thusthe following code would work with the input described.

Example:
REAL R, S

READ(5,21) R S
PRINT *, R S

21 FORMAT(2F11.3)
END

Normally the following input would result in a run-time error message.

0.79,0.21

20 Compiler Options

Open Watcom FORTRAN 77 Compiler Options

[NO]SG

[NOJSHort

[NOJSR

[NO]SSfloats

[NO]STack

[NO]SYntax

(32-bit only) The"sg" option is useful for 32-bit OS/2 multi-threaded applications. It
requests the code generator to emit arun-time call at the start of any function that has more
than 4K bytes of automatic variables (variables located on the stack). Under 32-bit OS/2,
the stack is grown automatically in 4K pages using the stack "guard page" mechanism. The
stack consists of in-use committed pages topped off with a special guard page. A memory
reference into the 4K guard page causes OS/2 to grow the stack by one 4K page and to add
anew 4K guard page. Thisworks fine when thereislessthan 4K of automatic variablesin
afunction. When there is more than 4K of automatic data, the stack must be grown in an
orderly fashion, 4K bytes at atime, until the stack has grown sufficiently to accommodate
all the automatic variable storage regquirements.

The "stack growth” run-timeroutineiscalled __ GRO.
The default option is "nosgy".

The "short" option is used to instruct Open Watcom F77 to set the default INTEGER sizeto
2 bytes and the default LOGICAL sizeto 1 bytes. Asrequired by the FORTRAN 77
language standard, the default INTEGER size is 4 bytes and the default LOGICAL sizeis4
bytes. The default option is "noshort".

The s option instructs Open Watcom F77 to generate subprogram prologue and epilogue
seguences that save and restore any segment registers that are modified by the subprogram.
Caution should be exercised when using this option. If the value of the segment register
being restored matches the value of a segment that was freed within the subprogram, a
genera protection fault will occur in protected-mode environments. The default, "nosr”,
does not save and restore segment registers.

(16-bit only) The "ssfloats' option specifies that the segment register SS does not
necessarily point to the default data segment. The "ssfloats" option must be specified when
compiling amodule that is part of an OS/2 multi-threaded application or dynamic link
library. By default, it is assumed that the SS segment register contains the segment address
of the default data segment (i.e., "nossfloats’).

If "stack™ is specified, Open Watcom F77 will emit code at the beginning of every
subprogram that will check for the "stack overflow" condition. By default, stack overflow
checking is omitted from the generated code (" nostack™).

If "syntax" is specified, Open Watcom F77 will check the source code only and omit the
generation of object code. Syntax checking, type checking, and so on are performed as
usual. By default, code is generated if there are no source code errors (i.e., "nosyntax” is
the default).

[NOJTErminal The "notermina” option may be used to suppress the display of diagnostic messages to the

[NO]TRace

TYpe

screen. By default, diagnostic messages are displayed.

The "trace" option causes the generation of code that allows atraceback to be issued when
an error occurs during the execution of your program. The default option is "notrace".

Thisoption is used to direct the listing file to the terminal (device name"CON") instead of
thedisk. The"type" option will override any previously specified "print" or "disk" option.
The default isto create alisting file on the disk.

[NOJWArnings

This option is used to control the printing of warning messages. By default, warning

Compiler Options 21

Open Watcom FORTRAN 77 User’s Guide

22

[NOJwILd

[NOJWIndows

[NO]XFloat

[NO]Xline

messages are printed. This option may be specified on the command line or it may be
placed anywhere in the source input stream. In asource file, the option appears as a
comment line and takes the following form.

*$[N WAr ni ngs

The "warnings" option enables the printing of warning messages, while "nowarnings'
disables the printing of these messages.

The "wild" option suppresses the compile-time checking that normally causes an error to be
issued when an attempt is made to transfer control into ablock structure from outside the
block structure and vice versa. For example, this option will allow atransfer of control into
an IF-block from outside the IF-block (which is normally prohibited). The default optionis
"nowild".

Extreme caution should be exercised when using this option. For example, transfer of
control into a DO-loop from outside the DO-loop can cause unpredictable results. This
programming style is not encouraged by this option. The option has been made available
so that existing programs that do not adhere to the branching restrictions imposed by the
FORTRAN 77 standard (i.e. mainframe applications that are being ported to the PC
environment), can be compiled by Open Watcom FORTRAN 77.

(16-bit only) The "windows" option causes the compiler to generate the prologue/epilogue
code sequences necessary for use in Microsoft Windows applications. The default option is
"nowindows".

The "xfloat" option specifiesthat all REAL variables are treated as if they had been
declared as "DOUBLE PRECISION". This effectively increases the precision of REAL
variables. Note that the "xfloat" option has implications on the alignment of variablesin
common blocks. The default option is "noxfloat".

The"xline" option informs the Open Watcom F77 compiler to extend the last column of the
statement portion of alineto column 132. The default is 72.

Compiler Options

3 The Open Watcom FORTRAN 77 Compiler

This chapter describes the following topics:

» Command line syntax (see "Open Watcom FORTRAN 77 Command Line Format")

* Environment variables used by the compilers (see "WFC/WFC386 Environment Variables' on page

24)

» Examples of command line syntax (see "Open Watcom FORTRAN 77 Command Line Examples"
on page 24)

* Interpreting diagnostic messages (see "Compiler Diagnostics' on page 25)

* Include file handling (see "Open Watcom FORTRAN 77 INCLUDE File Processing" on page 27)

3.1 Open Watcom FORTRAN 77 Command Line Format

The formal Open Watcom FORTRAN 77 command line syntax is shown below.

WFC [optiong] [d:][path]filename].ext] [options]
WFC386 [options] [d:][path]filename].ext] [options]

The square brackets [] denote items which are optional.

WFC
WFC386

d:

path

filename

ext

options

is the name of the 16-bit Open Watcom F77 compiler.
is the name of the 32-bit Open Watcom F77 compiler.

isan optional drive specification such as"A:", "B:", etc. If not specified, the default drive
is assumed.

isan optional path specification such as \ PROGRAMB\ SRC\ . If not specified, the current
directory is assumed.

isthe file name of the file to be compiled.

isthefile extension of the file to be compiled. If omitted, afile extension of "FOR" is
assumed. If the period "." is specified but not the extension, the file is assumed to have no
file extension.

isalist of valid Open Watcom F77 options, each preceded by aslash (/") or adash ("-").
Certain options can include a"no" prefix to disable an option. Options may be specified in
any order, with the rightmost option taking precedence over any conflicting options
specified to its | eft.

Open Watcom FORTRAN 77 Command Line Format 23

Open Watcom FORTRAN 77 User’s Guide

3.2 WFC/WFC386 Environment Variables

The WFC environment variable can be used to specify commonly used WFC options. The WFC386
environment variable can be used to specify commonly used WFC386 options. These options are
processed before options specified on the command line.

Example:
C>set wfc=-d1l -ot
C>set wfc386=-d1 -ot

The above example defines the default options to be "d1" (include line number debugging information in
the object file), and "ot" (favour time optimizations over size optimizations).

Whenever you wish to specify an option that requires the use of an "=" character, you can use the "#"
character initsplace. Thisisrequired by the syntax of the "SET" command.

Once a particular environment variable has been defined, those options listed become the default each time
the associated compiler isused. The compiler command line can be used to override any options specified
in the environment string.

These environment variables are not examined by the Open Watcom Compile and Link utilities. Sincethe
Open Watcom Compile and Link utilities pass the relevant options found in their associated environment
variables to the compiler command line, their environment variable options take precedence over the
options specified in the environment variables associated with the compilers.

Hint: If you are running DOS and you use the same compiler options all the time, you may find it
handy to define the environment variable in your DOS system initialization file, AUTOEXEC. BAT.

If you are running Windows NT, use the " System"” icon in the Control Panel to define environment
variables.

If you are running OS/2 and you use the same compiler options all the time, you may find it handy to
define the environment variable in your OS/2 system initialization file, CONFI G SYS.

3.3 Open Watcom FORTRAN 77 Command Line Examples

The following are some examples of using Open Watcom FORTRAN 77 to compile FORTRAN 77 source
programs.

Example 1.
Cwfc386 report -dl -stack

The 32-bit Open Watcom F77 compiler processes REPORT. FOR producing an object file which contains
source line number information. Stack overflow checking code isincluded in the object code.

24 Open Watcom FORTRAN 77 Command Line Examples

The Open Watcom FORTRAN 77 Compiler

Example 2:
Cwfc kwi kdraw -2 -fpi 87

The 16-bit Open Watcom F77 compiler processes KW KDRAW FOR producing object code for an Intel 286
system equipped with an Intel 287 numeric data processor (or any upward compatible 386/387, 486 or Intel
Pentium system). While the choice of these options narrows the number of microcomputer systems where
this code will execute, the resulting code will be highly optimized for this type of system.

Example 3:
Cwfc ..\source\ nodabs -d2

The 16-bit Open Watcom F77 compiler processes . . \ SOURCE\ MODABS. FOR (afilein adirectory which
is adjacent to the current one). The object fileis placed in the current directory. Included with the object
code and data is information on local symbols and data types. The code generated is straight-forward,
unoptimized code which can be readily debugged with Open Watcom Debugger.

Example 4:
Cwfc386 -nf calc

The 32-bit Open Watcom F77 compiler compiles CALC. FOR for the "flat" memory model. 32-bit memory
models are described in the chapter entitled "Memory Models' on page 145. 32-bit argument passing
conventions are described in the chapter entitled "Assembly Language Considerations’ on page 149.

Example 5:
Cwf ¢386 kwi kdraw -f pi 87

The 32-bit Open Watcom F77 compiler processes KW KDRAW FOR producing object code for an Intel 386
system equipped with an Intel 80x87 numeric data processor.

Example 6:
C>set wfc=-short -d2 -fo#*. dbj
Cwfc . .\source\nodabs

Theoptions - short , - d2 and - f o=*. dbj are established as defaults using the WFC environment
variable. The 16-bit compiler processes . . \ SOURCE\ MODABS. FOR (afilein adirectory which is
adjacent to the current one). The object file is placed in the current directory and it will have a default file
extension of "DBJ'. All INTEGER and LOGICAL variables will have a default type of INTEGER*2 and
LOGICAL*1 unless explicitly typed as INTEGER*4 or LOGICAL*4. Source line number and local
symbol information are included with the object file.

3.4 Compiler Diagnostics

If the Open Watcom F77 compiler prints diagnostic messages to the screen, it will also place a copy of
these messages in afilein your current directory (unless the "noerrorfile" option is specified). The file will
have the same file name as the source file and an extension of "err". The compiler issues three types of
diagnostic messages, namely extensions, warnings and errors. An extension message indicates that you
have used afeature which is supported by Open Watcom F77 but that is not part of the FORTRAN 77
language standard. A warning message indicates that the compiler has found a questionable problem in the
source code (e.g., an unreachable statement, an unreferenced variable or statement number, etc.). A
warning message does not prevent the production of an object file. An error message indicates that a
problem is severe enough that it must be corrected before the compiler will produce an object file. The
error fileisahandy reference when you wish to correct the errorsin the sourcefile.

Compiler Diagnostics 25

Open Watcom FORTRAN 77 User’s Guide

Just to illustrate the diagnostic features of Open Watcom F77, we will compile the following program
caled "DEMO1".

* This program denonstrates the follow ng features of
Open Watconis FORTRAN 77 conpiler:

1. Extensions to the FORTRAN 77 standard are flagged.

errors as possible are di agnosed.

*
*
*
*
* 2. Conpile time error diagnostics are extensive. As many
*
*
* 3. Warning nessages are di splayed where potential problens
* can ari se.
*
PROGRAM MAI N
DI MENSI ON A(10)
DO I =1, 10
ACl) =1
I =1 +1
ENDL COP
GO TO 30
J=J+1
30 END

If we compile this program with the "extensions" option, the following output appears on the screen.

Cwf ¢ denpl -exten

WATCOM FORTRAN 77/ 16 Optim zing Conpiler Version 2.0 1997/07/16 09: 22: 47
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. conf open-wat conf open-wat comv2 for details.
denpl.for(14): *EXT* DO 05 this DO loop formis not FORTRAN 77 standard
denol.for(16): *ERR* DO 07 colum 13, DO variabl e cannot be redefined
while DO | oop is active

denpol.for(17): *ERR* SP-19 ENDLOOP statenent does not nmatch with DO

st at enent

denpl.for(19): *WRN* ST-08 this statement will never be executed due to
the preceding branch

denpl.for: 9 statenments, O bytes, 1 extensions, 1 warnings, 2 errors

Here we see an exampl e of the three types of messages, extension (*EXT*), error (*ERR*) and warning
(*WRN*).

Diagnostic messages are also included in the listing file if the "list" option is specified. If we recompile our
program and include the "list" option, alisting file will be created.

Cw ¢ denpl -exten-1list
or
Cwf c386 denpl -exten-1li st

The contents of thelisting file are:

26 Compiler Diagnostics

The Open Watcom FORTRAN 77 Compiler

WATCOM FORTRAN 77/ 16 Optimi zing Conpiler Version 2.0 1997/07/16 09:22: 47
Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al Rights Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. conl open-wat conl open-watcomv2 for details.

Options: list,disk,errorfile,extensions,reference,warnings,fpi,oc, of,om
os,ot,ox,m,0,term nal, dependency, fsfl oats, gsfl oats, |ibinfo, dt =256,
align
1 * This program denpnstrates the follow ng features of
2 * Open Watconmis FORTRAN 77 conpiler:

3 *
4 * 1. Extensions to the FORTRAN 77 standard are flagged.
5 *
6 * 2. Conpile time error diagnostics are extensive. As many
7~ errors as possible are diagnosed.
8 *
9 * 3. Warning nessages are di spl ayed where potential problens
10 * can ari se.
11 *
12 PROGRAM MAI N
13 DI MENSI ON A(10)
14 DO 1 =1, 10
EXT DO-05 this DO loop formis not FORTRAN 77 standard
15 ACl) =1
16 I =1 +1
$
ERR DO 07 DO variabl e cannot be redefined while DO loop is active
17 ENDL OOP
ERR SP-19 ENDLOOP st atenent does not match with DO statenent
18 GO TO 30
19 J=J+1
WRN ST-08 this statenent will never be executed due to the preceding branch
20 30 END

Code size (in bytes): 0 MNumber of errors: 2

Conpile time (in seconds): 0 Nunmber of warnings: 1

Nunmber of statenents conpil ed: 9 Nunber of extensions: 1

As part of the diagnostic capability of Open Watcom F77, a"$" is often used to indicate the particular place
in the source line where an error has been detected.

The complete list of Open Watcom F77 diagnostic messages is presented in the appendix entitled "Open
Watcom F77 Diagnostic Messages' on page 207.

3.5 Open Watcom FORTRAN 77 INCLUDE File Processing

For information on include file processing, see the section entitled "The INCLUDE Compiler Directive" on
page 34 in the chapter entitled "Open Watcom FORTRAN 77 Compiler Directives'

Open Watcom FORTRAN 77 INCLUDE File Processing 27

Open Watcom FORTRAN 77 User’s Guide

28 Open Watcom FORTRAN 77 INCLUDE File Processing

4 The Open Watcom FORTRAN 77 Libraries

The Open Watcom FORTRAN 77 library routines (intrinsic functions) are described in the Open Watcom
FORTRAN 77 Language Reference manual. Additional run-time routines are described in the chapter
entitled "The Open Watcom F77 Subprogram Library" on page 59. Since Open Watcom FORTRAN 77
supports two major architectures, the 286 architecture (which includes the 8088) and the 386 architecture
(which includes the 486 and Pentium processors), libraries are grouped under two major directories.

For the 286 architecture, the processor dependent libraries are placed under the \ WATCOM LI B286
directory.

For the 386 architecture, the processor dependent libraries are placed under the \ WATCOM LI B386
directory.

Since Open Watcom FORTRAN 77 also supports severa operating systems, including DOS, Windows 3.x,
Windows 95, Windows NT, OS/2 and NetWare, system-dependent libraries are grouped under different
directories underneath the processor-dependent directories.

System 16-bit applications 32-bit applications
DO \ WATCOM LI B286\ DOS \ WATCOM LI B386\ DOS
os/ 2 \ WATCOM LI B286\ OS2 \ WATCOM LI B386\ OS2

W ndows 3. x \WATCOM LI B286\ W N

\ WATCOM LI B386\ W N

W ndows NT \ WATCOM LI B386\ NT
W ndows 95
Net War e \ WATCOM LI B386\ NETWARE
\ wat com
I
___________ o e e e e e e e e e - -
I I
| i b286 i b386
I I
_______ e m e a - - .

| | | | _| | |
dos 0s2 win dos 0s2 W n nt net war e

Due to the many code generation strategies possible in the 80x86 family of processors, a number of
versions of the libraries are provided. 'Y ou must use the libraries which coincide with the particular
architecture, operating system, and code generation strategy or model that you have selected. For the type
of code generation strategy or model that you intend to use, refer to the description of the "m?" memory
model compiler option in the chapter entitled "Open Watcom FORTRAN 77 Compiler Options" on page 5.
The various code models supported by Open Watcom FORTRAN 77 are described in the chapters entitled
"Memory Models" on page 97 and "Memory Models" on page 145.

The Open Watcom FORTRAN 77 Libraries 29

Open Watcom FORTRAN 77 User’s Guide

We have selected a simple naming convention for the libraries that are provided with Open Watcom
FORTRAN 77. Letters are affixed to the file name to indicate the particul ar strategy with which the
modulesin the library have been compiled.

M denotes a version of the 16-bit Open Watcom FORTRAN 77 libraries which have been
compiled for the "medium" memory model (big code, small data).

L denotes a version of the 16-hit Open Watcom FORTRAN 77 libraries which have been
compiled for the "large" or "huge' memory models (big code, big data or huge data).

7 denotes a version of the Open Watcom FORTRAN 77 libraries which should be used when
compiling with the "fpi" or "fpi87" option. Otherwise the libraries have been compiled
using the "fpc" compiler option.

S denotes a version of the 32-bit Open Watcom FORTRAN 77 libraries which have been
compiled using the "sc" option (stack calling conventions).

The 16-bit Open Watcom FORTRAN 77 libraries are listed below by directory.

Under \ WATCOM LI B286\ DOS

FLIBM LIB (DOS nedi um nodel)

FLIB7M LI B (DOS medi um nodel, in-1ine 80x87)
FLIBL.LIB (DCS | arge/ huge nodel)

FLI B7L. LI B (DOS | arge/ huge nodel, in-1ine 80x87)
CLIBMLIB (DOS i/o system nedi um nodel)
CLIBL.LIB (DOS i/o system | arge/ huge nodel)
GRAPH. LI B (DOS graphics support)

Under \ WATCOM LI B286\ W N

FLIBM LIB (W ndows nedi um nodel)

FLIB7TM LIB (W ndows nedi um nodel, in-line 80x87)
FLIBL.LIB (W ndows | arge/ huge nodel)

FLIB7L.LIB (W ndows | arge/ huge nodel, in-Iine 80x87)
CLIBMLIB (Wndows i/o system nedi um nodel)
CLIBL.LIB (Wndows i/o system | arge/ huge nodel)

W NDOWS. LI B (W ndows APl [ibrary)

Under \ WATCOM LI B286\ CS2

FLIBM LIB (0OS/2 medi um nodel)

FLIB7TM LIB (0OS/2 medi um nodel, in-line 80x87)
FLIBL.LIB (0Os/2 | arge/ huge nodel)

FLIB7L.LIB (0Os/2 | arge/ huge nodel, in-I1ine 80x87)
CLIBMLIB (0OS/2 i/0o system medi um nodel)
CLIBL.LIB (0OS/2 i/o system | arge/ huge nodel)
DOSPMM LI B (Phar Lap 286 PM nedi um nodel)

DOSPML. LI B (Phar Lap 286 PM | arge/ huge nodel)

The 32-bit Open Watcom FORTRAN 77 libraries are listed below.

30 The Open Watcom FORTRAN 77 Libraries

The Open Watcom FORTRAN 77 Libraries

Under \ WATCOM LI B386\ DOS

FLIB.LIB (fl oati ng-point calls)

FLI B7. LI B (in-1ine 80x87)

FLI BS. LI B (floating-point calls, stack conventions)
FLI B7S. LI (in-1ine 80x87, stack conventions)

B
CLIB3R. LIB (i/o system
CLIB3S.LIB (i/o system stack conventi ons)
GRAPH. LI B (DOS graphics support)

The graphics library GRAPH. LI B isindependent of the argument passing conventions or floating-point
model.

Under \ WATCOM LI B386\ W N

FLIB.LIB (fl oating-point calls)
FLIB7.LIB (in-1ine 80x87)
FLI BS. LI B (floating-point calls, stack conventions)

FLIB7S.LIB (in-line 80x87, stack conventi ons)
CLIB3R. LIB (i/o systen)

CLIB3S. LI B (i/o system stack conventions)
WN386.LIB (32-bit Wndows API)

Under \ WATCOM LI B386\ OS2

FLIB.LIB (fl oating-point calls)
FLIB7.LI B (in-1ine 80x87)
FLI BS. LI B (floating-point calls, stack conventions)

FLIB7S.LIB (in-line 80x87, stack conventions)
CLIB3R. LIB (i/o system
CLIB3S.LIB (i/o system stack conventions)

Under \ WATCOM LI B386\ NT

FLIB.LIB (fl oating-point calls)
FLIB7.LIB (in-1ine 80x87)
FLI BS. LI B (floating-point calls, stack conventions)

FLIB7S.LIB (in-line 80x87, stack conventi ons)
CLIB3R. LIB (i/o system
CLIB3S.LIB (i/o system stack conventions)

4.1 Open Watcom FORTRAN 77 80x87 Emulator Libraries

One of the following libraries must be used if any of the modules of your application were compiled with
the "fpi" option.

16-bit Libraries
NOEMJUB7. LI B
DOS\ EMJ87. LI B (DOS dependent)

W N EMUB7. LI B (W ndows dependent)
OS2\ EMJUB7. LI B (OS/ 2 dependent)

Open Watcom FORTRAN 77 80x87 Emulator Libraries 31

Open Watcom FORTRAN 77 User’s Guide

32-bit Libraries

NOEMJU387. LI B

DOS\ EMJ387. LI B (DOS dependent)

W N EMU387. LI B (W ndows dependent)
OS2\ EMJ387. LI B (OS/ 2 dependent)

NT\ EMJ387. LI B (W ndows NT dependent)

The "fpi" option causes an 80x87 numeric data processor emulator to be linked into your application. This
emulator will decode and emulate 80x87 instructions when an 80x87 is not present in the system or if the
environment variable NO87 has been set (this variable is described below).

If you have compiled your application using the "fpi" option, you can also link with the 16-bit
"noemu87.lib" or 32-bit "noemu387.lib" library, depending on which compiler you are using. However,
your application will only run on a machine equipped with a 80x87 numeric data processor since the actual
emulator is not linked into your application.

When the "fpi87" option is used exclusively, the emulator is not included. In this case, the application must
be run on personal computer systems equipped with the numeric data processor.

4.2 The "NO87" Environment Variable

If you have a math coprocessor in your system but you wish to test aversion of your application that will
use floating-point emulation ("fpi" option) or simulation (“fpc" option), you can define the NO87
environment variable. The 16-bit application must be compiled using the "fpc" (floating-point calls) option
and linked with the appropriate f 1 i b?. | i b library or the "fpi" option (default) and linked with the
appropriate f | i b7?.1i b and enu87. | i b libraries. The 32-bit application must be compiled using the
"fpc" (floating-point calls) option and linked with the appropriate f | i b?. | i b library or the "fpi" option
(default) and linked with the appropriate f 1 i b7?. 1 i b and enu387. | i b libraries. Using the "SET"
command, define the environment variable as follows:

CSET NO87=1

Now, when you run your application, the 80x87 will beignored. To undefine the environment variable,
enter the command:

C>SET NO87=

32 The "NO87" Environment Variable

5 Open Watcom FORTRAN 77 Compiler Directives

5.1 Introduction

A number of compiler directives are available that allow, for example, conditional compilation of source
code and the inclusion of source code from other files. A compiler directive is specified by placing a
comment character ("¢, 'C’, or '*") in column one followed by adollar sign ('$') immediately followed by
the compiler directive. Thefollowing listsall of the compiler directives available with Open Watcom F77.

EJECT
INCLUDE
PRAGMA
DEFINE
UNDEFINE
IFDEF
IFNDEF
ENDIF
ELSE
ELIFDEF
1. ELIFNDEF

REoeoeNoO kWb E

These compiler directives will be described in the following sections.

In addition to the above compiler directives, it is also possible to specify certain compiler optionsin the
sameway. The following lists these options.

[NOJEXTENSIONS
[NOJLIST
[NO]REFERENCE
[NOJWARNINGS

PwWDdE

For more information on these options, see the the chapter entitled "Open Watcom FORTRAN 77 Compiler
Options" on page 5.

5.2 The EJECT Compiler Directive

This compiler directive causes aform-feed to be generated in thelisting file. Thelistingfileisa
carriage-control file that is created by the compiler when the "list" compiler option is specified. Inthe
following example, aform-feed character will be generated immediately before the source for subroutine
sub2 and immediately before the source for subroutine sub3.

The EJECT Compiler Directive 33

Open Watcom FORTRAN 77 User’s Guide

Example:

subrouti ne subl
I source code
end

*$ej ect
subrouti ne sub2
I source code
end

*$ej ect

subroutine sub3
I source code
end

5.3 The INCLUDE Compiler Directive

The INCLUDE compiler directive or INCLUDE statement may be used to imbed source code into the file
being compiled. Either form may be used.

Example:
*$I NCLUDE DOCS. Fl

I NCLUDE ' DCS. FI

When the INCLUDE statement is used the name of the file must be placed inside single quotes
(apostrophes). The file name may include drive, path, and file extension. The default file extension is
.for.

It is not necessary to include the drive and path specifiers in the file specification when the file resides on a
different drive or in adifferent directory. Open Watcom F77 provides a mechanism for looking up include
fileswhich may be located in various directories and disks of the computer system. When the drive and
path are omitted from afile specification, Open Watcom F77 searches directories for include filesin the
following order.

1. First, the current directory is searched.

2. Secondly, each directory listed with the "INCPath" option is searched (in the order that they
were specified).

3. Thirdly, each directory listed in the FINCL UDE environment variable is searched (in the order
that they were specified).

The compiler will search the directories listed with the "INCPath" option or in the FINCL UDE
environment variable in amanner analogous to that which used by the operating system when searching for
programs by using the PATH environment variable.
The"INCPath" option takes the following form.

-I NCPat h=[d:] pat h; [d:] path. ..

The"SET" command is used to define an FINCL UDE environment variable that contains alist of
directories. A command of the form

SET FI NCLUDE=[d:]path;[d:]path...

isissued before running Open Watcom F77 the first time. The bracketsindicate that the drive d: is
optional and the ellipsis indicates that any number of paths may be specified.

34 The INCLUDE Compiler Directive

Open Watcom FORTRAN 77 Compiler Directives

We illustrate the use of the INCLUDE statement in the following example.

subroutine Cl earScreen()

inplicit none

i nclude ’dos.fi’

i nteger VIDEO CALL, SCROLL_UP
paraneter (VIDEO CALL=16, SCROLL_UP=6)

DS=ES=FS=GS=0 I for safety on 386 DOS extender
AH = SCROLL_UP I scroll up

AL = 0 ! blank entire w ndow

CX =0 ! set row, col um of upper left
DX = 24*256 + 80 ! set row, colum of |ower right
BH =7 | attribute "white on bl ack"
call fintr(VIDEO CALL, regs)

end

The third line of this subroutine contains an INCLUDE statement for thefile DOS. FI . If the above
source codeis stored in the file CLRSCR. FORin the current directory then we can issue the following
commands to compile the application.

C>set finclude=c:\watcom src\fortran\dos
Cw c cl sscr

In the above example, the "SET" command is used to define the FINCL UDE environment variable. It
specifies that the \ WATCOM SRC\ FORTRAN\ DCS directory isto be searched for include files that cannot
be located in the current directory and that have no drive or path specified. The advantage of the

FINCL UDE environment variableis that drives and paths can be omitted from the INCLUDE file

specificationsin the source code. This allows the source code to be independent of the disk/directory
structure of your computer system.

5.4 The PRAGMA Compiler Directive

This compiler directive is described in the chapters entitled "Pragmas' on page 113 and "Pragmas’ on page
163.

5.5 The DEFINE Compiler Directive

The DEFINE compiler directive sets the definition status of amacro to defined. |If a macro does not appear
in a DEFINE directive, its definition status is undefined.

Example:
*$defi ne debug

In the above example, the macro debug is defined.

The DEFINE compiler option can aso be used to define a macro.

The DEFINE Compiler Directive 35

Open Watcom FORTRAN 77 User’s Guide

Example:
Cwf c -defi ne=debug test
C>wf c386 -defi ne=debug test

5.6 The UNDEFINE Compiler Directive

The UNDEFINE compiler directive sets the definition status of amacro to undefined.

Example:
*$undefi ne debug

In the above example, the definition status of the macro debug is set to undefined.

5.7 The IFDEF, IFNDEF and ENDIF Compiler Directive

The IFDEF and IFNDEF compiler directives check the definition status of a macro. If the macro appearing
in an IFDEF directiveis defined or the macro appearing in an IFNDEF directive is not defined, then all
source code up to the corresponding ENDIF compiler directive will be compiled. Otherwise, it will be
ignored.

In the following example, the FORTRAN 77 statements represented by <debuggi ng_st at enent s>
will be compiled.

Example:
*$defi ne debug

* $i f def debug
<debuggi ng_st at enrent s>
*$endi f

In the following example, the FORTRAN 77 statements represented by <debuggi ng_st at enent s>
will not be compiled.

Example:
*$undefi ne debug

* $i f def debug
<debuggi ng_st at emrent s>
*$endi f

In the following example, the FORTRAN 77 statements represented by <debuggi ng_st at enent s>
will be compiled.

Example:
*$undefi ne debug
*$i f ndef debug
<debuggi ng st at enment s>
*$endi f

36 The IFDEF, IFNDEF and ENDIF Compiler Directive

Open Watcom FORTRAN 77 Compiler Directives

5.8 The ELSE Compiler Directive

The EL SE compiler directive must be preceded by an IFDEF, IFNDEF, EL SEIFDEF or ELSEIFNDEF
compiler directive. If the condition of the preceding compiler directive was satisfied, then all source code
between the EL SE compiler directive and the corresponding ENDIF compiler directive will beignored. 1f
the condition of the preceding compiler directive was not satisfied, then all source code between the EL SE
compiler directive and the corresponding ENDIF compiler directive will be compiled.

In the following example, the FORTRAN 77 statements represented by
<debuggi ng_| evel _2_ st at enent s> will be compiled.

Example:
*$undefi ne debug_l evel _1

*$i f def debug_level 1
<debuggi ng_l evel _1 statenents>
*$el se
<debuggi ng_l evel _2_st at emrent s>
*$endi f

5.9 The ELSEIFDEF and ELSEIFNDEF Compiler Directive

The ELSEIFDEF and EL SEIFNDEF compiler directives must be preceded by an IFDEF, IFNDEF,

EL SEIFDEF or EL SEIFNDEF compiler directive. If the condition of the preceding compiler directive was
satisfied, then all source code between the EL SEIFDEF or EL SEIFNDEF compiler directive and the
corresponding ENDIF compiler directive will beignored. If the condition of the preceding compiler
directive was not satisfied, then the definition status of the macro specified in the EL SEIFDEF or

EL SEIFNDEF compiler directiveis checked. If the macro appearing in the EL SEIFDEF compiler directive
is defined, or the macro appearing in the EL SEIFNDEF compiler directive is not defined, then al source up
to the next EL SEIFDEF, EL SEIFNDEF, EL SE or ENDIF compiler directive will be compiled.

In the following example, the FORTRAN 77 statements represented by
<debuggi ng_| evel _2_ st at enent s> will be compiled.

Example:
*$defi ne debug_|l evel 2

*$i f def debug_l evel _1
<debuggi ng_l evel _1 st atenents>
*$el sei f def debug_| evel _2
<debuggi ng_l evel 2 st atenents>
*$endi f

5.10 Debugging statements ("D" in Column 1)

If the character "D" or "d" appearsin column 1, that line will be conditionally compiled depending on the
definition status of themacro __debug . Statementsthat contain a"D" or "d" in column 1 are called
debugging statements. If the __debug__ macro is defined, the line will be compiled; otherwise it will be
ignored. The __debug__ macro can be defined by using the DEFINE compiler directive or the "define"
option. In the following example, the "define" option is used to force compilation of debugging statements.

Debugging statements ("D" in Column 1) 37

Open Watcom FORTRAN 77 User’s Guide

Example:

Cwfc -def=__debug test
Cwf c386 -def=__debug test

5.11 General Notes About Compiler Directives

1

Compiler directives must not contain embedded blanks. The following is not avalid ENDIF
compiler directive.

Example:
*$end if

Nesting is allowed up to a maximum of 16 levels.

Example:
*$i fdef syntl
<st at enent s>
*$i f def synR
<st at enent s>
*$endi f
*$endi f

Themacro i 86__ isaspecia macro that is defined by the compiler and identifies the target
as a 16-hit Intel 80x86 compatible environment.

Themacro ___386__ isaspecial macro that is defined by the compiler and identifies the target
as a 32-hit Intel 80386 compatible environment.

Themacro __stack_conventi ons__ isaspecia macro that is defined by the 32-bit
compiler when stack conventions are used for code generation. Stack conventions are used
when the "sc" or "3s" compiler options are specified.

Themacro __ f pi __ isaspecial macro that is defined by the compiler when one of the
following floating-point optionsis specified: "fpi" or "fpi87".

Themacro ___debug__ isaspecial macro that can be used to conditionally compile debugging
statements. A debugging statement is one that contains the character "D" or "d" in column one.

38 General Notes About Compiler Directives

6 Open Watcom FORTRAN 77 File Handling

This chapt

er describes the file handling and naming conventions of Open Watcom F77. We discuss files

and devices which are used to store, retrieve and display data. For example, adisk can be used to storea

file of student marks. Thisfileis accessible by other programsin order to produce summaries of the data
such as marks reports. A device such as a printer can also be treated asiif it were afile, although it is only
useful for displaying data; an attempt to read information from this device isinvalid.

In the following sections, we shall describe:

1.

SO A®WN

the techniques that Open Watcom F77 adopts for implementing FORMATTED and
UNFORMATTED records and SEQUENTIAL and DIRECT access to these records,
the handling of "print" files,

file naming conventions,

logical file names,

the preconnection of files to units, and

special device support.

6.1 Record Access

Two types

Sequential

Direct

The access

of record access are supported by Open Watcom F77:

Sequential access means that recordsin afile are accessed in order, starting with the first
record in the file and proceeding to the last. Sequential accessis permitted to recordsin
both variable-length and fixed-length record files.

Direct access means that records in afile are accessed in random order. For example, the
fifth record could be accessed, then the second, and then the tenth. Direct accessis
permitted for fixed-length record files only.

method is described using the ACCESS= specifier of the FORTRAN OPEN statement. The

default accessis"SEQUENTIAL".

6.2 Record Format

There are two record formats, "FORMATTED" and "UNFORMATTED", which are supported by Open
Watcom F77. Therecord format is described using the FORM= specifier of the FORTRAN OPEN

statement.

The default format is"FORMATTED" for files connected for sequential access and

"UNFORMATTED" for files connected for direct access.

In describing these two formats, we also refer to the two methods of record access, "SEQUENTIAL" and
"DIRECT", which are supported by Open Watcom F77.

Record Format 39

Open Watcom FORTRAN 77 User’s Guide

6.2.1 FORMATTED Records

A FORMATTED record is one that contains an arbitrary number of ASCII characters. The end of arecord
ismarked by an ASCII "LF" (line feed) character optionally preceded by an ASCII "CR" (carriage return)
character. Thus this special sequence may not appear in the middle of arecord.

FORMATTED records may vary in length. If al the recordsin the file have the same length then the
records may be accessed both "sequentially" and "directly”. If the records vary in length then it is only
possible to access the records sequentialy.

For direct access, the length of the records is specified by the RECL = specifier of the FORTRAN OPEN
statement. The specified length must not include the record separator since it does not form part of the
record.

As an extension to the FORTRAN 77 language standard, Open Watcom F77 also supports the use of the
RECL = specifier for sequential access. The maximum length of the records may be specified by the
RECL = specifier of the FORTRAN OPEN statement. The specified length must not include the record
separator since it does not form part of the record. The length is used to allocate arecord buffer for
sequential access. |If the record length is not specified, a default maximum length of 1024 charactersis
assumed.

6.2.2 UNFORMATTED Records

An UNFORMATTED record is one that contains an arbitrary number of binary storage units. The
interpretation of the datain such arecord depends on the FORTRAN program that is processing the record.
An UNFORMATTED record may contain integers, real numbers, character strings, or any other type of
FORTRAN data.

UNFORMATTED records may aso vary in length. If al recordsin the file have the same length then the
records may be accessed both "sequentially" and "directly”. If the records vary in length thenitis only
possible to access the records sequentialy.

When afile containing UNFORMATTED records is accessed sequentially, each record must begin and end
with a descriptor that contains the length of the record. The length of the record is represented in 32 bits or
4 bytes (INTEGER*4). The UNFORMATTED records of afilewhich are written using sequential access
will be automatically supplied with the appropriate length descriptors. When such afileisread, itis
assumed that each record has the appropriate length descriptors.

Depending on the record length, the output produced by a single unformatted sequential WRITE statement
may cause multiple records to be written. As previously mentioned, each record begins and ends with a
length descriptor. The length descriptors for the first record contain the length of the record. The length
descriptors for the remaining records contain the length of the record with the high bit (bit 31) set to one.

In this way, an unformatted sequential file can be viewed as a number of logical records (alogical record
corresponding to the output produced by a WRITE statement) with each logical record composed of a
number of physical records. Files created in thisway cannot be accessed directly unless each logical record
is composed of a single physical record and each record is the same size.

As an extension to the FORTRAN 77 language standard, Open Watcom F77 also supports the use of the
RECL = specifier for sequential access. The maximum length of the records may be specified by the
RECL = specifier of the FORTRAN OPEN statement. The specified length must not include the length
descriptors since they do not form part of the record. The length is used to allocate arecord buffer for

40 Record Format

Open Watcom FORTRAN 77 File Handling

sequential access. If the record length is not specified, a default maximum length of 1024 charactersis
assumed.

When afile containing UNFORMATTED records is accessed directly, each record must be the same
length. In this case, the length of the records is specified by the RECL = specifier of the FORTRAN OPEN
statement. |If the file was originally created with sequential access then the specified length must include
any length descriptors which form part of the record. In the direct access mode, no interpretation is placed
on any of the datain an UNFORMATTED record and the programmer must account for any record length
descriptors which may form part of the record.

Any records which are written using direct access must include record length descriptorsiif the fileisto be
accessed sequentially at alater time. Asan alternative, you may specify RECORDTYPE=" VARI ABLE’ in
the FORTRAN OPEN statement. This specifier is an extension to the FORTRAN 77 language standard
and will cause length descriptors to be generated automatically. In this case, the record length should not
include the record length descriptors.

6.2.3 Files with no Record Structure

Certain files, for example afile created by a program written in another language, do not have any internal
record structure that matches any of the record structures supported by Open Watcom F77. Thesefilesare
simply streams of data. There are two waysin which these files can be processed.

1. Youcan useunformatted direct access. In this case, the value specified by the RECL = specifier
in the OPEN statement determines the amount of data read or written by a READ or WRITE
Statement.

2. Alternatively, you can use unformatted sequential access. In this case, the amount of data read
or written to the file is determined by the itemsin the input/output list of the READ or WRITE
statement. When using unformatted sequential access, you must specify
RECORDTYPE=" FI XED' to indicate that no record boundaries are present. Otherwise, the
default value of * VARI ABLE' will be used.

6.3 Attributes of Files

Thefile system does not retain any information on the contents of afile. Unlike more sophisticated file
systems, it cannot report whether afile consists of fixed-length or variable-length records, how records are
delimited in afile, the maximum length of the records, etc. Therefore, we have provided a mechanism
which will allow you to specify additional information about afile. This mechanism should be used when
the default assumptions about records in afile are not true for the file in question.

The RECORDTYPE= specifier of the FORTRAN OPEN statement can be used to specify additional
information about the type of recordsin the file. This specifier isan extension to the FORTRAN 77
language standard.

The RECL = specifier of the FORTRAN OPEN statement can be used to specify additional information
about the length of recordsin the file. When used with sequential access, this specifier is an extension to
the FORTRAN 77 language standard.

The CARRIAGECONTROL = specifier of the FORTRAN OPEN statement can be used to specify

additional information about the handling of ASA carriage control characters for an output file. This
specifier is an extension to the FORTRAN 77 language standard.

Attributes of Files 41

Open Watcom FORTRAN 77 User’s Guide

The BLOCKSI ZE= specifier of the FORTRAN OPEN statement can be used to specify the size of the
internal input/output buffer. A buffer reduces the number of system input/output calls during input/output
to a particular file and hence improves the overall performance of a program. The default buffer sizeis4K.
This specifier is an extension to the FORTRAN 77 language standard.

The following sections describe the attributes of records supported by the Open Watcom F77 run-time

system.

6.3.1 Record Type

The RECORDTYPE= specifier of the FORTRAN OPEN statement can be used to specify additional
information about the type of recordsin the file. This specifier is an extension to the FORTRAN 77
language standard. The following types may be specified.

RECORDTYPE=" TEXT’
RECORDTYPE=" VARI ABLE’
RECORDTYPE=" FI XED

TEXT

VARIABLE

FIXED

indicates that the file contains variable-length or fixed-length records of ASCII characters
separated by an ASCII "LF" (line feed) character optionally preceded with an ASCII "CR"
(carriage return) character. By default, the Open Watcom F77 run-time system assumes
that FORMATTED records are of TEXT format in both the sequential and direct access
modes.

By default, the Open Watcom F77 run-time system uses variable-length record TEXT files
to implement FORMATTED records in the sequential access mode. Of course, all records
may be the same length. The record separator is not included in cal culating the maximum
size of recordsin thefile.

By default, the Open Watcom F77 run-time system uses fixed-length record TEXT filesto
implement FORMATTED records in the direct access mode. Each record must be the
same length. The record separator is not included in calculating the size of records in the
file.

indicates that the file contains variable-length or fixed-length records in which specia
descriptors are employed to describe the length of each record. The length of each record is
contained in adoubleword (INTEGER* 4 item) at the beginning and end of the record.
These descriptors determine the bounds of the records.

By default, the Open Watcom F77 run-time system uses VARIABLE format filesto
implement UNFORMATTED records in the sequential access mode. The length
descriptors are required to support the FORTRAN BACKSPACE statement since no other
method exists for determining the bounds of a variable-length unformatted record in afile.

indicates that the file contains no extrainformation that determines the record structure. |If
thefileisadirect accessfile, the value specified by the RECL = specifier determines the
size of each record in thefile.

By default, the Open Watcom F77 run-time system uses FI XED format files to implement
UNFORMATTED records in the direct access mode.

If you specify FIXED with an unformatted sequential file, the size of the recordsis
determined by the items in the input/output list.

42 Attributes of Files

Open Watcom FORTRAN 77 File Handling

6.3.2 Record Size
When accessis direct, the record length must be specified in the RECL= specifier of the FORTRAN
OPEN statement.
OPEN(UNIT=1, FILE=' TEST.DAT', ACCESS=' DI RECT', RECL=size, ...)
Asan extension to the FORTRAN 77 language standard, the record length may also be specified when the

accessis sequential. This should be done whenever accessis "sequentia" and the maximum record length
is greater than the defaullt.

OPEN(UNIT=1, FILE="TEST.DAT', ACCESS=' SEQUENTIAL’', RECL=size, ...)
The record length specified by size should not include record separators such as CR and LF, nor should it
include record length descriptors when sequentially accessing afile containing unformatted records.
However, for all files, records longer than the size specified will be truncated. The default record sizeis
1024. The maximum record size is 65535 for the 16-bit run-time system. Since record buffers are

allocated in the dynamic storage region, the size will be restricted to the amount of dynamic storage
available.

6.3.3 Print File Attributes

When the first character of each record written to afile will contain an ASA (American Standards
Association) carriage control character, the CARRIAGECONTROL = specifier of the FORTRAN OPEN
statement should be used. This specifier is an extension to the FORTRAN 77 language standard. The ASA
character is used for vertical spacing control. The valid characters and their interpretation are:

nqn Advance to Top of Page

n g Advance Zero Lines (overprint)
won AdvancelLine
" Advance 2 Lines

" Advance 3 Lines

If CARRI AGECONTROL=" YES' is specified then the Open Watcom F77 run-time system will
automatically allocate an extra character at the beginning of arecord for the vertical spacing control.

Upon transmitting a record to afile which has the "carriage" attribute, the Open Watcom F77 run-time
system will substitute the appropriate ASCI| carriage control characters as follows.

"1t Substitute a FF (form feed) for the "1".

" Append only aCR (carriage return) to the previous record.
" Throw away the blank character.

"0" Substitute CR (carriage return) and LF (line feed) for the"0".

.- Substitute two pairs of CR and LF for the"-".

Attributes of Files 43

Open Watcom FORTRAN 77 User’s Guide

Any other character in this position will be treated asif a blank character had been found
(i.e., it will be discarded).

If the "carriage” attribute is not specified for afile then records will be written to the file without placing
any interpretation on the first character position of the record.

6.3.4 Input/Output Buffer Size

The BLOCKSI ZE= specifier is optional. However if you would like to change the default buffer size of
16K for 32-hit applications and 4K for 16-bit applications, you must specify the buffer sizein the
BLOCKSI ZE= specifier of the OPEN statement.

OPEN(UNIT=1, FILE="TEST.DAT', BLOCKSIZE=1024, ...)

6.3.5 File Sharing

On systems that support multi-tasking or networking, it is possible for for afile to be accessed
simultaneously by more that one process. There are two specifiersin the OPEN statement that can be used
to control the way in which files are shared between processes.

The ACTION= specifier indicates the way in which thefileisinitially accessed. That is, the way in which
the first process to open the file accesses the file. The values alowed for the ACTION= specifier are the

following.
"READ’ thefileis opened for read-only access
"WRITE’ thefile is opened for write-only access

"READWRITE’ thefileis opened for both read and write access

The SHARE= specifier can be used to indicate the manner in which subsequent processes are allowed to
access thefile while thefileis open. The values allowed for the SHARE= specifier are the following.

"COMPAT no other process may open thefile

"'DENYRW other processes are denied read and write access

'DENYWR’ other process are denied write access (allowed read-only access)

"'DENYRD’ other process are denied read access (allowed write-only access)

"DENYNONE’ other processes are allowed read and write access

Let us consider the following scenario. Suppose you want several processes to read afile and prevent any
process that is reading the file from changing its contents. We first must establish the method of access for
the first process that opensthefile. In this case, we want read-only access so the ACTI ON=" READ
specifier must be used. Next, we must establish the method of access for subsequent processes. In our

example, we do not want any process to make changesto thefile. Therefore, we use the
SHARE=" DENYWR' specifier. The file would be opened using the following OPEN statement.

OPEN(UNI T=1, FILE=" TEST. DAT', ACTI ON=" READ', SHARE="DENYWR , ...)

44 Attributes of Files

Open Watcom FORTRAN 77 File Handling

6.4 File Names in the FAT File System

The FAT file system is supported by DOS and OS/2. 0S/2 also supports the High Performance File
System (HPFS) which will be discussed in alater section. File naming conventions are used to form file
designationsin agiven file system. Thefile designation for a FAT file system has the following form.

[d:][path]fil ename[.ext]

path

filename

ext

The square brackets denote items which are optional .
isthe drive name. If omitted, the default drive is assumed.
Examples of drivenamesare: a:,b:,c:,andd: .

iscalled a"path" specification. The path may be used to refer to files that are stored in
sub-directories of the disk. The complete file specification (including drive, path and file
name) cannot exceed 143 characters.

Some examples of path specifications are:

\ pl ot
\ bench\t ool s\
\fortran\ pgns\

Y our operating system manuals can tell you more about directories. how to create them,
how to store files in them, how to specify a path, etc.

isthe main part of the file's name. The filename can contain up to 8 characters. If more
than 8 characters are used, only the first 8 are meaningful. For example, "COUNTRIES'
and "COUNTRIE" are trested as the same name for afile.

isan optional extension consisting of 1 to 3 characters (e.g., DOC). If an extensionis
specified, it is separated from the filename by a period. Extensions are normally used to
indicate the type of information stored in the file. For example, afile extension of f or isa
common convention for FORTRAN programs.

Note: Thefile specification is case insensitive in that upper and lower case letters can be used
interchangeably.

6.4.1 Special DOS Device Names

Certain file names are reserved for devices. These special device names are:

File Names in the FAT File System 45

Open Watcom FORTRAN 77 User’s Guide

CON the console (or termnal)

AUX the serial port

COML anot her name for the serial port
COM a second serial port

PRN the parallel printer

LPT1 another name for the printer
LPT2 a second parallel printer

LPT3 a third parallel printer

NUL nonexi stent devi ce

When using one of these special device names, no other part of the file designation should be specified. A
common mistake is to attempt to create a disk file such as PRN. DAT and attempt to write records to it. If
you do not have a parallél printer attached to your PC, there may be along delay before the output
operation times out.

6.4.2 Examples of FAT File Specifications

46

The following are some examples of valid file specifications.

1. Thefollowing file designation refersto afile in the current directory of the default disk.

OPEN(UNIT=1, FILE="DATA.FIL', ...)

2. Thefollowing file designation refersto a print filein the current directory of drive c: . ASA
carriage control characters will be converted to the appropriate ASCII control codes.

OPEN(UNIT=2, FILE="C:report.|st’,
CARRI AGECONTROL=" YES', ...)

3. Thefile specification below indicates that the file is to have fixed format records of length 80.

OPEN(UNIT=3, FILE= final.tst’,
RECL=80, RECORDTYPE='FIXED', ...)

4. Thefile specification below indicates that the fileis to have variable format records of maximum
length 145.

OPEN(UNIT=4, FILE="termrpt’,
RECL=145, RECORDTYPE=' VARI ABLE', ...)

5. Thefile designation below indicates that the file residesin the r ecor ds directory of drive b: .

OPEN(UNIT=5, FILE="b:\records\custoners.dat’, ...)

Note that the trailing "S" in the file name will be ignored. Thus the following designation is
equivalent.

OPEN(UNIT=5, FILE="b:\records\custoner.dat’, ...)

6. Thefile designation below refers to the second serial port.

OPEN(UNIT=6, FILE= conm®', ...)

7. Thefile designation below refersto a second parallel printer.

OPEN(UNIT=7, FILE=' I pt2, ...)

File Names in the FAT File System

Open Watcom FORTRAN 77 File Handling

6.5 File Names in the High Performance File System

0S/2, in addition to supporting the FAT file system, also supports the High Performance File System
(HPFS). Therulesfor forming file namesin the High Performance File System are different from those
used to form file namesin the FAT file system. In HPFS, file names and directory names can be up to 254
charactersin length. However, the complete path (including drive, directories and file name) cannot exceed
259 characters. The period isavalid file name character and can appear in afile name or directory name as
many times as required; HPFS file names do not require file extensions asin the FAT file system.

However, many applications still use the period to denote file extensions.

The HPFS preserves case in file names only in directory listings but ignores case in file searches and other
system operations. For example, adirectory cannot have more than one file whose names differ only in

case.

6.5.1 Special 0S/2 Device Names

The OS/2 operating system has reserved certain file names for character devices. These special device

names are:
CLOCK$ C ock
cow First serial port
cowe Second serial port
covB Third serial port
cova Fourth serial port
CON Consol e keyboard and screen
KBD$ Keyboar d
LPT1 First parallel printer
LPT2 Second parallel printer
LPT3 Third parallel printer
MOUSE$ Mbuse
NUL Nonexi stent (dummy) device
PO NTERS$ Poi nter draw device (nouse screen support)
PRN The default printer, usually LPT1
SCREENS$ Screen

When using one of these specia device names, no other part of the file designation should be specified.

6.5.2 Examples of HPFS File Specifications

The following are some examples of valid file specifications.

1

2.

3.

The following file designation refersto afile in the current directory of the default disk.

OPEN(UNI T=1, FILE="DATA FIL, ...)

The following file designation refers to a print file in the current directory of drive c: . ASA
carriage control characters will be converted to the appropriate ASCII control codes.

OPEN(UNIT=2, FILE="C:report.|st’,
CARRI AGECONTROL=" YES', ...)

The file specification below indicates that the file isto have fixed format records of length 80.

File Names in the High Performance File System 47

Open Watcom FORTRAN 77 User’s Guide

OPEN(UNIT=3, FILE=final.tst",
RECL=80, RECORDTYPE='FIXED', ...)

4. Thefile specification below indicates that the fileis to have variable format records of maximum
length 145.

OPEN(UNIT=4, FILE="termrpt’,
RECL=145, RECORDTYPE=' VARI ABLE', ...)

5. Thefile designation below indicates that the file residesin the r ecor ds directory of drive b: .

OPEN(UNIT=5, FILE="b:\records\custoners.dat’, ...)
Note that the trailing "S" in the file name is not ignored asisthe case in a FAT file system.

6. Thefile designation below refers to the second serial port.

OPEN(UNIT=6, FILE= con®', ...)

7. Thefile designation below refersto a second parallel printer.

OPEN(UNIT=7, FILE=' I pt2, ...)

6.6 Establishing Connections Between Units and Files

Using Open Watcom F77, FORTRAN unit numbers may range from 0 to 999. Input/output statements
such as READ and WRITE refer to files by aunit number. All input/output statements except OPEN,
CLOSE, and INQUIRE must refer to a unit that is connected to afile. The Open Watcom F77 run-time
system automatically establishes the connection of a unit to afile if no connection previously existed. Any
connection between a unit and afile that is established before execution beginsis called a preconnection.

The Open Watcom F77 run-time system defines a preconnection of the unit designated by "*" to the
standard input and output devices (by this we generally mean the keyboard and screen of the personal
computer but input/output can be redirected from/to afile using the standard input/output redirectors "<"
and ">" on the command line). This preconnection cannot be atered in any way. Unit "*" isexplicitly or
implicitly referred to by the following input statements:

READ, ...
READ *, ...
READ f or mat - spec,
READ(*,...) ...
READ(UNI T=*, .. .)
Unit "*" isexplicitly or implicitly referred to by the following output statements:

PRI NT, ...
PRI NT *,

PRI NT f or mat - spec,
WRI TE(*,...) ...
WRI TE(UNI T=*, .. .)

The Open Watcom F77 run-time system also defines a preconnection of unit 5 to the standard input device
(by this we generally mean the keyboard of the personal computer but input can be redirected from afile
using the standard input redirector "<" on the command line).

48 Establishing Connections Between Units and Files

Open Watcom FORTRAN 77 File Handling

The Open Watcom F77 run-time system also defines a preconnection of unit 6 to the standard output device
(by this we generally mean the screen of the personal computer but output can be redirected to afile using
the standard output redirector ">" on the command line).

For al other allowable units, a default preconnection between unit number "nnn" and the file FORnnn is
assumed when no connection between a unit and afile has been established. nnn isathree-digit
FORTRAN unit number. Unit 0is"000", unit 1is"001", unit 2is"002", and so on. Thereisno file
extension in this case. In other words, a default file name is constructed for any unit number for which no
other connection has been established. Input/output statements of the following forms refer to these units.

CLOSE(nnn, . ..) OPEN(nnn, .. .)
CLOSE(UNI T=nnn, . . .) OPEN(UNI T=nnn, . . .)
BACKSPACE nnn READ(nnn, . . .)
BACKSPACE(nnn) READ(UNI T=nnn, .. .)
BACKSPACE(UNI T=nnn) REW ND nnn

ENDFI LE nnn REW ND(nnn)

ENDFI LE(nnn) REW ND(UNI T=nnn)
ENDFI LE(UNI T=nnn) WRI TE(nnn, ...) ...

I NQUI RE(nnn, .. .) WRI TE(UNI T=nnn, . ..)

I NQUI RE(UNI T=nnn, . ..)
Of coursg, it is unlikely that one would be satisfied with using such undistinguished file names such as
f or 000, f or 001, and so on. Therefore, the Open Watcom F77 run-time system provides additional
ways of establishing a preconnection between a FORTRAN UNIT and afile.
The Open Watcom F77 run-time system supports the use of the "SET" command to establish a connection
between aunit and afile. The"SET" command is used to create, modify and remove "Environment

Variables'. The"SET" command must be issued before running a program. The format for a
preconnection using the "SET" command is:

SET unit=file_spec
where description
unit isa FORTRAN unit number in the range 0 to 999.
If thisform of the "SET" command is used then FORTRAN unit number unit is
preconnected to the specified file. FORTRAN input/output statements which refer to the
unit number will access the records in the specified file.
file_spec isthefile specification of the preconnected file.

Here are some sample "SET" commands.

Example:
C>set 1=i nput. dat
C>set 2=out put . dat
C>set 3=d:\ dat abase\custoner.fil

The above example establishes the following preconnections:
1. Betweenunit 1 andthefilei nput . dat which resides (or will reside) in the current directory.

2. Between unit 2 and the file out put . dat which resides (or will reside) in the current directory.

Establishing Connections Between Units and Files 49

Open Watcom FORTRAN 77 User’s Guide

3.

Between unit 3and thefile d: \ dat abase\ cust oner. fi | which resides (or will reside) in
another disk and directory.

Any FORTRAN input/output statements which refer to units 1, 2 or 3 will act upon one of these 3 data

files.

Notes:

1

2.

The"SET" command must be issued before running the program.

No spaces should be placed before or after the "=" in the "SET" command. The following two
examples are quite distinct from each other:

Example:
C>set 55=t est bed. dat
C>set 55 = testbed. dat

To verify this, simply enter the two commands and then enter the "SET" command again with no
arguments. The current environment strings will be displayed. Y ou should find two entries, one
for "55" and one for "55 ".

Since the number in front of the"=" is simply a character string, you should not specify any
leading zeroes either.

Example:
C>set 01=i nput . dat
C>set 1=i nput. dat

In this case, we again have two distinct environment variables. The variable "01" will be
ignored by the Open Watcom F77 run-time system.

An environment variable will remain in effect until you explicitly removeit or you turn off the
personal computer. To discontinue the preconnection between a unit number and afile, you
must issue a"SET" command of the following form.

C>set <unit>=

In the above command, <uni t > isthe unit number for which the preconnection isto be
discontinued.

By omitting the character string after the "=", the environment variable will be removed. For
example, to remove the environment variable "01" from the list, reenter the "SET" command
specifying everything up to and including the "=" character.

Example:
Csset 01=

Any time you wish to see the current list of environment strings, simply enter the "SET"
command with no arguments.

50 Establishing Connections Between Units and Files

Open Watcom FORTRAN 77 File Handling

Example:
Csset
PROWPT=$d $t p_%ng
COVBPEC=d: \ dos\ command. com
PATH=G \; E:\ CMDS; C: \WATCOM BI N; D: \ DCS; D: \ BI N
LI B=c:\wat com | i b286\ dos
1=i nput . dat
2=out put . dat
3=d: \ dat abase\ custoner. fil

6. Anadternative to preconnecting files is provided by the FORTRAN OPEN statement which
allowsfilesto be connected at execution time.

7. The preconnection of units 5 and 6 may be overridden using preconnection specifications or the
FORTRAN OPEN statement. The precedence of a connection between a unit number and afile
isasfollows:

Precedence: User option:
L owest Preconnection Specifications

Highest OPEN statement

In other words, the OPEN statement overrides a preconnection.

6.7 A Preconnection Tutorial

In this section, we will look at some examples of how to establish the link between afile and a FORTRAN
unit.

Exhibit 1:

Consider the following example which reads pairs of numbers from afile and writes out the numbers and
their sum.

* File "iodeno.for’
10 READ(1, *, END=99) X1, X2
WRITE(6, 20) X1, X2, X1 + X2

GO TO 10
20 FORMAT(3F6.2)
99 END

The FORTRAN READ statement will read records from afile connected to unit 1. The FORTRAN
WRITE statement will write records to afile connected to unit 6. Aswe described in the previous section,
unit 6 is preconnected by the Open Watcom F77 run-time system to the screen.

What file will be read when the READ statement refersto unit 1? By default, we know that it will read a

filecalled f or 001. However, suppose the data was actually stored in thefilecalled nunber s. dat . We
can direct the program to read the datain thisfile by using a"SET" command before running the program.

A Preconnection Tutorial 51

Open Watcom FORTRAN 77 User’s Guide

Example:
C>set 1=nunbers. dat
C>i odeno
.40 2.50 3.90
.90 8.70 12.60
.10 9.90 11.00
.30 7.10 15.40
.20 3.50 11.70

QOO Wk

Exhibit 2:

Suppose that we now wish to write the output from the above program to adisk file instead of the screen.
We can do this without modifying the program. Since we know that the WRI TE statement refersto unit 6,
we can alter the default preconnection of unit 6 to the screen by issuing another "SET" command.

Example:

C>set 6=nunbers. r pt

C>i odenp

Cstype nunbers. rpt
1.40 2.50 3.90
3.90 8.70 12.60
1.10 9.90 11.00
8.30 7.10 15.40
8.20 3.50 11.70

Now any time a program writes or prints to unit 6, the output will be written to the disk file

nunber s. r pt . If you are going to run other programs, it would be wise to remove the connection
between unit 6 and thisfile so that it is not accidentally overwritten. This can be done by issuing the
following command.

Example:
Cset 6=

Y ou should also do the same for unit 1.
Exhibit 3:

Must we always use "SET" commands to establish the connection between a unit and afile? Suppose that
you want to run the program quite often and that you do not want to issue "SET" commands every time.
We can do this by modifying the program to include FORTRAN OPEN statements.

* File 'iodeno.for’
OPEN(1, FILE="NUMBERS. DAT')
OPEN(6, FILE="NUMBERS. RPT')
10 READ(1, *, END=99) X1, X2
WRITE(6, 20) X1, X2, X1 + X2

GO TO 10
20 FORMAT(3F6.2)
99 END

Thisis an example of aconnection that is established at execution time. The connection that is established
by the OPEN statement overrides any preconnection that we might have established using a"SET"
command. We say that the OPEN statement has a higher precedence. However, even the OPEN statement
does not have the final word on which fileswill be accessed. Y ou may wish to read the next section on the
Open Watcom F77 run-time system logical file name support to find out why thisis so.

52 A Preconnection Tutorial

Open Watcom FORTRAN 77 File Handling

6.8 Logical File Name Support

The Open Watcom F77 run-time system supports logical or symbolic file names using the "SET"
command. The"SET" command may be used to define alogical file name and its corresponding actual file
name. The format for defining alogical file nameis asfollows:

SET name=fil e_spec

where

name

file_spec

description

isany character string. The lettersin "name" may be specified in upper or lower case.
Lower case letters are treated asif they had been specified in upper case. Thus
"SYSINPUT" and "sysinput" are equivalent. Note, however, that blank characters must not
be specified before and after the "=" character.

isthefile specification of logical file.

Notes and Examples:

1

A logical file name may be used in the FILE= specifier of the FORTRAN OPEN and INQUIRE
statements.

Example:
* File 'iodeno.for’
OPEN(1, FILE="SYSINPUT')
10 READ(1, *, END=99) X1, X2
WRITE(6, 20) X1, X2, X1 + X2

GO TO 10
20 FORMAT(3F6.2)
99 END

In the following example, we define the logical file name"SY SINPUT" to correspond to the file
nunber s. dat .

Example:
C>set sysi nput =nunber s. dat
C>i odeno
1.40 2.50 3.90
3.90 8.70 12.60
1.10 9.90 11.00
8.30 7.10 15.40
8.20 3.50 11.70

If the namein aFILE= specifier is not included in one of the environment variable names then it
is assumed to be the actual name of afile.

Logical File Name Support 53

Open Watcom FORTRAN 77 User’s Guide

Example:
OPEN(2, FILE= sysouT')

3. Thelogical file name feature can also be used to provide additional information regarding the
file name at execution time.

Example:
* File 'iodeno.for’
OPEN(1, FILE= nunbers.dat’)
10 READ(1, *, END=99) X1, X2
WRITE(6, 20) X1, X2, X1 + X2

GO TO 10
20 FORMAT(3F6.2)
99 END

In the following example, the actual location (and name) of the file nunber s. dat isdescribed
through the use of an environment variable.

Example:
C>set nunbers. dat =b: \ dat a\ i nput . dat
C>i odeno

Asyou can see, alogical file name can resemble an actual file name.
Of course, the entire file name could have been specified in the FORTRAN program.

Example:
OPEN(1, FILE="b:\data\input.dat’)

4. Only onelevel of lookup is performed.

Example:
* File "iodeno.for’
OPEN(1, FILE= sysinput’)
10 READ(1, *, END=99) X1, X2
WRITE(6, 20) X1, X2, X1 + X2

GO TO 10
20 FORMAT(3F6.2)
99 END

Thisisillustrated by the following commands.

Example:
C>set sysinput=datafile
C>set datafi |l e=i nput. dat
C>i odeno

In the above example, unit 1 is connected to thefile dat af i | e and not thefile i nput . dat .

5. Logical file names can be used to direct output normally intended for one device to another
device. Consider the following examples.

54 Logical File Name Support

Open Watcom FORTRAN 77 File Handling

Example:
Csset | ptl=lpt2

If the FORTRAN program specifies the name "LPT1" in an OPEN or INQUIRE statement, the
Open Watcom F77 run-time system will map thisnameto "LPT2". In an INQUIRE statement,
the NAME-= specifier will return the name "LPT2".

6. Aswementioned earlier, the case of the name does not matter. Upper or lower case can be used
interchangesbly.

Example:
C>set sysi nput =b: \ dat a\i nput . dat
C>set SYSI NPUT=b: \ dat a\i nput . dat

7. No spaces should be placed before or after the "=" in the "SET" command. The following two
examples are considered quite distinct from each other:

Example:
C>set sysi nput =t est bed. dat
C>set sysinput = testbed. dat

This example will define two variables, "SY SINPUT" and "SY SINPUT ".

8. Anenvironment variable will remain in effect until you explicitly remove it or you turn off the
personal computer. To remove an environment variable from the list, reenter the "SET"
command specifying everything up to and including the "=" character. For example, to remove
the definition for "SY SINPUT", the following command can be issued.

Example:
C>set sysinput =

9. Any time you wish to see the current list of environment strings, smply enter the "SET"
command with no arguments.

Example:
C>set
PROWPT=$d $t p_%ng
COVBPEC=d: \ dos\ command. com
PATH=G \ ; E: \ CMDS; C: \ WATCOM BI N; D: \ DCS; D: \ BI N
LI B=c:\wat com | i b286\ dos
1=i nput . dat
2=out put . dat
3=d: \ dat abase\ custoner.fil
SYSI NPUT=Db: \ dat a\ i nput . dat
LPT1=l pt 2

6.9 Terminal or Console Device Support

Input can come from the console or output can be written to the console by using the console device name
con asthefile name. The console can be specified in a"SET" command or through the FILE= specifier of
the FORTRAN OPEN statement.

The default action for any fileis to open the file for both read and write access (i.e.,
ACTION="READWRITE’). Under Win32, thereis a problem accessing the console device con for both

Terminal or Console Device Support 55

Open Watcom FORTRAN 77 User’s Guide

read and write access. This problem is overcome by using the ACTION= specifier in the OPEN statement.
The ACTI ON= specifier indicates the way in which thefileisinitially accessed. The values allowed for the
ACTION= specifier are the following.

"READ’ thefileis opened for read-only access

"WRITE’ thefile is opened for write-only access

"READWRITE’ thefileis opened for both read and write access

To open the console device under Win32, you must specify whether you are going to "READ" or "WRITE"
to thefile. If you wish to do both reading and writing, then you must use two separate units.

Example:
OPEN(UNI T=1, FILE="CON , ACTI ON=" READ)
OPEN(UNI T=2, FILE="CON, ACTION="WRITE')

The console can be treated as a carriage control device. Thisis requested by using the
CARRI AGECONTROL=" YES' specifier of the FORTRAN OPEN statement.

Example:
OPEN(UNI T=1, FILE="con’, CARRI AGECONTROL='YES')

Carriage control handling is described in the section entitled "Print File Attributes' on page 43.

The console is not capable of supporting carriage control in afashion identical to a printer. For example,
overprinting of records on the console is destructive in that the previous characters are erased.

End of fileissignalled by first pressing the Ctrl/Z key combination and then the line entering key. End of
file may be handled by using the END= specification of the FORTRAN READ statement.

Example:
READ(UNI T=*, FMr=*, END=100) X, Y

100 . code to handle "End of File"
End of file may also be handled by using the |OSTAT= specifier of the FORTRAN READ statement.

Example:
READ(UNI T=*, FMr=*, |IOSTAT=I0CS) X, Y
IF(1058 .NE. 0) THEN
code to handle "End of File"
ENDI F

6.10 Printer Device Support

Output can be written to a printer by using a printer device name as the file name. A printer can be
specified in a"SET" command or through the FILE= specifier of the FORTRAN OPEN statement.
Several device names may be used:

56 Printer Device Support

Open Watcom FORTRAN 77 File Handling

prn or Iptl
| pt 2
| pt3

The printer can be treated as a carriage control device. Thisisregquested by using the
CARRI AGECONTROL=" YES' specifier of the FORTRAN OPEN statement.

Example:
OPEN(UNI T=1, FILE="prn’, CARRI AGECONTROL=' YES')

Carriage control handling is described in the section entitled "Print File Attributes’ on page 43.

6.11 Serial Device Support

Output can be written to a serial port by using a serial device name asthe file name. A serial device can be
specified in a"SET" command or through the FILE= specifier of the FORTRAN OPEN statement. Three
device names may be used:

aux or coml
con®

The serial device can betreated as a carriage control device. Thisis requested by using the
CARRI AGECONTROL=" YES' specifier of the FORTRAN OPEN statement.

Example:
OPEN(UNI T=1, FILE="conl’, CARRI AGECONTROL='YES')

Carriage control handling is described in the section entitled "Print File Attributes’ on page 43.
To set seria characteristics such as speed, parity, and word length, the "MODE" command may be used.

Example:
C>node comil: 9600, n, 8, 1

The above example sets seria port 1 to a speed of 9600 BAUD with no parity, aword length of 8 and 1
stop hit.

6.12 File Handling Defaults

The following defaults apply to file specifications:

* The following table indicates the default record type for the allowable access methods and forms.

File Form

Access For mat t ed Unf or matt ed
Fom e Fom e +

Sequent i al | Text | Variable |
I I +

Direct | Text | Fixed |
Fomm e e oo - Fomm e e oo - +

File Handling Defaults 57

Open Watcom FORTRAN 77 User’s Guide

Unless the record type of the file does not correspond to the default assumed by Open Watcom F77,
the record type attribute should not be specified.

* Unless otherwise stated, the default record length for afileis 1024 characters. When accessis
"direct", the record length must be specified in the RECL = specifier of the FORTRAN OPEN
statement. The record length may also be specified when the accessis "sequentia. This should be
done whenever accessis "sequentia” and the maximum record length is greater than the default.

* The default record accessis "sequential”.

» When reading from or writing to a unit for which no preconnection has been specified or no
"FILE=" form of the FORTRAN OPEN statement has been executed, the default file name takes the

form:
FORNNN

nnn isathree-digit FORTRAN unit number. Unit 0is"000", unit 1is"001", unit 2is"002", and so
on. Thereisno file extension in this case.

« If the connection between a unit number and afile is discontinued through use of the FORTRAN
CLOSE statement, the same rule for constructing afile name will apply on the next attempt to read
from or write to the specified unit.

58 File Handling Defaults

/ The Open Watcom F77 Subprogram Library

Open Watcom FORTRAN 77 includes additional FORTRAN subprograms which can be called from
programs compiled by Open Watcom F77. The following sections describe these subprograms.

7.1 Subroutine FEXIT

The subroutine FEXI T allows an application to terminate execution with areturn code. It requires one
argument of type INTEGER that represents the value to be returned to the system.

Example:
| NCLUDE ' FSUBLI B. FI’
CALL FEXIT(-1)
END

Notes:

1. TheFORTRAN includefile f subl i b. fi,locatedinthe\wat com src\fortran
directory, contains typing and calling information for this subprogram. The
\'wat com src\fortran directory should beincluded in the FINCL UDE environment
variable so that the compiler can locate the include file.

7.2 INTEGER Function FGETCMD

The INTEGER function FGETCMD allows an application to obtain the command line from within an
executing program.

The function FGETCNMD requires one argument of type CHARACTER and returns the length of the
command line.

Example:
| NCLUDE ’ FSUBLI B. FI'’
| NTEGER CMDLEN
CHARACTER* 128 CMDLI N

CMDLEN = FGETCMD(CMDLIN)
PRINT *, 'Command |l ength ="', CMDLEN
PRI NT *, ' Conmand |ine ="', CMDLIN

END
Notes:
1. TheFORTRAN includefile f subl i b. fi,locatedinthe\ wat com src\fortran
directory, contains typing and calling information for this subprogram. The

\'wat com src\fortran directory should beincluded in the FINCL UDE environment
variable so that the compiler can locate the include file.

INTEGER Function FGETCMD 59

Open Watcom FORTRAN 77 User’s Guide

2. If theargument to FGETCMD is not long enough then only the first part of the command lineis
returned.

7.3 INTEGER Function FGETENV

The INTEGER function FGETENV allows an application to obtain the value of an environment string from
within an executing program.

The function FGETENV requires two arguments of type CHARACTER. The first argument is the character
string to look for. FGETENV places the associated environment string value in the second argument and
returns the length of the environment string. If no such string is defined, the length returned is zero.

Example:
I NCLUDE ' FSUBLI B. FI’
| NTEGER STRLEN
CHARACTER* 80 STRVAL
STRLEN = FGETENV(' PATH , STRVAL)
PRINT *, "Environnent string length ="', STRLEN
PRINT *, "Environnent string value ="', STRVAL
END
Notes:

1. TheFORTRAN includefile f subl i b. fi,locatedinthe\ wat com src\fortran
directory, contains typing and calling information for this subprogram. The
\'wat coml src\ f ortran directory should beincluded in the FINCL UDE environment
variable so that the compiler can locate the include file.

2. If the second argument to FGETENV is not long enough then only the first part of the valueis
returned.

7.4 INTEGER Function FILESIZE

The INTEGER function FI LESI ZE alows an application to determine the size of afile connected to a
specified unit.

The function FI LESI ZE requires one argument of type INTEGER, the unit number and returnsthe size, in
bytes, of thefile. If no file is connected to the specified unit, avalue of -1 is returned.

Example:
| NCLUDE ' FSUBLI B. FI'’

OPEN(UNIT=1, FILE= sanple.fil’)

PRINT *, FILESIZE(1)
END

60 INTEGER Function FILESIZE

The Open Watcom F77 Subprogram Library

Notes:

1. TheFORTRAN includefile f subl i b. fi,locatedinthe\wat com src\fortran
directory, contains typing and calling information for this subprogram. The
\'wat com src\fortran directory should beincluded in the FINCL UDE environment
variable so that the compiler can locate the include file.

7.5 Subroutine FINTR and FINTRF

The subroutine FI NTR and FI NTRF allow the user to execute any software interrupt from a FORTRAN 77
program.

Note: These subroutines are only supported by the DOS and Windows libraries.

The subroutine FI NTR and FI NTRF require two arguments.

1. Thefirst argument is an interrupt number. These subroutines will generate the software interrupt
given by the thisargument. The type must be | NTEGER.
2. Thesecond argument isan | NTEGER array of ten elements.

When FI NTR and FI NTRF are called, the array contains the values to be assigned to the registers prior to
issuing the software interrupt. When control isreturned from FI NTRor FI NTRF, it contains the values of
the registers after the software interrupt has completed. The registers are mapped onto the array REGS as

follows.

31 0
REGS(1) EAX
REGS(2) EBX
REGS(3) ECX
REGS(4) EDX
REGS(5) EBP
REGS(6) ESI
REGS(7) EDI
REGS(8) FS | DS
REGS(9) GS | ES
REGS(10) ef | ags

For 16-bit systems (e.g., 8088, 8086, 186, 286), only the low-order 16 bits of each register contain
meaningful results.

31 0

REGS(1) AX
REGS(2) BX
REGS(3) CX
REGS(4) DX
REGS(5) BP
REGS(6) Sl

REGS(7) DI

REGS(8) DS
REGS(9) ES
REGS(10) fl ags

Subroutine FINTR and FINTRF 61

Open Watcom FORTRAN 77 User’s Guide

Difference between FI NTR and FI NTRF isthat FI NTR reset CPU flags before generate the software
interrupt, but FI NTRF set it from REGS(10) element.

Thefiledos. fi , located inthe \ WATCOM sr c\ f ort r an\ dos directory, defines a set of equivalences
for ease of use. The contents of this file are reproduced below.

* Define registers: These correspond to the el enent of an
* array which is to contain the values of the registers.

i nteger*4 regd(10), regs(10)
i nteger*2 regw 2*10)
integer*1 regh(4*4)

i nt eger *4 EAX, EBX, ECX, EDX, EBP, EDI , ESI , EFLAGS

i nteger*2 AX BX, CX, DX, BP, DI, SI, DS, ES, FS, GS, FLAGS

i nteger*1 AH, AL, BH, BL, CH, CL, DH, DL

equi val ence (regd, regs), (regd, regw), (regd, regb),
1(EAX, regd(1)), (EBX regd(2)), (ECX regd(3)), (EDX regd(4)),
2(EBP, regd(5)), (ED,regd(6)), (ESI,regd(7)), (EFLAGS, regd(10)),
3(AX,regm(1)), (BX,regw(3)), (CX,regw(5)), (DX, regw(7)),
4(BP,regw(9)), (Di,regw(11)), (SI,regw13)), (DS, regw15)),
5(FS, regwm16)), (ES,regwm(17)), (GS,regw18)), (FLAGS, regw19)),
6(AL, regh(1)), (AH regh(2)), (BL,regh(5)), (BH regh(6)),
7(CL,regh(9)), (CH regb(10)), (DL,regh(13)), (DH regh(14))

Thefollowing is extracted from the "CALENDAR" program. It demonstrates the use of the FI NTR
subroutine.
subroutine Cl earScreen()
*$noext ensi ons
implicit none
include 'dos.fi’

* Define BIGS functions.

i nteger VIDEO CALL, SCROLL_UP
paraneter (VIDEO CALL=16, SCROLL_UP=6)

DS=ES=FS=GS=0

AH = SCROLL_UP I scroll up

AL =0 ! blank entire w ndow

CX =0 ! set row, col um of upper left
DX = 24*256 + 80 ! set row, colum of |ower right
BH =7 | attribute "white on bl ack"
call fintr(VIDEO CALL, regs)

end

7.6 INTEGER Function FLUSHUNIT

62

The INTEGER function FLUSHUNI T flushes the internal input/output buffer for a specified unit. Each
file, except special devices such as con, has an internal buffer. Buffered input/output is much more
efficient since it reduces the number of system calls which are usually quite expensive. For example, many
WRITE operations may be required before filling the internal file buffer and datais physically transferred
to thefile.

Thisfunction is particularly useful for applications that call non-FORTRAN subroutines or functions that
wish to perform input/output to a FORTRAN file.

The function FLUSHUNI T requires one argument, the unit number, of type INTEGER. It returns an
INTEGER value representing the return code of the input/output operation. A return value of O indicates
success; otherwise an error occurred.

INTEGER Function FLUSHUNIT

The Open Watcom F77 Subprogram Library

The following example will flush the contents of the internal input/output buffer for unit 7.

Example:
| NCLUDE ' FSUBLI B. FI'’
| NTEGER | STAT
| STAT = FLUSHUNI T(7)
| F(1 STAT .NE. 0) THEN
PRINT *, "Error in FLUSHUNI T’
END | F
END
Notes:

1. TheFORTRAN includefile f subl i b. fi,locatedinthe\ wat com src\fortran
directory, contains typing and calling information for this subprogram. The
\'wat coml src\fortran directory should beincluded in the FINCL UDE environment
variable so that the compiler can locate the include file.

7.7 INTEGER Function FNEXTRECL

The INTEGER function FNEXTRECL reports the record length of the next unformatted record to be read
sequentially from the specified unit.

The function FNEXTRECL requires one argument, the unit number, of type INTEGER. It returns an
INTEGER value representing the size of the next record to be read.

The following example creates an unformatted file and then reads the records in the file sequentially.

Example:

INTEGER Function FNEXTRECL 63

Open Watcom FORTRAN 77 User’s Guide

| NCLUDE ' FSUBLI B. FI’
CHARACTER* 80 | NPUT

OPEN(UNI T=2, FI LE=" UNFORM TXT', FORMF' UNFORVATTED ,

& ACCESS=" SEQUENTI AL")

WRI TE(UNI T=2) ’ A sonewhat |ongish first record’

WRI TE(UNIT=2) ’ A short second record’

WRITE(UNIT=2) "A very, very much longer third record’
CLOSE(UNIT=2)

OPEN(UNI T=2, FI LE=" UNFORM TXT', FORM=" UNFORMATTED
& ACCESS=" SEQUENTI AL")

| = FNEXTRECL(2)

PRINT *, ’'Record length=", |
READ(UNI T=2) INPUT(1:1)
PRINT *, I NPUT(1:1)

| = FNEXTRECL(2)

PRINT *, "Record length=, |
READ(UNI T=2) INPUT(1:1)
PRINT *, | NPUT(1:1)

| = FNEXTRECL(2)

PRINT *, ’'Record length=", |
READ(UNI T=2) INPUT(1:1)
PRINT *, I NPUT(1:1)

CLOSE(UNIT=2)

END

Notes:
1. TheFORTRAN includefile f subl i b. fi,locatedinthe\wat com src\fortran
directory, contains typing and calling information for this subprogram. The

\'wat com src\fortran directory should beincluded in the FINCL UDE environment
variable so that the compiler can locate the include file.

7.8 INTEGER Function FSIGNAL

The INTEGER function FSI GNAL allows your application to respond to certain events that occur during

execution.

Event Meaning

SIGBREAK an interactive attention (Ctrl/Break on keyboard) is signalled

SIGFPE an erroneous floating-point operation occurs (such as division by zero, overflow and
underflow)

SIGILL illegal instruction encountered

SIGINT an interactive attention (Ctrl/C on keyboard) is signalled

64 INTEGER Function FSIGNAL

The Open Watcom F77 Subprogram Library

SIGSEGV an illegal memory reference is detected
SIGTERM atermination request is sent to the program
SIGIDIVZ integer division by zero

SIGIOVFL integer overflow

The function FSI GNAL requires two arguments. The first argument isan INTEGER argument and must be
one of the events described above. The second argument, called the handler, is one of the following.

1. asubprogram that is called when the event occurs
2. thevalue SIG_DFL, causing the default action to be taken when the event occurs
3. thevalue SIG_IGN, causing the event to be ignored

FSI GNAL returns SIG_ERR if the request could not be processed, or the previous event handler.

Example:
I NCLUDE ' FSI GNAL. FI’

EXTERNAL BREAK HANDLER

LOG CAL BREAK FLAG

COMWON BREAK _FLAG

BREAK_FLAG = . FALSE.

CALL FSI GNAL(SI GBREAK, BREAK HANDLER)

WHI LE(. NOT. VOLATI LE(BREAK _FLAG)) CONTI NUE
PRINT *, 'Program Interrupted’

END

SUBROUTI NE BREAK_HANDLER()
LOG CAL BREAK_FLAG

COMMON BREAK_FLAG
BREAK_FLAG = . TRUE.

END

Notes:

1. TheFORTRAN includefile f si gnal . fi containstyping and calling information for
FSI GNAL and should be included when using this function. Thisfileislocated in the
\wat com src\fortran directory. The \ wat com src\f ortran directory should be
included in the FINCL UDE environment variable so that the compiler can locate the include
file

2. Theintrinsic function VOLATI LE is used to indicate that the reference to the variable
break_f| ag isvolatle. A volatile reference preventsthe compiler from caching avariablein
aregister. Inthiscase, we want to retrieve the value of br eak_f | ag from memory each time
the loop isiterated.

INTEGER Function FSIGNAL 65

Open Watcom FORTRAN 77 User’s Guide

7.9 INTEGER Function FSPAWN

The INTEGER function FSPAWN allows an application to run another program as a subprocess. When the
program completes, execution is returned to the invoking application. There must be enough available free
memory to start the subprocess.

The function FSPAWN requires two arguments of type CHARACTER. The first argument is a character
string representing the name of the program to be run. The string must end in aNULL character (i.e., a
character with the binary value 0).

The second argument is a character string argument list to be passed to the program. Thefirst character of
the second argument must contain, in binary, the length of the remainder of the argument list. For example,
if the argument is the string "HELL Q" then the first character would be CHAR(5) and the remaining
characters would be "HELLO" (see the example below).

FSPAWN returns an INTEGER val ue representing the status of subprocess execution. If thevalueis
negative then the program could not be run. If the value is positive then the value represents the program’s
return code.

Example:
| NCLUDE ' FSUBLI B. FI’
| NTEGER CVDLEN, STATUS
CHARACTER CWVD* 128, CNDLI N*128

* COVBPEC wi |l tell us where DOS ' COMMAND. COM i's hi di ng
CMDLEN = FGETENV(' COMBPEC , CVD)
CMD(CMDLEN+1: CMDLEN+1) = CHAR(0)

CMDLIN ="/c dir *.for’
CVDLI N(13:13) = CHAR(0)

STATUS = FSPAWN(CMD, CMDLIN)
PRINT *, 'Programstatus ="', STATUS
END

Notes:

1. TheFORTRAN includefile f subl i b. fi,locatedinthe\ wat com src\fortran
directory, contains typing and calling information for this subprogram. The
\wat com src\fortran directory should beincluded in the FINCL UDE environment
variable so that the compiler can locate the include file.

2. TheINTEGER function FSYSTEM which is described in alater section, implements a more
genera form of the example given above. We recommend its use.

7.10 INTEGER Function FSYSTEM

66

The INTEGER function FSYSTEMallows an application to run another program or execute an operating
system command.

The function FSYSTEMrequires one argument of type CHARACTER. Thisargument represents a
operating system command or a program name together with any arguments. FSYSTEMreturns an
INTEGER value representing the status of subprocess execution. If the valueis negative, the operating

INTEGER Function FSYSTEM

The Open Watcom F77 Subprogram Library

system command interpreter or shell could not be run (an attempt is made to invoke the system command
interpreter to run the program). If the valueis positive, the value represents the program’ s return code.

In the following example, a"COPY" command is executed and then a hypothetical sorting program is run.

Example:
| NCLUDE ' FSUBLI B. FI °
| NTEGER STATUS
STATUS = FSYSTEM ' COPY *. FOR \ BACKUP\ FOR\ SRC')
PRINT *, ' Status of COPY command = ', STATUS
STATUS = FSYSTEM ' SORTFI LE/ | N=I NP. DAT/ QUT=0QUT. DAT")
PRINT *, 'Status of SORT program ="', STATUS
END
Notes:

1. TheFORTRAN includefile f subl i b. fi,locatedinthe\wat com src\fortran
directory, contains typing and calling information for this subprogram. The
\'wat com src\ f ortran directory should beincluded in the FINCL UDE environment
variable so that the compiler can locate the include file.

7.11 Subroutine FTRACEBACK

The subroutine FTRACEBACK allows your application to generate a run-time traceback. The application
must be compiled with the "DEBUG" or "TRACE" option. It isuseful when you wish to disclose a
problem in an application and provide an informative report of where the problem occurred in the
application.

The FTRACEBACK subroutine requires no arguments. The FTRACEBACK subroutine does not terminate
program execution.

Example:
SUBROUTI NE READREC(UN)

| NCLUDE ' FSUBLI B. FI’

| NTEGER UN
| NTEGER RLEN
CHARACTER* 35 | NPUT

RLEN = FNEXTRECL(UN)

| F(RLEN . GT. 35) THEN
PRINT *, "Error: Record too long', RLEN
CALL FTRACEBACK
STOP

ELSE
PRINT *, '"Record length=", RLEN
READ(UNI T=UN) | NPUT(1: RLEN)
PRI NT *, | NPUT(1: RLEN)

ENDI F

END

Subroutine FTRACEBACK 67

Open Watcom FORTRAN 77 User’s Guide

Notes:

1. TheFORTRAN includefile f subl i b. fi,locatedinthe\wat com src\fortran
directory, contains typing and calling information for this subprogram. The
\'wat com src\fortran directory should beincluded in the FINCL UDE environment
variable so that the compiler can locate the include file.

7.12 Subroutine GETDAT

The subroutine GETDAT allows an application to obtain the current date.

The subroutine GETDAT has three arguments of type | NTEGER* 2. When control is returned from
GETDAT, they contain the year, month and day of the current date.

The following program prints the current date in the form "YY-MM-DD".

Example:
| NCLUDE ' FSUBLI B. FI’
| NTEGER*2 YEAR, MONTH, DAY
CALL GETDAT(YEAR, MONTH, DAY)
PRI NT 100, YEAR, MONTH, DAY

100 FORMAT(1X, 14, '-', 12.2, "-', 12.2)

END

Notes:

1. TheFORTRAN includefile f subl i b. fi,locatedinthe\ wat com src\fortran
directory, contains typing and calling information for this subprogram. The
\'wat conml src\ f ort ran directory should be included in the FINCL UDE environment
variable so that the compiler can locate the include file.

2. Theargumentsto GETDAT must be of type INTEGER*2 in order to obtain correct results.

7.13 Subroutine GETTIM

The subroutine GETTI Mallows an application to obtain the current time.

The subroutine GETTI Mhas four arguments of type | NTEGER* 2. When control is returned from
GETTI M they contain the hours, minutes, seconds, and hundredths of seconds of the current time.

The following program prints the current time in the form "HH:MM:SS.TT".

Example:
| NCLUDE ' FSUBLI B. FI’
I NTEGER*2 HRS, M NS, SECS, HSECS
CALL GETTIM HRS, M NS, SECS, HSECS)
PRI NT 100, HRS, M NS, SECS, HSECS
100 FORNMAT(1X, 12.2, "', 12.2, "', 12.2, ".", 12.2)

END

68 Subroutine GETTIM

The Open Watcom F77 Subprogram Library

Notes:

1. TheFORTRAN includefile f subl i b. fi,locatedinthe\wat com src\fortran
directory, contains typing and calling information for this subprogram. The
\'wat com src\fortran directory should beincluded in the FINCL UDE environment
variable so that the compiler can locate the include file.

2. Theargumentsto GETTI Mmust be of type INTEGER* 2 in order to obtain correct results.

7.14 INTEGER Function GROWHANDLES

The INTEGER function GRONHANDLES allows an application to increase the maximum number of files
that can be opened. It requires one argument of type INTEGER representing the maximum number of files
that can be opened and returns an INTEGER value representing the actual limit. The actual limit may
differ from the specified limit. For example, memory constraints or system parameters may be such that
the request cannot be satisfied.

The following example attempts to increase the limit on the number of open files to sixty-four.

Example:
| NCLUDE ' FSUBLI B. FI'’
| NTEGER NEW LIM T
NEWLIMT = GROMANDLES(64)
END
Notes:

1. TheFORTRAN includefile f subl i b. fi,locatedinthe\wat com src\fortran
directory, contains typing and calling information for this subprogram. The
\'wat com src\ fortran directory should beincluded in the FINCL UDE environment
variable so that the compiler can locate the include file.

7.15 Functions IARGC and IGETARG

The function | ARGC alows an application to determine the number of arguments (including the program
name) used to invoke the program. The function | GETARG can be used to retrieve an argument.

Arguments supplied to a program are assigned indices. Argument zero is the program name, argument one
isthefirst argument, etc. The function | GETARG requires two arguments. The first argument is the index

of the argument to retrieve and is of type INTEGER. The second argument is of type CHARACTER and is
used to return the argument. The size of the argument (number of characters) is returned.

Functions IARGC and IGETARG 69

Open Watcom FORTRAN 77 User’s Guide

Example:
| NCLUDE ’ FSUBLI B. FI’
CHARACTER* 128 ARG
| NTEGER ARGC, ARGLEN

ARGC = | ARGZ()
ARGLEN = | GETARGE 0, ARG)
PRINT *, 'Programnane is ', ARE 1l: ARGLEN)
DOl =1, ARGC - 1
ARGLEN = | GETARE |, ARG)
PRINT ' (A 12, 2A)’, "Argunent ', |, ' is ',
1 ARG 1: ARGLEN)
END DO
END

Notes:

1. TheFORTRAN includefile f subl i b. fi,locatedinthe\wat com src\fortran
directory, contains typing and calling information for this subprogram. The
\'wat coml src\ f ortran directory should beincluded in the FINCL UDE environment
variable so that the compiler can locate the include file.

7.16 Math Error Functions

Math error functions are called when an error is detected in a math library function. For example, if the
second argument to the AMOD intrinsic function is zero, a math error function will be called. A number of
math error functions are defined in the FORTRAN run-time libraries and perform default actions when an
error is detected. These actionstypically produce an error message to the screen.

It is possible to replace the FORTRAN run-time library version of the math error functions with your own
versions. Thefile _mat herr. f or located inthe \ wat com src\ f ort r an directory can be used asa
template for defining your own math error functions. The following functions represent the set of math
error functions.

1. Thefunction __i mat h2err iscalled for math functions of type INTEGER that take two
arguments of type INTEGER. The first argument represents the error information and is an
argument of type INTEGER that is passed by value. The second argument is a pointer to the
first argument passed to the math function and the third argument is a pointer to the second
argument passed to the math function. The error function returns avalue that is then used asthe
return value for the math function.

2. Thefunction __amat hlerr iscalled for math functions of type REAL that take one argument
of type REAL. Thefirst argument represents the error information and is an argument of type
INTEGER that is passed by value. The second argument is a pointer to the argument passed to
the math function. The error function returns a value that is then used as the return value for the
math function.

3. Thefunction __amat h2err iscalled for math functions of type REAL that take two arguments
of type REAL. Thefirst argument represents the error information and is an argument of type
INTEGER that is passed by value. The second argument is a pointer to the first argument passed
to the math function and the third argument is a pointer to the second argument passed to the
math function. The error function returns avalue that is then used as the return value for the
math function.

4. Thefunction __mat hlerr iscalled for math functions of type DOUBLE PRECISION that
take one argument of type DOUBLE PRECISION. Thefirst argument represents the error

70 Math Error Functions

The Open Watcom F77 Subprogram Library

information and is an argument of type INTEGER that is passed by value. The second argument
isapointer to the argument passed to the math function. The error function returns a value that
isthen used as the return value for the math function.

5. Thefunction __mat h2er r iscaled for math functions of type DOUBLE PRECISION that
take two arguments of type DOUBLE PRECISION. The first argument represents the error
information and is an argument of type INTEGER that is passed by value. The second argument
isapointer to the first argument passed to the math function and the third argument is a pointer
to the second argument passed to the math function. The error function returns avalue that is
then used as the return value for the math function.

6. Thefunction __zmat h2err iscalled for math functions of type COMPLEX that take two
arguments of type COMPLEX. The first argument represents the error information and is an
argument of type INTEGER that is passed by value. The second argument is a pointer to the
first argument passed to the math function and the third argument is a pointer to the second
argument passed to the math function. The error function returns avalue that is then used asthe
return value for the math function.

7. Thefunction __qmat h2er r iscalled for math functions of type DOUBLE COMPLEX that
take two arguments of type DOUBLE COMPLEX. The first argument represents the error
information and is an argument of type INTEGER that is passed by value. The second argument
isapointer to the first argument passed to the math function and the third argument is a pointer
to the second argument passed to the math function. The error function returns avalue that is
then used as the return value for the math function.

Theincludefile mat hcode. fi isincluded by thefile _rat herr . f or andislocated inthe
\'wat com src\fortran directory. It definesthe information that is contained in the error information
argument that is passed to all math error functions.

7.17 INTEGER Function SEEKUNIT

The INTEGER function SEEKUNI T permits seeking to a particular byte offset within afile connected to a
FORTRAN unit. The file must be opened with the following attributes:

FORM="UNFORMATTED’
ACCESS="SEQUENTIAL’
RECORDTY PE='FIXED’

The function SEEKUNI T requires three arguments of type INTEGER, the unit number, the offset to seek,
and the type of positioning to do. The seek positioning may be absolute (indicated by 0) or relative to the
current position (indicated by 1). It returns an INTEGER value representing the new offset in the file. A
returned value of -1 indicates that the function call failed.

Thisfunction is particularly useful for applications that wish to change the input/output position for afile
connected to a unit.

The following example will set the current input/output position of the file connected to the specified unit.

INTEGER Function SEEKUNIT 71

Open Watcom FORTRAN 77 User’s Guide

Example:
EXTERNAL SEEKUNI T
| NTEGER SEEKUNI T
| NTEGER SEEK_SET, SEEK CUR
PARAMVETER (SEEK_SET=0, SEEK CUR=1)
| NTEGER PCSI TI ON
CHARACTER* 80 RECORD
OPEN(UNI T=8, FILE="file', FORME' UNFORMVATTED ,
1 ACCESS=" SEQUENTI AL’ , RECORDTYPE=' FI XED')
PCSI TION = SEEKUNI T(8, 10, SEEK SET)
|F(PCSITION .NE. -1)THEN
PRI NT *, "New position is’, PQOSITION
READ(UNI T=8) RECORD
PRI NT *, RECORD
ENDI F
END
Notes:

1. TheFORTRAN includefile f subl i b. fi,locatedinthe\ wat com src\fortran
directory, contains typing and calling information for this subprogram. The
\'wat coml src\fortran directory should beincluded in the FINCL UDE environment
variable so that the compiler can locate the include file.

2. Avaueof -1isreturned if the requested positioning cannot be done.

7.18 INTEGER Function SETJMP/Subroutine LONGJMP

The INTEGER function SETJMP saves the current executing environment, making it possible to restore
that environment by subsequently calling the LONGJ MP subroutine. For example, it is possible to
implement error handling by using SETJMP to record the point to which a return will occur following an
error. When an error is detected in a called subprogram, that subprogram uses LONGJ VP to jump back to
the recorded position. The origina subprogram which called SETJMP must still be active (it cannot have
returned to the subprogram which called it).

The SETJMP function requires one argument. The argument is a structure of type j np_buf and isused to
save the current environment. The return value isan integer and is zero when initially called. Itisnon-zero
if the return is the result of acall to the LONGI MP subroutine. An |F statement is often used to handle
these two cases. Thisis demonstrated in the following example.

Example:

72 INTEGER Function SETJMP/Subroutine LONGJMP

The Open Watcom F77 Subprogram Library

i nclude 'fsignal.fi
i nclude "setjnp.fi’
record /jnp_buf/ jnp_buf
common j np_buf
external break_handl er
i nteger rc
call fsignal (SIGREAK, break handler)
rc = setjnmp(jnp_buf)
if(rc .eq. 0)then
call do_it()
el se
print *, 'abnormal termination:’, rc
endi f
end

subroutine do_it()
| oop

end | oop

end

subroutine break_handl er ()
i nclude "setjnp.fi’

record /jnmp_buf/ jnp_buf
common j np_buf

call longjnp(jnp_buf, -1)
end

Notes:

1. TheFORTRAN includefile setj np. fi containstyping and calling information for SETJMP
and LONGI MP and must beincluded. Similarly, f si gnal . fi must be included when using
the FSI GNAL function. Thesefilesarelocated inthe \ wat com src\ f ort r an directory.
The\wat com src\ fortran directory should be included in the FINCL UDE environment
variable so that the compiler can locate these include files.

7.19 INTEGER Function SETSYSHANDLE

The INTEGER function SETSYSHANDL E allows an application to set the system file handle for a specified
unit.

The function SETSYSHANDLE requires an argument of type INTEGER, the unit number, and an argument
of type INTEGER* 2, the handle, and returns an INTEGER val ue representing the success or fail status of
the function call. A returned value of -1 indicates that the function call failed and O indicates that the
function call succeeded.

Thisfunction is particularly useful for applications that wish to set the system file handle for aunit. The
system file handle may have been obtained from a non-FORTRAN subroutine or function.

The following example will set the system file handle for a paricular unit.

INTEGER Function SETSYSHANDLE 73

Open Watcom FORTRAN 77 User’s Guide

Example:

Notes:

I NCLUDE ' FSUBLI B. FI'’
I NTEGER STDI N, STDOUT
PARAMETER (STDI N=0, STDQUT=1)

OPEN(UNI T=8, FORME' FORMATTED)
| = SYSHANDLE(8)
PRINT *, "Ad handle was’, |
| = SETSYSHANDLE(8, STDOUT)
IF(I .EQ 0)THEN
WRI TE(UNI T=8, FMr=*) 'Qutput to UNIT 8 which is stdout’
ENDI F
END

The FORTRAN includefile f subl i b. fi , located inthe \ wat com src\fortran
directory, contains typing and calling information for this subprogram. The

\wat com src\fortran directory should beincluded in the FINCL UDE environment
variable so that the compiler can locate the include file.

A value of -1 isreturned if the unit is not connected to afile.

Units 5 and 6 are preconnected to the standard input and standard output devices respectively.

7.20 INTEGER*2 Function SYSHANDLE

The INTEGER* 2 function SYSHANDLE allows an application to obtain the system file handle for a
specified unit.

74

The function SYSHANDL E requires one argument of type INTEGER, the unit number. and returns an
INTEGER* 2 value representing the system file handle.

Thisfunction is particularly useful for applications that wish to pass the system file handle to
non-FORTRAN subroutines or functions that wish to perform input/output to a FORTRAN 77 file.

The following example will print the system file handles for the standard input and standard output devices.

Example:

Notes:

I NCLUDE ' FSUBLI B. FI'’

PRINT *, "Unit 5 file handle is’, SYSHANDLE(5)
PRINT *, "Unit 6 file handle is’, SYSHANDLE(6)
END

The FORTRAN includefile f subl i b. fi, located inthe \ wat com src\fortran
directory, contains typing and calling information for this subprogram. The

\'wat coml src\ f ortran directory should beincluded in the FINCL UDE environment
variable so that the compiler can locate the include file.

A vaue of -1 isreturned if the unit is not connected to afile.

Units 5 and 6 are preconnected to the standard input and standard output devices respectively.

INTEGER*2 Function SYSHANDLE

The Open Watcom F77 Subprogram Library

7.21 REAL Function URAND

The REAL function URAND returns pseudo-random numbersin the range (0,1).

The function URAND requires one argument of type INTEGER, theinitial seed. The seed can contain any
integer value. URAND returns a REAL value which is a pseudo-random number in the range (0.0,1.0).

In the following example, 100 random numbers are printed.

Example:
REAL URAND
| NTEGER SEED

SEED = 75347
DO = 1, 100
PRINT *, URAND(SEED)
ENDDO
END

Notes:

1. Upon each invocation of URAND, the seed argument is updated by the random number generator.
Therefore, the argument must not be a constant and, once the seed value has been set, it must not
be modified by the programmer.

7.22 Default Windowing Functions

The functions described in the following sections provide the capability to manipulate attributes of various
windows created by Open Watcom'’s default windowing system for Microsoft Windows 3.x, Windows 95,
Windows NT, and IBM OS/2. A simple default windowing FORTRAN application can be built using the

following command(s):

16-bit Windows Cwf |l [fnl] [fn2] ... -bw -w ndows -|=wi ndows

32-bit Windows Cwf1386 [fnl] [fn2] ... -bw -l=wi n386
Cwbind -n [fnl]

32-bit Windows NT or Windows 95

Cwi1386 [fnl] [fn2] ... -bw-I=nt_wn
32-bit OS/2 Presentation Manager
Cwi1386 [fnl] [fn2] ... -bw-l=0s2v2_pm
Note: At present, arestriction in Windows NT prevents you from opening the console device

(CON) for both read and write access. Therefore, it is not possible to open additional
windows for both input and output under Windows NT. They must be either read-only or
write-only windows.

Default Windowing Functions 75

Open Watcom FORTRAN 77 User’s Guide

7.22.1 dwfDeleteOnClose

i nteger function dwfDel eteOnd ose(unit)
i nteger unit

The dwfDeleteOnClose function tells the console window that it should close itself when the corresponding
fileisclosed. The argument uni t isthe unit number associated with the opened console.

This function is one of the support functions that can be called from an application using Open Watcom’s
default windowing support.

The dwfDeleteOnClose function returns 1 if it was successful and O if not.

Example:
PROGRAM rmai n
| NCLUDE * FSUBLI B. FI*

I NTEGER rc
CHARACTER r esponse

rc dwf Set About Dl g('Hell o World About Dial og’,
1 " About Hello World' //CHAR(13)//
2 " Copyright 1994 by WATCOM // CHAR(13))
rc dwf Set AppTitle("Hello Wrld Application Title')
rc dwf Set ConTitle(5, '"Hello Wrld Console Title)
PRINT *, 'Hello World’
OPEN(unit=3, file="CON)
rc = dwfSetConTitle(3, "Hello Wrld Second Console Title')
rc = dwfDel eteOnC ose(3)
WRI TE(unit=3, fnt=*) "Hello to second consol e’
WRI TE(unit=3, fnmt=*) "Press Enter to close this console’
READ(unit=3, fnt="(A)’, end=100, err=100) response

100 CLOSE(unit=3)
END

7.22.2 dwfSetAboutDIg

i nteger function dwfSetAboutDi g(title, text)
character*(*) title
character*(*) text

The dwfSetAboutDIg function sets the "About" dialog box of the default windowing system. The argument
titl eisacharacter string that will replace the current title. If titl e is CHAR(O) then the title will not
bereplaced. Theargument t ext isacharacter string which will be placed in the "About" box. To get
multiple lines, embed a new line character (CHAR(13)) after each logical linein the string. If t ext is
CHAR(0), then the current text in the "About" box will not be replaced.

This function is one of the support functions that can be called from an application using Open Watcom's
default windowing support.

The dwfSetAboutDIg function returns 1 if it was successful and O if not.

76 Default Windowing Functions

The Open Watcom F77 Subprogram Library

Example:
PROGRAM mai n
| NCLUDE * FSUBLI B. FI *

I NTEGER rc
CHARACTER r esponse

rc = dwf Set AboutDig('Hello Wrld About Dialog,

1 " About Hello World' //CHAR(13)//

2 " Copyright 1994 by WATCOM // CHAR(13))
rc = dwf Set AppTitle("Hello World Application Title')

rc = dwfSetConTitle(5, 'Hello Wrld Console Title')

PRINT *, "Hello World’
OPEN(unit=3, file=" CON
rc = dwfSetConTitle(3, "Hello Wrld Second Console Title')
rc = dwfDel eteOnd ose(3)
WRI TE(unit=3, fnm=*) "Hello to second consol e’
WRI TE(unit=3, fm=*) 'Press Enter to close this console’
READ(unit=3, fm="(A)’, end=100, err=100) response
100 CLOSE(unit=3)
END

7.22.3 dwfSetAppTitle

i nteger function dwfSetAppTitle(title)
character*(*) title

The dwfSetAppTitle function sets the main window’ stitle. Theargument ti t | e isacharacter string that
will replace the current title.

This function is one of the support functions that can be called from an application using Open Watcom's
default windowing support.

The dwfSetAppTitle function returns 1 if it was successful and O if not.

Example:
PROGRAM rmai n
| NCLUDE * FSUBLI B. FI *

I NTEGER rc
CHARACTER r esponse

rc = dwf Set AboutDig("Hello Wrld About Dialog,

1 " About Hello World' //CHAR(13)//

2 " Copyright 1994 by WATCOM // CHAR(13))
rc = dwf Set AppTitle("Hello World Application Title')

rc = dwfSetConTitle(5 'Hello Wrld Console Title')

PRINT *, "Hello World
OPEN(unit=3, file="CON)
rc = dwfSetConTitle(3, "Hello Wrld Second Console Title')
rc = dwfDel eteOnd ose(3)
WRI TE(unit=3, fnt=*) "Hello to second consol e’
WRI TE(unit=3, fnmt=*) '"Press Enter to close this console’
READ(unit=3, fnt="(A)’, end=100, err=100) response
100 CLOSE(unit=3)
END

Default Windowing Functions 77

Open Watcom FORTRAN 77 User’s Guide

7.22.4 dwfSetConTitle

i nteger function dwfSetConTitle(unit, title)
i nteger unit
character*(*) title

The dwfSetConTitle function sets the console window’ s title which corresponds to the unit number passed
toit. Theargument uni t isthe unit number associated with the opened console. Theargument titl eis
the character string that will replace the current title.

This function is one of the support functions that can be called from an application using Open Watcom’s
default windowing support.

The dwfSetConTitle function returns 1 if it was successful and O if not.

Example:
PROGRAM rmai n
| NCLUDE * FSUBLI B. FI*

I NTEGER rc
CHARACTER r esponse

rc = dwf Set About Dl g("Hello Wrld About Dialog,
1 " About Hello World' //CHAR(13)//
2 " Copyright 1994 by WATCOM // CHAR(13))
rc dwf Set AppTitle("Hello Wrld Application Title')
rc dwf Set ConTitle(5, 'Hello Wrld Console Title')
PRINT *, 'Hello World’
OPEN(unit=3, file="CON)
rc = dwfSetConTitle(3, "Hello Wrld Second Console Title')
rc = dwfDel eteOnC ose(3)
WRI TE(unit=3, fnt=*) "Hello to second consol e’
WRI TE(unit=3, fnmt=*) "Press Enter to close this console’
READ(unit=3, fnt="(A)', end=100, err=100) response

100 CLOSE(unit=3)
END

7.22.5 dwfShutDown

i nteger function dwf Shut Down()
The dwfShutDown function shuts down the default windowing 1/0 system. The application will continue
to execute but no windows will be available for output. Care should be exercised when using this function
since any subsequent output may cause unpredictable results.

When the application terminates, it will not be necessary to manually close the main window.

This function is one of the support functions that can be called from an application using Open Watcom's
default windowing support.

The dwfShutDown function returns 1 if it was successful and O if not.

78 Default Windowing Functions

The Open Watcom F77 Subprogram Library

Example:
PROGRAM mai n
I NCLUDE ' FSUBLI B. FI ’
I NTEGER rc
CHARACTER r esponse
rc = dwf Set AboutDig('Hello Wrld About Dialog,
1 " About Hello World' //CHAR(13)//
2 " Copyright 1994 by WATCOM // CHAR(13))
rc = dwf Set AppTitle("Hello World Application Title')
rc = dwfSetConTitle(5, 'Hello Wrld Console Title')

PRINT *, "Hello World’
OPEN(unit=3, file="CON)
rc = dwfSetConTitle(3, "Hello Wrld Second Console Title')
rc = dwfDel eteOnd ose(3)
WRI TE(unit=3, fnm=*) "Hello to second consol e’
WRI TE(unit=3, fm=*) 'Press Enter to close this console’
READ(unit=3, fm="(A)’, end=100, err=100) response
100 CLOSE(unit=3)
rc = dwf Shut Down()

do nore conputing that does not involve consol e input/output

END

7.22.6 dwfYield

i nteger function dwf vel d()

The dwfYield function yields control back to the operating system, thereby giving other processes a chance
to run.

Thisfunction is one of the support functions that can be called from an application using Open Watcom's
default windowing support.

The dwfYield function returns 1 if it was successful and O if not.

Default Windowing Functions 79

Open Watcom FORTRAN 77 User’s Guide

Example:

PROGRAM nai n
| NCLUDE ’ FSUBLI B. FI’
I NTEGER rc
CHARACTER r esponse
| NTEGER i
rc = dwf Set About Dl g("Hello Wrld About Dialog,
1 " About Hello World' //CHAR(13)//
2 " Copyright 1994 by WATCOM // CHAR(13))
rc = dwf Set AppTitle("Hello World Application Title')
rc = dwfSetConTitle(5 'Hello Wrld Console Title')
PRINT *, 'Hello World’
OPEN(unit=3, file=" CON
rc = dwfSetConTitle(3, "Hello Wrld Second Console Title')
rc = dwfDel eteOnC ose(3)
WRI TE(unit=3, fm=*) '"Hello to second consol e’
WRI TE(unit=3, fnmt=*) "Press Enter to close this console’
READ(unit=3, fnt="(A)’, end=100, err=100) response

100 CLOSE(unit=3)
DOi = 0, 1000

rc = dwfYield()

* do CPU-intensive cal cul ation

*

* .
ENDDO
PRI NT *, i
END

80 Default Windowing Functions

8 Data Representation On x86-based Platforms

This chapter describes the internal or machine representation of the basic types supported by Open Watcom

F77. Thefollowing table summarizes these data types.

Data Type Size FORTRAN 77
(in bytes) Standard

LOGICAL 4

LOGICAL*1 1 (extension)
LOGICAL*4 4 (extension)
INTEGER 4

INTEGER* 1 1 (extension)
INTEGER*2 2 (extension)
INTEGER*4 4 (extension)
REAL 4

REAL*4 4 (extension)
REAL*8 8 (extension)
DOUBLE PRECISION 8

COMPLEX 8

COMPLEX*8 8 (extension)
COMPLEX*16 16 (extension)
DOUBLE COMPLEX 16 (extension)
CHARACTER 1

CHARACTER*n n

8.1 LOGICAL*1 Data Type

Anitem of type LOGICAL*1 occupies 1 byte of storage. It can only have two values, namely .TRUE. (a

valueof 1) and .FALSE. (avalue of 0).

8.2 LOGICAL and LOGICAL*4 Data Types

An item of type LOGICAL or LOGICAL*4 occupies 4 bytes of storage. It can only have two values,

namely .TRUE. (avalueof 1) and .FALSE. (avalue of 0).

LOGICAL and LOGICAL*4 Data Types

81

Open Watcom FORTRAN 77 User’s Guide

8.3 INTEGER*1 Data Type

Anitem of type INTEGER* 1 occupies 1 byte of storage. Itsvalueisinthefollowing range. Aninteger n
can be represented in 1 byte if

-128 <= n <= 127

8.4 INTEGER®*2 Data Type

Anitem of type INTEGER*2 occupies 2 bytes of storage. Aninteger n can be represented in 2 bytesiif

-32768 <= n <= 32767

8.5 INTEGER and INTEGER*4 Data Types

An item of type INTEGER or INTEGER*4 occupies 4 bytes of storage (one numeric storage unit). An
integer n can be represented in 4 bytes if

- 2147483648 <= n <= 2147483647

8.6 REAL and REAL*4 Data Types

Anitem of type REAL or REAL*4 is an approximate representation of areal number and occupies 4 bytes
(one numeric storage unit). If misthe magnitude of areal number x, then x can be approximated if

-126 128
2 <= m«< 2

or in more approximate terms if
1.175494e-38 <= m <= 3.402823e38

Items of type REAL or REAL*4 are represented internally as follows. Note that bytes are stored in
memory with the least significant byte first and the most significant byte |ast.

S Biased Significand
Exponent
31 30-23 22-0
S S = Sign bit (O=positive, 1=negative)
Exponent The exponent biasis 127 (i.e., exponent value 1 represents 2**-126; exponent value 127
represents 2**0; exponent value 254 represents 2**127; etc.). The exponent field is 8 bits
long.

Significand Theleading bit of the significand is always 1, hence it is not stored in the significand field.
Thusthe significand is always "normalized”. The significand field is 23 bits long.

82 REAL and REAL*4 Data Types

Data Representation On x86-based Platforms

Zero A real zero quantity occurs when the sign bit, exponent, and significand are all zero.

Infinity When the exponent field isall 1 bits and the significand field isall zero bits then the
quantity represents positive or negative infinity, depending on the sign bit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then the quantity
isaspecial value called aNAN (Not-A-Number).

When the exponent field isall 0 bits and the significand field is non-zero then the quantity
isaspecial value called a"denormal" or nonnormal number.

8.7 DOUBLE PRECISION and REAL*8 Data Types

An item of type DOUBLE PRECISION or REAL*8 is an approximate representation of areal number,
occupies 8 bytes (two numeric storage units) and has precision greater than or equal to that of an item of
type REAL or REAL*4. If misthe magnitude of areal number X, then x can be approximated if

-1022 1024
2 <=m< 2

or in more approximate terms if

2.2250738585072e-308 <= m <= 1.79769313486232e308

Items of type DOUBLE PRECISION or REAL*8 are represented internally as follows. Note that bytes
are stored in memory with the least significant byte first and the most significant byte last.

S Biased Significand
Exponent
63 62-52 51-0
S S = Sign bit (O=positive, 1=negative)
Exponent The exponent biasis 1023 (i.e., exponent value 1 represents 2**-1022; exponent value
1023 represents 2** 0; exponent value 2046 represents 2**1023; etc.). The exponent field
is11 bitslong.

Significand Theleading bit of the significand is always 1, hence it is not stored in the significand field.
Thusthe significand is always "normalized”. The significand field is 52 bits long.

Zero A double precision zero quantity occurs when the sign bit, exponent, and significand are all
zero.
Infinity When the exponent field isall 1 bits and the significand field isall zero bits then the

guantity represents positive or negative infinity, depending on the sign bit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then the quantity
isaspecial value called aNAN (Not-A-Number).

When the exponent field isall 0 bits and the significand field is non-zero then the quantity
isaspecia value called a"denormal" or nonnormal number.

DOUBLE PRECISION and REAL*8 Data Types 83

Open Watcom FORTRAN 77 User’s Guide

8.8 COMPLEX, COMPLEX*8, and DOUBLE COMPLEX Data
Types

An item of type COMPLEX or COMPLEX*8 is an approximate representation of a complex number.
The representation is an ordered pair of real numbers, the first representing the real part of the complex
number and the second representing the imaginary part of the complex number. Each item of type
COMPLEX or COMPLEX*8 occupies 8 bytes (two consecutive numeric storage units), the first being the
real part and the second the imaginary part. The approximation of the real and imaginary parts of a
complex number is the same degree of approximation used for items of type REAL.

8.9 COMPLEX*16 Data Type

An item of type COMPLEX* 16 is an approximate representation of a complex number. The
representation is an ordered pair of real numbers, the first representing the real part of the complex number
and the second representing the imaginary part of the complex number. Each item of type COMPLEX* 16
occupies 16 bytes (four consecutive numeric storage units), the first two being the real part and the last two
theimaginary part. The approximation of the real and imaginary parts of a complex number isthe same
degree of approximation used for items of type DOUBL E PRECISION.

8.10 CHARACTER Data Type

An item of type CHARACTER represents a sequence of characters. Each character occupies 1 byte of
storage (1 character storage unit). The length of an item of type CHARACTER is the number of
charactersit contains. Each character is assigned an integer that representsits position. Characters are
numbered from 1 to n starting from the left, n being the number of characters.

Items of type CHARACTER are represented by a string descriptor. A string descriptor has the following

format.
Offset
0 pointer to data
4 length of data

The pointer to the actual datais a 32-bit offset in the default data segment. The length is represented as a
32-hit unsigned integer.

8.11 Storage Organization of Data Types

The following illustrates the relative size of the data typesin terms of bytes. LOGICAL isequivalent to
LOGICAL*4, INTEGER isequivaent to INTEGER*4, DOUBLE PRECISION isequivalent to
REAL*8, and COMPLEX isequivalent to COMPLEX*8. If the"short" option isused, LOGICAL is
equivalent to LOGICAL*1 and INTEGER iseqguivaent to INTEGER*2,

84 Storage Organization of Data Types

Data Representation On x86-based Platforms

Offset 012 3 456 7 89 101112131415

in bytes

LOGICAL*1

LOGICAL*4

INTEGER*1

INTEGER*2

INTEGER*4

REAL*4

REAL*8

COMPLEX*8 real imaginary

COMPLEX*16 real part imaginary part

8.12 Floating-point Accuracy On x86-based Platforms

There are a number of issues surrounding floating-point accuracy, calculations, exceptions, etc. on the
x86-based personal computer platform that we will address in the following sections. Some result from
differencesin the behaviour of standard-conforming FORTRAN 77 compilers. Other result from
idiosyncrasies of the |EEE Standard 754 floating-point that is supported on the x86 platform.

Some FORTRAN 77 compilers extend the precision of single-precision constantsin DATA statement
initialization lists when the corresponding variable is double precision. Thisis permitted by the FORTRAN
77 Standard. Open Watcom FORTRAN 77, however, does not do this. Thisisillustrated by the following
example.

Example:
doubl e precision pil, pi2
data pil /3.141592653589793/
data pi2 /3.141592653589793d0/
wite(unit=* fm="(1x,z16, 1x,f18.15)’) pil, pil
wite(unit=* fnm="(1x,z16, 1x,f18.15)’) pi2, pi?2
end

The output produces two very different results for our pi variables. Thevariable Pl 1 isinitiaized with a
single precision (i.e., REAL) constant.

400921FB60000000 3.141592741012573
400921FB54442D18 3.141592653589793

A single precision datum has 23 bits in the mantissa; a double precision datum has 52 bits in the mantissa.
Hence PI 1 has 29 fewer bits of accuracy in the mantissa (the difference between 52 and 23) sinceitis
initialized with a single precision constant. Y ou can verify this by examining the hexadecimal output of the
two pi's. The bottom 29 hits of the mantissain Pl 1 are all zero.

Floating-point Accuracy On x86-based Platforms 85

Open Watcom FORTRAN 77 User’s Guide

To be on the safe side, the rule is always use double precision constants (even in DATA statements) if you
want as much accuracy as possible.

This behaviour treats DATA statement initialization as equivalent to simple assignment as shown in the
following example.

Example:
doubl e precision pil, pi2
pil1 = 3.141592653589793
pi 2 = 3.141592653589793d0
wite(unit=*,fm="(1x,z16, 1x,f18.15)') pil, pil
wite(unit=* fm="(1x, z16, 1x,f18.15)") pi 2, pi?2
end

The output follows:

400921FB60000000 3. 141592741012573
400921FB54442D18 3. 141592653589793

A second consideration isillustrated by the next example. On some computer architectures, thereis no
difference in the exponent range between single and double precision floating-point representation. One
such architecture is the IBM mainframe computer (e.g., IBM System/370). When a double precision result
is assigned to asingle precision (REAL) variable, only precision in the mantissaiis lost.

The x86 platform uses the |EEE Standard 754 floating-point representation. In this representation, the
range of exponent valuesis greater in double precision than in single precision. Asdescribed in the section
entitled "REAL and REAL*4 Data Types' on page 82, the range for single precision (REAL, REAL*4)
numbersis:

1.175494e-38 <= m <= 3. 402823e38

On the other hand, the range for double precision (DOUBLE PRECISION, REAL*8) numbersis:

2.2250738585072e-308 <= m <= 1.79769313486232e308

Double precision is described in the section entitled "DOUBLE PRECISION and REAL*8 Data Types' on
page 83. So you can see that a number like 1.0E234 can easily be represented in double precision but not in
single precision since the maximum positive exponent value for single precision is 38.

8.13 Floating-point Exceptions On x86-based Platforms

The following types of exceptions can be enabled/disabled on PC’ s with an 80x87 floating-point unit
(either areal FPU or atrue emulator).

DENORMAL Theresult has become denormalized. When the exponent field isall 0 bits and the
significand field is non-zero then the quantity is a special value called a"denormal" or
nonnormal number. By providing a significand with leading zeros, the range of possible
negative exponents can be extended by the number of bitsin the significand. Each
leading zero is abit of lost accuracy, so the extended exponent range is obtained by
reducing significance.

ZERODIVIDE A division by zero was attempted. A real zero quantity occurs when the sign hit,
exponent, and significand are al zero.

86 Floating-point Exceptions On x86-based Platforms

Data Representation On x86-based Platforms

OVERFLOW

UNDERFLOW

PRECISION

INVALID

The result has overflowed. The correct answer is finite, but has a magnitude too great to
be represented in the destination floating-point format.

The result has numerically underflowed. The correct answer is non-zero but has a
magnitude too small to be represented as a normal number in the destination
floating-point format. |EEE Standard 754 specifies that an attempt be made to represent
the number as adenormal. This denormalization may result in aloss of significant bits
from the significand.

A calculation does not return an exact answer. This exception is usually masked
(disabled) and ignored. It isused in extremely critical applications, when the user must
know if the results are exact. The precision exception is called "inexact" in |IEEE
Standard 754.

Thisisthe exception condition that covers al cases not covered by the other exceptions.
Included are FPU stack overflow and underflow, NAN inputs, illegal infinite inputs,
out-of-range inputs, and inputs in unsupported formats.

Which exceptions does Open Watcom FORTRAN 77 catch and which ones does it ignore by default? We
can determine the answer to this with the following program.

* This programuses the C Library routine "_control 87"
* to obtain the math coprocessor exception mask.

inplicit none
include 'fsignal.fi’

character*8 status
integer fp_cw, bits

fp_cw = _control 87(0, 0)

bits = AND(fp_cw, MCWEM)

print '(a,1x,z4)’, ’'Interrupt exception mask’', bits

print *,’Invalid operation exception ', status(bits, EM.| NVALID)
print *,’ Denormalized exception ', status(bits, EM DENORVAL)
print *,’Divide by 0 exception ', status(bits, EM ZERODI VI DE)
print *,’ Overflow exception ', status(bits, EM OVERFLOW

print *,’ Underflow exception ', status(bits, EM UNDERFLOW

print *,’ Precision exception ', status(bits, EM PREC SI ON)

end

character*8 function status(bits, mask)
integer bits, mask

if(1AND(bits, mask) .eq. 0) then

status = 'enabl ed’
el se

status = 'disabl ed
endi f
end

If you compile and run this program, the following output is produced.

Interrupt exception mask 0032
Invalid operation exception enabl ed
Denor nal i zed exception di sabl ed

Di vide by 0 exception enabl ed
Overfl ow excepti on enabl ed

Under f | ow excepti on di sabl ed

Preci si on exception disabl ed

Floating-point Exceptions On x86-based Platforms 87

Open Watcom FORTRAN 77 User’s Guide

So, by default, the Open Watcom FORTRAN 77 run-time system will catch "invalid operation”, "divide by

0", and "overflow" exceptions. It ignores "denormal”, "underflow", and "precision” exceptions. Thus
calculations that produce very small results trend towards zero. Also, calculations that produce inexact
results (avery common occurrence in floating-point cal culations) are allowed to continue.

Suppose that you were interested in flagging calculations that result in denormalized or underflowed
results. To do this, we need to enable both DENORMAL and UNDERFLOW exceptions. Thisfollowing
program illustrates how to do this.

*$i fdef _ 386__
*$i fdef __stack_conventions__
*$pragma aux _clear87 "!"

*$el se

*$pragma aux _clear87 "!_
*$endi f

*$el se

*$pragma aux _clear87 "!_
*$endi f

implicit none
include "fsignal.fi’

character*8 status
integer fp_cw, fp_mask, bits

* get rid of any errors so we don't cause an instant exception
call _clear87
* fp_mask deternmines the bits to enable and/or disable
fp_mask = 0
1 + EM_DENORVAL
2 + EM_UNDERFLOW
* fp_cw determ nes whether to enabl e(0) or disable(1)
* (in this case, nothing is disabled)

fp_cw = ' 0000’ x
fp_cw = _control 87(fp_cw, fp_nmask)

bits = |AND(fp_cw, MCWEM)

print ’(a,1x,z4)’, 'Interrupt exception mask’, bits

print *,’Invalid operation exception ', status(bits, EM.INVALID)
print *,’ Denormalized exception ', status(bits, EM DENORVAL)
print *,’Divide by 0 exception ', status(bits, EM ZERODI VI DE)
print *,’ Overflow exception ', status(bits, EM OVERFLOW

print *,’ Underfl ow exception ', status(bits, EM UNDERFLOW

print *,’ Precision exception ', status(bits, EM PREC SI ON)

end

character*8 function status(bits, mask)
integer bits, mask

if(IAND(bits, mask) .eq. 0) then

status = 'enabl ed’
el se

status = 'disabl ed’
endi f
end

If you compile and run this program, the following output is produced.

88 Floating-point Exceptions On x86-based Platforms

Data Representation On x86-based Platforms

Interrupt exception mask 0020

I nval i d operation exception enabl ed
Denor nal i zed excepti on enabl ed

Di vide by 0 exception enabl ed
Overfl ow excepti on enabl ed

Under f| ow excepti on enabl ed

Preci si on exception disabl ed

8.14 Compiler Options Relating to Floating-point

Let us take the program that we developed in the previous section and test it out. If you introduce the
variable FLT to the program and cal cul ate the expression "2e-38 x 2e-38", you would expect to see 0.0
printed when underflow exceptions are disabled and a run-time diagnostic when underflow exceptions are
enabled. The statements that you would add are show in the following.

real flt

flt=2e-38
print *, flt*flt

* code to enabl e exceptions goes here
print *, flt*flt

end

If you compile the modified program with default options and run it, the result is as follows.

0. 0000000
Interrupt exception nmask 0020
I nval i d operation exception enabl ed
Denor nal i zed excepti on enabl ed
Di vide by 0 exception enabl ed
Overfl ow excepti on enabl ed
Under f | ow excepti on enabl ed
Preci si on exception disabl ed

0. 0000000

Thisis not what we expected. Evaluation of the second expression did not produce the run-time diagnostic
that we expected. The reason this happened is related to the compiler’s processing of the source code. By
default, the compiler optimized the generated code by evaluating the expression "2e-38 x 2e-38" at compile
time producing 0.0 as the result (due to the underflow).

flt=2e-38
print *, flt*flt

reduces to
print *, 2e-28*2e-38
whi ch further reduces to
print *, 0.0

Recompile the program using the "OP" option and run it. The result is asfollows.

Compiler Options Relating to Floating-point 89

Open Watcom FORTRAN 77 User’s Guide

0. 0000000
Interrupt exception nmask 0020
I nval i d operation exception enabl ed
Denornal i zed excepti on enabl ed
Di vide by 0 exception enabl ed
Overfl ow excepti on enabl ed
Under f | ow excepti on enabl ed
Preci si on exception disabl ed
ERR KO 03 floating-point underflow

The use of the "OP" option will force the result to be stored in memory after each FORTRAN statement is
executed. Thus, the source code is not optimized across statements. Compile-time versus run-time
evaluation of expressions can lead to different results. It isvery instructive to compile and then run your
application with a variety of compile-time options to see the effect of optimizations. See the chapter
entitled "Open Watcom FORTRAN 77 Compiler Options’ on page 5 for more information on compiler
options.

Before we end this section, there is another important aspect of floating-point exceptions to consider. A
floating-point exception is triggered upon the execution of the next FPU instruction following the one that
caused the exception.

implicit none

real *4 a
real *8 b

b=12. 0d123
a=b*b

b=1.0

a=b/ 2.0

print *, a, b
end

Compile this program with the "OP" and "DEBUG" options and then run it. The result is displayed next.

ERR KO- 02 floating-point overflow
- Executing line 9 in file pi4.for

Line 9 istheline containing the statement a=b/ 2. 0 which could not possibly be responsible for an
overflow. However, it contains the first floating-point instruction following the instruction in line 7 where
the overflow actually occurred. To seethis, it helpsto disassemble the object file.

a=b*b
0029 B8 07 00 00 00 nov eax, 0x00000007
002E E8 00 00 00 00 cal | RT@5et Li ne
0033 DD 45 F4 fld gword ptr -0xc[ebp]
0036 D8 C8 f ul st, st
0038 D9 5D FC fstp dword ptr -0x4[ebp]

b=1.0
003B B8 09 00 00 00 nov eax, 0x00000009
0040 E8 00 00 00 00 cal | RT@5et Li ne
0045 31 DB xor ebx, ebx
0047 89 5D F4 nmv - 0Oxc[ebp], ebx
004A C7 45 F8 00 00 FO 3F

nmv dword ptr -0x8[ebp], Ox3ff 00000

a=b/2.0
0051 B8 OA 00 00 00 nmov eax, 0x0000000a
0056 E8 00 00 00 00 call RT@set Li ne
005B DD 45 F4 fld gword ptr -0xc[ebp]
005E DC 0D 08 00 00 00

f mul gword ptr L$2

0064 D9 5D FC fstp dword ptr -0x4[ebp]

90 Compiler Options Relating to Floating-point

Data Representation On x86-based Platforms

The overflow occurred when the "fstp" was executed but is signalled when the subsequent "fld" is
executed. The overflow could also be signalled while executing down in arun-time routine. This
behaviour of the FPU can be somewhat exasperating.

8.15 Floating-point Exception Handling

In certain situations, you want to handle floating-point exceptions in the application itself rather than let the
run-time system terminate your application. The following exampleillustrates how to do this by installing
aFORTRAN subroutine as a floating-point exception handler.

Floating-point Exception Handling 91

Open Watcom FORTRAN 77 User’s Guide

inplicit none
include 'fsignal.fi

real flt
external fpehandler
i nt eger si gnal _count, signal_nunber, signal _type

common /fpel signal _count, signal_nunber, signal_type

* begi n the signal handling process for floating-point exceptions
call fsignal (SI GFPE, fpehandler)

mai n body of application goes here

flt = 2.0

print *, 'nunber of signals', volatile(signal_count)
print *, flt / 0.0

print *, 'nunber of signals', volatile(signal_count)

end

*$i fdef _ 386

*$i f def __stack_conventions__
*$pragma aux _clear87 "1"

*$el se

*$pragma aux _clear87 "!_
*$endi f

*$el se

*$pragma aux _clear87 "! "
*$endi f

*$pragma aux fpehandl er parn(val ue, value)
subroutine fpehandler(sig_num fpe_type)
inplicit none

* sig_num and fpe_type are passed by value, not by reference
i nteger sig_num fpe_type

include 'fsignal.fi

i nt eger si gnal _count, signal _nunber, signal_type

common /fpel/ signal _count, signal_nunber, signal_type
* we could add this to our common bl ock

i nt eger signal _split(FPE_I NVALI D: FPE_| OVERFLOW)

signal _count = signal _count + 1
si gnal _nunmber = sig_num
signal _type = fpe_type

* fl oati ng- poi nt exception types
* FPE_I NVALI D = 129 (0)
* FPE_DENORVAL = 130 (1)
* FPE_ZERODI VI DE = 131 (2)
* FPE_OVERFLOW = 132 (3)
* FPE_UNDERFLOW = 133 (4)
* FPE_| NEXACT = 134 (5)
* FPE_UNEMULATED = 135 (6)
* FPE_SQRTNEG = 136 (7)
* undef i ned = 138 (8)
* FPE_STACKOVERFLON = 137 (9)
* FPE_STACKUNDERFLOW = 138 (10)
* FPE_EXPLI Cl TGEN = 139 (11)
* FPE_| OVERFLOW = 140 (12)
* log the type of error for interest only */

signal _split(fpe_type) =
1signal _split(fpe_type) + 1

* get rid of any errors
call _clear87

92 Floating-point Exception Handling

Data Representation On x86-based Platforms

* resignal for nore exceptions
call fsignal (SI GFPE, fpehandler)

* if we don't then a subsequent exception wll
* cause an abnormal programterm nation
end

Note the use of the VOLATI LE intrinsic function to obtain up-to-date contents of the variable
S| GNAL_COUNT.

Floating-point Exception Handling 93

Open Watcom FORTRAN 77 User’s Guide

94 Floating-point Exception Handling

16-bit Topics

16-bit Topics

96

9 Memory Models

9.1 Introduction

This chapter describes the various memory models supported by Open Watcom F77. Each memory model

is distinguished by two properties; the code model used to implement subprogram calls and the data model
used to reference data.

9.2 Code Models

There are two code models:

1. thesmal code model
2. thebig code model

A small code model is onein which all callsto subprograms are made with near calls. Inanear call, the
destination addressis 16 bits and is relative to the segment value in segment register CS. Hence, in asmall
code model, all code comprising your program, including library subprograms, must be less than 64kB.

A big code model isonein which al calls to subprograms are made with far calls. Inafar call, the
destination addressis 32 hits (a 16-bit segment value and a 16-bit offset relative to the segment value).
Thismodel allows the size of the code comprising your program to exceed 64kB.

Note: Open Watcom F77 does not support the small code model.

9.3 Data Models

There are three data models:

1. thesmall datamodel
2. thebig data model
3. the huge data model

A small data model isonein which al references to data are made with near pointers. Near pointers are 16
bits; all data references are made relative to the segment value in segment register DS. Hence, in asmall
data model, all data comprising your program must be less than 64kB.

A big datamodel isonein which all references to data are made with far pointers. Far pointers are 32 bits
(a 16-bit segment value and a 16-bit offset relative to the segment value). This removes the 64kB limitation
on data size imposed by the small datamodel. However, when afar pointer isincremented, only the offset
isadjusted. Open Watcom F77 assumes that the offset portion of afar pointer will not be incremented
beyond 64kB. The compiler will assign an object to a new segment if the grouping of datain a segment
will cause the object to cross a segment boundary. Implicit in thisis the requirement that no individual

Data Models 97

16-bit Topics

object exceed 64kB. For example, an array containing 40,000 integers does not fit into the big data model.
An object such as this should be described as huge.

A huge data model is one in which all references to data are made with far pointers. Thisissimilar to the
big data model. However, in the huge data model, incrementing a far pointer will adjust the offset and the

segment if necessary. The limit on the size of an object pointed to by afar pointer imposed by the big data
model is removed in the huge data model.

Notes:

1. Thehuge data model has the same characteristics as the big data model, but formal array
arguments are assumed to exceed 64kB. Y ou should use the huge data model whenever any
arraysin your application exceed 64kB in size.

2. Thehuge datamodel should be used only if needed. The code generated in the huge data model
is not very efficient since arun-time routineis called in order to increment far pointers. This
increases the size of the code significantly and increases execution time.

3. If your program contains less than 64kB of data, you should use the small datamodel. Thiswill
result in smaller and faster code since references using near pointers produce fewer instructions.

9.4 Summary of Memory Models

As previously mentioned, a memory model is a combination of a code model and adatamodel. The
following table describes the memory models supported by Open Watcom F77.

Menory Code Dat a Def aul t Def aul t

Model Model Model Code Dat a
Poi nt er Poi nt er

medi um bi g smal | far near

| ar ge bi g bi g far far

huge bi g huge far huge

9.5 Mixed Memory Model

A mixed memory model application combines elements from the various code and data models. A mixed
memory model application might be characterized as one that includes arrays which are larger than 64kB.

For example, a medium memory model application that uses some arrays which exceed 64kB in total size
can be described as a mixed memory model. In an application such as this, most of the dataisin a 64kB
segment (DGROUP) and hence can be referenced with near pointers relative to the segment valuein

segment register DS. Thisresultsin more efficient code being generated and better execution times than
one can expect from a big data model.

98 Mixed Memory Model

Memory Models

9.6 Linking Applications for the Various Memory Models

Each memory model requires different run-time and floating-point libraries. Each library assumesa
particular memory model and should be linked only with modules that have been compiled with the same
memory model. The following table lists the libraries that are to be used to link an application that has
been compiled for a particular memory model. The following table lists the run-time libraries used by
FORTRAN 77 and the compiler options that cause their use.

1. The"Library" column specified the library name.

2. The"Memory model" column indicates the compiler options that specify the memory model of
thelibrary.

3. The"Floating-point column" indicates the compiler options that specify the floating-point model
of thelibrary.

Li brary Menory Fl oati ng- poi nt

nodel nodel

flibmlib - mm -fpc

flibl.lib -m, -nh -fpc

flib7mlib - mm -fpi, -fpi87

flib7l.1ib -m, -nh -fpi, -fpi87

clibmlib -mm -fpc, -fpi, -fpi87

clibl.lib -m, -mh -fpc, -fpi, -fpi87

mathmlib - mm -fpc

mathl . lib -m, -nh -fpc

mat h87m i b -mm -fpi, -fpi87

mat h871 . 1i b -m, -nh -fpi, -fpi87

emu87.1ib -mm -m, -nmh -fpi

noenmu87.1ib -mm -m, -nh -fpi 87

9.7 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1

2.

5.

6.

all segments not belonging to group "DGROUP" with class "CODE"

all other segments not belonging to group "DGROUP'

all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"
all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. Thissegment isinitialized with the hexadecimal byte pattern "01" and isthe first segment in
group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to

Memory Layout 99

16-bit Topics

define the size of the stack used for your application. Segments belonging to the classes"BSS* and
"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable
file

In addition to these special segments, the following conventions are used by Open Watcom F77.

1. The"CODE" class contains the executable code for your application. In asmall code model, this
consists of the segment *_TEXT". In abig code model, this consists of the segments
"<subprogram>_TEXT" where <subprogram> is the name of a subprogram.

2. The"FAR_DATA" class consists of the following:

(a arrays whose size exceeds the data threshold in large data memory models (the
data threshold is 256 bytes unless changed using the "dt" compiler option)

(b) equivalenced variables in large data memory models

100 Memory Layout

10 Assembly Language Considerations

10.1 Introduction

This chapter will deal with the following topics.

1. Thememory layout of a program compiled by Open Watcom F77.

2. The method for passing arguments and returning values.

3. Thetwo methods for passing floating-point arguments and returning floating-point values.
One method is used when one of the Open Watcom F77 "fpi", "fpi87" or "fpi387" optionsis
specified for the generation of in-line 80x87 instructions. When the "fpi" option is specified, an
80x87 emulator isincluded from amath library if the application includes fl oating-point
operations. When the "fpi87" or "fpi387" option is used exclusively, the 80x87 emulator will not
be included.

The other method is used when the Open Watcom F77 "fpc" option is specified. In this case, the
compiler generates calls to floating-point support routines in the alternate math libraries.

An understanding of the Intel 80x86 architecture is assumed.

10.2 Calling Conventions

The following sections describe the method used by Open Watcom F77 to pass arguments.
The FORTRAN 77 language specifically requires that arguments be passed by reference. This means that

instead of passing the value of an argument, its addressis passed. Thisallows a called subprogram to
modify the value of the actual arguments. The following illustrates the method used to pass arguments.

Calling Conventions 101

16-bit Topics

Type of Argument Method Used to Pass Argument
non-character constant address of constant
non-character expression address of value of expression
non-character variable address of variable

character constant address of string descriptor
character expression address of string descriptor
character variable address of string descriptor
non-character array address of array

non-character array element address of array

character array address of string descriptor
character array element address of string descriptor
character substring address of string descriptor
subprogram address of subprogram
alternate return specifier no argument passed
user-defined structure address of structure

When passing a character array as an argument, the string descriptor contains the address of the first
element of the array and the length of an element of the array.

The address of arguments are either passed in registers or on the stack. The registers used to pass the
address of arguments to a subprogram are AX, BX, CX and DX. The address of arguments are passed in
the following way.

1

For memory models with a big data model, address of arguments consist of a 16-bit offset and a
16-bit segment. Hence, two registers are required to pass the address of an argument. The first
argument will be passed in registers DX:AX with register DX containing the segment and
register AX containing the offset. The second argument will be passed in registers CX:BX with
register CX containing the segment and register BX containing the offset.

For memory models with a small data model, address of arguments consists of only a 16-bit
offset into the default data segment. Hence, only asingle register is required to pass the address
of an argument. The first argument is passed in register AX, the second argument is passed in
register DX, the third argument is passed in register BX, and the fourth argument is passed in
register CX.

For any remaining arguments, their address is passed on the stack. Note that addresses of
arguments are pushed on the stack from right to | eft.

10.2.1 Processing Function Return Values with no 80x87

The way in which function values are returned is also dependent on the data type of the function. The
following describes the method used to return function values.

1

2.

3.

4.

LOGICAL*1 valuesarereturned in register AL.
LOGICAL*4 values arereturned in registers DX:AX.
INTEGER*1 values are returned in register AL.

INTEGER*2 values are returned in register AX.

102 Calling Conventions

Assembly Language Considerations

5. INTEGER*4 vaues arereturned in registers DX:AX.
6. REAL*4vauesarereturned inregisters DX:AX.
7. REAL*8vauesarereturned in registers AX:BX:CX:DX.

8. For COMPLEX*8 functions, spaceis allocated on the stack by the caller for the return value.
Register Sl is set to point to the destination of the result. The called function places the result at
the location pointed to by register Sl.

9. For COMPLEX*16 functions, space is allocated on the stack by the caller for the return value.
Register Sl is set to point to the destination of the result. The called function places the result at
the location pointed to by register Sl.

10. For CHARACTER functions, an additional argument is passed. Thisargument is the address of
the string descriptor for the result. Note that the address of the string descriptor can be passed in
any of the registers that are used to pass actual arguments.

11. For functions that return a user-defined structure, space is allocated on the stack by the caller for
thereturn value. Register Sl is set to point to the destination of the result. The called function
places the result at the location pointed to by register SI. Note that a structure of size 1, 2 or 4
bytesisreturned in register AL, AX or DX:AX respectively.

10.2.2 Processing Function Return Values Using an 80x87

The following describes the method used to return function values when your application is compiled using
the "fpi87" or "fpi" option.

1. For REAL*4functions, the result isreturned in floating-point register ST(0).
2. For REAL*8 functions, the result isreturned in floating-point register ST(0).
3. All other function values are returned in the way described in the previous section.

10.2.3 Processing Alternate Returns

Alternate returns are processed by the caller and are only allowed in subroutines. The called subroutine
places the value specified in the RETURN statement in register AX. Note that the value returned in
register AX isignored if there are no alternate return specifiers in the actual argument list.

10.2.4 Alternate Method of Passing Character Arguments

As previously described, character arguments are passed using string descriptors. Recall that a string
descriptor contains a pointer to the actual character data and the length of the character data. When passing
character data, both a pointer and length are required by the subprogram being called. When using a string
descriptor, this information can be passed using a single argument, namely the pointer to the string
descriptor.

An alternate method of passing character arguments is also supported and is selected when the
"nodescriptor” option is specified. In this method, the pointer to the character data and the length of the
character data are passed as two separate arguments. The character argument lengths are appended to the
end of the actual argument list.

Calling Conventions 103

16-bit Topics

Let us consider the following example.

| NTEGER A, C
CHARACTER B, D
CALL SUB(A B, C, D)

In the above example, the first argument is of type INTEGER, the second argument is of type
CHARACTER, the third argument is of type INTEGER, and the fourth argument is of type CHARACTER.
If the character arguments were passed by descriptor, the argument list would resemble the following.

Thefirst argument would be the address of A.
The second argument would be the address of the string descriptor for B.
The third argument would be the address of C.
The fourth argument would be the address of the string descriptor for D.

A\

If we specified the "nodescriptor” option, the argument list would be as follows.

The first argument would be the address of A.

The second argument would be the address of the character datafor B.
The third argument would be the address of C.

The fourth argument would be the address of the character datafor D.
A hidden argument for the length of B would be the fifth argument.

A hidden argument for the length of D would be the sixth argument.

ok wWNE

Note that the arguments corresponding to the length of the character arguments are passed as INTEGER* 2
arguments.

10.2.4.1 Character Functions

By default, when a character function is called, a hidden argument is passed at the end of the actual
argument list. This hidden argument is a pointer to the string descriptor used for the return value of the
character function. When the alternate method of passing character arguments is specified by using the
"nodescriptor” option, the string descriptor for the return value is passed to the function as two hidden
arguments, similar to the way character arguments were passed. However the two hidden arguments for the
return value of the character function are placed at the beginning of the actual argument list. The first
argument is the the pointer to the storage immediately followed by the size of the storage.

10.3 Writing Assembly Language Subprograms

When writing assembly language subprograms, use the following guidelines.

1. All used registers must be saved on entry and restored on exit except those used to pass
arguments and return values. Note that segment registers only have to be saved and restored if
you are compiling your application with the "sr" option.

2. Thedirection flag must be clear before returning to the caller.
3. Inasmall code model, any segment containing executable code must belong to the segment
" TEXT" and the class"CODE". Thesegment "_TEXT" must have a"combine" type of

"PUBLIC". On entry, register CS contains the segment address of the segment "_TEXT". Ina
big code model there is no restriction on the naming of segments which contain executable code.

104 Writing Assembly Language Subprograms

Assembly Language Considerations

In asmall datamodel, segment register DS contains the segment address of the default data
segment (group "DGROUP"). In abig datamodel, segment register SS (not DS) contains the
segment address of the default data segment (group "DGROUP").

When writing assembly language subprograms for the small code model, you must declare them
as"near". If you wish to write assembly language subprograms for the big code model, you
must declare them as "far".

Use the ".8087" pseudo-op so that floating-point constants are in the correct format.

The called subprogram must remove arguments that were passed on the stack in the "ret"
instruction.

In general, when naming segments for your code or data, you should follow the conventions
described in the section entitled "Memory Layout" in this chapter.

Consider the following example.

100

| NTEGER HRS, M NS, SECS, HSECS

CALL GETTIM HRS, MNS, SECS, HSECS)

PRINT 100, HRS, M NS, SECS, HSECS

FORMAT(1X,12.2,":",12.2,7:",12.2,7.7,12.2)
END

CETTI Misan assembly language subroutine that gets the current time. 1t requires four integer arguments.
The arguments are passed by reference so that the subroutine can return the hour, minute, seconds and
hundredths of a second for the current time. These arguments will be passed to GETTI Min the following

way.

PwWdE

The address of the first argument will be passed in registers DX:AX.
The address of the second argument will be passed in registers CX:BX.
The address of the third argument will be passed on the stack.

The address of the fourth argument will be passed on the stack.

The following is an assembly language subprogram which implements GETTI M

Large Memory Model (big code, big data)

GETTI M_TEXT segnment byte public ' CODE

assune CS: GETTI M_TEXT
public GETTIM

GETTIM proc far

push DI ; save register(s)

push ES M

push DS HE

push BP ; get addressability to argunents
nov BP, SP .

nmv ES, DX ; ES:Dl points to hours

nmov DI, AX T

nmv DS, CX ; DS:BX points to minutes

nmov AH, 2ch ; set DOS "get time" function
int 21h ; issue DOS function call

nmov AL, CH ; get hours

cbw M

Writing Assembly Language Subprograms 105

16-bit Topics

mv ES:[DI],AX ; return hours
sub AX, AX A
nmov ES:2[DI],AX ; ...
nov AL, CL ; get minutes
cbw M
nov [BX], AX ; return minutes
sub AX; AX ;
nov 2[BX], AX c
nov DS, 14[BP] ; get address of seconds
nov D, 12[BP] A
nmv AL, DH ; get seconds
cbw A
nov [DI], AX ; return seconds
sub AX, AX ;
nmov 2[DI], AX HE
nov DS, 18[BP] ; get address of ticks
nov D,16[BP] ; ...
nov AL, DL ; get ticks
cbw M
cwd A
mv [DI], AX ; return ticks
nov 2[DI], DX A
pop BP ; restore register(s)
pop DS
pop ES
pop D T
ret 8 ;o return
GETTIM endp

GETTI M_TEXT ends

end
Notes:
1. Two arguments were passed on the stack so a"ret 8" instruction is used to return to the caller.
2. Registers AX, BX, CX and DX were not saved and restored since they were used to pass
arguments. However, registers DS, ES, DI and BP were modified in the subprogram and hence
must be saved and restored.

Let uslook at the stack upon entry to GETTI M

Large Model (big code, big data)

O fset

0 R LT + <- SP points here
| return address |

4 oo o - +
| argument #3 |

8 Fom e e a o +
| argument #4 |

12 S +
| I

Notes:

1. Thetop element of the stack is a segment/offset pair forming a 32-bit return address. Hence, the
third argument will be at offset 4 from the top of the stack and the fourth argument at offset 8.

Register SP cannot be used as a base register to address the arguments on the stack. Register BPis
normally used to address arguments on the stack. Upon entry to the subroutine, registers that are modified
(except those used to pass arguments) are saved and register BP is set to point to the stack. After
performing this prologue sequence, the stack looks like this.

106 Writing Assembly Language Subprograms

Assembly Language Considerations

Large Model (big code, big data)

O f set

0 R LR + <- BP and SP point here
| saved BP |

2 o e +
| saved DS |

4 o e +
| saved ES |

6 oo o - +
| saved D |

8 Fom e e e e +
| return address

12 R +
| argument #3 |

16 o a o +
| argument #4

20 o +

Asthe above diagram shows, the third argument is at offset 12 from register BP and the fourth argument is
at offset 16.

10.3.1 Returning Values from Assembly Language Functions
The following illustrates the way function values are to be returned from assembly language functions.

1. ALOGICAL*1 function.

L1_TEXT segnent byte public ' CODE
assume CS:L1_TEXT

public L1
L1 proc far
nmov AL, 1
ret
L1 endp
L1_TEXT ends
end

2. A LOGICAL*4 function.

L4_TEXT segnment byte public ' CODE
assunme CS: L4_TEXT
public L4
L4 proc far
nmov AX 0
cwd
ret
L4 endp
L4_TEXT ends
end

3. AnINTEGER*1 function.

I 1_TEXT segnent byte public ' CODE
assune CS: |1 1_TEXT
public 11

11 proc far

Writing Assembly Language Subprograms 107

16-bit Topics

nov AL, 73
ret
11 endp
I 1_TEXT ends
end
4. AnINTEGER*2 function.
| 2_TEXT segnent byte public ' CODE
assune CS:|2_TEXT
public 12
12 proc far
nov AX, 7143
ret
12 endp
| 2_TEXT ends
end
5. AnINTEGER*4 function.
| 4_TEXT segnent byte public ' CODE
assune CS:14_TEXT
public 14
14 proc far
nmov AX, 383
cwd
ret
14 endp
| 4_TEXT ends
end
6. A REAL*4function.
. 8087
DGROUP group R4_DATA
R4_TEXT segnent byte public ' CODE
assune CS: R4_TEXT
assune SS: DGROUP
public R4
R4 proc far
nmov AX,word ptr SS:R4Va
nmov DX, word ptr SS: R4Val +2
ret
R4 endp
R4_TEXT ends
R4_DATA segnent byte public ' DATA
R4Val dd 1314.3
R4_DATA ends
end
7. A REAL*8function.
. 8087
DGROUP group R8_DATA
R8_TEXT segnent byte public ' CODE
assune CS: R8_TEXT
assune SS: DGROUP
public R8
R8 proc far
nmv DX, word ptr SS: R8Va

108 Writing Assembly Language Subprograms

Assembly Language Considerations

nmov CX,word ptr SS:R8Val +2
nov BX, word ptr SS: R8Val +4
nov AX,word ptr SS:R8Val +6
ret

R8 endp

R8_TEXT ends

R8_DATA segnent byte public ' DATA
R8Val dg 103.3
R8_DATA ends

end

8. A COMPLEX*8 function.
. 8087
DGROUP group C8_DATA
C8_TEXT segnent byte public ' CODE

assune CS: C8_TEXT
assunme SS: DGROUP

public C8
Cc8 proc far
push DI
push ES
xchg D, Sl
push SS
pop ES
nov Sl, of f set SS: C8Val
novsw
novsw
novsw
novsw
pop ES
pop Di
ret
cs8 endp

C8_TEXT ends
C8_DATA segnent byte public ' DATA
C8Val dd 2.2
dd 2.2
C8_DATA ends

end

9. A COMPLEX*16 function.
. 8087
DGROUP group C16_DATA
Cl16_TEXT segnent byte public ' CODE

assune CS: C16_TEXT
assune SS: DGROUP

public C16
Cl6 proc far
push DI
push ES
push CX
xchg D, sl
push SS
pop ES
nov Sl, of fset SS: Cl6Val
nov CX, 8
repe novsw
pop CX
pop ES
pop DI
ret

Writing Assembly Language Subprograms 109

16-bit Topics

C16 endp
C16_TEXT ends

C16_DATA segnent byte public ' DATA
Cléval dq 3.3

dg 3.3
C16_DATA ends

end

10. A CHARACTER function.

CHR_TEXT segnent byte public ' CODE
assune CS: CHR_TEXT

public CHR
CHR proc far
push DI
push ES
nov ES, DX
nmov D, AX
I es D, ES:[D]
nmv byte ptr ES:[D],’'F
pop ES
pop DI
ret
CHR endp

CHR_TEXT ends

end

11. A function returning a user-defined structure.
DGROUP group STRUCT_DATA
STRUCT_TEXT segnent byte public ' CODE

assune CS: STRUCT_TEXT
assune SS: DGROUP

public C16

STRUCT proc far
push DI
push ES
push CX
xchg D, sl
push SS
pop ES
nov Sl, of fset SS: Struct Val
nov CX, 4
repe novsw
pop CX
pop ES
pop DI
ret

STRUCT endp

STRUCT_TEXT ends
STRUCT_DATA segment byte public ' DATA
StructVal dd 7
dd 3
STRUCT_DATA ends

end

If you are using an 80x87 to return floating-point values, only assembly language functions of type
REAL*4 and REAL *8 need to be modified.

1. A REAL*4function using an 80x87.

110 Writing Assembly Language Subprograms

Assembly Language Considerations

. 8087
DGROUP

R4_TEXT

R4

R4
RA_TEXT
R4_DATA
RaVal

R4_DATA

group R4_DATA

segnment byte public ' CODE
assune CS: R4_TEXT
assume SS: DGROUP

public R4

proc far

fld dword ptr SS: R4Va
ret

endp

ends

segnent byte public ' DATA
dd 1314.3
ends

end

2. A REAL*8function using an 80x87.

. 8087
DGROUP

R8_TEXT

R8_TEXT
R8_DATA
R8Val

R8_DATA

Notes:

group R8_DATA

segnent byte public ' CODE
assune CS: R8_TEXT

assune SS: DGROUP

public R8

proc far

fld gword ptr SS: R8Va
ret

endp

ends

segnent byte public ' DATA
dg 103.3

ends

end

1. The".8087" pseudo-op must be specified so that all floating-point constants are generated in

8087 format.

2. When returning values on the stack, remember to use a segment override to the stack segment

(S9).

Thefollowing is an example of a Open Watcom F77 program calling the above assembly language

subprograms.

Writing Assembly Language Subprograms 111

16-bit Topics

logical 11*1, 14*4
integer i1*1, i2*2, i4*4
real r4*4, r8*8
conpl ex ¢8*8, cl1l6*16
character chr
structure /coord/

i nteger x, vy
end structure
record /coord/ struct

print *, 11()
print *, 14()
print *, i1()
print *, i2()
print *, i4()
print *, r4()
print *, r8()
print *, ¢8()
print * ¢l6()
print *, chr()
print *, struct()
end

112 Writing Assembly Language Subprograms

11 Pragmas

11.1 Introduction

A pragmais acompiler directive that provides the following capabilities.

* Pragmas can be used to direct the Open Watcom F77 code generator to emit specialized sequences
of code for calling functions which use argument passing and value return techniques that differ from
the default used by Open Watcom F77.

* Pragmas can be used to describe attributes of functions (such as side effects) that are not possible at
the FORTRAN 77 language level. The code generator can use thisinformation to generate more
efficient code.

» Any sequence of in-line machine language instructions, including DOS and BIOS function calls, can
be generated in the object code.

Pragmas are specified in the source file using the pragma directive.
The following notation is used to describe the syntax of pragmas.
keywords A keywor d is shown in amono-spaced courier font.

program-item A program-item is shown in aroman bold-italicsfont. A program-item isasymbol name
or numeric value supplied by the programmer.

punctuation A punctuati on charact er shownin amono-spaced courier font must be entered as
is.

A punctuation character shown in aroman bold-italics font is used to describe syntax.
The following syntactical notation is used.

[abc] Theitem abc is optional.

{abc} Theitem abc may be repeated zero or more times.
alb|c One of a, b or ¢ may be specified.

a:=b The item a is defined in terms of b.

@ Item ais evaluated first.

The following classes of pragmas are supported.
* pragmas that specify default libraries

* pragmas that provide auxiliary information used for code generation

Introduction 113

16-bit Topics

11.2 Auxiliary Pragmas

The following sections describe the capabilities provided by auxiliary pragmas.

The backslash character ('\') is used to continue a pragma on the next line. Text following the backslash
character isignored. The line continuing the pragma must start with acomment character ('c’, 'C’ or '*’).

11.2.1 Specifying Symbol Attributes

Auxiliary pragmas are used to describe attributes that affect code generation. Initially, the compiler defines
adefault set of attributes. Each auxiliary pragmarefersto one of the following.

1. asymbol (such asavariable or function)
2. thedefault set of attributes defined by the compiler

When an auxiliary pragmarefers to a particular symbol, a copy of the current set of default attributesis
made and merged with the attributes specified in the auxiliary pragma. The resulting attributes are assigned
to the specified symbol and can only be changed by another auxiliary pragmathat refers to the same
symbol.

When "default" is specified instead of a symbol name, the attributes specified by the auxiliary pragma
change the default set of attributes. The resulting attributes are used by all symbols that have not been
specificaly referenced by a previous auxiliary pragma.

Note that all auxiliary pragmas are processed before code generation begins. Consider the following
example.

code in which synbol x is referenced
*$pragma aux y <attrs_1>

code in which synbol y is referenced
code in which synbol z is referenced
*$pragna aux default <attrs_ 2>
*$pragma aux Xx <attrs_3>

Auxiliary attributes are assigned to x, y and z in the following way.

1. Symbol x isassigned theinitial default attributes merged with the attributes specified by
<attrs_2>and<attrs_3>.

2. Symbol y isassigned theinitial default attributes merged with the attributes specified by
<attrs_1>.

3. Symbol z isassigned the initial default attributes merged with the attributes specified by
<attrs_2>.

11.2.2 Alias Names

When asymbol referred to by an auxiliary pragmaincludes an aias name, the attributes of the alias name
are also assumed by the specified symbol.

There are two methods of specifying aiasinformation. In the first method, the symbol assumes only the
attributes of the alias name; no additional attributes can be specified. The second method is more general

114 Auxiliary Pragmas

Pragmas

sinceit is possible to specify an alias name as well as additional auxiliary information. In this case, the
symbol assumes the attributes of the alias name as well as the attributes specified by the additional auxiliary
information.

The simple form of the auxiliary pragma used to specify an aliasis asfollows.

*$pragma aux (sym, alias)

where description
sym isany valid FORTRAN 77 identifier.
alias isthe alias name and is any valid FORTRAN 77 identifier.

Consider the following example.

*$pragma aux val ue_args parm (val ue)
*$pragnma aux (rtn, value_args)

Theroutine r t n assumes the attributes of the alias name push_ar gs which specifies that the arguments
tort n are passed by value.

The general form of an auxiliary pragmathat can be used to specify an aliasis as follows.

*$pragma aux (alias) sym aux_attrs

where description

alias isthe alias name and is any valid FORTRAN 77 identifier.
sym isany valid FORTRAN 77 identifier.

aux_attrs are attributes that can be specified with the auxiliary pragma.

Consider the following example.

$pragma aux WC " " parm (val ue)
*$pragma aux (WC) rtnl
*$pragma aux (WC) rtn2
*$pragma aux (WC) rtn3

Theroutinesr t n1, rt n2 and r t n3 assume the same attributes as the alias name WC which defines the
calling convention used by the Open Watcom C compiler. Whenever callsaremadeto rtnl, rt n2 and
rt n3, the Open Watcom C calling convention will be used. Note that arguments must be passed by value.
By default, Open Watcom F77 passes arguments by reference.

Note that if the attributes of WC change, only one pragma needs to be changed. |f we had not used an dias

name and specified the attributes in each of the three pragmasfor rt n1,rt n2 and r t n3, we would have
to change all three pragmas. This approach also reduces the amount of memory required by the compiler to
process the sourcefile.

Auxiliary Pragmas 115

16-bit Topics

WARNING! The alias name WC s just another symbol. If WC appeared in your source code, it would
assume the attributes specified in the pragmafor WC.

11.2.3 Predefined Aliases

A number of symbols are predefined by the compiler with a set of attributes that describe a particular
calling convention. These symbols can be used as aliases. The following isalist of these symbols.

__cdecl __cdecl definesthe calling convention used by Microsoft compilers.

__fastcall __fastcal | definesthe calling convention used by Microsoft compilers.

__fortran __fortran definesthe caling convention used by Open Watcom FORTRAN compilers.

__pascal __pascal definesthe calling convention used by OS/2 1.x and Windows 3.x API
functions.

__stdcall __stdcal | definesthe caling convention used by Microsoft compilers.

__watcall __wat cal | definesthe calling convention used by Open Watcom compilers.

The following describes the attributes of the above alias names.

11.2.3.1 Predefined " _cdecl" Alias

$pragma aux __cdecl "_" \
c parmcaller [] \
c val ue struct float struct routine [ax] \
c modi fy [ax bx cx dx es]
Notes:

1. All symbols are preceded by an underscore character.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the called routine allocates space for the return value and returns a pointer to the return value in
register AX.

4. Registers AX, BX, CX and DX, and segment register ES are not saved and restored when a call
is made.

11.2.3.2 Predefined "__pascal” Alias

*$pragma aux __ pascal "'\

c parmreverse routine [] \
c val ue struct float struct caller [] \
c nmodi fy [ax bx cx dx es]

116 Auxiliary Pragmas

Pragmas

Notes:
1. All symbols are mapped to upper case.

2. Arguments are pushed on the stack in reverse order. That is, the first argument is pushed first,
the second argument is pushed next, and so on. The routine being called will remove the
arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the caller allocates space on the stack. The address of the allocated space will be pushed on the
stack immediately before the call instruction. Upon returning from the call, register AX will
contain address of the space allocated for the return value.

4. Registers AX, BX, CX and DX, and segment register ES are not saved and restored when a call
is made.

11.2.3.3 Predefined " _watcall" Alias

*$pragnma aux __watcall "*_" \
c parmroutine [ax bx cx dx] \
c val ue struct caller

Notes:

1. Symbol names are followed by an underscore character.

2. Arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have
been exhausted). Arguments that are passed on the stack are pushed from right to left. The
calling routine will remove the argumentsif any were pushed on the stack.

3. When asdtructureis returned, the caller allocates space on the stack. The address of the allocated
spaceisput into Sl register. The called routine then places the return value there. Upon
returning from the call, register AX will contain address of the space allocated for the return
value.

4. Floating-point values are returned using 80x86 registers ("fpc" option) or using 80x87
floating-point registers ("fpi" or "fpi87" option).

5. All registers must be preserved by the called routine.

11.2.4 Alternate Names for Symbols

The following form of the auxiliary pragma can be used to describe the mapping of a symbol from its
source form to its object form.

*$pragnma aux sym obj_name

Auxiliary Pragmas 117

16-bit Topics

where description
sym isany valid FORTRAN 77 identifier.
obj_name isany character string enclosed in double quotes.

When specifying obj _nane, some characters have a special meaning:

where description
* is unmodified symbol name
A is symbol name converted to uppercase

! is symbol name converted to lowercase

is aplaceholder for "@nnn", where nnn is size of al function parameters on the stack; it is
ignored for functions with variable argument lists, or for symbols that are not functions

\ next character is treated as literal

Several examples of source to object form symbol name translation follow: By default, the upper case
verson "MYRTN" or "MYVAR" is placed in the object file.

In the following example, the name "MyRtn" will be replaced by "MYRTN_" in the object file.
*$pragma aux MyRtn "~

In the following example, the name "MyVar" will bereplaced by " MYVAR" in the object file.
*$pragma aux Myvar "_A""

In the following example, the lower case version "myrtn" will be placed in the object file.
*$pragma aux MyRtn "1

In the following example, the name "MyRtn" will be replaced by *_MyRtn@nnn" in the object file. "nnn"
represents the size of all function parameters.

$pragma aux MyRtn " _#"

In the following example, the name "MyRtn" will be replaced by "_MyRtn#" in the object file.
$pragma aux MyRtn " _\#"

The default mapping for al symbols can also be changed asiillustrated by the following example.
*$pragma aux default " _~ "

The above auxiliary pragma specifies that all names will be prefixed and suffixed by an underscore
character ("_).

118 Auxiliary Pragmas

Pragmas

11.2.5 Describing Calling Information

The following form of the auxiliary pragma can be used to describe the way a subprogram is to be called.

*$pragma aux sym far
or
*$pragnma aux sym near
or
*$pragma aux sym = in_line

in_line::={const|"asm" | (f| oat fpinst)}

where description

sym is a subprogram name.

const isavaid FORTRAN 77 hexadecimal constant.

fpinst is a sequence of bytes that forms avalid 80x87 instruction. The keyword float must

precede f pi nst so that specia fixups are applied to the 80x87 instruction.
asm is an assembly language instruction or directive.
In the following example, Open Watcom F77 will generate afar call to the subprogram myr t n.
*$pragnma aux nyrtn far
Note that this overrides the calling sequence that would normally be generated for a particular memory

model. In other words, afar call will be generated even if you are compiling for amemory model with a
small code model.

In the following example, Open Watcom F77 will generate anear call to the subprogram myrt n.
*$pragma aux nyrtn near
Note that this overrides the calling sequence that would normally be generated for a particular memory

model. In other words, a near call will be generated even if you are compiling for amemory model with a
big code model.

In the following DOS example, Open Watcom F77 will generate the sequence of bytes following the "="
character in the auxiliary pragmawhenever acall to node4 isencountered. node4 iscaled anin-line

subprogram.
*$pragna aux noded = \
* zb4 z00 \ mov AH O
* zb0 z04 \ nmov AL, 4
* zcd z10 \ int 10h
*

nodify [ah al]

The sequence in the above DOS example represents the following lines of assembly language instructions.

Auxiliary Pragmas 119

16-bit Topics

nov AH, 0 ; select function "set nopde"
nov AL, 4 ; specify node (node 4)
i nt 10H ; BIOS video call

The above example demonstrates how to generate BIOS function calls in-line without writing an assembly
language function and calling it from your FORTRAN 77 program.

The following DOS example is equivalent to the above example but mnemonics for the assembly language
instructions are used instead of the binary encoding of the assembly language instructions.

*$pragma aux noded = \
* "nov AH, 0" \
* "mov AL, 4" \
* "int 10H' \

nodify [ah al]

If a sequence of in-line assembly language instructions contains 80x87 floating-point instructions, each
floating-point instruction must be preceded by "float". Note that thisis only required if you have specified
the "fpi" compiler option; otherwiseit will be ignored.

The following example generates the 80x87 "square root" instruction.

*$pragnma aux nysqrt parm(value) [8087] =\
* float zd9fa

11.2.5.1 Loading Data Segment Register

An application may have been compiled so that the segment register DS does not contain the segment
address of the default data segment (group "DGROUP"). Thisisusualy the caseif you are using alarge
data memory model. Suppose you wish to call a subprogram that assumes that the segment register DS
contains the segment address of the default data segment. It would be very cumbersome if you were forced
to compile your application so that the segment register DS contained the default data segment (a.small data
memory model).

The following form of the auxiliary pragmawill cause the segment register DS to be loaded with the
segment address of the default data segment before calling the specified subprogram.

*$pragna aux sym parm | oadds

where description
sym is a subprogram name.
Alternatively, the following form of the auxiliary pragmawill cause the segment register DS to be loaded

with the segment address of the default data segment as part of the prologue sequence for the specified
subprogram.

120 Auxiliary Pragmas

Pragmas

*$pragma aux sym | oadds

where description

sym is a subprogram name.

11.2.5.2 Defining Exported Symbols in Dynamic Link Libraries

An exported symbol in adynamic link library is asymbol that can be referenced by an application that is
linked with that dynamic link library. Normally, symbolsin dynamic link libraries are exported using the
Open Watcom Linker "EXPORT" directive. An alternative method isto use the following form of the
auxiliary pragma.

*$pragma aux sym export

where description

sym is a subprogram name.

11.2.5.3 Defining Windows Callback Functions

When compiling a Microsoft Windows application, you must use the "windows" option so that special
prologue/epilogue sequences are generated. Furthermore, callback functions require larger

prol ogue/epil ogue sequences than those generated when the "windows' compiler option is specified. The
following form of the auxiliary pragmawill cause a callback prologue/epilogue sequence to be generated
for a callback function when compiled using the "windows" option.

*$pragna aux sym export

where description

sym isacallback function name.

11.2.6 Describing Argument Information
Using auxiliary pragmas, you can describe the calling convention that Open Watcom F77 isto use for
calling subprograms. Thisis particularly useful when interfacing to subprograms that have been compiled

by other compilers or subprograms written in other programming languages.

The general form of an auxiliary pragmathat describes argument passing is the following.

Auxiliary Pragmas 121

16-bit Topics

*$pragma aux sym parm {arg_info|pop_info|reverse {reg set}}
arg info::= (arg_attr {, arg_attr})
arg_attr ::= val ue [v_attr] | reference [r_attr] | data_reference [d_attr]

v attr ;= far | near | *1 | *2 | *4 | *8

r_attr ::= [far | near] [descriptor | nodescri ptor]

d_attr ::= [far | near]

pop_info::= caller | routine

where description

sym is a subprogram name.

reg_set iscalled aregister set. Theregister sets specify the registers that are to be used for
argument passing. A register set isalist of registers separated by spaces and enclosed in
square brackets.

11.2.6.1 Passing Arguments to non-FORTRAN Subprograms

When calling a subprogram written in a different language, it may be necessary to provide the arguments in
aform different than the default methods used by Open Watcom F77. For example, C functions require
scalar arguments to be passed by value instead of by reference. For information on the methods Open
Watcom F77 usesto pass arguments, see the chapter entitled "Assembly Language Considerations”.

The following form of the auxiliary pragma can be used to alter the default calling mechanism used for
passing arguments.

*$pragnma aux sym parm (arg_attr {, arg_ attr})

arg_attr ::= val ue [v_attr] | reference [r_attr] | data_reference [d_attr]

v attr ;= far | near | *1 | *2 | *4 | *8

r_attr ::= [far | near] [descriptor | nodescriptor]

d_attr ::= [far | near]

where description

sym is a subprogram name.

REFERENCE specifiesthat arguments are to be passed by reference. For non-character arguments, the
addressis apointer to the data. For character arguments, the address is a pointer to a string

descriptor. See the chapter entitled "Assembly Language Considerations' for a description
of astring descriptor. Thisisthe default calling mechanism. If "NEAR" or "FAR" is

122 Auxiliary Pragmas

Pragmas

specified, anear pointer or far pointer is passed regardless of the memory model used at
compile-time.

If the "DESCRIPTOR" attribute is specified, a pointer to the string descriptor is passed.
Thisisthe default. If the"NODESCRIPTOR" attribute is specified, a pointer to the the
actual character datais passed instead of a pointer to the string descriptor.

DATA_ REFERENCE specifiesthat arguments are to be passed by data reference. For non-character

VALUE

Notes:

items, thisisidentical to passing by reference. For character items, a pointer to the actual
character data (instead of the string descriptor) is passed. If "NEAR" or "FAR" is
specified, anear pointer or far pointer is passed regardless of the memory model used at
compile-time.

specifies that arguments are to be passed by value. Character arguments are treated
specially when passed by value. Instead of passing a pointer to a string descriptor, a
pointer to the actual character datais passed. See the chapter entitled "Assembly Language
Considerations’ for a description of a string descriptor.

Arrays and subprograms are always passed by reference, regardless of the argument attribute
specified.

When character arguments are passed by reference, the address of a string descriptor is passed.
The string descriptor contains the address of the actual character data and the number of
characters. When character arguments are passed by value or data reference, the address of the
actual character datais passed instead of the address of a string descriptor. Character arguments
are passed by value by specifying the"VALUE" or "DATA_REFERENCE" attribute. If
"NEAR" or "FAR" is specified, anear pointer or far pointer to the character datais passed
regardless of the memory model used at compile-time.

When complex arguments are passed by value, the real part and the imaginary part are passed as
two separate arguments.

When an argument is a user-defined structure and is passed by value, a copy of the structure is
made and passed as an argument.

For scalar arguments, arguments of type INTEGER*1, INTEGER*2, INTEGER*4 ct, REAL
or DOUBLE PRECI SION, alength specification can be specified when the "VALUE" attribute
is specified to pass the argument by value. Thislength specification refers to the size of the
argument; the compiler will convert the actual argument to atype that matches the size. For
example, if an argument of type REAL is passed to a subprogram that has an argument attribute
of "VALUE*8", the argument will be converted to DOUBL E PRECISION. If an argument of
type DOUBLE PRECISION is passed to a subprogram that has an argument attribute of
"VALUE*4", the argument will be converted to REAL. If an argument of type INTEGER*4 is
passed to a subprogram that has an argument attribute of "VALUE*2" or VALUE*1, the
argument will be converted to INTEGER*2 or INTEGER*1. If an argument of type
INTEGER*2 is passed to a subprogram that has an argument attribute of "VALUE*4 or
VALUE*1", the argument will be converted to INTEGER*4 or INTEGER*1. If an argument
of type INTEGER* 1 is passed to a subprogram that has an argument attribute of "VALUE*4 or
VALUE*2", the argument will be converted to INTEGER*4 or INTEGER*2.

If the number of arguments exceeds the number of entries in the argument-attribute list, the last
attribute will be assumed for the remaining arguments.

Auxiliary Pragmas 123

16-bit Topics

Consider the following example.

$pragnma aux printf " " parm (value) caller []
character cr/z0d/, nullchar/z00/
call printf('values: %d, %d //cr//nullchar,
1 77, 31410)
end

The C "printf" function is called with three arguments. The first argument is of type CHARACTER and is
passed as a C string (address of actual dataterminated by a null character). The second and third arguments
are passed by value. Also notethat "printf" is afunction that takes a variable number of arguments, all
passed on the stack (an empty register set was specified), and that the caller must remove the arguments
from the stack.

11.2.6.2 Passing Arguments in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to pass
arguments to a particular subprogram.

*$pragma aux sym parm {reg_set}

where description

sym is a subprogram name.

reg_set iscalled aregister set. Theregister sets specify the registers that are to be used for
argument passing. A register set isalist of registers separated by spaces and enclosed in
square brackets.

Register sets establish a priority for register allocation during argument list processing. Register sets are
processed from left to right. However, within aregister set, registers are chosen in any order. Once all
register sets have been processed, any remaining arguments are pushed on the stack.

Note that regardless of the register sets specified, only certain combinations of registers will be selected for
arguments of a particular type.

Note that arguments of type REAL and DOUBLE PRECISION are always pushed on the stack when the
"fpi" or "fpi87" option is used.

DOUBLE PRECISION
Arguments of type DOUBL E PRECI SION, when passed by value, can only be passed in
the following register combination: AX:BX:CX:DX. For example, if the following
register set was specified for aroutine having an argument of type DOUBLE
PRECISION,

[ax bx si di]

the argument would be pushed on the stack since avalid register combination for 8-byte
arguments is not contained in the register set. Note that this method for passing arguments
of type DOUBLE PRECI SION is supported only when the "fpc" option isused. Note that
this argument passing method does not include arguments of type COMPLEX*8 or
user-defined structures whose size is 8 bytes when these arguments are passed by value.

124 Auxiliary Pragmas

Pragmas

far pointer

A far pointer can only be passed in one of the following register pairs: DX:AX, CX:BX,
CX:AX, CX:Sl, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX, SI:AX, CX:DX, DX:DlI, DI:Sl,
SI:BX, BX:AX, DS.CX, DS.DX, DS:DI, DS:Sl, DS:BX, DS:AX, ES:CX, ES:.DX, ES:DI,
ES:SI, ES:BX or ESAX. For example, if afar pointer is passed to a function with the
following register set,

[es bp]

the argument would be pushed on the stack since avalid register combination for afar
pointer is not contained in the register set. Far pointers are used to pass arguments by
reference in a big data memory model.

INTEGER*4, REAL

INTEGER*2

INTEGER*1

others

Notes:

The only registersthat will be assigned to 4-byte arguments (e.g., arguments of type
INTEGER*4, when passed by value) are: DX:AX, CX:BX, CX:AX, CX:Sl, DX:BX,
DI:AX, CX:DlI, DX:Sl, DI:BX, SI:AX, CX:DX, DX:DlI, DI:Sl, SI:BX and BX:AX. For
example, if the following register set was specified for a routine with one argument of type
INTEGER*4,

[es di]

the argument would be pushed on the stack since avalid register combination for 4-byte
arguments is not contained in the register set. Note that this argument passing method
includes arguments of type REAL but only when the "fpc" option is used.

The only registers that will be assigned to 2-byte arguments (e.g., arguments of type
INTEGER*2 when passed by value or arguments passed by referencein asmall data
memory model) are: AX, BX, CX, DX, Sl and DI. For example, if the following register
set was specified for aroutine with one argument of type INTEGER*2,

[bp]

the argument would be pushed on the stack since avalid register combination for 2-byte
arguments is not contained in the register set.

Arguments whose sizeis 1 byte (e.g., arguments of type INTEGER* 1 when passed by
value) are promoted to 2 bytes and are then assigned registers as if they were 2-byte
arguments.

Arguments that do not fall into one of the above categories cannot be passed in registers
and are pushed on the stack. Once an argument has been assigned a position on the stack,
all remaining arguments will be assigned a position on the stack even if all register sets
have not yet been exhausted.

1. Thedefault register setis[ax bx cx dx].

2. Specifying registers AH and AL is equivalent to specifying register AX. Specifying registers
DH and DL is equivalent to specifying register DX. Specifying registers CH and CL is
equivalent to specifying register CX. Specifying registers BH and BL is equivalent to specifying
register BX.

Auxiliary Pragmas 125

16-bit Topics

3. If you are compiling for amemory model with a small data model, any register combination
containing register DS becomesillegal. In asmall datamodel, segment register DS must remain
unchanged as it points to the program’ s data segment.

Consider the following example.

*$pragma aux nyrtn parm (val ue) \
* [ax bx cx dx] [bp si]

Suppose nyr t n isaroutine with 3 arguments each of type INTEGER. Note that the arguments are passed
by value.

1. Thefirst argument will be passed in the register pair DX:AX.

2. The second argument will be passed in the register pair CX:BX.

3. Thethird argument will be pushed on the stack since BP;Sl is not avalid register pair for
arguments of type INTEGER.

It is possible for registers from the second register set to be used before registers from the first register set
areused. Consider the following example.

*$pragma aux nyrtn parm (val ue) \
* [ax bx cx dx] [si di]

Suppose myr t n isaroutine with 3 arguments, the first of type INTEGER and the second and third of type
INTEGER. Notethat all arguments are passed by value.

1. Thefirst argument will be passed in the register AX.
2. The second argument will be passed in the register pair CX:BX.
3. Thethird argument will be passed in the register set DI:Sl.

Note that registers are no longer selected from aregister set after registers are selected from subsequent
register sets, even if al registers from the original register set have not been exhausted.

An empty register set is permitted. All subsequent register sets appearing after an empty register set are
ignored; all remaining arguments are pushed on the stack.

Notes:
1. If asingle empty register set is specified, al arguments are passed on the stack.

2. If noregister set is specified, the default register set [ax bx cx dx] is used.

11.2.6.3 Forcing Arguments into Specific Registers

It is possible to force arguments into specific registers. Suppose you have a subprogram, say "mycopy",
that copiesdata. The first argument is the source, the second argument is the destination, and the third
argument isthe length to copy. If we want the first argument to be passed in the register Sl, the second
argument to be passed in register DI and the third argument to be passed in register CX, the following
auxiliary pragma can be used.

126 Auxiliary Pragmas

Pragmas

*$pragnma aux nycopy parm (val ue) \

[si] [di] [cX]
character*10 dst
call mycopy(dst, ’'0123456789', 10)

end
Note that you must be aware of the size of the arguments to ensure that the arguments get passed in the
appropriate registers.

11.2.6.4 Passing Arguments to In-Line Subprograms

For subprograms whose code is generated by Open Watcom F77 and whose argument list is described by
an auxiliary pragma, Open Watcom F77 has some freedom in choosing how arguments are assigned to
registers. Since the code for in-line subprograms is specified by the programmer, the description of the
argument list must be very explicit. To achieve this, Open Watcom F77 assumes that each register set
corresponds to an argument. Consider the following DOS example of an in-line subprogram called
scrol | acti vepgup.

*$pragnma aux scrollactivepgup =\
* "mov AH, 6" \
"int 10h" \
parm (val ue) \
[ch] [cl] [dh] [dI] [al] [bh] \
nodi fy [ah]

* F X X

The BIOS video call to scroll the active page up requires the following arguments.

1. Therow and column of the upper left corner of the scroll window is passed in registers CH and
CL respectively.

2. Therow and column of the lower right corner of the scroll window is passed in registers DH and
DL respectively.

3. Thenumber of lines blanked at the bottom of the window is passed in register AL.

4. Theattribute to be used on the blank linesis passed in register BH.
When passing arguments, Open Watcom F77 will convert the argument so that it fitsin the register(s)
specified in the register set for that argument. For example, in the above example, if the first argument to
scrol | acti vepgup was called with an argument whose type was INTEGER, it would first be
converted to INTEGER* 1 before assigning it to register CH. Similarly, if an in-line subprogram required
its argument in register pair DX:AX and the argument was of type INTEGER* 2, the argument would be
converted to INTEGER*4 before assigning it to register pair DX:AX.
In general, Open Watcom F77 assigns the following types to register sets.

1. A register set consisting of asingle 8-bit register (1 byte) is assigned atype of INTEGER* 1.

2. A register set consisting of asingle 16-bit register (2 bytes) is assigned atype of INTEGER*2.

3. A register set consisting of two 16-hit registers (4 bytes) is assigned atype of INTEGER*4.

Auxiliary Pragmas 127

16-bit Topics

4. A register set consisting of four 16-hit registers (8 bytes) is assigned atype of DOUBLE
PRECISION.

If the size of an integer argument is larger than the size specified by the register set, the argument will be

truncated to the required size. If the size of an integer argument is smaller than the size specified by the
register set, the argument will be padded (to the left) with zeros.

11.2.6.5 Removing Arguments from the Stack

The following form of the auxiliary pragma specifies who removes from the stack arguments that were
pushed on the stack.

*$pragna aux sym parm (cal ler | routine)

where description
sym is a subprogram name.

"caller" specifiesthat the caller will pop the arguments from the stack; "routine" specifies that the called
routine will pop the arguments from the stack. If "caller" or "routine" is omitted, "routine" is assumed
unless the default has been changed in a previous auxiliary pragma, in which case the new default is
assumed.

Consider the following example. It describes the pragma required to call the C "printf" function.

$pragnma aux printf " " parm (value) caller []
character cr/z0d/, nullchar/z00/
call printf("value is %d //cr//nullchar,
1 7143)
end

The first argument must be passed as a C string, a pointer to the actual character data terminated by a null
character. By default, the address of a string descriptor is passed for arguments of type CHARACTER.
See the chapter entitled "Assembly Language Considerations' for more information on string descriptors.
The second argument is of type INTEGER and is passed by value. Also note that "printf” isafunction that
takes a variable number of arguments, all pushed on the stack (an empty register set was specified).

11.2.6.6 Passing Arguments in Reverse Order

The following form of the auxiliary pragma specifies that arguments are passed in the reverse order.

*$pragma aux sym parmreverse

where description

sym is a subprogram name.

128 Auxiliary Pragmas

Pragmas

Normally, arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have been
exhausted). Arguments that are passed on the stack are pushed from right to left.

When arguments are reversed, the rightmost arguments are passed in registers and the leftmost arguments
are passed on the stack (if the registers used for argument passing have been exhausted). Arguments that
are passed on the stack are pushed from left to right.

Reversing argumentsis most useful for subprograms that require arguments to be passed on the stack in an
order opposite from the default. The following auxiliary pragma demonstrates such a subprogram.

*$pragma aux rtn parmreverse []

11.2.7 Describing Subprogram Return Information
Using auxiliary pragmas, you can describe the way functions are to return values. Thisis particularly
useful when interfacing to functions that have been compiled by other compilers or functions written in

other programming languages.

The general form of an auxiliary pragmathat describes the way a function returnsits value is the following.

*$pragnma aux sym val ue {no8087 | reg set | struct_info}

struct_info::= struct {float | struct | (routine | caller) | reg set}

where description

sym isafunction name.

reg_set iscaled aregister set. The register sets specify the registers that are to be used for
argument passing. A register set isalist of registers separated by spaces and enclosed in
square brackets.

11.2.7.1 Returning Subprogram Values in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to return
afunction’svaue.

*$pragma aux sym val ue reg set

where description
sym is a subprogram name.
reg set isaregister set.

Note that the method described below for returning values of type REAL or DOUBLE PRECISION is
supported only when the "fpc" option is used.

Auxiliary Pragmas 129

16-bit Topics

Depending on the type of the return value, only certain registers are allowed in reg_set.

1-byte

2-byte

4-byte

far pointer

8-byte

Notes:

For 1-byte return values, only the following registers are allowed: AL, AH, DL, DH, BL,
BH, CL or CH. If no register set is specified, register AL will be used.

For 2-byte return values, only the following registers are allowed: AX, DX, BX, CX, Sl or
DI. If no register set is specified, register AX will be used.

For 4-byte return values (except far pointers), only the following register pairs are allowed:
DX:AX, CX:BX, CX:AX, CX:Sl, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX, SI:AX,
CX:DX, DX:DI, DI:Sl, SI:BX or BX:AX. If noregister set is specified, registers DX:AX
will beused. Thisform of the auxiliary pragmaislegal for functions of type REAL when
using the "fpc" option only.

For functions that return far pointers, the following register pairs are allowed: DX:AX,
CX:BX, CX:AX, CX:Sl, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX, SI:AX, CX:DX, DX:DI,
DI:Sl, SI:BX, BX:AX, DS.CX, DS.DX, DS.DI, DS:SI, DS:BX, DS:AX, ES.CX, ES.DX,
ES.DI, ES:SI, ES:.BX or ES:AX. If noregister set is specified, the registers DX:AX will be
used.

For 8-byte return values (including functions of type DOUBL E PRECI SION), only the
following register combination is allowed: AX:BX:CX:DX. If no register set is specified,
the registers AX:BX:CX:DX will beused. Thisform of the auxiliary pragmaislegal for
functions of type DOUBL E PRECISION when using the "fpc" option only.

1. Anempty register set isnot allowed.

If you are compiling for amemory model which has a small data model, any of the above
register combinations containing register DS becomesillegal. 1nasmall data model, segment
register DS must remain unchanged as it points to the program’ s data segment.

11.2.7.2 Returning Structures and Complex Numbers

Typically, structures and complex numbers are not returned in registers. Instead, the caller allocates space
on the stack for the return value and sets register Sl to point to it. The called routine then places the return
value at the location pointed to by register Sl.

Complex numbers are not scalars but rather an ordered pair of real humbers. One can also view complex
numbers as a structure containing two real numbers.

The following form of the auxiliary pragma can be used to specify the register that is to be used to point to
the return value.

*$pragma aux sym value struct (caller | routine) reg set

130 Auxiliary Pragmas

Pragmas

where description
sym is a subprogram name.
reg set isaregister set.

"caller" specifiesthat the caller will alocate memory for the return value. The address of the memory
allocated for the return value is placed in the register specified in the register set by the caller before the
functioniscalled. If an empty register set is specified, the address of the memory allocated for the return
value will be pushed on the stack immediately before the call and will be returned in register AX by the
called routine. It isassumed that the memory for the return value is alocated from the stack segment (the
stack segment is contained in segment register SS).

"routine” specifies that the called routine will alocate memory for the return value. Upon returning to the
caller, the register specified in the register set will contain the address of the return value. An empty
register set is not allowed.

Only the following registers are allowed in the register set: AX, DX, BX, CX, Sl or DI. Notethat inabig
data model, the address in the return register is assumed to be in the segment specified by the value in the
SS segment register.

If the size of the structure being returned is 1, 2 or 4 bytes, it will be returned in registers. The return
register will be selected from the register set in the following way.

1. A 1-bytestructure will be returned in one of the following registers: AL, AH, DL, DH, BL, BH,
CL or CH. If no register set is specified, register AL will be used.

2. A 2-byte structure will be returned in one of the following registers: AX, DX, BX, CX, Sl or DI.
If no register set is specified, register AX will be used.

3. A 4-byte structure will be returned in one of the following register pairs: DX:AX, CX:BX,
CX:AX, CX:Sl, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX, SI:AX, CX:DX, DX:DlI, DI:Sl, SI:BX
or BX:AX. If noregister set is specified, register pair DX:AX will be used.

The following form of the auxiliary pragma can be used to specify that structureswhose sizeis 1, 2 or 4
bytes are not to be returned in registers. Instead, the caller will allocate space on the stack for the structure
return value and point register Sl toit.

*$pragma aux sym val ue struct struct

where description

sym is a subprogram name.

11.2.7.3 Returning Floating-Point Data

There are afew ways available for specifying how the value for a function whose typeis REAL or
DOUBLE PRECISION isto be returned.

Auxiliary Pragmas 131

16-bit Topics

The following form of the auxiliary pragma can be used to specify that function return values whose type is
REAL or DOUBLE PRECISION are not to be returned in registers. Instead, the caller will alocate space
on the stack for the return value and point register Sl to it.

*$pragnma aux sym val ue struct fl oat

where description
sym isafunction name.
In other words, floating-point values are to be returned in the same way complex numbers are returned.

The following form of the auxiliary pragma can be used to specify that function return values whose typeis
REAL or DOUBLE PRECISION are not to be returned in 80x87 registers when compiling with the "fpi"
or "fpi87" option. Instead, the value will be returned in 80x86 registers. Thisis the default behaviour for
the "fpc" option. Function return values whose type is REAL will be returned in registers DX:AX.
Function return values whose type is DOUBL E PRECI SION will be returned in registers AX:BX:CX:DX.
Thisisthe default method for the "fpc" option.

*$pragnma aux sym val ue no8087

where description
sym isafunction name.
The following form of the auxiliary pragma can be used to specify that function return values whose type is

REAL or DOUBLE PRECISION areto be returned in ST(0) when compiling with the "fpi* or "fpi87"
option. Thisform of the auxiliary pragmais not legal for the "fpc" option.

*$pragnma aux sym val ue [8087]

where description

sym isafunction name.

11.2.8 A Subprogram that Never Returns

The following form of the auxiliary pragma can be used to describe a subprogram that does not return to
the caler.

*$pragnma aux sym aborts

132 Auxiliary Pragmas

Pragmas

where description
sym is a subprogram name.
Consider the following example.

*$pragnma aux exitrtn aborts

call exitrtn()
end

exi trt n isdefined to be afunction that does not return. For example, it may call exi t toreturntothe

system. In this case, Open Watcom F77 generates a"jmp" instruction instead of a"call" instruction to
invokeexi trtn.

11.2.9 Describing How Subprograms Use Variables in Common

The following form of the auxiliary pragma can be used to describe a subprogram that does not modify any
variable that appears in a common block defined by the caler.

*$pragma aux sym nodi fy nonenory

where description
sym is a subprogram name.

Consider the following example.

i nteger i

conmon /bl k/ i

while(i .It. 1000)do
i =i + 383

endwhi | e

call myrtn()

i =i + 13143

end

bl ock data

conmon /bl k/ i

i nteger i/1033/
end

To compile the above program, "rtn.for", we issue the following command.

Cwie rtn -mm -dl
Cwf c386 rtn -dil

The"d1" compiler option is specified so that the object file produced by Open Watcom F77 contains source
line information.

We can generate afile containing adisassembly of rt n. obj by issuing the following command.

Cwdis rtn -1 -s -

Auxiliary Pragmas 133

16-bit Topics

The"s" option is specified so that the listing file produced by the Open Watcom Disassembler contains
sourcelinestakenfromrtn. for. Thelistingfilertn. | st appearsasfollows.

Let us add the following auxiliary pragmato the sourcefile.

*$pragnma aux nyrtn nodi fy nomenory

If we compile the source file with the above pragma and disassemble the object file using the Open
Watcom Disassembler, we get the following listing file.

Modul e: rtn.for
G oup: ' DGROUP _DATA, LDATA, CDATA, BLK
Segnent: ' FMAIN_TEXT' BYTE 00000024 bytes
*$pragma aux nmyrtn nodi fy nomenory
integer*2 i
comon / bl k/
0000 52 FMAI N push
0001 8b 16 00 00 nov
while(i .1t. 1000)do
0005 81 fa e8 03 L1 cnp
0009 7d 06 j ge
i =i + 383
endwhi | e
000b 81 c2 7f 01 add
000f eb f4 jmp
call nyrtn()
0011 89 16 00 00 L2 nov
0015 9a 00 00 00 00 cal
i =i + 13143
00la 81 c2 57 33 add
00le 89 16 00 00 nov
end
bl ock data
comon / bl k/
integer*2 i/1033/
end
0022 b5a pop
0023 cb retf

No di sassenbly errors

Li st of external synbols

Synmbo

MYRTN 00000016

Segnent: ' BLK PARA 00000002 bytes
0000 09 04 L3

No di sassenbly errors

134 Auxiliary Pragmas

dx
dx, L3

dx, 03e8H
L2

dx, 017fH
L1

L3, dx
far MYRTN

dx, 3357H
L3, dx

dx

Pragmas

Li st of public synbols

Notice that the value of i isinregister DX after completion of the "while" loop. After thecal to myrtn,
thevalueof i isnot loaded from memory into aregister to perform the final addition. The auxiliary
pragmainforms the compiler that myr t n does not modify any variable that appearsin a common block
defined by Rt n and hence register DX contains the correct value of i .

The preceding auxiliary pragma deals with routines that modify variablesin common. Let us consider the
case where routines reference variables in common. The following form of the auxiliary pragma can be
used to describe a subprogram that does not reference any variable that appears in acommon block defined
by the caller.

*$pragma aux sym parm nonmenory nodi fy nonmenory

where description
sym is a subprogram name.
Notes:

1. Youmust specify both "parm nomemory" and "modify nomemory".

Let us replace the auxiliary pragmain the above example with the following auxiliary pragma.

*$pragma aux nyrtn parm nomenory nodi fy nomenory
If you now compile our source file and disassemble the object file using WDIS, the result is the following
listing file.

Modul e: rtn. for
G oup: ' DGROUP _DATA, LDATA, CDATA, BLK

Segnent: ' FMAIN_TEXT' BYTE 00000020 bytes

*$pragma aux nmyrtn parm nonmenory nodi fy nomenory

integer*2 i

common /bl k/ i
0000 52 FMAI N push dx
0001 8b 16 00 00 nov dx, L3

while(i .lt. 1000)do
0005 81 fa e8 03 L1 cnp dx, 03e8H
0009 7d 06 j ge L2

i =i + 383

endwhi | e
000b 81 c2 7f 01 add dx, 017fH
000f eb f4 jnp L1

Auxiliary Pragmas 135

16-bit Topics

call nmyrtn()
0011 9a 00 00 00 00 L2 cal | far MYRTN
i =i + 13143
0016 81 c2 57 33 add dx, 3357H
00la 89 16 00 00 nov L3, dx
end
bl ock data

common /bl k/
integer*2 i/1033/

end
00le 5a pop dx
001f «cb retf

No di sassenbly errors

Li st of external synbols

Segnent: ' BLK PARA 00000002 bytes
0000 09 04 L3

No di sassenbly errors

Notice that after completion of the "while" loop we did not have to update i with the valuein register DX
before calling nyr t n. The auxiliary pragmainforms the compiler that myr t n does not reference any
variable that appearsin a common block defined by myrt n soupdating i was not necessary before calling
nyrtn.

11.2.10 Describing the Registers Modified by a Subprogram

The following form of the auxiliary pragma can be used to describe the registers that a subprogram will use
without saving.

*$pragma aux sym nodi fy [exact] reg_set

where description
sym is a subprogram name.
reg_set isaregister set.

Specifying aregister set informs Open Watcom F77 that the registers belonging to the register set are
modified by the subprogram. That is, the valuein aregister before calling the subprogram is different from
its value after execution of the subprogram.

136 Auxiliary Pragmas

Pragmas

Registers that are used to pass arguments are assumed to be modified and hence do not have to be saved
and restored by the called subprogram. Also, sincethe AX register is frequently used to return avalue, itis
always assumed to be modified. If necessary, the caller will contain code to save and restore the contents
of registers used to pass arguments. Note that saving and restoring the contents of these registers may not
be necessary if the called subprogram does not modify them. The following form of the auxiliary pragma
can be used to describe exactly those registers that will be modified by the called subprogram.

*$pragma aux sym nodi fy exact reg set

where description
sym is a subprogram name.
reg_set isaregister set.

The above form of the auxiliary pragmatells Open Watcom F77 not to assume that the registers used to
pass arguments will be modified by the called subprogram. Instead, only the registers specified in the
register set will be modified. Thiswill prevent generation of the code which unnecessarily saves and
restores the contents of the registers used to pass arguments.

Also, any registersthat are specified in the val ue register set are assumed to be unmodified unless
explicitly listed in the exact register set. In the following example, the code generator will not generate
code to save and restore the value of the stack pointer register since we havetold it that "GetSP" does not
modify any register whatsoever.

Example:
*$i fdef _ 386
*$pragma aux Get SP
*$el se
*$pragna aux Get SP
*$endi f

val ue [esp] nodify exact []

val ue [sp] nodify exact []

pr ogram mai n

i nteger Get SP

print *, 'Current SP =", GetSP()
end

11.2.11 Auxiliary Pragmas and the 80x87

This section deals with those aspects of auxiliary pragmas that are specific to the 80x87. The discussion in
this chapter assumes that one of the "fpi" or "fpi87" optionsis used to compile subprograms. The following
areas are affected by the use of these options.

1. passing floating-point arguments to functions,

2. returning floating-point values from functions and
3. which 80x87 floating-point registers are allowed to be modified by the called routine.

Auxiliary Pragmas 137

16-bit Topics

11.2.11.1 Using the 80x87 to Pass Arguments

By default, floating-point arguments are passed on the 80x86 stack. The 80x86 registers are never used to
pass floating-point arguments when a subprogram is compiled with the "fpi" or "fpi87" option. However,
they can be used to pass arguments whose type is not floating-point such as arguments of type "int".

The following form of the auxiliary pragma can be used to describe the registers that are to be used to pass
arguments to subprograms.

*$pragma aux sym parm {reg_set}

where description

sym is a subprogram name.

reg_set isaregister set. Theregister set can contain 80x86 registers and/or the string "8087".
Notes:

1. If an empty register set is specified, all arguments, including floating-point arguments, will be
passed on the 80x86 stack.

When the string "8087" appearsin aregister set, it sSimply means that floating-point arguments can be
passed in 80x87 floating-point registersif the source file is compiled with the "fpi" or "fpi87" option.
Before discussing argument passing in detail, some general notes on the use of the 80x87 floating-point
registers are given.

The 80x87 contains 8 floating-point registers which essentially form a stack. The stack pointer iscalled ST
and is anumber between 0 and 7 identifying which 80x87 floating-point register is at the top of the stack.
ST isinitially 0. 80x87 instructions reference these registers by specifying a floating-point register number.
This number isthen added to the current value of ST. The sum (taken modulo 8) specifies the 80x87
floating-point register to be used. The notation ST(n), where "n" is between 0 and 7, is used to refer to the
position of an 80x87 floating-point register relative to ST.

When afloating-point value is loaded onto the 80x87 floating-point register stack, ST is decremented
(modulo 8), and the value isloaded into ST(0). When afloating-point value is stored and popped from the
80x87 floating-point register stack, ST isincremented (modulo 8) and ST(1) becomes ST(0). The
following illustrates the use of the 80x87 floating-point registers as a stack, assuming that the value of ST is
4 (4 values have been loaded onto the 80x87 floating-point register stack).

138 Auxiliary Pragmas

Pragmas

S +

0 | 4th fromtop | ST(4)
oo +

1 | 5th fromtop | ST(5)
oo +

2 | 6th fromtop | ST(6)
e +

3 | 7th fromtop | ST(7)
S +

ST -> 4 | top of stack | ST(0)
e +

5 | 1st fromtop | ST(1)
oo +

6 | 2nd fromtop | ST(2)
oo +

7 | 3rd fromtop | ST(3)
e +

Starting with version 9.5, the Open Watcom compilers use all eight of the 80x87 registers asa stack. The
initial state of the 80x87 register stack is empty before a program begins execution.

Note: For compatibility with code compiled with version 9.0 and earlier, you can compile with
the "fpr" option. In this case only four of the eight 80x87 registers are used as a stack.
These four registers were used to pass arguments. The other four registers form what was
called the 80x87 cache. The cache was used for local floating-point variables. The state of
the 80x87 registers before a program began execution was as follows.

1. Thefour 80x87 floating-point registers that form the stack are uninitialized.
2. Thefour 80x87 floating-point registers that form the 80x87 cache areinitialized
with zero.

Hence, initially the 80x87 cache was comprised of ST(0), ST(1), ST(2) and ST(3). ST had
the value 4 as in the above diagram. When afloating-point value was pushed on the stack
(asisthe case when passing floating-point arguments), it became ST(0) and the 80x87
cache was comprised of ST(1), ST(2), ST(3) and ST(4). When the 80x87 stack was full,
ST(0), ST(1), ST(2) and ST(3) formed the stack and ST(4), ST(5), ST(6) and ST(7) formed
the 80x87 cache. Version 9.5 and later no longer use this strategy.

The rules for passing arguments are as follows.

1. If theargument is not floating-point, use the procedure described earlier in this chapter.

2. If theargument isfloating-point, and a previous argument has been assigned a position on the
80x86 stack (instead of the 80x87 stack), the floating-point argument is also assigned a position
on the 80x86 stack. Otherwise proceed to the next step.

3. If thestring "8087" appears in aregister set in the pragma, and if the 80x87 stack is not full, the
floating-point argument is assigned floating-point register ST(0) (the top element of the 80x87
stack). The previous top element (if there was one) isnow in ST(1). Since arguments are
pushed on the stack from right to left, the leftmost floating-point argument will bein ST(0).
Otherwise the floating-point argument is assigned a position on the 80x86 stack.

Consider the following example.

Auxiliary Pragmas 139

16-bit Topics

*$pragnma aux nyrtn parm (val ue) [8087]

real x

doubl e precision y
integer*2 i

i nteger j

X 7.7

i 7

y = 77.77

i 77

call nmyrtn(x, i, vy, j)
end

nyr t n isan assembly language subprogram that requires four arguments. The first argument of type
REAL (4 bytes), the second argument is of type INTEGER* 2 (2 bytes), the third argument is of type
DOUBLE PRECISION (8 bytes) and the fourth argument is of type INTEGER*4 (4 bytes). These

arguments will be passed to nyr t n in the following way.

1. Since"8087" was specified in the register set, the first argument, being of type REAL, will be
passed in an 80x87 floating-point register.

2. The second argument will be passed on the stack since no 80x86 registers were specified in the
register set.

3. Thethird argument will also be passed on the stack. Remember the following rule: once an
argument is assigned a position on the stack, all remaining arguments will be assigned a position
on the stack. Note that the above rule holds even though there are some 80x87 floating-point
registers available for passing floating-point arguments.

4. Thefourth argument will also be passed on the stack.

L et us change the auxiliary pragmain the above example as follows.

*$pragma aux nyrtn parm[ax 8087]

The arguments will now be passed to myr t n in the following way.

1. Since"8087" was specified in the register set, the first argument, being of type REAL will be
passed in an 80x87 floating-point register.

2. The second argument will be passed in register AX, exhausting the set of available 80x86
registers for argument passing.

3. Thethird argument, being of type DOUBLE PRECISION, will also be passed in an 80x87
floating-point register.

4. Thefourth argument will be passed on the stack since no 80x86 registers remain in the register
Set.

140 Auxiliary Pragmas

Pragmas

11.2.11.2 Using the 80x87 to Return Subprogram Values

The following form of the auxiliary pragma can be used to describe a subprogram that returns a
floating-point value in ST(0).

*$pragma aux sym val ue reg_set

where description
sym is a subprogram name.
reg_set isaregister set containing the string "8087", i.e. [8087].

11.2.11.3 Preserving 80x87 Floating-Point Registers Across Calls

The code generator assumes that all eight 80x87 floating-point registers are available for use within a
subprogram unless the "fpr" option is used to generate backward compatible code (older Open Watcom
compilers used four registers as a cache). The following form of the auxiliary pragma specifies that the
floating-point registersin the 80x87 cache may be modified by the specified subprogram.

*$pragma aux sym nodi fy reg_set

where description
sym is a subprogram name.
reg set isaregister set containing the string "8087", i.e. [8087].

Thisinstructs Open Watcom F77 to save any local variablesthat are located in the 80x87 cache before
calling the specified routine.

Auxiliary Pragmas 141

16-bit Topics

142 Auxiliary Pragmas

32-bit Topics

32-bit Topics

144

12 Memory Models

12.1 Introduction

This chapter describes the various memory models supported by Open Watcom F77. Each memory model
is distinguished by two properties; the code model used to implement subprogram calls and the data model
used to reference data.

12.2 Code Models

There are two code models:

1. thesmal code model
2. thebig code model

A small code model is onein which all callsto subprograms are made with near calls. Inanear call, the
destination address is 32 hits and is relative to the segment value in segment register CS. Hence, in asmall
code model, al code comprising your program, including library subprograms, must be less than 4GB.

A big code model isonein which al calls to subprograms are made with far calls. Inafar call, the
destination address is 48 hits (a 16-bit segment value and a 32-bit offset relative to the segment value).
Thismodel allows the size of the code comprising your program to exceed 4GB.

Note: If your program contains less than 4GB of code, you should use a memory model that employs
the small code model. Thiswill result in smaller and faster code since near calls are smaller instructions
and are processed faster by the CPU.

12.3 Data Models

There are two data models:

1. thesmall data model
2. thebig data model

A small data model isonein which al references to data are made with near pointers. Near pointers are 32
bits; all data references are made relative to the segment value in segment register DS. Hence, in asmall
data model, all data comprising your program must be less than 4GB.

A big datamodel is onein which al referencesto data are made with far pointers. Far pointers are 48 bits
(a 16-bit segment value and a 32-bit offset relative to the segment value). This removes the 4GB limitation
on data size imposed by the small datamodel. However, when afar pointer isincremented, only the offset
isadjusted. Open Watcom F77 assumes that the offset portion of afar pointer will not be incremented
beyond 4GB. The compiler will assign an object to a new segment if the grouping of datain a segment will

Data Models 145

32-bit Topics

cause the object to cross a segment boundary. Implicit in thisis the requirement that no individual object
exceed 4GB.

Note: If your program contains less than 4GB of data, you should use the small data model. Thiswill
result in smaller and faster code since references using near pointers produce fewer instructions.

12.4 Summary of Memory Models

As previously mentioned, a memory model is a combination of a code model and adatamodel. The
following table describes the memory models supported by Open Watcom F77.

Menory Code Dat a Def aul t Def aul t
Model Model Model Code Dat a
Poi nt er Poi nt er
flat smal | smal | near near
smal | smal | smal | near near
medi um bi g snal | far near
conpact snal | bi g near far
| arge bi g bi g far far

12.5 Flat Memory Model

In the flat memory model, the application’s code and data must total less than 4GB in size. Segment
registers CS, DS, SS and ES point to the same linear address space (this does not imply that the segment
registers contain the same value). That is, agiven offset in one segment refers to the same memory location
asthat offset in another segment. Essentially, aflat model operates as if there were no segments.

12.6 Mixed Memory Model

A mixed memory model application combines elements from the various code and data models. A mixed
memory model application might be characterized as one that includes arrays which are larger than 4GB.

For example, a medium memory model application that uses some arrays which exceed 4GB in total size
can be described as a mixed memory model. In an application such as this, most of the dataisin a4GB
segment (DGROUP) and hence can be referenced with near pointers relative to the segment valuein

segment register DS. Thisresultsin more efficient code being generated and better execution times than
one can expect from a big data model.

12.7 Linking Applications for the Various Memory Models

Each memory model requires different run-time and floating-point libraries. Each library assumesa
particular memory model and should be linked only with modules that have been compiled with the same
memory model. The following table lists the libraries that are to be used to link an application that has
been compiled for a particular memory model.

146 Linking Applications for the Various Memory Models

Memory Models

Note: Currently, only libraries for the flat/small memory model are provided.

The following table lists the run-time libraries used by FORTRAN 77 and the compiler options that cause

their use.

1. The"Library" column specified the library name.

2. The"Memory model" column indicates the compiler options that specify the memory model of
thelibrary.

3. The"Floating-point column" indicates the compiler options that specify the floating-point model
of thelibrary.

4. The"Calling convention" column indicates the compiler option that specifies the calling
convention of the library (register-based or stack-based).

Li brary Menory Fl oat i ng- poi nt Calling

nodel nodel convention

flib.lib -nf, -ns -fpc

flibs.lib -nf, -ms -fpc -scC

flib7.1ib -nf, -ns -fpi, -fpi87

flib7s.1ib -nf, -ns -fpi, -fpi87 -sc

clib3r.lib -nf, -ns -fpc, -fpi, -fpi87

clib3r.lib -nf, -ms -fpc, -fpi, -fpi87 -sc

mat h387r.1ib -nf, -ms -fpi, -fpi87

mat h387s.1ib -nf, -ms -fpi, -fpi87 -sc

math3r.lib -nf, -ms -fpc

mat h3s.lib -nf, -ms -fpc -sc

emu387.1ib -nf, -ms -fpi

noenmu387.1ib -nf, -ms -fpi 87

12.8 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1

all "USE16" segments. These segments are present in applications that execute in both real
mode and protected mode. They arefirst in the segment ordering so that the "REALBREAK"
option of the "RUNTIME" directive can be used to separate the real-mode part of the application
from the protected-mode part of the application. Currently, the "RUNTIME" directiveisvalid
for Phar Lap executables only.

all segments not belonging to group "DGROUP" with class "CODE"

all other segments not belonging to group "DGROUP'

all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"
all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

Memory Layout 147

32-bit Topics

Segments belonging to class "BSS' contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes"BSS" and
"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable
file.

In addition to these special segments, the following conventions are used by Open Watcom F77.
1. The"CODE" class contains the executable code for your application. In asmall code model, this
consists of the segment *_TEXT". In abig code model, this consists of the segments
"<subprogram>_TEXT" where <subprogram> is the name of a subprogram.

2. The"FAR_DATA" class consists of the following:

(@ arrays whose size exceeds the data threshold in large data memory models (the
data threshold is 256 bytes unless changed using the "dt" compiler option)

(b) equivalenced variables in large data memory models

148 Memory Layout

13 Assembly Language Considerations

13.1 Introduction

This chapter will deal with the following topics.

1. Thememory layout of a program compiled by Open Watcom F77.

2. The method for passing arguments and returning values.

3. Thetwo methods for passing floating-point arguments and returning floating-point values.
One method is used when one of the Open Watcom F77 "fpi", "fpi87" or "fpi287" optionsis
specified for the generation of in-line 80x87 instructions. When the "fpi" option is specified, an
80x87 emulator isincluded from amath library if the application includes fl oating-point
operations. When the "fpi87" or "fpi287" option is used exclusively, the 80x87 emulator will not
be included.

The other method is used when the Open Watcom F77 "fpc" option is specified. In this case, the
compiler generates calls to floating-point support routines in the alternate math libraries.

An understanding of the Intel 80x86 architecture is assumed.

13.2 Calling Conventions

The following sections describe the method used by Open Watcom F77 to pass arguments.
The FORTRAN 77 language specifically requires that arguments be passed by reference. This means that

instead of passing the value of an argument, its addressis passed. Thisallows a called subprogram to
modify the value of the actual arguments. The following illustrates the method used to pass arguments.

Calling Conventions 149

32-bit Topics

Type of Argument Method Used to Pass Argument
non-character constant address of constant
non-character expression address of value of expression
non-character variable address of variable

character constant address of string descriptor
character expression address of string descriptor
character variable address of string descriptor
non-character array address of array

non-character array element address of array

character array address of string descriptor
character array element address of string descriptor
character substring address of string descriptor
subprogram address of subprogram
alternate return specifier no argument passed
user-defined structure address of structure

When passing a character array as an argument, the string descriptor contains the address of the first
element of the array and the length of an element of the array.

The address of arguments are either passed in registers or on the stack. The registers used to pass the
address of arguments to a subprogram are EAX, EBX, ECX and EDX. The address of arguments are
passed in the following way.

1. Thefirst argument is passed in register EAX, the second argument is passed in register EDX, the
third argument is passed in register EBX, and the fourth argument is passed in register ECX.

2. For any remaining arguments, their address is passed on the stack. Note that addresses of
arguments are pushed on the stack from right to | eft.

13.2.1 Stack-Based Calling Convention
The previous section described a register-based calling convention in which registers were used to pass
arguments to subprograms. A stack-based calling convention is another method that can be used to pass
arguments. The calling convention is selected when the "'sc" compiler option is specified.
The most significant difference between the stack-based calling convention and the register-based calling

convention is the way the arguments are passed. When using the stack-based calling conventions, no
registers are used to pass arguments. Instead, all arguments are passed on the stack.

13.2.2 Processing Function Return Values with no 80x87

The way in which function values are returned is also dependent on the data type of the function. The
following describes the method used to return function values.

1. LOGICAL*1vauesarereturned in register AL.
2. LOGICAL*4 vauesarereturned in register EAX.

3. INTEGER*1vauesarereturned inregister AL.

150 Calling Conventions

Assembly Language Considerations

4. INTEGER*2vauesarereturned in register AX.

5. INTEGER*4vauesarereturned in register EAX.
6. REAL*4vauesarereturned in register EAX.

7. REAL*8vauesare returned in registers EDX:EAX.

8. For COMPLEX*8 functions, space is allocated on the stack by the caller for the return value.
Register ESI is set to point to the destination of the result. The called function places the result
at the location pointed to by register ESI.

9. For COMPLEX*16 functions, spaceis allocated on the stack by the caller for the return value.
Register ESl is set to point to the destination of the result. The called function places the result
at the location pointed to by register ESI.

10. For CHARACTER functions, an additional argument is passed. Thisargument is the address of
the string descriptor for the result. Note that the address of the string descriptor can be passed in
any of the registers that are used to pass actual arguments.

11. For functions that return a user-defined structure, space is allocated on the stack by the caller for
thereturn value. Register ESI is set to point to the destination of the result. The called function
places the result at the location pointed to by register ESI. Note that a structure of size1, 2 or 4
bytesisreturned in register AL, AX or EAX respectively.

Note: Theway in which afunction returns its value does not change when the stack-based calling
convention is used.

13.2.3 Processing Function Return Values Using an 80x87

The following describes the method used to return function values when your application is compiled using
the "fpi87" or "fpi" option.

1. For REAL*4 functions, the result is returned in floating-point register ST(0).
2. For REAL*8functions, the result is returned in floating-point register ST(0).
3. All other function values are returned in the way described in the previous section.

Note: When the stack-based calling convention is used, floating-point values are not returned using the
80x87. REAL*4 valuesarereturned in register EAX. REAL*8 values are returned in registers
EDX:EAX.

13.2.4 Processing Alternate Returns

Alternate returns are processed by the caller and are only allowed in subroutines. The called subroutine
places the value specified in the RETURN statement in register EAX. Note that the value returned in
register EAX isignored if there are no aternate return specifiersin the actual argument list.

Calling Conventions 151

32-bit Topics

Note: Theway in which a alternate returns are processed does not change when the stack-based calling
convention is used.

13.2.5 Alternate Method of Passing Character Arguments

As previously described, character arguments are passed using string descriptors. Recall that a string
descriptor contains a pointer to the actual character data and the length of the character data. When passing
character data, both a pointer and length are required by the subprogram being called. When using a string
descriptor, this information can be passed using a single argument, namely the pointer to the string
descriptor.

An alternate method of passing character arguments is also supported and is selected when the
"nodescriptor” option is specified. In this method, the pointer to the character data and the length of the
character data are passed as two separate arguments. The character argument lengths are appended to the
end of the actual argument list.

Let us consider the following example.

I NTEGER A, C
CHARACTER B, D
CALL SUB(A, B, C, D)

In the above example, the first argument is of type INTEGER, the second argument is of type
CHARACTER, the third argument is of type INTEGER, and the fourth argument is of type CHARACTER.
If the character arguments were passed by descriptor, the argument list would resemble the following.

The first argument would be the address of A.

The second argument would be the address of the string descriptor for B.
The third argument would be the address of C.

The fourth argument would be the address of the string descriptor for D.

AwWDdE

If we specified the "nodescriptor” option, the argument list would be as follows.

Thefirst argument would be the address of A.

The second argument would be the address of the character datafor B.
The third argument would be the address of C.

The fourth argument would be the address of the character datafor D.
A hidden argument for the length of B would be the fifth argument.

A hidden argument for the length of D would be the sixth argument.

oukwbdpE

Note that the arguments corresponding to the length of the character arguments are passed as INTEGER* 4
arguments.

13.2.5.1 Character Functions

By default, when a character function is called, a hidden argument is passed at the end of the actua
argument list. This hidden argument is a pointer to the string descriptor used for the return value of the
character function. When the alternate method of passing character arguments is specified by using the
"nodescriptor” option, the string descriptor for the return value is passed to the function as two hidden
arguments, similar to the way character arguments were passed. However the two hidden arguments for the

152 Calling Conventions

Assembly Language Considerations

return value of the character function are placed at the beginning of the actual argument list. Thefirst
argument is the the pointer to the storage immediately followed by the size of the storage.

13.3 Writing Assembly Language Subprograms

When writing assembly language subprograms, use the following guidelines.

1.

All used registers must be saved on entry and restored on exit except those used to pass
arguments and return values. Note that segment registers only have to be saved and restored if
you are compiling your application with the "sr" option.

The direction flag must be clear before returning to the caller.

In asmall code model, any segment containing executable code must belong to the segment

" TEXT" and the class"CODE". Thesegment" TEXT" must have a"combine" type of
"PUBLIC". On entry, register CS contains the segment address of the segment " _TEXT". Ina
big code model there is no restriction on the naming of segments which contain executable code.

In asmall data model, segment register DS contains the segment address of the default data
segment (group "DGROUP"). In abig data model, segment register SS (not DS) contains the
segment address of the default data segment (group "DGROUP").

When writing assembly language subprograms for the small code model, you must declare them
as"near". If you wish to write assembly language subprograms for the big code model, you
must declare them as "far".

Use the ".8087" pseudo-op so that floating-point constants are in the correct format.

The called subprogram must remove arguments that were passed on the stack in the "ret"
instruction.

In general, when naming segments for your code or data, you should follow the conventions
described in the section entitled "Memory Layout" in this chapter.

Consider the following example.

100

| NTEGER HRS, M NS, SECS, HSECS
CALL GETTIM HRS, M NS, SECS, HSECS)

PRINT 100, HRS, M NS, SECS, HSECS

FORMAT(1X,12.2,":",12.2,7:",12.2,".7,12.2)
END

CGETTI Misan assembly language subroutine that gets the current time. 1t requires four integer arguments.
The arguments are passed by reference so that the subroutine can return the hour, minute, seconds and
hundredths of a second for the current time. These arguments will be passed to GETTI Min the following

way.

PwWbdE

The address of the first argument will be passed in register EAX.
The address of the second argument will be passed in register EDX.
The address of the third argument will be passed in register EBX.
The address of the fourth argument will be passed in register ECX.

Writing Assembly Language Subprograms 153

32-bit Topics

The following is an assembly language subprogram which implements GETTI M

Small or Flat Memory Model (small code, small data)

_TEXT segnent byte public ' CODE

assume CS: _TEXT
public GETTIM

GETTIM proc near

push EAX ; save registers nodified by
push ECX ; ... DOS function call
push EDX R
mv AH, 2ch ; set DOS "get time" function
int 21h ; issue DOS function call
nmvzx EAX, DH ; get seconds
nov [EBX], EAX ; return seconds
pop EBX ; get address of mnutes
novzx EAX, CL ; get minutes
mv [EBX], EAX ; return mnutes
pop EBX ; get address of ticks
mvzx EAX, DL ; get ticks
nov [EBX],EAX ; return ticks
pop EBX ; get address of hours
novzx EAX, CH ; get hours
mv [EBX], EAX ; return hours
ret ; return
GETTIM endp
_TEXT ends
end

Notes:

No arguments were passed on the stack so asimple "ret" instruction is used to return to the
caler. If asingle argument was passed on the stack, a"ret 4" instruction would be required to
return to the caller.

Registers EAX, EBX, ECX and EDX were not saved and restored since they were used to pass
arguments.

13.3.1 Using the Stack-Based Calling Convention

When writing assembly language subprograms that use the stack-based calling convention, use the
following guidelines.

1

N

All used registers, except registers EAX, ECX and EDX must be saved on entry and restored on
exit. Also, if segment registers ES and DS are used, they must be saved on entry and restored on
exit. Note that segment registers only have to be saved and restored if you are compiling your
application with the "sr" option.

The direction flag must be clear before returning to the caller.

In asmall code model, any segment containing executable code must belong to the segment

" TEXT" and the class"CODE". Thesegment " TEXT" must have a"combine" type of
"PUBLIC". On entry, register CS contains the segment address of the segment *_TEXT". Ina
big code model there is no restriction on the naming of segments which contain executable code.
In asmall data model, segment register DS contains the segment address of the default data
segment (group "DGROUP"). In abig data model, segment register SS (not DS) contains the
segment address of the default data segment (group "DGROUP").

When writing assembly language subprograms for the small code model, you must declare them
as"near". If you wish to write assembly language subprograms for the big code model, you
must declare them as "far".

154 Writing Assembly Language Subprograms

Assembly Language Considerations

o

Use the ".8087" pseudo-op so that floating-point constants are in the correct format.

The caller will remove arguments that were passed on the stack.

8. Ingeneral, when naming segments for your code or data, you should follow the conventions
described in the section entitled "Memory Layout" in this chapter.

~

Consider the following example.

I NTEGER HRS, M NS, SECS, HSECS
CALL GETTIM HRS, M NS, SECS, HSECS)
PRI NT 100, HRS, MNS, SECS, HSECS
100 FORVAT(1X,12.2,":7,12.2,":7,12.2,7.",12.2)
END

CGETTI Misan assembly language subroutine that gets the current time. 1t requires four integer arguments.
The arguments are passed by reference so that the subroutine can return the hour, minute, seconds and
hundredths of a second for the current time. These arguments will be passed to GETTI Mon the stack.

The following is an assembly language subprogram which implements GETTI M

Small or Flat Memory Model (small code, small data)

_TEXT segnent byte public ' CODE
assune CS: _TEXT
public GETTIM

CGETTIM proc near

push EBP ; save registers
nov EBP, ESP .
push ESI A
nmv AH, 2ch ; set DOS "get time" function
i nt 21h ; issue DOS function call
nmvzx EAX, CH ; get hours
nov ES|, 8[EBP] ; get address of hours
nmv [ESI],EAX ; return hours
novzx EAX, CL ; get minutes
nmv ESl, 12[BP] ; get address of m nutes
nov [ESI],EAX ; return mnutes
nmovzx EAX, DH ; get seconds
nov ESl, 16[BP] ; get address of seconds
nmv [ESI],EAX ; return seconds
novzx EAX, DL ; get ticks
nmv ESI, 20[BP] ; get address of ticks
nov [ESI],EAX ; return ticks
pop ESI ; restore registers
nov ESP, EBP
pop EBP C
ret ; return
GETTIM endp
_TEXT ends
end

Notes:
1. Thefour arguments that were passed on the stack will be removed by the caller.
2. Registers ESI and EBP were saved and restored since they were used in GETTI M

Let uslook at the stack upon entry to GETTI M

Writing Assembly Language Subprograms 155

32-bit Topics

O f set

0 L + <- ESP points here
| return address |

4 oo +
| argument #1 |

8 oo o - +
| argument #2 |

12 i +
| argument #3 |

16 L +
| argument #4 |

20 e e +
| I

Notes:

1. Thetop element of the stack is athe 32-hit return address. The first argument is at offset 4 from
the top of the stack, the second argument at offset 8, the third argument at offset 12, and the
fourth argument at offset 16.

Register EBP is normally used to address arguments on the stack. Upon entry to the subroutine, registers
that are modified (except registers EAX, ECX and EDX) are saved and register EBP is set to point to the
stack. After performing this prologue sequence, the stack looks like this.

O fset from EBP

-4 R LT + <- ESP point here
| saved ESI |
0 LR T + <- EBP point here
| saved EBP |
4 o a oo +
| return address |
8 o a e +
| argument #1 |
12 o mmemee oo +
| argument #2 |
16 i +
| argument #3 |
20 i +
| argument #4 |
24 T +

Asthe above diagram shows, the first argument is at offset 8 from register EBP, the second argument is at
offset 12, the third argument is at offset 16, and the fourth argument is at offset 20.

13.3.2 Returning Values from Assembly Language Functions

The following illustrates the way function values are to be returned from assembly language functions.

Note: Theway in which afunction returns its value does not change when the stack-based calling
convention is used.

1. ALOGICAL*1 function.

156 Writing Assembly Language Subprograms

Assembly Language Considerations

2.

3.

4.

5.

6.

_TEXT segnent byte public ' CODE
assume CS:_TEXT

public
L1 proc
nmov
ret
L1 endp
_TEXT ends
end

L1
near
AL, 1

A LOGICAL*4 function.

_TEXT segnment
assume
public

L4 proc
nov
ret

L4 endp

_TEXT ends
end

byte pu

bl'ic ' CODE

CS: _TEXT

L4
near
EAX, 0

An INTEGER*1 function.

_TEXT segnent byte public ' CODE
assune CS: _TEXT

public
11 proc
nov
ret
11 endp
_TEXT ends
end

11
near
AL, 73

An INTEGER*2 function.

_TEXT segnent byte public ' CODE
assune CS: _TEXT

public
12 proc
nov
ret
12 endp
_TEXT ends
end

12
near
AX, 7143

An INTEGER*4 function.

_TEXT segnent
assune
public

14 proc
nmov
ret

14 endp

_TEXT ends
end

A REAL*4 function.

byte pu

blic ' CODE

CS: _TEXT

14
near
EAX, 383

Writing Assembly Language Subprograms 157

32-bit Topics

. 8087
DGROUP group R4_DATA
_TEXT segnent byte public ' CODE

assume CS: _TEXT
assune DS: DGROUP

public R4

R4 proc near
nmov EAX, dword ptr R4Val
ret

R4 endp

_TEXT ends

R4_DATA segnent byte public ' DATA
R4Val dd 1314.3
R4_DATA ends

end

7. A REAL*8function.
. 8087
DGROUP group R8_DATA
_TEXT segnent byte public ' CODE

assune CS: _TEXT
assune DS: DGROUP

public R8

R8 proc near
nmov EAX, dword ptr R8Val
nmv EDX, dword ptr R8Val +4
ret

R8 endp

_TEXT ends

R8_DATA segnent byte public ' DATA
R8Val dq 103.3
R8_DATA ends

end

8. A COMPLEX*8 function.
. 8087
DGROUP group C8_DATA
_TEXT segnent byte public ' CODE

assune CS: _TEXT
assune DS: DGROUP

public C8

c8 proc near
push EAX
nov EAX, C8Val
nmv [ESI], EAX
nov EAX, C8Val +4
nov 4[ESI], EAX
pop EAX
ret

Cc8 endp

_TEXT ends

C8_DATA segnent byte public ' DATA
C8Val dd 2.2

dd 2.2
C8_DATA ends

end

158 Writing Assembly Language Subprograms

Assembly Language Considerations

9. A COMPLEX*16 function.
. 8087
DGROUP group Cl16_DATA
_TEXT segnent byte public ' CODE

assume CS: _TEXT
assune DS: DGROUP

public C16

Cl6 proc near
push EAX
nmv EAX, dword ptr Cl6Val
nov [ESI], EAX
nmv EAX, dword ptr Cl6Val +4
nov 4] ESI], EAX
nmv EAX, dword ptr Cl6Val +8
nov 8[ESI], EAX
nmv EAX, dword ptr Cl6Val +12
nov 12[ESI], EAX
pop EAX
ret

Cl6 endp

TEXT ends

C16_DATA segnent byte public ' DATA
Cléval dq 3.3

dg 3.3
C16_DATA ends

end

10. A CHARACTER function.

_TEXT segnent byte public ' CODE
assune CS: _TEXT

public CHR
CHR proc near
push EAX
nmv EAX, [EAX]
nmov byte ptr [EAX],'F
pop EAX
ret
CHR endp
_TEXT ends
end

Remember, if you are using stack calling conventions (i.e., you specified the "sc" compiler
option), arguments will be passed on the stack. The above character function must be modified
asfollows.

_TEXT segnent byte public ' CODE
assune CS: _TEXT

public CHR

CHR proc near
push EAX
nov EAX, 8[ESP]
nov EAX, [EAX]
nmv byte ptr [EAX],' F
pop EAX
ret

CHR endp

_TEXT ends
end

11. A function returning a user-defined structure.

Writing Assembly Language Subprograms 159

32-bit Topics

DGROUP group STRUCT_DATA

_TEXT segnent byte public ' CODE
assume CS: _TEXT
assume DS: DGROUP
public STRUCT

STRUCT proc near

push EAX
nov EAX, dword ptr Struct Val
nov [ESI], EAX
nov EAX, dword ptr StructVal +4
nov A[ESI], EAX
pop EAX
ret
STRUCT endp
_TEXT ends

STRUCT_DATA segnent byte public ' DATA
StructVal dd 7

dd 3
STRUCT_DATA ends

end
If you are using an 80x87 to return floating-point values, only REAL*4 and REAL *8 assembly language
functions need to be modified. Remember, this does not apply if you are using the stack-based calling
convention.
1. A REAL*4function using an 80x87.

. 8087

DGROUP group R4_DATA

_TEXT segnent byte public ' CODE

assune CS: _TEXT
assune DS: DGROUP

public R4

R4 proc near
fld dword ptr R4Val
ret

R4 endp

_TEXT ends

R4_DATA segment byte public ' DATA
R4Val dd 1314.3
R4_DATA ends

end
2. A REAL*8function using an 80x87.

. 8087
DGROUP group R8_DATA
_TEXT segnent byte public ' CODE

assune CS: _TEXT
assune DS: DGROUP

public R8

R8 proc near
fid gword ptr R8Val
ret

R8 endp

_TEXT ends

160 Writing Assembly Language Subprograms

Assembly Language Considerations

R8_DATA segnent byte public ' DATA

R8Val dg 103.3
R8_DATA ends
end

The following is an example of a Open Watcom F77 program calling the above assembly language

subprograms.

logical 11*1, 14*4
integer i1*1, i2*2, i4*4
real r4*4, r8+*8

conpl ex ¢8*8, cl16*16

character chr
structure /coord/
i nteger X, y
end structure
record /coord/ struct

pri
pri
pri
pri
pri
pri
pri
pri
pri
pri
pri

end

nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt

*
*
*
*
*
*
*
*
*
*
*

11()
1 4()
i1()
i2()
i4()
ra()
r8()
c8()
cl16()
chr ()
struct()

Writing Assembly Language Subprograms 161

32-bit Topics

162 Writing Assembly Language Subprograms

14 Pragmas

14.1 Introduction

A pragmais acompiler directive that provides the following capabilities.

* Pragmas can be used to direct the Open Watcom F77 code generator to emit specialized sequences
of code for calling functions which use argument passing and value return techniques that differ from
the default used by Open Watcom F77.

* Pragmas can be used to describe attributes of functions (such as side effects) that are not possible at
the FORTRAN 77 language level. The code generator can use thisinformation to generate more
efficient code.

» Any sequence of in-line machine language instructions, including DOS and BIOS function calls, can
be generated in the object code.

Pragmas are specified in the source file using the pragma directive.
The following notation is used to describe the syntax of pragmas.
keywords A keywor d is shown in amono-spaced courier font.

program-item A program-item is shown in aroman bold-italicsfont. A program-item isasymbol name
or numeric value supplied by the programmer.

punctuation A punctuati on charact er shownin amono-spaced courier font must be entered as
is.

A punctuation character shown in aroman bold-italics font is used to describe syntax.
The following syntactical notation is used.

[abc] Theitem abc is optional.

{abc} Theitem abc may be repeated zero or more times.
alb|c One of a, b or ¢ may be specified.

a:=b The item a is defined in terms of b.

@ Item ais evaluated first.

The following classes of pragmas are supported.
* pragmas that specify default libraries

* pragmas that provide auxiliary information used for code generation

Introduction 163

32-bit Topics

14.2 Auxiliary Pragmas

The following sections describe the capabilities provided by auxiliary pragmas.

The backslash character ('\') is used to continue a pragma on the next line. Text following the backslash
character isignored. The line continuing the pragma must start with acomment character ('c’, 'C’ or '*’).

14.2.1 Specifying Symbol Attributes

Auxiliary pragmas are used to describe attributes that affect code generation. Initially, the compiler defines
adefault set of attributes. Each auxiliary pragmarefersto one of the following.

1. asymbol (such asavariable or function)
2. thedefault set of attributes defined by the compiler

When an auxiliary pragmarefers to a particular symbol, a copy of the current set of default attributesis
made and merged with the attributes specified in the auxiliary pragma. The resulting attributes are assigned
to the specified symbol and can only be changed by another auxiliary pragmathat refers to the same
symbol.

When "default" is specified instead of a symbol name, the attributes specified by the auxiliary pragma
change the default set of attributes. The resulting attributes are used by all symbols that have not been
specificaly referenced by a previous auxiliary pragma.

Note that all auxiliary pragmas are processed before code generation begins. Consider the following
example.

code in which synbol x is referenced
*$pragma aux y <attrs_1>

code in which synbol y is referenced
code in which synbol z is referenced
*$pragna aux default <attrs_ 2>
*$pragma aux Xx <attrs_3>

Auxiliary attributes are assigned to x, y and z in the following way.

1. Symbol x isassigned theinitial default attributes merged with the attributes specified by
<attrs_2>and<attrs_3>.

2. Symbol y isassigned theinitial default attributes merged with the attributes specified by
<attrs_1>.

3. Symbol z isassigned the initial default attributes merged with the attributes specified by
<attrs_2>.

14.2.2 Alias Names

When asymbol referred to by an auxiliary pragmaincludes an aias name, the attributes of the alias name
are also assumed by the specified symbol.

There are two methods of specifying aiasinformation. In the first method, the symbol assumes only the
attributes of the alias name; no additional attributes can be specified. The second method is more general

164 Auxiliary Pragmas

Pragmas

sinceit is possible to specify an alias name as well as additional auxiliary information. In this case, the
symbol assumes the attributes of the alias name as well as the attributes specified by the additional auxiliary
information.

The simple form of the auxiliary pragma used to specify an aliasis asfollows.

*$pragma aux (sym, alias)

where description
sym isany valid FORTRAN 77 identifier.
alias isthe alias name and is any valid FORTRAN 77 identifier.

Consider the following example.

*$pragma aux val ue_args parm (val ue)
*$pragnma aux (rtn, value_args)

Theroutine r t n assumes the attributes of the alias name push_ar gs which specifies that the arguments
tort n are passed by value.

The general form of an auxiliary pragmathat can be used to specify an aliasis as follows.

*$pragma aux (alias) sym aux_attrs

where description

alias isthe alias name and is any valid FORTRAN 77 identifier.
sym isany valid FORTRAN 77 identifier.

aux_attrs are attributes that can be specified with the auxiliary pragma.

Consider the following example.

$pragma aux WC " " parm (val ue)
*$pragma aux (WC) rtnl
*$pragma aux (WC) rtn2
*$pragma aux (WC) rtn3

Theroutinesr t n1, rt n2 and r t n3 assume the same attributes as the alias name WC which defines the
calling convention used by the Open Watcom C compiler. Whenever callsaremadeto rtnl, rt n2 and
rt n3, the Open Watcom C calling convention will be used. Note that arguments must be passed by value.
By default, Open Watcom F77 passes arguments by reference.

Note that if the attributes of WC change, only one pragma needs to be changed. |f we had not used an dias

name and specified the attributes in each of the three pragmasfor rt n1,rt n2 and r t n3, we would have
to change all three pragmas. This approach also reduces the amount of memory required by the compiler to
process the sourcefile.

Auxiliary Pragmas 165

32-bit Topics

WARNING! The alias name WC s just another symbol. If WC appeared in your source code, it would
assume the attributes specified in the pragmafor WC.

14.2.3 Predefined Aliases

A number of symbols are predefined by the compiler with a set of attributes that describe a particular
calling convention. These symbols can be used as aliases. The following isalist of these symbols.

__cdecl __cdecl definesthe calling convention used by Microsoft compilers.

__fastcall __fastcal | definesthe calling convention used by Microsoft compilers.

__fortran __fortran definesthe caling convention used by Open Watcom FORTRAN compilers.

__pascal __pascal definesthe calling convention used by OS/2 1.x and Windows 3.x API
functions.

__stdcall __stdcal | definesaspecia caling convention used by the Win32 API functions.

__syscall __syscal | definesthe calling convention used by the 32-bit OS/2 API functions.

__watcall __wat cal | definesthe calling convention used by Open Watcom compilers.

The following describes the attributes of the above aias names.

14.2.3.1 Predefined " _cdecl" Alias

$pragma aux __cdecl "_" \
c parmcaller [] \
c val ue struct float struct routine [eax] \
c nmodi fy [eax ecx edx]
Notes:

1. All symbols are preceded by an underscore character.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the called routine allocates space for the return value and returns a pointer to the return value in
register EAX.

4. Registers EAX, ECX and EDX are not saved and restored when acall is made.

166 Auxiliary Pragmas

Pragmas

14.2.3.2 Predefined "__pascal” Alias

*$pragnma aux __ pascal "~ o\

c parmreverse routine [] \
c val ue struct float struct caller [] \
c nmodi fy [eax ebx ecx edx]

Notes:

1. All symbols are mapped to upper case.

2. Arguments are pushed on the stack in reverse order. That is, the first argument is pushed first,
the second argument is pushed next, and so on. The routine being called will remove the
arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the caller allocates space on the stack. The address of the allocated space will be pushed on the
stack immediately before the call instruction. Upon returning from the call, register EAX will
contain address of the space allocated for the return value.

4. Registers EAX, EBX, ECX and EDX are not saved and restored when a call is made.

14.2.3.3 Predefined " _stdcall" Alias

$pragma aux __stdcall "_@nn" \
c parmroutine [] \
c val ue struct struct caller [] \
c nmodi fy [eax ecx edx]
Notes:

1. All symbols are preceded by an underscore character.

2. All Csymbols (extern "C" symbolsin C++) are suffixed by "@nnn" where "nnn" is the sum of
the argument sizes (each size is rounded up to amultiple of 4 bytes so that char and short are size
4). When the argument list contains"...", the "@nnn" suffix is omitted.

3. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The called routine will remove the arguments from the stack.

4. When astructureis returned, the caller allocates space on the stack. The address of the allocated
space will be pushed on the stack immediately before the call instruction. Upon returning from
the call, register EAX will contain address of the space allocated for the return value.
Floating-point values are returned in 80x87 register ST(0).

5. Registers EAX, ECX and EDX are not saved and restored when acall is made.

14.2.3.4 Predefined "__syscall" Alias

$pragma aux __syscall "" \

c parmcaller [] \

c val ue struct struct caller [] \
c nmodi fy [eax ecx edx]

Auxiliary Pragmas 167

32-bit Topics

Notes:

1. Symbols names are not modified, that is, they are not adorned with leading or trailing
underscores.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

3. When asdtructureis returned, the caller allocates space on the stack. The address of the allocated
space will be pushed on the stack immediately before the call instruction. Upon returning from
the call, register EAX will contain address of the space allocated for the return value.
Floating-point values are returned in 80x87 register ST(0).

4. RegistersEAX, ECX and EDX are not saved and restored when a call is made.

14.2.3.5 Predefined "__watcall" Alias (register calling convention)

$pragma aux _ _watcall " " \
c parmroutine [eax ebx ecx edx] \
c val ue struct caller

Notes:

1. Symbol names are followed by an underscore character.

2. Arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have
been exhausted). Arguments that are passed on the stack are pushed from right to left. The
calling routine will remove the argumentsif any were pushed on the stack.

3. When asdtructureis returned, the caller allocates space on the stack. The address of the allocated
spaceis put into ESI register. The called routine then places the return value there. Upon
returning from the call, register EAX will contain address of the space allocated for the return
value.

4. Floating-point values are returned using 80x86 registers ("fpc" option) or using 80x87
floating-point registers ("fpi" or "fpi87" option).

5. All registers must be preserved by the called routine.

14.2.3.6 Predefined "__watcall" Alias (stack calling convention)

$pragma aux __watcall "" \

c parmcaller [] \

c val ue no8087 struct caller \

c nodi fy [eax ecx edx 8087]
Notes:

1. All symbols appear in object form as they do in source form.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

168 Auxiliary Pragmas

Pragmas

3. When astructureis returned, the caller allocates space on the stack. The address of the allocated
space will be pushed on the stack immediately before the call instruction. Upon returning from
the call, register EAX will contain address of the space allocated for the return value.

4. Floating-point values are returned only using 80x86 registers.

5. Registers EAX, ECX and EDX are not preserved by the called routine.

6. Any local variablesthat are located in the 80x87 cache are not preserved by the called routine.

14.2.4 Alternate Names for Symbols

The following form of the auxiliary pragma can be used to describe the mapping of a symbol from its
source form to its object form.

*$pragma aux sym obj_name

where description
sym isany valid FORTRAN 77 identifier.
obj_name isany character string enclosed in double quotes.

When specifying obj _nane, some characters have a special meaning:

where description
* is unmodified symbol name
n is symbol name converted to uppercase

! is symbol name converted to lowercase

is aplaceholder for "@nnn", where nnn is size of all function parameters on the stack; it is
ignored for functions with variable argument lists, or for symbols that are not functions

\ next character istreated as literal

Several examples of source to object form symbol name trandlation follow: By default, the upper case
version "MYRTN" or "MYVAR" is placed in the object file.

In the following example, the name "MyRtn" will be replaced by "MYRTN_" in the object file.
*$pragma aux MyRtn "~ "

In the following example, the name "MyVar" will be replaced by "_MYVAR" in the object file.
*$pragma aux MyVar " _A""

In the following example, the lower case version "myrtn” will be placed in the object file.

Auxiliary Pragmas 169

32-bit Topics

*$pragnma aux MyRtn "I"

In the following example, the name "MyRtn" will be replaced by " MyRtn@nnn" in the object file. "nnn"
represents the size of all function parameters.

$pragma aux MyRtn " _#"

In the following example, the name "MyRtn" will be replaced by "_MyRtn#" in the object file.
$pragma aux MyRtn "_\#"

The default mapping for al symbols can also be changed asiillustrated by the following example.
*$pragma aux default "_~_"

The above auxiliary pragma specifies that all names will be prefixed and suffixed by an underscore

character ().

14.2.5 Describing Calling Information

The following form of the auxiliary pragma can be used to describe the way a subprogram isto be called.

*$pragma aux sym far
*$prg£]rra aux sym farl6é
*$prg£]rra aux sym near
*$prg£]rra aux sym = in_line

in_line::={ const |"asm" }

where description

sym is a subprogram name.

const isavaid FORTRAN 77 hexadecimal constant.
asm is an assembly language instruction or directive.

In the following example, Open Watcom F77 will generate afar call to the subprogram myrt n.

*$pragnma aux nyrtn far
Note that this overrides the calling sequence that would normally be generated for a particular memory
model. In other words, afar call will be generated even if you are compiling for amemory model with a
small code model.

In the following example, Open Watcom F77 will generate anear call to the subprogram myrt n.

*$pragma aux myrtn near

170 Auxiliary Pragmas

Pragmas

Note that this overrides the calling sequence that would normally be generated for a particular memory
model. In other words, a near call will be generated even if you are compiling for amemory model with a
big code model.

In the following DOS example, Open Watcom F77 will generate the sequence of bytes following the "="
character in the auxiliary pragmawhenever acall to node4 isencountered. node4 iscaled anin-line

subprogram.
*$pragna aux noded = \
* zb4 z00 \ mov AH O
* zb0 z04 \ nov AL, 4
* zcd z10 \ int 10h
*

nmodify [ah al]

The sequence in the above DOS example represents the following lines of assembly language instructions.

nov AH, O ; select function "set node"
nov AL, 4 ; specify node (nobde 4)
i nt 10H ; BIOS video call

The above example demonstrates how to generate BIOS function calls in-line without writing an assembly
language function and calling it from your FORTRAN 77 program.

The following DOS example is equivalent to the above example but mnemonics for the assembly language
instructions are used instead of the binary encoding of the assembly language instructions.

*$pragma aux node4d = \
* "mov AH, 0" \
* "mov AL, 4" \
* "int 10H' \
*

nodify [ah al]

The __f ar 16 attribute should only be used on systems that permit the calling of 16-bit code from 32-hit
code. Currently, the only supported operating system that allows thisis 32-bit OS/2. If you have any
libraries of subprograms or APIsthat are only available as 16-bit code and you wish to access these
subprograms and APIs from 32-bit code, you must specify the __ f ar 16 attribute. If the __ far 16
attribute is specified, the compiler will generate special code which alows the 16-bit code to be called from
32-bit code. Notethat a __f ar 16 function must be a function whose attributes are those specified by one
of thediasnames __cdecl or __pascal . Theseaiasnameswill be described in alater section.

Thefilebsesub. f ap inthe\ wat com src\ f ortran\ 0s2 directory contains examples of pragmas
that usethe f ar 16 attribute to describe the 16-bit VIO, KBD and MOU subsystems available in 32-bit
0s/2.

14.2.5.1 Loading Data Segment Register

An application may have been compiled so that the segment register DS does not contain the segment
address of the default data segment (group "DGROUP"). Thisisusualy the caseif you are using alarge
data memory model. Suppose you wish to call a subprogram that assumes that the segment register DS
contains the segment address of the default data segment. It would be very cumbersome if you were forced
to compile your application so that the segment register DS contained the default data segment (asmall data
memory model).

The following form of the auxiliary pragmawill cause the segment register DS to be loaded with the
segment address of the default data segment before calling the specified subprogram.

Auxiliary Pragmas 171

32-bit Topics

*$pragnma aux sym parm | oadds

where description
sym is a subprogram name.

Alternatively, the following form of the auxiliary pragmawill cause the segment register DS to be loaded
with the segment address of the default data segment as part of the prologue sequence for the specified
subprogram.

*$pragma aux sym | oadds

where description

sym is a subprogram name.

14.2.5.2 Defining Exported Symbols in Dynamic Link Libraries

An exported symbol in adynamic link library is asymbol that can be referenced by an application that is
linked with that dynamic link library. Normally, symbolsin dynamic link libraries are exported using the
Open Watcom Linker "EXPORT" directive. An alternative method isto use the following form of the
auxiliary pragma.

*$pragna aux sym export

where description

sym is a subprogram name.

14.2.6 Describing Argument Information
Using auxiliary pragmas, you can describe the calling convention that Open Watcom F77 isto use for
calling subprograms. Thisis particularly useful when interfacing to subprograms that have been compiled

by other compilers or subprograms written in other programming languages.

The general form of an auxiliary pragmathat describes argument passing is the following.

172 Auxiliary Pragmas

Pragmas

*$pragma aux sym parm {arg_info|pop_info|reverse {reg set}}
arg info::= (arg_attr {, arg_attr})
arg_attr ::= val ue [v_attr] | reference [r_attr] | data_reference [d_attr]

v attr ;= far | near | *1 | *2 | *4 | *8

r_attr ::= [far | near] [descriptor | nodescri ptor]

d_attr ::= [far | near]

pop_info::= caller | routine

where description

sym is a subprogram name.

reg_set iscalled aregister set. Theregister sets specify the registers that are to be used for
argument passing. A register set isalist of registers separated by spaces and enclosed in
square brackets.

14.2.6.1 Passing Arguments to non-FORTRAN Subprograms

When calling a subprogram written in a different language, it may be necessary to provide the arguments in
aform different than the default methods used by Open Watcom F77. For example, C functions require
scalar arguments to be passed by value instead of by reference. For information on the methods Open
Watcom F77 usesto pass arguments, see the chapter entitled "Assembly Language Considerations”.

The following form of the auxiliary pragma can be used to alter the default calling mechanism used for
passing arguments.

*$pragnma aux sym parm (arg_attr {, arg_ attr})

arg_attr ::= val ue [v_attr] | reference [r_attr] | data_reference [d_attr]

v attr ;= far | near | *1 | *2 | *4 | *8

r_attr ::= [far | near] [descriptor | nodescriptor]

d_attr ::= [far | near]

where description

sym is a subprogram name.

REFERENCE specifiesthat arguments are to be passed by reference. For non-character arguments, the
addressis apointer to the data. For character arguments, the address is a pointer to a string

descriptor. See the chapter entitled "Assembly Language Considerations' for a description
of astring descriptor. Thisisthe default calling mechanism. If "NEAR" or "FAR" is

Auxiliary Pragmas 173

32-bit Topics

specified, anear pointer or far pointer is passed regardless of the memory model used at
compile-time.

If the "DESCRIPTOR" attribute is specified, a pointer to the string descriptor is passed.
Thisisthe default. If the"NODESCRIPTOR" attribute is specified, a pointer to the the
actual character datais passed instead of a pointer to the string descriptor.

DATA_ REFERENCE specifiesthat arguments are to be passed by data reference. For non-character

VALUE

Notes:

items, thisisidentical to passing by reference. For character items, a pointer to the actual
character data (instead of the string descriptor) is passed. If "NEAR" or "FAR" is
specified, anear pointer or far pointer is passed regardless of the memory model used at
compile-time.

specifies that arguments are to be passed by value. Character arguments are treated
specially when passed by value. Instead of passing a pointer to a string descriptor, a
pointer to the actual character datais passed. See the chapter entitled "Assembly Language
Considerations’ for a description of a string descriptor.

Arrays and subprograms are always passed by reference, regardless of the argument attribute
specified.

When character arguments are passed by reference, the address of a string descriptor is passed.
The string descriptor contains the address of the actual character data and the number of
characters. When character arguments are passed by value or data reference, the address of the
actual character datais passed instead of the address of a string descriptor. Character arguments
are passed by value by specifying the"VALUE" or "DATA_REFERENCE" attribute. If
"NEAR" or "FAR" is specified, anear pointer or far pointer to the character datais passed
regardless of the memory model used at compile-time.

When complex arguments are passed by value, the real part and the imaginary part are passed as
two separate arguments.

When an argument is a user-defined structure and is passed by value, a copy of the structure is
made and passed as an argument.

For scalar arguments, arguments of type INTEGER*1, INTEGER*2, INTEGER*4 ct, REAL
or DOUBLE PRECI SION, alength specification can be specified when the "VALUE" attribute
is specified to pass the argument by value. Thislength specification refers to the size of the
argument; the compiler will convert the actual argument to atype that matches the size. For
example, if an argument of type REAL is passed to a subprogram that has an argument attribute
of "VALUE*8", the argument will be converted to DOUBL E PRECISION. If an argument of
type DOUBLE PRECISION is passed to a subprogram that has an argument attribute of
"VALUE*4", the argument will be converted to REAL. If an argument of type INTEGER*4 is
passed to a subprogram that has an argument attribute of "VALUE*2" or VALUE*1, the
argument will be converted to INTEGER*2 or INTEGER*1. If an argument of type
INTEGER*2 is passed to a subprogram that has an argument attribute of "VALUE*4 or
VALUE*1", the argument will be converted to INTEGER*4 or INTEGER*1. If an argument
of type INTEGER* 1 is passed to a subprogram that has an argument attribute of "VALUE*4 or
VALUE*2", the argument will be converted to INTEGER*4 or INTEGER*2.

If the number of arguments exceeds the number of entries in the argument-attribute list, the last
attribute will be assumed for the remaining arguments.

174 Auxiliary Pragmas

Pragmas

Consider the following example.

$pragnma aux printf " " parm (value) caller []
character cr/z0d/, nullchar/z00/
call printf('values: %d, %d //cr//nullchar,
1 77, 31410)
end

The C "printf" function is called with three arguments. The first argument is of type CHARACTER and is
passed as a C string (address of actual dataterminated by a null character). The second and third arguments
are passed by value. Also notethat "printf" is afunction that takes a variable number of arguments, all
passed on the stack (an empty register set was specified), and that the caller must remove the arguments
from the stack.

14.2.6.2 Passing Arguments in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to pass
arguments to a particular subprogram.

*$pragma aux sym parm {reg_set}

where description

sym is a subprogram name.

reg_set iscalled aregister set. Theregister sets specify the registers that are to be used for
argument passing. A register set isalist of registers separated by spaces and enclosed in
square brackets.

Register sets establish a priority for register allocation during argument list processing. Register sets are
processed from left to right. However, within aregister set, registers are chosen in any order. Once all
register sets have been processed, any remaining arguments are pushed on the stack.

Note that regardless of the register sets specified, only certain combinations of registers will be selected for
arguments of a particular type.

Note that arguments of type REAL and DOUBLE PRECISION are always pushed on the stack when the
"fpi" or "fpi87" option is used.

DOUBLE PRECISION
Arguments of type DOUBL E PRECI SION, when passed by value, can only be passed in
one of the following register pairs. EDX:EAX, ECX:EBX, ECX:EAX, ECX:ESI,
EDX:EBX, EDI:EAX, ECX:EDI, EDX:ESI, EDI:EBX, ESI:EAX, ECX:EDX, EDX:EDI,
EDI:ESI, ESI:EBX or EBX:EAX. For example, if the following register set was specified
for aroutine having an argument of type DOUBL E PRECISION,

[ebp ebx]
the argument would be pushed on the stack since avalid register combination for 8-byte

arguments is not contained in the register set. Note that this method for passing arguments
of type DOUBLE PRECI SION is supported only when the "fpc" option isused. Note that

Auxiliary Pragmas 175

32-bit Topics

this argument passing method does not include arguments of type COMPLEX*8 or
user-defined structures whose size is 8 bytes when these arguments are passed by value.

far pointer A far pointer can only be passed in one of the following register pairs: DX:EAX, CX:EBX,
CX:EAX, CX:ESl, DX:EBX, DI:EAX, CX:EDI, DX:ESI, DI:EBX, SI:EAX, CX:EDX,
DX:EDI, DI:ESI, SI:EBX, BX:EAX, FS.ECX, FS.EDX, FS.EDI, FS.ESI, FS.EBX,
FS.EAX, GS.ECX, GS.EDX, GS:EDI, GS.ESI, GS.EBX, GS:EAX, DS.ECX, DS.EDX,
DS.EDI, DS:ESI, DS.EBX, DS:EAX, ES.ECX, ES.EDX, ES:EDI, ES.ESI, ES:.EBX or
ES.EAX. For example, if afar pointer is passed to afunction with the following register
Set,

[es ebp]

the argument would be pushed on the stack since avalid register combination for afar
pointer is not contained in the register set. Far pointers are used to pass arguments by
reference in a big data memory model.

INTEGER The only registers that will be assigned to 4-byte arguments (e.g., arguments of type
INTEGER when passed by value or arguments passed by reference in asmall data
memory model) are: EAX, EBX, ECX, EDX, ESI and EDI. For example, if the following
register set was specified for a routine with one argument of type INTEGER,

[ebp]

the argument would be pushed on the stack since avalid register combination for 4-byte
arguments is not contained in the register set. Note that this argument passing method also
includes arguments of type REAL but only when the "fpc" option is used.

INTEGER*1, INTEGER*2
Arguments whose sizeis 1 byte or 2 bytes (e.g., arguments of type INTEGER*1 and
INTEGER*2 as well as 2-byte structures when passed by value) are promoted to 4 bytes
and are then assigned registers as if they were 4-byte arguments.

others Arguments that do not fall into one of the above categories cannot be passed in registers
and are pushed on the stack. Once an argument has been assigned a position on the stack,
all remaining arguments will be assigned a position on the stack even if all register sets
have not yet been exhausted.

Notes:
1. Thedefault register set is[eax ebx ecx edx].

2. Specifying registers AH and AL is equivalent to specifying register AX. Specifying registers
DH and DL is equivalent to specifying register DX. Specifying registers CH and CL is
equivalent to specifying register CX. Specifying registers BH and BL is equivalent to specifying
register BX. Specifying register EAX implies that register AX has been specified. Specifying
register EBX implies that register BX has been specified. Specifying register ECX implies that
register CX has been specified. Specifying register EDX impliesthat register DX has been
specified. Specifying register EDI implies that register DI has been specified. Specifying
register ESI implies that register Sl has been specified. Specifying register EBP implies that
register BP has been specified. Specifying register ESP implies that register SP has been
specified.

176 Auxiliary Pragmas

Pragmas

3. If you are compiling for amemory model with a small data model, any register combination
containing register DS becomesillegal. In asmall datamodel, segment register DS must remain
unchanged as it points to the program’ s data segment.

4. If you are compiling for the flat memory model, any register combination containing DS or ES
becomesillegal. In aflat memory model, code and data reside in the same segment. Segment
registers DS and ES point to this segment and must remain unchanged.

Consider the following example.

*$pragma aux nyrtn parm (val ue) \
* [eax ebx ecx edx] [ebp esi]

Suppose myr t n isaroutine with 3 arguments each of type DOUBL E PRECISION. Notethat the
arguments are passed by value.

1. Thefirst argument will be passed in the register pair EDX:EAX.

2. The second argument will be passed in the register pair ECX:EBX.

3. Thethird argument will be pushed on the stack since EBP:ESI is not avalid register pair for
arguments of type DOUBLE PRECI SION.

Itis possible for registers from the second register set to be used before registers from the first register set
are used. Consider the following example.

*$pragnma aux nyrtn parm (val ue) \
* [eax ebx ecx edx] [esi edi]

Suppose myr t n isaroutine with 3 arguments, the first of type INTEGER and the second and third of type
DOUBLE PRECISION. Notethat all arguments are passed by value.

1. Thefirst argument will be passed in the register EAX.
2. The second argument will be passed in the register pair ECX:EBX.
3. Thethird argument will be passed in the register set EDI:ESI.

Note that registers are no longer selected from aregister set after registers are selected from subsequent
register sets, even if al registers from the original register set have not been exhausted.

An empty register set is permitted. All subsequent register sets appearing after an empty register set are
ignored; all remaining arguments are pushed on the stack.

Notes:
1. If asingle empty register set is specified, all arguments are passed on the stack.

2. If noregister set is specified, the default register set [eax ebx ecx edx] is used.

14.2.6.3 Forcing Arguments into Specific Registers

It is possible to force argumentsinto specific registers. Suppose you have a subprogram, say "mycopy",
that copiesdata. The first argument is the source, the second argument is the destination, and the third
argument isthe length to copy. If we want the first argument to be passed in the register ESI, the second
argument to be passed in register EDI and the third argument to be passed in register ECX, the following
auxiliary pragma can be used.

Auxiliary Pragmas 177

32-bit Topics

*$pragnma aux nycopy parm (val ue) \

* [esi] [edi] [ecx]
character*10 dst
call mycopy(dst, '0123456789’, 10)

end
Note that you must be aware of the size of the arguments to ensure that the arguments get passed in the
appropriate registers.

14.2.6.4 Passing Arguments to In-Line Subprograms

For subprograms whose code is generated by Open Watcom F77 and whose argument list is described by
an auxiliary pragma, Open Watcom F77 has some freedom in choosing how arguments are assigned to
registers. Since the code for in-line subprograms is specified by the programmer, the description of the
argument list must be very explicit. To achieve this, Open Watcom F77 assumes that each register set
corresponds to an argument. Consider the following DOS example of an in-line subprogram called
scrol | acti vepgup.

*$pragnma aux scrollactivepgup =\
* "mov AH, 6" \
"int 10h" \
parm (val ue) \
[ch] [cl] [dh] [dI] [al] [bh] \
nodi fy [ah]

* F X X

The BIOS video call to scroll the active page up requires the following arguments.

1. Therow and column of the upper left corner of the scroll window is passed in registers CH and
CL respectively.

2. Therow and column of the lower right corner of the scroll window is passed in registers DH and
DL respectively.

3. Thenumber of lines blanked at the bottom of the window is passed in register AL.

4. Theattribute to be used on the blank linesis passed in register BH.
When passing arguments, Open Watcom F77 will convert the argument so that it fitsin the register(s)
specified in the register set for that argument. For example, in the above example, if the first argument to
scrol | acti vepgup was called with an argument whose type was INTEGER, it would first be
converted to INTEGER* 1 before assigning it to register CH. Similarly, if an in-line subprogram required
its argument in register EAX and the argument was of type INTEGER* 2, the argument would be
converted to INTEGER*4 before assigning it to register EAX.
In general, Open Watcom F77 assigns the following types to register sets.

1. A register set consisting of asingle 8-bit register (1 byte) is assigned atype of INTEGER* 1.

2. A register set consisting of asingle 16-bit register (2 bytes) is assigned atype of INTEGER*2.

3. A register set consisting of a single 32-hit register (4 bytes) is assigned atype of INTEGER*4.

178 Auxiliary Pragmas

Pragmas

4. A register set consisting of two 32-bit registers (8 bytes) is assigned atype of DOUBLE
PRECISION.

If the size of an integer argument is larger than the size specified by the register set, the argument will be
truncated to the required size. If the size of an integer argument is smaller than the size specified by the
register set, the argument will be padded (to the left) with zeros.

14.2.6.5 Removing Arguments from the Stack

The following form of the auxiliary pragma specifies who removes from the stack arguments that were
pushed on the stack.

*$pragna aux sym parm (cal ler | routine)

where description
sym is a subprogram name.

"caller" specifiesthat the caller will pop the arguments from the stack; "routine" specifies that the called
routine will pop the arguments from the stack. If "caller" or "routine" is omitted, "routine" is assumed
unless the default has been changed in a previous auxiliary pragma, in which case the new default is
assumed.

Consider the following example. It describes the pragma required to call the C "printf" function.

$pragnma aux printf " " parm (value) caller []
character cr/z0d/, nullchar/z00/
call printf("value is %d //cr//nullchar,
1 7143)
end

The first argument must be passed as a C string, a pointer to the actual character data terminated by a null
character. By default, the address of a string descriptor is passed for arguments of type CHARACTER.
See the chapter entitled "Assembly Language Considerations' for more information on string descriptors.
The second argument is of type INTEGER and is passed by value. Also note that "printf” isafunction that
takes a variable number of arguments, all pushed on the stack (an empty register set was specified).

14.2.6.6 Passing Arguments in Reverse Order

The following form of the auxiliary pragma specifies that arguments are passed in the reverse order.

*$pragma aux sym parmreverse

where description

sym is a subprogram name.

Auxiliary Pragmas 179

32-bit Topics

Normally, arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have been
exhausted). Arguments that are passed on the stack are pushed from right to left.

When arguments are reversed, the rightmost arguments are passed in registers and the leftmost arguments
are passed on the stack (if the registers used for argument passing have been exhausted). Arguments that
are passed on the stack are pushed from left to right.

Reversing argumentsis most useful for subprograms that require arguments to be passed on the stack in an
order opposite from the default. The following auxiliary pragma demonstrates such a subprogram.

*$pragma aux rtn parmreverse []

14.2.7 Describing Subprogram Return Information
Using auxiliary pragmas, you can describe the way functions are to return values. Thisis particularly
useful when interfacing to functions that have been compiled by other compilers or functions written in

other programming languages.

The general form of an auxiliary pragmathat describes the way a function returnsits value is the following.

*$pragnma aux sym val ue {no8087 | reg set | struct_info}

struct_info::= struct {float | struct | (routine | caller) | reg set}

where description

sym isafunction name.

reg_set iscaled aregister set. The register sets specify the registers that are to be used for
argument passing. A register set isalist of registers separated by spaces and enclosed in
square brackets.

14.2.7.1 Returning Subprogram Values in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to return
afunction’svaue.

*$pragma aux sym val ue reg set

where description
sym is a subprogram name.
reg set isaregister set.

Note that the method described below for returning values of type REAL or DOUBLE PRECISION is
supported only when the "fpc" option is used.

180 Auxiliary Pragmas

Pragmas

Depending on the type of the return value, only certain registers are allowed in reg_set.

1-byte

2-byte

4-byte

far pointer

8-byte

Notes:

For 1-byte return values, only the following registers are allowed: AL, AH, DL, DH, BL,
BH, CL or CH. If no register set is specified, register AL will be used.

For 2-byte return values, only the following registers are allowed: AX, DX, BX, CX, Sl or
DI. If no register set is specified, register AX will be used.

For 4-byte return values (including near pointers), only the following register are allowed:
EAX, EDX, EBX, ECX, ESI or EDI. If no register set is specified, register EAX will be
used. Thisform of the auxiliary pragmaislegal for functions of type REAL when using
the "fpc" option only.

For functions that return far pointers, the following register pairs are allowed: DX:EAX,
CX:EBX, CX:EAX, CX:ESI, DX:EBX, DI:EAX, CX:EDI, DX:ESI, DI:EBX, SI:EAX,
CX:EDX, DX:EDI, DI:ESI, SI:EBX, BX:EAX, FS.ECX, FS.EDX, FS:EDI, FS.ESI,
FS.EBX, FS.EAX, GS.ECX, GS.EDX, GS:EDI, GS.ESI, GS.EBX, GS.EAX, DS:ECX,
DS.EDX, DSEDI, DS:ESI, DS.EBX, DS:EAX, ES.ECX, ES.EDX, ES:EDI, ES:ESI,
ES.EBX or ES.EAX. If noregister set is specified, the registers DX:EAX will be used.

For 8-byte return values (including functions of type DOUBL E PRECI SION), only the
following register pairs are allowed: EDX:EAX, ECX:EBX, ECX:EAX, ECX:ESI,
EDX:EBX, EDI:EAX, ECX:EDI, EDX:ESI, EDI:EBX, ESI:EAX, ECX:EDX, EDX:EDI,
EDI:ESI, ESI:EBX or EBX:EAX. If no register set is specified, the registers EDX:EAX
will beused. Thisform of the auxiliary pragmaislegal for functions of type DOUBLE
PRECI SION when using the "fpc" option only.

1. Anempty register set isnot allowed.

If you are compiling for a memory model which has a small data model, any of the above

register combinations containing register DS becomesillegal. In asmall data model, segment
register DS must remain unchanged as it points to the program’ s data segment.

If you are compiling for the flat memory model, any register combination containing DS or ES

becomesillega. Inaflat memory model, code and data reside in the same segment. Segment
registers DS and ES point to this segment and must remain unchanged.

14.2.7.2 Returning Structures and Complex Numbers

Typically, structures and complex numbers are not returned in registers. Instead, the caller allocates space
on the stack for the return value and sets register ESI to point to it. The called routine then places the return
value at the location pointed to by register ESI.

Complex numbers are not scalars but rather an ordered pair of real numbers. One can also view complex
numbers as a structure containing two real numbers.

The following form of the auxiliary pragma can be used to specify the register that isto be used to point to

the return value.

Auxiliary Pragmas 181

32-bit Topics

*$pragma aux sym value struct (caller | routine) reg set

where description
sym is a subprogram name.
reg_set isaregister set.

"caller" specifiesthat the caller will alocate memory for the return value. The address of the memory
allocated for the return value is placed in the register specified in the register set by the caller before the
functioniscalled. If an empty register set is specified, the address of the memory allocated for the return
value will be pushed on the stack immediately before the call and will be returned in register EAX by the
called routine.

"routine" specifies that the called routine will alocate memory for the return value. Upon returning to the
caler, the register specified in the register set will contain the address of the return value. An empty
register set is not allowed.

Only the following registers are allowed in the register set: EAX, EDX, EBX, ECX, ESI or EDI. Note that
in abig data model, the address in the return register is assumed to be in the segment specified by the value
in the SS segment register.

If the size of the structure being returned is 1, 2 or 4 bytes, it will be returned in registers. Thereturn
register will be selected from the register set in the following way.

1. A 1-bytestructure will be returned in one of the following registers. AL, AH, DL, DH, BL, BH,
CL or CH. If noregister set is specified, register AL will be used.

2. A 2-byte structure will be returned in one of the following registers. AX, DX, BX, CX, Sl or DI.
If no register set is specified, register AX will be used.

3. A 4-byte structure will be returned in one of the following registers:. EAX, EDX, EBX, ECX,
ESI or EDI. If no register set is specified, register EAX will be used.

The following form of the auxiliary pragma can be used to specify that structureswhose sizeis 1, 2 or 4
bytes are not to be returned in registers. Instead, the caller will allocate space on the stack for the structure
return value and point register ESI to it.

*$pragma aux sym val ue struct struct

where description

sym is a subprogram name.

14.2.7.3 Returning Floating-Point Data

There are afew ways available for specifying how the value for a function whose typeis REAL or
DOUBLE PRECISION isto be returned.

182 Auxiliary Pragmas

Pragmas

The following form of the auxiliary pragma can be used to specify that function return values whose type is
REAL or DOUBLE PRECISION are not to be returned in registers. Instead, the caller will alocate space
on the stack for the return value and point register ESI to it.

*$pragnma aux sym val ue struct fl oat

where description
sym isafunction name.
In other words, floating-point values are to be returned in the same way complex numbers are returned.

The following form of the auxiliary pragma can be used to specify that function return values whose typeis
REAL or DOUBLE PRECISION are not to be returned in 80x87 registers when compiling with the "fpi"
or "fpi87" option. Instead, the value will be returned in 80x86 registers. Thisis the default behaviour for
the "fpc" option. Function return values whose typeis REAL will be returned in register EAX. Function
return values whose type is DOUBL E PRECI SION will bereturned in registers EDX:EAX. Thisisthe
default method for the "fpc" option.

*$pragnma aux sym val ue no8087

where description
sym isafunction name.
The following form of the auxiliary pragma can be used to specify that function return values whose type is

REAL or DOUBLE PRECISION areto be returned in ST(0) when compiling with the "fpi* or "fpi87"
option. Thisform of the auxiliary pragmais not legal for the "fpc" option.

*$pragnma aux sym val ue [8087]

where description

sym isafunction name.

14.2.8 A Subprogram that Never Returns

The following form of the auxiliary pragma can be used to describe a subprogram that does not return to
the caler.

*$pragnma aux sym aborts

Auxiliary Pragmas 183

32-bit Topics

where description
sym is a subprogram name.
Consider the following example.

*$pragnma aux exitrtn aborts

call exitrtn()
end

exi trt n isdefined to be afunction that does not return. For example, it may call exi t toreturntothe

system. In this case, Open Watcom F77 generates a"jmp" instruction instead of a"call" instruction to
invokeexi trtn.

14.2.9 Describing How Subprograms Use Variables in Common

The following form of the auxiliary pragma can be used to describe a subprogram that does not modify any
variable that appears in a common block defined by the caler.

*$pragma aux sym nodi fy nonenory

where description
sym is a subprogram name.

Consider the following example.

i nteger i

conmon /bl k/ i

while(i .It. 1000)do
i =i + 383

endwhi | e

call myrtn()

i =i + 13143

end

bl ock data

conmon /bl k/ i

i nteger i/1033/
end

To compile the above program, "rtn.for", we issue the following command.

Cwie rtn -mm -dl
Cwf c386 rtn -dil

The"d1" compiler option is specified so that the object file produced by Open Watcom F77 contains source
line information.

We can generate afile containing adisassembly of rt n. obj by issuing the following command.

Cwdis rtn -1 -s -

184 Auxiliary Pragmas

Pragmas

The"s" option is specified so that the listing file produced by the Open Watcom Disassembler contains

sourcelinestakenfromrtn. for. Thelistingfilertn. | st appearsasfollows.

Modul e:
G oup:

Segment :

0000
0001

0007
000d

000f
0015

0017
001d
0022

0028
002e

0034
0035

rtn. for
' DGROUP" _DATA, LDATA, CDATA, BLK
" FMAI N_TEXT' BYTE USE32 00000036 bytes
integer i
conmon / bl k/
52 FMAI N push
8b 15 00 00 00 00 nov
while(i .lt. 1000)do
81 fa e8 03 00 00 L1 cnp
7d 08 jge
i =i + 383
endwhi | e
81 c2 7f 01 00 00 add
eb fO jmp
call nyrtn()
89 15 00 00 00 00 L2 nov
e8 00 00 00 00 cal
8b 15 00 00 00 00 nov
i =i + 13143
81 c2 57 33 00 00 add
89 15 00 00 00 00 nov
end
bl ock data
common / bl k/
i nteger i/1033/
end
5a pop
c3 ret

No di sassenbly errors

Li st of external

synbol s

edx
edx, L3

edx, 000003e8H
L2

edx, 0000017f H
L1

L3, edx
MYRTN
edx, L3

edx, 00003357H
L3, edx

edx

Segnent :

0000

" BLK' PARA USE32
09 04 00 0O

No di sassenbly errors

00000004 byt es
L3

Let us add the following auxiliary pragmato the sourcefile.

*$pragma aux nyrtn nodi fy nonmenory

Auxiliary Pragmas

185

32-bit Topics

If we compile the source file with the above pragma and disassemble the object file using the Open
Watcom Disassembler, we get the following listing file.

Modul e: rtn. for
Group: 'DGROUP _DATA, LDATA, CDATA, BLK

Segment: ' FMAIN_TEXT' BYTE USE32 00000030 byt es

*$pragma aux nmyrtn nodi fy nomenory

integer i

common / bl k/
0000 52 FMAI N push edx
0001 8b 15 00 00 00 0O nov edx, L3

while(i .It. 1000)do
0007 81 fa e8 03 00 00 L1 cnp edx, 000003e8H
000d 7d 08 j ge L2

i =i + 383

endwhi | e
o0oof 81 c2 7f 01 00 0O add edx, 0000017f H
0015 eb fO jmp L1

call myrtn()
0017 89 15 00 00 00 00 L2 nov L3, edx
001d e8 00 00 00 00 cal | MYRTN

i =i + 13143
0022 81 c2 57 33 00 00 add edx, 00003357H
0028 89 15 00 00 00 00 nov L3, edx

end

bl ock data

common / bl k/
i nteger i/1033/

end
002e 5a pop edx
002f ¢3 ret

No di sassenbly errors

Li st of external synbols

Segnment: ' BLK PARA USE32 00000004 bytes
0000 09 04 00 00 L3 -

No di sassenbly errors

Notice that thevalue of i isinregister EDX after completion of the "whil€e" loop. After thecall to myrt n,
thevalueof i isnot loaded from memory into aregister to perform the final addition. The auxiliary
pragmainforms the compiler that myr t n does not modify any variable that appears in a common block
defined by Rt n and hence register EDX contains the correct value of i .

186 Auxiliary Pragmas

Pragmas

The preceding auxiliary pragma deals with routines that modify variablesin common. Let us consider the
case where routines reference variables in common. The following form of the auxiliary pragma can be
used to describe a subprogram that does not reference any variable that appears in acommon block defined
by the caller.

*$pragnma aux sym parm nonenory nodi fy nonenory

where description
sym is a subprogram name.
Notes:

1. You must specify both "parm nomemory" and "modify nomemory".

Let us replace the auxiliary pragma in the above example with the following auxiliary pragma.

*$pragma aux nyrtn parm normenory nodi fy nomenory
If you now compile our source file and disassemble the object file using WDIS, the result is the following
listing file.

Modul e: rtn.for
Group: ' DGROUP' _DATA, LDATA, CDATA, BLK

Segnent: ' FMAI N_TEXT' BYTE USE32 0000002a bytes

*$pragma aux myrtn parm normenory nodi fy nonmenory

integer i

common / bl k/
0000 52 FMAI N push edx
0001 8b 15 00 00 00 0O nmov edx, L3

while(i .1t. 1000)do
0007 81 fa e8 03 00 00 L1 cnp edx, 000003e8H
000d 7d 08 ige L2

i =1 + 383

endwhi | e
000f 81 c2 7f 01 00 0O add edx, 0000017f H
0015 eb fO jnp L1

call nyrtn()
0017 e8 00 00 00 00 L2 cal | MYRTN

i =i + 13143
001c 81 c2 57 33 00 00 add edx, 00003357H
0022 89 15 00 00 00 00 nmov L3, edx

end

bl ock data

common / bl k/
integer i/1033/

end
0028 5a pop edx
0029 «c3 ret

No di sassenbly errors

Auxiliary Pragmas 187

32-bit Topics

Li st of external synbols

Segnent: ' BLK PARA USE32 00000004 bytes
0000 09 04 00 00 L3

No di sassenbly errors

Notice that after completion of the "while" loop we did not have to update i with the value in register EDX
before calling nyr t n. The auxiliary pragmainforms the compiler that myr t n does not reference any
variable that appearsin a common block defined by myrt n soupdating i was not necessary before calling
nyrtn.

14.2.10 Describing the Registers Modified by a Subprogram

The following form of the auxiliary pragma can be used to describe the registers that a subprogram will use
without saving.

*$pragma aux sym nodi fy [exact] reg_set

where description
sym is a subprogram name.
reg_set isaregister set.

Specifying aregister set informs Open Watcom F77 that the registers belonging to the register set are
modified by the subprogram. That is, the valuein aregister before calling the subprogram is different from
its value after execution of the subprogram.

Registers that are used to pass arguments are assumed to be modified and hence do not have to be saved
and restored by the called subprogram. Also, since the EAX register is frequently used to return avalue, it
is always assumed to be modified. If necessary, the caller will contain code to save and restore the contents
of registers used to pass arguments. Note that saving and restoring the contents of these registers may not
be necessary if the called subprogram does not modify them. The following form of the auxiliary pragma
can be used to describe exactly those registers that will be modified by the called subprogram.

188 Auxiliary Pragmas

Pragmas

*$pragma aux sym nodi fy exact reg set

where description
sym is a subprogram name.
reg_set isaregister set.

The above form of the auxiliary pragmatells Open Watcom F77 not to assume that the registers used to
pass arguments will be modified by the called subprogram. Instead, only the registers specified in the
register set will be modified. Thiswill prevent generation of the code which unnecessarily saves and
restores the contents of the registers used to pass arguments.

Also, any registers that are specified in the val ue register set are assumed to be unmodified unless
explicitly listed in the exact register set. In the following example, the code generator will not generate
code to save and restore the value of the stack pointer register since we havetold it that "GetSP" does not
modify any register whatsoever.

Example:
*$i fdef _ 386
*$pragna aux Cet SP = val ue [esp] nodify exact []
*$el se
*$pragma aux Get SP
*$endi f

val ue [sp] nodify exact []

program mai n

i nt eger Get SP

print *, 'Current SP =", GetSP()
end

14.2.11 Auxiliary Pragmas and the 80x87

This section deals with those aspects of auxiliary pragmas that are specific to the 80x87. The discussion in
this chapter assumes that one of the "fpi" or "fpi87" optionsis used to compile subprograms. The following
areas are affected by the use of these options.

1. passing floating-point arguments to functions,

2. returning floating-point values from functions and
3. which 80x87 floating-point registers are allowed to be modified by the called routine.

14.2.11.1 Using the 80x87 to Pass Arguments
By default, floating-point arguments are passed on the 80x86 stack. The 80x86 registers are never used to
pass floating-point arguments when a subprogram is compiled with the "fpi" or "fpi87" option. However,

they can be used to pass arguments whose type is not floating-point such as arguments of type "int".

The following form of the auxiliary pragma can be used to describe the registers that are to be used to pass
arguments to subprograms.

Auxiliary Pragmas 189

32-bit Topics

*$pragma aux sym parm {reg_set}

where description

sym is a subprogram name.

reg_set isaregister set. Theregister set can contain 80x86 registers and/or the string "8087".
Notes:

1. If an empty register set is specified, all arguments, including floating-point arguments, will be
passed on the 80x86 stack.

When the string "8087" appearsin aregister set, it sSimply means that floating-point arguments can be
passed in 80x87 floating-point registersif the source file is compiled with the "fpi* or "fpi87" option.
Before discussing argument passing in detail, some general notes on the use of the 80x87 floating-point
registers are given.

The 80x87 contains 8 floating-point registers which essentially form a stack. The stack pointer iscalled ST
and is a number between 0 and 7 identifying which 80x87 floating-point register is at the top of the stack.
ST isinitially 0. 80x87 instructions reference these registers by specifying a floating-point register number.
This number is then added to the current value of ST. The sum (taken modulo 8) specifies the 80x87
floating-point register to be used. The notation ST(n), where"n" is between 0 and 7, is used to refer to the
position of an 80x87 floating-point register relative to ST.

When afloating-point value is loaded onto the 80x87 floating-point register stack, ST is decremented
(modulo 8), and the value isloaded into ST(0). When afloating-point value is stored and popped from the
80x87 floating-point register stack, ST isincremented (modulo 8) and ST (1) becomes ST(0). The
following illustrates the use of the 80x87 floating-point registers as a stack, assuming that the value of ST is
4 (4 values have been loaded onto the 80x87 floating-point register stack).

S +

0 | 4th fromtop | ST(4)
oo +

1 | 5th fromtop | ST(5)
oo +

2 | 6th fromtop | ST(6)
o m e e e e e oo - +

3 | 7th fromtop | ST(7)
e +

ST -> 4 | top of stack | ST(0)
S +

5 | 1st fromtop | ST(1)
oo +

6 | 2nd fromtop | ST(2)
oo +

7 | 3rd fromtop | ST(3)
o m e e e e e oo - +

Starting with version 9.5, the Open Watcom compilers use all eight of the 80x87 registers asa stack. The
initial state of the 80x87 register stack is empty before a program begins execution.

190 Auxiliary Pragmas

Pragmas

Note:

For compatibility with code compiled with version 9.0 and earlier, you can compile with
the "fpr" option. In this case only four of the eight 80x87 registers are used as a stack.
These four registers were used to pass arguments. The other four registers form what was
called the 80x87 cache. The cache was used for local floating-point variables. The state of
the 80x87 registers before a program began execution was as follows.

1. Thefour 80x87 floating-point registers that form the stack are uninitialized.
2. Thefour 80x87 floating-point registers that form the 80x87 cache are initialized
with zero.

Hence, initially the 80x87 cache was comprised of ST(0), ST(1), ST(2) and ST(3). ST had
the value 4 as in the above diagram. When afloating-point value was pushed on the stack
(asisthe case when passing floating-point arguments), it became ST(0) and the 80x87
cache was comprised of ST(1), ST(2), ST(3) and ST(4). When the 80x87 stack was full,
ST(0), ST(1), ST(2) and ST(3) formed the stack and ST(4), ST(5), ST(6) and ST(7) formed
the 80x87 cache. Version 9.5 and later no longer use this strategy.

Therules for passing arguments are as follows.

1.

2.

If the argument is not floating-point, use the procedure described earlier in this chapter.

If the argument is floating-point, and a previous argument has been assigned a position on the
80x86 stack (instead of the 80x87 stack), the floating-point argument is also assigned a position
on the 80x86 stack. Otherwise proceed to the next step.

If the string "8087" appearsin aregister set in the pragma, and if the 80x87 stack is not full, the
floating-point argument is assigned floating-point register ST(0) (the top element of the 80x87
stack). The previous top element (if there was one) isnow in ST(1). Since arguments are
pushed on the stack from right to left, the leftmost floating-point argument will be in ST(0).
Otherwise the floating-point argument is assigned a position on the 80x86 stack.

Consider the following example.

*$pragnma aux nyrtn parm (val ue) [8087]

real x

doubl e precision y
i nteger i

i nteger j

X 7.7

i 7

y = 77.77

j 77

J
call myrtn(x, i, vy, j)

end

myr t n isan assembly language subprogram that requires four arguments. The first argument of type
REAL (4 bytes), the second argument is of type INTEGER (4 bytes), the third argument is of type
DOUBLE PRECISION (8 bytes) and the fourth argument is of type INTEGER*4 (4 bytes). These
arguments will be passed to myr t n in the following way.

1

Since "8087" was specified in the register set, the first argument, being of type REAL, will be
passed in an 80x87 floating-point register.

Auxiliary Pragmas 191

32-bit Topics

2. The second argument will be passed on the stack since no 80x86 registers were specified in the
register set.

3. Thethird argument will also be passed on the stack. Remember the following rule: once an
argument is assigned a position on the stack, all remaining arguments will be assigned a position
on the stack. Note that the above rule holds even though there are some 80x87 floating-point
registers available for passing floating-point arguments.

4. Thefourth argument will also be passed on the stack.

Let us change the auxiliary pragmain the above example as follows.

*$pragna aux nyrtn parm [eax 8087]

The arguments will now be passed to myr t n in the following way.

1. Since"8087" was specified in the register set, the first argument, being of type REAL will be
passed in an 80x87 floating-point register.

2. The second argument will be passed in register EAX, exhausting the set of available 80x86
registers for argument passing.

3. Thethird argument, being of type DOUBLE PRECISION, will also be passed in an 80x87
floating-point register.

4. Thefourth argument will be passed on the stack since no 80x86 registers remain in the register
Set.

14.2.11.2 Using the 80x87 to Return Subprogram Values

The following form of the auxiliary pragma can be used to describe a subprogram that returns a
floating-point value in ST(0).

*$pragna aux sym val ue reg_set

where description
sym is a subprogram name.
reg_set isaregister set containing the string "8087", i.e. [8087].

14.2.11.3 Preserving 80x87 Floating-Point Registers Across Calls

The code generator assumes that all eight 80x87 floating-point registers are available for use within a
subprogram unless the "fpr" option is used to generate backward compatible code (older Open Watcom
compilers used four registers as a cache). The following form of the auxiliary pragma specifies that the
floating-point registersin the 80x87 cache may be modified by the specified subprogram.

192 Auxiliary Pragmas

Pragmas

*$pragma aux sym nodify reg set

where description
sym is a subprogram name.
reg_set isaregister set containing the string "8087", i.e. [8087].

Thisinstructs Open Watcom F77 to save any local variables that are located in the 80x87 cache before
calling the specified routine.

Auxiliary Pragmas 193

32-bit Topics

194 Auxiliary Pragmas

Appendices

Appendices

196

Use of Environment Variables
'

A. Use of Environment Variables

In the Open Watcom FORTRAN 77 software development package, a number of environment variables are
used. Thisappendix summarizes their use with a particular component of the package.

A.1 FINCLUDE

The FINCL UDE environment variable describes the location of the Open Watcom FORTRAN 77 include
files. Thisvariableisused by Open Watcom FORTRAN 77.

SET FINCLUDE=[d:][path];[d:][path]...

The FINCL UDE environment string is like the PATH string in that you can specify one or more
directories separated by semicolons (*;").

A2LFN

The LFN environment variable is checked by the Open Watcom run-time C librariesand it is used to
control DOS LFN (DOS Long File Name) support. Normally, these libraries will use DOS LFN support if
it isavailable on host OS. If you don’t wish to use DOS LFN support, you can define the LFN
environment variable and setup it'svalueto 'N’. Using the "SET" command, define the environment
variable asfollows:

SET LFN=N

Now, when you run your application, the DOS LFN support will beignored. To undefine the environment
variable, enter the command:

SET LFN=

A3LIB

The use of the WATCOM environment variable and the Open Watcom Linker "SY STEM" directiveis
recommended over the use of this environment variable.

The LIB environment variable is used to select the libraries that will be used when the application is linked.
Thisvariable is used by the Open Watcom Linker (WLINK.EXE). The LIB environment string is like the
PATH string in that you can specify one or more directories separated by semicolons (*;").

If you have the 286 development system, 16-bit applications can be linked for DOS, Microsoft Windows,

0S/2, and QNX depending on which libraries are selected. If you have the 386 development system, 32-bit
applications can be linked for DOS Extender systems, Microsoft Windows and QNX.

LIB 197

Appendices

A.4 LIBDOS

The use of the WATCOM environment variable and the Open Watcom Linker "SY STEM" directive is
recommended over the use of this environment variable.

If you are developing a DOS application, the LI BDOS environment variable must include the location of
the 16-bit Open Watcom F77 DOS library files (fileswith the ".lib" filename extension). Thisvariableis
used by the Open Watcom Linker (WLINK.EXE). The default installation directory for the 16-bit Open
Watcom F77 DOS librariesis \ WATCOM LI B286\ DCS.

Example:
C>set |ibdos=c:\watcom | i b286\ dos

A.5 LIBWIN

The use of the WATCOM environment variable and the Open Watcom Linker "SYSTEM" directiveis
recommended over the use of this environment variable.

If you are developing a 16-bit Microsoft Windows application, the LI BWIN environment variable must
include the location of the 16-bit Open Watcom F77 Windows library files (files with the ".lib" filename
extension). Thisvariableisused by the Open Watcom Linker (WLINK.EXE). If you are developing a

32-bit Microsoft Windows application, see the description of the LIBPHAR environment variable. The

default installation directory for the 16-bit Open Watcom F77 Windows librariesis
\ WATCOM LI B286\ W N.

Example:
Csset |ibwi n=c:\watcom|ib286\win

A.6 LIBOS2

The use of the WATCOM environment variable and the Open Watcom Linker "SYSTEM" directiveis
recommended over the use of this environment variable.

If you are developing an OS/2 application, the LIBOS2 environment variable must include the location of
the 16-bit Open Watcom F77 OS/2 library files (fileswith the ".lib" filename extension). Thisvariableis
used by the Open Watcom Linker (WLINK.EXE). The default installation directory for the 16-bit Open
Watcom F77 OS/2 librariesis \ WATCOM LI B286\ OS2. The LIBOS2 environment variable must also
include the directory of the OS/2 DOSCALLS. LI B filewhichisusualy \ OS2.

Example:
Csset libos2=c:\watcom | i b286\0s2;c:\o0s2

198 LIBOS2

Use of Environment Variables

A.7 LIBPHAR

The use of the WATCOM environment variable and the Open Watcom Linker "SY STEM" directive is
recommended over the use of this environment variable.

If you are developing a 32-bit Windows or DOS Extender application, the LIBPHAR environment variable
must include the location of the 32-bit Open Watcom F77 DOS Extender library files or the 32-bit Open
Watcom F77 Windows library files (files with the ".lib" filename extension). Thisvariableis used by the
Open Watcom Linker (WLINK.EXE). The default installation directory for the 32-bit Open Watcom F77
DOS Extender librariesis \ WATCOM LI B386\ DOS. The default installation directory for the 32-bit
Open Watcom F77 Windows librariesis \ WATCOM LI B386\ W N.

Example:
C>set |ibphar=c:\watcom i b386\dos
or
C>set |ibphar=c:\watcom i b386\w n

A.8 NO87

The NO87 environment variable is checked by the Open Watcom FORTRAN 77 run-time libraries that
include floating-point emulation support. Normally, these libraries will detect the presence of a numeric
data processor (80x87) and useit. If you have a numeric data processor in your system but you wish to test
aversion of your application that will use floating-point emulation, you can define the NO87 environment
variable. Using the"SET" command, define the environment variable as follows:

SET NO87=1

Now, when you run your application, the 80x87 will beignored. To undefine the environment variable,
enter the command:

SET NCB7=

A.9 PATH

The PATH environment variable is used by DOS "COMMAND.COM" or OS/2 "CMD.EXE" to locate
programs.

PATH [d:][path];[d:][path]...

The PATH environment variable should include the disk and directory of the Open Watcom FORTRAN 77
binary program files when using Open Watcom FORTRAN 77 and its related tools.

If your host systemis DOS

The default installation directory for 16-bit Open Watcom F77 and 32-bit Open Watcom F77 DOS binaries
iscalled \ WATCOM BI NW

PATH 199

Appendices

Example:
C>pat h c:\wat com bi nw; c:\dos; c: \ wi ndows

If your host systemis OS2:

The default installation directories for 16-bit Open Watcom F77 and 32-bit Open Watcom F77 OS/2
binaries are called \ WATCOM BI NP and \ WATCOM BI NW

Example:
[C\]path c:\watcom binp; c:\wat com bi nw

If your host systemis Windows NT:

The default installation directories for 16-bit Open Watcom F77 and 32-bit Open Watcom F77 Windows
NT binaries are called \ WATCOM BI NNT and \ WATCOM BI NW

Example:
C>pat h c:\wat com bi nnt; c:\wat com bi nw

The PATH environment variable is also used by the following programs in the described manner.
1. Open Watcom Compile and Link to locate the 16-bit Open Watcom F77 and 32-bit Open

Watcom F77 compilers and the Open Watcom Linker.
2. "WD.EXE" tolocate programs and debugger command files.

A.10 TMP

The TM P environment variable describes the location (disk and path) for temporary files created by the
16-bit Open Watcom F77 and 32-bit Open Watcom F77 compilers and the Open Watcom Linker.

SET TMP=[d:][pat h]
Normally, Open Watcom FORTRAN 77 will create temporary spill filesin the current directory. However,
by defining the TM P environment variable to be a certain disk and directory, you can tell Open Watcom
FORTRAN 77 where to place itstemporary files. The same istrue of the Open Watcom Linker temporary
file.

Consider the following definition of the TM P environment variable.

Example:
C>set tnp=d:\wat comt np

The Open Watcom FORTRAN 77 compiler and Open Watcom Linker will create its temporary filesin
d: \ wat com t np.

200 TMP

Use of Environment Variables

A.11 WATCOM

In order for the Open Watcom Linker to locate the 16-bit Open Watcom F77 and 32-bit Open Watcom F77
library files, the WATCOM environment variable should be defined. The WATCOM environment
variableis used to locate the libraries that will be used when the application islinked. The default directory
for 16-bit Open Watcom F77 and 32-bit Open Watcom F77 filesis"\WATCOM".

Example:
C>set wat comc: \ wat com

A.12 WCL

The WCL environment variable can be used to specify commonly-used WFL options.
SET WCL=-optionl -option2 ...

These options are processed before options specified on the command line. The following example defines
the default options to be "mm" (compile code for medium memory model), "d1" (include line number
debug information in the object file), and "ox" (compile for maximum number of code optimizations).

Example:
C>set wel =-nm -d1 - ox

Once the WCL environment variable has been defined, those options listed become the default each time
the WFL command is used.

A.13 WCL386

The WCL 386 environment variable can be used to specify commonly-used WFL 386 options.

SET WCL386=-optionl -option2 ...

These options are processed before options specified on the command line. The following example defines
the default options to be "3s" (compile code for stack-based argument passing convention), "d1" (include
line number debug information in the object file), and "ox" (compile for maximum number of code
optimizations).

Example:
C>set wcl 386=-3s -dl1 -ox

Once the WCL 386 environment variable has been defined, those options listed become the default each
time the WFL 386 command is used.

WCL386 201

Appendices

A.14 WCGMEMORY

The WCGMEMORY environment variable may be used to request areport of the amount of memory used
by the compiler’s code generator for its work area.

Example:
Cset WCGAVEMORY=?

When the memory amount is"?" then the code generator will report how much memory was used to
generate the code.

It may also be used to instruct the compiler’s code generator to allocate a fixed amount of memory for a
work area.

Example:
C>set WCGVEMORY=128

When the memory amount is"nnn" then exactly "nnnK" bytes will be used. In the above example, 128K
bytesisrequested. If lessthan "nnnK" is available then the compiler will quit with afatal error message. If
more than "nnnK" is available then only "nnnK" will be used.

There are two reasons why this second feature may be quite useful. In general, the more memory available
to the code generator, the more optimal code it will generate. Thus, for two personal computers with
different amounts of memory, the code generator may produce different (although correct) object code. If
you have a software quality assurance requirement that the same resullts (i.e., code) be produced on two
different machines then you should use this feature. To generate identical code on two personal computers
with different memory configurations, you must ensure that the WCGMEMORY environment variableis
set identically on both machines.

The second reason where this feature is useful is on virtual memory paging systems (e.g., 0S/2) where an
unlimited amount of memory can be used by the code generator. If avery large module is being compiled,
it may take avery long time to compileit. The code generator will continue to alocate more and more
memory and cause an excessive amount of paging. By restricting the amount of memory that the code
generator can use, you can reduce the amount of time required to compile a routine.

A.15WD

202

wD

The WD environment variable can be used to specify commonly-used Open Watcom Debugger options.
This environment variable is not used by the Windows version of the debugger, WDW.

SET WD=-optionl -option2 ...

These options are processed before options specified on the command line. The following example defines
the default options to be "noinvoke" (do not execute the pr of i | e. dbg file) and "reg=10" (retain up to 10
register sets while tracing).

Use of Environment Variables

Example:
C>set wd=- noi nvoke -reg#10

Once the WD environment variable has been defined, those options listed become the default each time the
WD command is used.

A.16 WDW

The WDW environment variable can be used to specify commonly-used Open Watcom Debugger options.
This environment variable is used by the Windows version of the debugger, WDW.

SET WDWE- optionl -option2 ...
These options are processed before options specified in the WDW prompt dialogue box. The following
exampl e defines the default options to be "noinvoke" (do not execute the pr of i | e. dbg file) and

"reg=10" (retain up to 10 register sets while tracing).

Example:
C>set wdw=- noi nvoke -reg#10

Once the WDW environment variable has been defined, those options listed become the default each time
the WDW command is used.

A.17 WFC

The WFC environment variable can be used to specify commonly-used Open Watcom F77 options.

SET WFC=-optionl -option2 ...
These options are processed before options specified on the command line. The following example defines
the default optionsto be "d1" (include line number debug information in the object file) and "om" (compile

with math optimizations).

Example:
C>set wfc=-d1 -om

Once the WFC environment variable has been defined, those options listed become the default each time
the WFC command is used.

A.18 WFC386

The WFC386 environment variable can be used to specify commonly-used Open Watcom F77 options.

SET WFC386=-optionl -option2 ...
These options are processed before options specified on the command line. The following example defines

the default options to be "d1" (include line number debug information in the object file) and "om" (compile
with math optimizations).

WFC386 203

Appendices

Example:
C>set wfc386=-d1 -om

Once the WFC386 environment variable has been defined, those options listed become the default each
time the WFC386 command is used.

A.19 WFL

The WFL environment variable can be used to specify commonly-used WFL options.
SET WFL=-optionl -option2 ...

These options are processed before options specified on the command line. The following example defines
the default options to be "mm" (compile code for medium memory model), "d1" (include line number
debug information in the object file), and "ox" (default optimizations).

Example:
C>set wfl =-nm -d1 -ox

Once the WFL environment variable has been defined, those options listed become the default each time
the WFL command is used.

A.20 WFL386

The WFL 386 environment variable can be used to specify commonly-used WFL 386 options.

SET WFL386=-o0ptionl -option2 ...

These options are processed before options specified on the command line. The following example defines
the default options to be "mf" (flat memory model), "d1" (include line number debug information in the
object file), and "ox" (default optimizations).

Example:
C>set wfl 386=-nf -dl -ox

Once the WFL 386 environment variable has been defined, those options listed become the default each
time the WFL 386 command is used.

A.21 WLANG

The WLANG environment variable can be used to control which language is used to display diagnostic
and program usage messages by various Open Watcom software tools. The two currently-supported values
for this variable are "English" or "Japanese”.

SET WLANG=Engl i sh
SET WLANG=Japanese

Alternatively, a numeric value of 0 (for English) or 1 (for Japanese) can be specified.

204 WLANG

Use of Environment Variables

Example:
C>set w ang=0

By default, Japanese messages are displayed when the current codepage is 932 and English messages are
displayed otherwise. Normally, use of the WL ANG environment variable should not be required.

WLANG 205

Appendices

206 WLANG

Open Watcom F77 Diagnostic Messages

B. Open Watcom F77 Diagnostic Messages

The Open Watcom FORTRAN 77 compiler checks for errors both at compile time and execution time.

Compile time errors may result from incorrect program syntax, violations of the rules of the language,
underflow and overflow as aresult of evaluation of expressions, etc. Three types of messages are issued:

EXTENSION *EXT* - Thisindicates that the programmer has used a feature which is strictly an

WARNING

ERROR

extension of the FORTRAN 77 language definition. Such extensions may not be accepted
by other FORTRAN 77 compilers.

WRN - Thisindicates that a possible problem has been detected by the compiler. For
example, an unlabelled executable statement which follows an unconditional transfer of
control can never be executed and so the compiler will issue a message about this
condition.

ERR - Thisindicates that some error was detected which must be corrected by the
programmer.

An object file will be created aslong as no ERROR type messages are issued.

Execution or run time errors may result from arithmetic underflow or overflow, input/output errors, etc. An
execution time error causes the program to cease execution.

Consider the following program, named "DEMO1.FOR", which contains errors.

Example:
Thi s program denonstrates the follow ng features of
Open Watconmls FORTRAN 77 conpil er:

*
*
*
*
*
*
*
*
*
*
*

30

1.

2.

Ext ensions to the FORTRAN 77 standard are fl agged.

Conpile time error diagnostics are extensive. As many
errors as possible are di agnosed.

War ni ng nessages are di splayed where potential problens
can ari se.

PROGRAM MAI N
DI MENSI ON A(10)
DO | =1, 10
ALY =1
=1 +1
ENDLOOP
GO TO 30
J=J+1
END

If we compile this program with the "extensions" option, the following output appears on the screen.

Open Watcom F77 Diagnostic Messages 207

Appendices

Cwic denpl -exten
WATCOM FORTRAN 77/ 16 Optim zing Conpiler Version 2.0 1997/07/16 09: 22: 47
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
denpl.for(14): *EXT* DO 05 this DO loop formis not FORTRAN 77 standard
denpol.for(16): *ERR* DO 07 colum 13, DO variabl e cannot be redefined
while DO | oop is active
denpl.for(17): *ERR* SP-19 ENDLOOP statenent does not nmatch with DO
st at ement
denpl.for(19): *WRN* ST-08 this statement will never be executed due
to the preceding branch
denpl.for: 9 statenents, 0 bytes, 1 extensions, 1 warnings, 2 errors

The diagnostic messages consist of the following information:

the name of the file being compiled,

the line number of the line containing the error (in parentheses),

amessage type of either extension (*EXT*), error (*ERR*) or warning (* WRN¥*),
amessage class and number (e.g., ST-08), and

text explaining the nature of the error.

gkrowdNPRE

In the above example, the first error occurred on line 16 of the file"DEMO1.FOR". Error number DO-07
was diagnosed. The second error occurred on line 17 of the file"DEMO1.FOR". Error number SP-20 was
diagnosed. The other errors are informational messages that do not prevent the successful compilation of
the sourcefile.

Thefollowingisalist of all messages produced by Open Watcom F77 followed by a brief description.
Run-time messages (messages displayed during execution) are also presented. The messages contain
referencesto % and %d. They represent strings that are substituted by Open Watcom F77 to make the
error message more exact. %l represents a string of digits; % any string, usually a symbolic name such as
AMOUNT, atype such as | NTEGER, or a symbol class such as SUBROUTI NE. An error message may
contain more than one reference to %d. In such a case, the description will reference them as %dn where n
is the occurrence of %d in the error message. The sameistrue for referencesto %s.

B.1 Subprogram Arguments

AR-01 invalid number of arguments to intrinsic function %sl
The number of actual arguments specified in the argument list for the intrinsic function
%s1 does not agree with the dummy argument list. Consult the Language Reference for
information on intrinsic functions and their arguments.

AR-02 dummy argument %s1 appears more than once

The same dummy argument %s1 is named more than once in the dummy argument list.

208 Subprogram Arguments

Open Watcom F77 Diagnostic Messages

AR-03

dummy argument %s1 must not appear before definition of ENTRY %s2

The dummy argument %s1 has appeared in an executable statement before its appearance
in the definition of %s2 in an ENTRY statement. Thisisillegal.

B.2 Block Data Subprograms

BD-01

BD-02

%s1 was initialized in a block data subprogram but is not in COMMON

The variable or array element, %sl, was initialized in aBLOCK DATA subprogram but
was not specified in anamed COMMON block.

%s1 statement is not permitted in a BLOCK DATA subprogram
The statement, %s1, is not allowed in aBLOCK DATA subprogram. The only statements

which are allowed to appear are: IMPLICIT, PARAMETER, DIMENSION, COMMON,
SAVE, EQUIVALENCE, DATA, END, and type statements.

B.3 Source Format and Contents

CC-01

CC-02

CC-03

CC-04

CC-05

invalid character encountered in source input

The indicated statement contains an invalid character. Valid characters are: letters, digits,
$* ..+=0:5,5(0)1 %, and,(comma). Any character may be used inside a character
or hollerith string.

invalid character in statement number columns

A columnin columns 1 to 5 of the indicated statement contains a non-digit character.
Columns 1 to 5 contain the statement number label. It is made up of digits from 0to 9 and
is greater than 0 and less than or equal to 99999.

character in continuation column, but no statement to continue

The character in column 6 indicates that this line is a continuation of the previous statement
but there is no previous statement to continue.

character encountered is not FORTRAN 77 standard

A non-standard character was encountered in the source input stream. Thisis most likely
caused by the use of lower case |etters.

columns 1-5 in a continuation line must be blank

When column 6 is marked as a continuation statement to the previous line, columns 1to 5
must be left blank.

Source Format and Contents 209

Appendices

CC-06

CC-07

CC-08

CC-09

mor e than 19 continuation linesis not FORTRAN 77 standard
More than 19 continuation linesis an extension to the FORTRAN 77 language.
end-of-line comment is not FORTRAN 77 standard

End-of-line comments are an extension to the FORTRAN 77 language. End-of-line
comments start with the exclamation mark (!) character.

D in column 1 is not FORTRAN 77 standard

A "D" in column 1 signifies a debug statement that is compiled when the”__debug__"
macro symbol isdefined. If the" _debug " macro symbol is not defined, the statement is
ignored. The "c$define" compiler directive or the "define" compiler option can be used to
definethe"__debug " macro symbol.

too many continuation lines
The limit on the number of continuation lines has been reached. Thislimit depends on the

size of each continuation line. A minimum of 61 continuation linesis permitted. If the
"xline" option is used, aminimum of 31 continuation linesis permitted.

B.4 COMMON Blocks

CM-01

CM-02

CM-03

CM-04

%s1 already in COMMON

The variable or array name, %s1, has already been specified in this or another COMMON
block.

initializing %s1 in COMMON outside of block data subprogramis not FORTRAN 77
standard

The symbol %s1, in anamed COMMON block, has been initialized outside of ablock data
subprogram. Thisis an extension to the FORTRAN 77 language.

character and non-character datain COMMON is not FORTRAN 77 standard

The FORTRAN 77 standard specifies that a COMMON block cannot contain both numeric
and character data. Allowing COMMON blocks to contain both numeric and character
datais an extension to the FORTRAN 77 standard.

COMMON block %s1 has been defined with a different size

The COMMON block %sl has been defined with a different size in another subprogram.

A named COMMON block must define the same amount of storage units where ever
named.

210 COMMON Blocks

Open Watcom F77 Diagnostic Messages

CM-05

CM-06

B.5 Constants

CN-01

CN-02

CN-03

CN-04

CN-05

named COMMON block %s1 appears in more than one BLOCK DATA subprogram

The named COMMON block, %s1, may not appear in more than one BLOCK DATA
subprogram.

blank COMMON block has been defined with a different size

The blank COMMON block has been defined with a different size in another subprogram.
Thisislega but awarning message isissued.

DOUBLE PRECISSON COMPLEX constants are not FORTRAN 77 standard

Double precision complex numbers are an extension to the FORTRAN 77 language. The
indicated number is acomplex number and at |east one of the parts, real or imaginary, isa
double precision constant. Both real and imaginary parts will be double precision.

invalid floating-point constant %s1

The floating-point constant %sl isinvalid. Refer to the chapter entitled "Names, Data
Types and Constants' in the Language Reference.

zero length character constants are not allowed

FORTRAN 77 does not allow character constants of length O (i.e., an empty string).
invalid hexadecimal/octal constant

Aninvalid hexadecimal or octal constant was specified. Hexadecimal constants can only
contain digits or the letters’a through 'f’ and’'A’ through’'F'. Octal constants can only
contain the digits’0’ through ' 7.

hexadecimal/octal constant is not FORTRAN 77 standard

Hexadecimal and octal constants are extensions to the FORTRAN 77 standard.

B.6 Compiler Options

Co-01

%sl is already being included

An attempt has been made to include afile that is currently being included in the program.

Compiler Options 211

Appendices

CO-02

CO-03

CO-04

CO-05

CO-06

CO-07

CO-08

CO-09

CO-10

"%s1’ option cannot take a NO prefix

The compiler option %s1, cannot have the NO prefix specified. The NO prefix is used to
negate an option. Certain options, including all options that require a value cannot have a
NO prefix.

expecting an equals sign following the %s1 option

The compiler option %s1, requires an equal sign to be between the option keyword and its
associated value.

the’%s1’ option requires a number

The compiler option %s1 and an equal sign has been detected but the required associated
valueis missing.

option "%s1’ not recognized - ignored

The option %sLl is not arecognized compiler option and has been ignored. Consult the
User’s Guide for a complete list of compiler options.

"%s1’ option not allowed in source input stream

The option %s1 can only be specified on the command line. Consult the User’s Guide for a
description of which options are allowed in the source input stream.

nesting level exceeded for compiler directives

Use of the C$IFDEF or C$IFNDEF compiler directives has caused the maximum nesting
level to be exceeded. The maximum nesting level is 16.

mismatching compiler directives

This error message isissued if, for example, a CSENDIF directive is used and no matching
C$IFDEF or C$IFNDEF precedesit. Incorrect nesting of C$IFDEF, C$IFNDEF, C$ELSE
and C$ENDIF directives will aso cause this message to be issued.

DATA option not allowed

A source file has been included into the current program through the use of the INCLUDE
compiler option. Thisincluded source file cannot contain the DATA compiler option.

maximum limit exceeded in the ’%s1’ option - option ignored

The user has specified a value on an option which exceeds the maximum allowed value.

212 Compiler Options

Open Watcom F77 Diagnostic Messages

CO-11

DATA option not allowed with OBJECT option

The DATA compiler option can not appear afile that is compiled with the OBJECT option.

B.7 Compiler Errors

CP-01

CP-02

CP-03

CP-04

CP-05

CP-06

program abnormally terminated

This message isissued during the execution of the program. If you are running FORTRAN
77, this message indicates that an internal error has occurred in the compiler. Please report
this error and any other helpful information about the program being compiled to Watcom
so that the problem can be fixed. .pc If you are running an application compiled by the
Watcom FORTRAN 77 optimizing compiler, this message may indicate a problem with the
compiler or a problem with your program. Try compiling your application with the
"debug" option. This causes the generation of run-time checking code to validate, for
example, array subscripts and will help ensure that your program isnot in error.

argument %d1 incompatible with register

The register specified in an auxiliary pragmafor argument number %d1 isinvalid.
subprogram %s1 hasinvalid return register

Theregister specified in an auxiliary pragmafor the return value of function %sl isinvalid.
This error isissued when, for example, an auxiliary pragmais used to specify EAX asthe
return register for adouble precision function.

low on memory - unable to fully optimize %s1

There is not enough memory for the code generator to fully optimize subprogram %s1.
internal compiler error %d1

Thiserror isan internal code generation error. Please report the specified internal compiler
error number and any other helpful information about the program being compiled to
Watcom so that the problem can be fixed.

illegal register modified by %s1

Anillegal register was said to be modified by %s1 in the auxiliary pragmafor %sl. Ina
32-bit flat memory model, the base pointer register EBP and segment registers CS, DS, ES,
and SS cannot be modified. In small data models, the base pointer register (32-bit EBP or
16-bit BP) and segment registers CS, DS, and SS cannot be modified. In large data models,

the base pointer register (32-bit EBP or 16-bit BP) and segment registers CS, and SS cannot
be modified.

Compiler Errors 213

Appendices

CP-07

CP-08

CP-09

CP-10

CP-11

CP-12

CP-13

%sl

The message specified by %sl indicates an error during the code generation phase. The
most probable causeis an invalid instruction in the in-line assembly code specified in an
auxiliary pragma.

fatal: %sl

The specified error indicates that the code generator has been abnormally terminated. This
message will beissued if any internal limit is reached or a keyboard interrupt sequenceis
pressed during the code generation phase.

dynamic memory not freed

This message indicates an internal compiler error. Please report this error and any other
helpful information about the program being compiled to Watcom so that the problem can
be fixed.

freeing unowned dynamic memory

This message indicates an internal compiler error. Please report this error and any other
helpful information about the program being compiled to Watcom so that the problem can
be fixed.

The automatic equivalence containing %sl exceeds 32K limit

In 16-bit environments, the size of an equivalence on the stack must not exceed 32767
bytes.

The return value of %s1 exceeds 32K limit

In 16-bit environments, the size of the return value of afunction must not exceed 32767
bytes.

The automatic variable %s1 exceeds 32K limit

In 16-bit environments, the size of any variable on the stack must not exceed 32767 bytes.

B.8 Character Variables

Cv-01

CHARACTER variable %s1 with length (*) not allowed in this expression

The length of the result of evaluating the expression isindeterminate. One of the operands
has an indeterminate length and the result is being assigned to atemporary.

214 Character Variables

Open Watcom F77 Diagnostic Messages

CV-02

Cv-03

character variable %s1 with length (*) must be a subprogram argument

The character variable %s1 with alength specification (*) can only be used to declare
dummy arguments in the subprogram. The length of a dummy argument assumes the
length of the corresponding actual argument.

left and right hand sides overlap in a character assignment statement

The expression on the right hand side defines a substring of a character variable and triesto
assign it to an overlapping part of the same character variable.

B.9 Data Initialization

DA-01

DA-02

DA-03

DA-04

DA-05

DA-06

implied DO variable %s1 must be an integer variable

Theimplied DO variable %s1 must be declared as a variable of type INTEGER or must
have an implicit INTEGER type.

repeat specification must be a positive integer

The repeat specification in the constant list of the DATA statement must be an unsigned
positive integer.

%s1 appears in an expression but is not an implied DO variable

The variable %sl is used to express the array elementsin the DATA statement but the
variableis not used as an implied DO variable.

%sl1 in blank COMMON block cannot be initialized

A blank or unnamed COMMON block isa COMMON statement with the block name
omitted. The entriesin blank COMMON blocks cannot beinitialized using DATA
statements.

data initialization with hexadecimal constant is not FORTRAN 77 standard

Datainitialization with hexadecimal constantsis an extension to the FORTRAN 77
language.

cannot initialize %sl %s2
Symbol %s2 was used asa%sl. Itisillega for such asymbol to beinitialized in aDATA

statement. The DATA statement can only be used to initialize variables, arrays, array
elements, and substrings.

Data Initialization 215

Appendices

DA-07 data initialization in %sl statement is not FORTRAN 77 standard
Datainitialization in type specification statementsis an extension to the FORTRAN 77
language. Theseincludee CHARACTER, COMPLEX, DOUBLE PRECISION,
INTEGER, LOGICAL, and REAL.

DA-08 not enough constants for list of variables

There are not enough constants specified to initialize al of the names listed in the DATA
statement.

DA-09 too many constants for list of variables

There are too many constants specified to initialize the names listed in the DATA
statement.

DA-10 cannot initialize %sl variable %s2 with %s3 constant
The constant of type %s3 cannot be used to initialize the variable %s2 of type %s1.
DA-11 entity can only be initialized once during data initialization

An attempt has been made to initialize an entity more than oncein DATA statements.

B.10 Dimensioned Variables

DM-01 using %sl incorrectly in dimension expression
The name used as a dimension declarator has been previously declared as type %s1 and
cannot be used as adimension declarator. A dimension declarator must be an integer
expression.

DM-02 array or array element (possibly substring) associated with %s1 too small

The dummy argument, array %sl, is defined to be larger than the size of the actual
argument.

B.11 DO-loops

DO-01 statement number %i1 already defined in line %d2 - DO loop is backwards
The statement number to indicate the end of the DO control structure has been used

previously in the program unit and cannot be used to terminate the DO loop. The terminal
statement named in the DO statement must follow the DO statement.

216 DO-loops

Open Watcom F77 Diagnostic Messages

DO-02

DO-03

DO-04

DO-05

DO-06

DO-07

DO-08

%s1 statement not allowed at termination of DO range

A non-executable statement cannot be used as the terminal statement of aDO loop. These
statementsinclude: all declarative statements, ADMIT, AT END, BLOCK DATA, CASE,
DO, ELSE, ELSE IF, END, END AT END, END BLOCK, END GUESS, END IF, END
LOOP, END SELECT, END WHILE, ENTRY, FORMAT, FUNCTION, assigned GO TO,
unconditional GO TO, GUESS, arithmetic and block IF, LOOP, OTHERWISE,
PROGRAM, RETURN, SAVE, SELECT, STOP, SUBROUTINE, UNTIL, and WHILE.

improper nesting of DO loop

A nested DO loop has not been properly terminated before the termination of the outer DO
loop.

ENDDO cannot terminate DO loop with statement label

The ENDDO statement can only terminate a DO loop in which no statement label was
specified in the defining DO statement.

this DO loop formis not FORTRAN 77 standard

As an extension to FORTRAN 77, the following forms of the DO loop are also supported.
.autonote .note A DO loop with no statement label specified in the defining DO statement.
.note The DO WHILE form of the DO statement. .endnote

expecting comma or DO variable

Theitem following the DO keyword and the terminal statement-label (if present) must be
either acommaor aDO variable. A DO variableisan integer, real or double precision
variable name. The DO statement syntax is asfollows. .millust begin DO <tsl> <,>
DO-var = ex, ex <, ex> .millust end

DO variable cannot be redefined while DO loop is active

The DO variable named in the DO statement cannot have its value atered by a statement in
the DO loop structure.

incrementation parameter for DO-loop cannot be zero
The third expression in the DO statement cannot be zero. This expression indicates the

increment to the DO variable each iteration of the DO loop. If the increment expression is
not specified avalue of 1 isassumed.

B.12 Equivalence and/or Common

Equivalence and/or Common 217

Appendices

EC-01

EC-02

equivalencing %s1 has caused extension of COMMON block %s2 to the | eft

The name %s1 has been equivalenced to a name in the COMMON block %s2. This
relationship has caused the storage of the COMMON block to be extended to the | eft.
FORTRAN 77 does not allow a COMMON block to be extended in this way.

%s1 and %s2 in COMMON are equivalenced to each other

The names %s1 and %s2 appear in different COMMON blocks and each occupiesits own
piece of storage and therefore cannot be equival enced.

B.13 END Statement

EN-01

missing END statement

The END statement for a PROGRAM, SUBROUTINE, FUNCTION or BLOCK DATA
subprogram was not found before the next subprogram or the end of the source input
stream.

B.14 Equal Sign

EQ-01

EQ-02

EQ-03

EQ-04

218 Equal Sign

target of assignment isillegal

The target of an assignment statement, an input/output status specifier in an input/output
statement, or an inquiry specifier in an INQUIRE statement, isillegal. The target in any of
the above cases must be a variable name, array element, or a substring name.

cannot assign value to %s1

An attempt has been made to assign a value to a symbol with class %sl. For example, an
array name cannot be the target of an assignment statement. This error may also be issued
when anillegal target is used for the input/output status specifier in an input/output
statement or an inquiry specifier in an INQUIRE statement.

illegal use of equal sign

An equal sign has been found in the statement but the statement is not an assignment
statement.

multiple assignment is not FORTRAN 77 standard

More than one egual sign has been found in the assignment statement.

Open Watcom F77 Diagnostic Messages

EQ-05

expecting equals sign

The egqual signismissing or misplaced. The PARAMETER statement uses an equal sign to
equate a symbolic name to the value of a constant expression. The I/O statements use an
equal sign to equate the appropriate values to the various specifiers. The DO statement
uses an equal sign to assign theinitia valueto the DO variable.

B.15 Equivalenced Variables

EV-01 %s1 has been equivalenced to 2 different relative positions
The storage unit referenced by %s1 has been equivalenced to two different storage units
starting in two different places. One name cannot be associated to two different values at
the sametime.

EV-02 EQUIVALENCE list must contain at least 2 names
Thelist of names to make a storage unit equivalent to several names must contain at |east
two names.

EV-03 %s1 incorrectly subscripted in %s2 statement
The name %s1 has been incorrectly subscripted in a %s2 statement.

EV-04 incorrect substring of %sl in %s2 statement
An attempt has been made to incorrectly substring %sl in a %s2 statement. For example, if
a CHARACTER variable was declared to be of length 4 then (2:5) would be aninvalid
substring expression.

EV-05 equivalencing CHARACTER and non-CHARACTER data is not FORTRAN 77 standard
Equivalencing numeric and character data is an extension to the FORTRAN 77 language.

EV-06 attempt to substring %sl in EQUIVALENCE statement but type is %s2
An attempt has been made to substring the symbolic name %s1 in an EQUIVALENCE
statement but the type of the nameis %s2 and should be of type CHARACTER.

B.16 Exponentiation
EX-01 zero**Jwhere J <= Oisnot allowed

Zero cannot be raised to a power less than or equal to zero.

Exponentiation 219

Appendices

EX-02

EX-03

X**Y where X < 0.0, Yisnot of type INTEGER, is not allowed
When X islessthan zero, Y may only be of type INTEGER.
(0,0**Y where Yisnot real is not allowed

In complex exponentiation, when the base is zero, the exponent may only be areal number
or acomplex number whose imaginary part is zero.

B.17 ENTRY Statement

EY-01

EY-02

EY-03

B.18 Format

FM-01

FM-02

FM-03

220 Format

type of entry %s1 does not match type of function %s2

If the type of afunctionis CHARACTER or a user-defined STRUCTURE, then the type of
all entry names must match the type of the function name.

ENTRY statement not allowed within structured control blocks

FORTRAN 77 does not allow an ENTRY statement to appear between the start and end of
acontrol structure.

size of entry %s1 does hot match size of function %s2
The name %s1 found in an ENTRY statement must be declared to be the same size as that
of the function name. If the name of the function or the name of any entry point has a

length specification of (*), then al such entries must have alength specification of (*)
otherwise they must all have alength specification of the same integer value.

missing delimiter in format string, comma assumed

The omission of a comma between the descriptors listed in aformat string is an extension
to the FORTRAN 77 language. Care should be taken when omitting the comma since the
assumed separation may not occur in the intended place.

missing or invalid constant

An unsigned integer constant was expected with the indicated edit descriptor but was not
correctly placed or was missing.

Ew.dDe format code is not FORTRAN 77 standard

The edit descriptor Ew.dDe is an extension to the FORTRAN 77 language.

Open Watcom F77 Diagnostic Messages

FM-04

FM-05

FM-06

FM-07

FM-08

FM-09

FM-10

FM-11

FM-12

missing decimal point

Theindicated edit descriptor must have a decimal point and an integer to indicate the
number of decimal positions. These edit descriptorsinclude: F, E, D and G.

missing or invalid edit descriptor in format string

In the format string, two delimiters were found in succession with no valid descriptor in
between.

unrecognizable edit descriptor in format string

An edit descriptor has been found in the format string that is not avalid code. Valid codes
are: apostrophe ('), I,F, E,D,G,L,A,Z,H, T, TL, TR, X,/,:, S, SP, SS, P, BN, B, $, and
\.

invalid repeat specification

Theindicated repeatable edit descriptor isinvalid. The forms of repeatable edit descriptors
are: lw, lw.m, Fw.d, Ew.d, Ew.dEe, Dw.d, Gw.d, Gw.dEe, Lw, A, Aw, Ew.dDe, and Zw
where w and e are positive unsigned integer constants, and d and m are unsigned integer
constants.

$ or \ format code is not FORTRAN 77 standard

The non-repeatable edit descriptors $ and \ are extensions to the FORTRAN 77 language.
invalid field modifier

Theindicated edit descriptor for afield isincorrect. Consult the Language Reference for
the correct form of the edit descriptor.

expecting end of FORMAT statement but found more text

The right parenthesis was encountered in the FORMAT statement to terminate the
statement and more text was found on the line.

repeat specification not allowed for this format code

A repeat specification was found in front of aformat code that is a nonrepeatable edit
descriptor. Theseinclude: apostrophe, H, T, TL, TR, X, /,;, S, SP, SS, P, BN, BZ, $,and \.

no statement number on FORMAT statement

The FORMAT statement must have a statement label. This statement number is used by
I/O statements to reference the FORMAT statement.

Format 221

Appendices

FM-13

FM-14

FM-15

FM-16

FM-17

FM-18

FM-19

FM-20

FM-21

222 Format

no closing quote on apostrophe edit descriptor
The closing quote of an apostrophe edit descriptor was not found.
field count greater than 256 isinvalid

The repeat specification of the indicated edit descriptor is greater than the maximum
allowed of 256.

invalid field width specification
The width specifier on the indicated edit descriptor isinvalid.
Z format code is not FORTRAN 77 standard

The Z (hexadecimal format) repeatable edit descriptor is an extension to the FORTRAN 77
language.

FORMAT statement exceeds allotted storage size

The maximum allowable size of a FORMAT statement has exceeded. The statement must
be split into two or more FORMAT statements.

format specification not allowed on input

A format specification, in the FORMAT statement, is not allowed to be used as an input
specification. Valid specificationsinclude: T, TL,TR, X,/,:, P,BN,BZ, |, F, E, D, G, L,
A,and Z.

FORMAT missing repeatabl e edit descriptor

An attempt has been made to read or write a piece of data without a valid repeatable edit
descriptor. All data requires arepeatable edit descriptor in the format. The forms of
repeatable edit descriptorsare: Iw, lw.m, Fw.d, Ew.d, Ew.dEe, Dw.d, Gw.d, Gw.dEe, Lw,
A, Aw, Ew.dDe, and Zw where w and e are positive unsigned integer constants, and d and
m are unsigned integer constants.

missing constant before X edit descriptor, 1 assumed

The omission of the constant before an X edit descriptor in aformat specification isan
extension to the FORTRAN 77 language.

Ew.dQe format code is not FORTRAN 77 standard

The edit descriptor Ew.dQe is an extension to the FORTRAN 77 language.

Open Watcom F77 Diagnostic Messages

FM-22

Qw.d format code is not FORTRAN 77 standard

The edit descriptor Qw.d is an extension to the FORTRAN 77 language.

B.19 GOTO and ASSIGN Statements

GO-01

GO-02

GO-03

%s1 statement label may not appear in ASSGN statement but did in line %d2

The statement label in the ASSIGN statement in line %d2 references a %sl statement. The
statement label in the ASSIGN statement must appear in the same program unit and must
be that of an executable statement or a FORMAT statement.

ASSI GN of statement number %i1 in line %d2 not allowed

The statement label %d1 in the ASSIGN statement is used in the line %d2 which references
anon-executable statement. A statement label must appear in the same program unit asthe
ASSIGN statement and must be that of an executable statement or a FORMAT statement.
expecting TO

The keyword TO is missing or misplaced in the ASSIGN statement.

B.20 Hollerith Constants

HO-01

HO-02

hollerith constant is not FORTRAN 77 standard

Hollerith constants are an extension to the FORTRAN 77 language.

not enough characters for hollerith constant

The number of characters following the H or his not equal to the constant preceding the H

or h. A hollerith constant consists of a positive unsigned integer constant n followed by the
letter H or h followed by a string of exactly n characters.

B.21 IF Statements

IF-01

ELSE block must be the last block in block IF

Another ELSE IF block has been found after the EL SE block. The EL SE block must be the
last block in an IF block. The form of the block IF isasfollows: .millust begin IF (logical
expression) THEN [:block-label] { statement} { ELSE IF { statement} } [EL SE { statement}
] ENDIF .millust end

IF Statements 223

Appendices

IF-02

B.22 I/0 Lists

IL-01

IL-02

IL-03

IL-04

IL-05

IL-06

IL-07

224 1/0 Lists

expecting THEN
The keyword THEN is missing or misplaced in the block IF statement. The form of the

block IFisasfollows: .millust begin IF (logical expression) THEN [:block-label]
{statement} { ELSE IF {statement} } [ELSE { statement}] ENDIF .millust end

missing or invalid format/FMT specification

A valid format specification isrequired on all READ and WRITE statements. The format
specification is specified by: .millust begin [FMT=] <format identifier> .millust end .pc .sy
<format identifier> is one of the following: statement label, integer variable-name,
character array-name, character expression, or *.

the UNIT may not be an internal file for this statement

Aninternal file may only be referenced in aREAD or WRITE statement. Aninternal file
may not be referenced in a BACKSPACE, CLOSE, ENDFILE, INQUIRE, OPEN, or
REWIND statement.

%s1 statement cannot have %s2 specification

The /O statement %s1 may not have the control information %s2 specified.

variable must have a size of 4

The variable used as a specifier in an I/O statement must be of size 4 but another size was
specified. Theseinclude the EXIST, OPENED, RECL, IOSTAT, NEXTREC, and
NUMBER. The name used in the ASSIGN statement must also be of size 4 but a different
size was specified.

missing or unrecognizable control list item %s1

A control list item %s1 was encountered in an |/O statement and is not avalid control list
item for that statement, or a control list item was expected and was not found.

attempt to specify control list item %s1 more than once
The control list item %s1 in the indicated 1/O statement, has been named more than once.
implied DO loop has no input/output list

Theimplied DO loop specified in the 1/O statement does not correspond with a variable or
expression in the input/output list.

Open Watcom F77 Diagnostic Messages

IL-08

IL-09

IL-10

IL-11

IL-12

IL-13

IL-14

IL-15

IL-16

list-directed input/output with internal filesis not FORTRAN 77 standard
List-directed input/output with internal filesis an extension to the FORTRAN 77 language.
FORTRAN 77 standard requires an asterisk for list-directed formatting

An optional asterisk for list-directed formatting is an extension to the FORTRAN 77
language. The standard FORTRAN 77 language specifies that an asterisk is required.

missing or improper unit identification

The control specifier, UNIT, in the I/O statement is either missing or identifies an improper
unit. The unit specifier specifies an external unit or internal file. The external unit
identifier is a non-negative integer expression or an asterisk. Theinternal file identifier is
character variable, character array, character array element, or character substring.

missing unit identification or file specification

An identifier to specifically identify the required fileismissing. The UNIT specifier is
used to identify the external unit or internal file. The FILE specifier in the INQUIRE and
OPEN statements is used to identify the file name.

asterisk unit identifier not allowed in %s1 statement

The BACKSPACE, CLOSE, ENDFILE, INQUIRE, OPEN, and REWIND statements
require the external unit identifier be an unsigned positive integer from 0 to 999.

cannot have both UNIT and FILE specifier

There are two valid forms of the INQUIRE statement; INQUIRE by FILE and INQUIRE
by UNIT. Both of these specifiers cannot be specified in the same statement.

internal filesrequire sequential access

An attempt has been made to randomly access an internal file. Internal files may only be
accessed sequentialy.

END specifier with REC specifier isnot FORTRAN 77 standard

The FORTRAN 77 standard specifies that an end-of-file condition can only occur with a
file connected for sequential access or an internal file. The REC specifier indicates that the
fileis connected for direct access. This extension allows the programmer to detect an
end-of-file condition when reading the records sequentially from afile connected for direct
access.

%s1 specifier ini/o list is not FORTRAN 77 standard

The specifiedi/o list item is provided as an extension to the FORTRAN 77 language.

I/O Lists 225

Appendices

IL-17

IL-18

i/olistis not allowed with NAMELIST-directed for mat
Ani/olistis not allowed when the format specificationisa NAMELIST.
non-character array as format specifier isnot FORTRAN 77 standard

A format specifier must be of type character unlessit is an array name. Allowing a
non-character array hame is an extension to the FORTRAN 77 standard.

B.23 IMPLICIT Statements

IM-01

IM-02

IM-03

IM-04

IM-05

illegal range of characters

Inthe IMPLICIT statement, the first |etter in the range of characters must be smaller in the
collating sequence than the second letter in the range.

letter can only be implicitly declared once

Theindicated letter has been named more than oncein this or aprevious IMPLICIT
statement. A letter may only be named once.

unrecognizable type

The type declared in the IMPLICIT statement is not one of INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, LOGICAL or CHARACTER.

(*) length specifier in an IMPLICIT statement is not FORTRAN 77 standard

A character length specified of (*) inan IMPLICIT statement is an extension to the
FORTRAN 77 language.

IMPLICIT NONE allowed once or not allowed with other IMPLICIT statements

The IMPLICIT NONE statement must be the only IMPLICIT statement in the program unit
inwhich it appears. Only one IMPLICIT NONE statement is allowed in a program unit.

B.24 Input/Output

10-01

226 Input/Output

BACKSPACE statement requires sequential access mode

The file connected to the unit specified in the BACK SPACE statement has not been opened
for sequential access.

Open Watcom F77 Diagnostic Messages

10-02

10-03

10-04

10-05

10-06

10-07

10-08

10-09

10-10

input/output is already active

An attempt has been made to read or write arecord when there is an already active read or
writein progress. The execution of a READ or WRITE statement has caused transfer to a
function that contains a READ or WRITE statement.

ENDFILE statement requires sequential access mode

The specified external unit identifier must be connected for sequential access but was
connected for direct access.

formatted connection requires formatted input/output statements

The FORM specifier in the OPEN statement specifies FORMATTED and the subsequent
READ and/or WRITE statement does not use formatted I/O. If the FORM specifier has
been omitted and accessis SEQUENTIAL then FORMATTED isassumed. If the accessis
DIRECT then UNFORMATTED is assumed.

unformatted connection requires unformatted input/output statements

The FORM specifier in the OPEN statement specifies UNFORMATTED and the
subsequent READ and/or WRITE statement uses formatted 1/O. If the FORM specifier has
been omitted and accessis SEQUENTIAL then FORMATTED isassumed. If the accessis
DIRECT then UNFORMATTED is assumed.

REWIND statement requires sequential access

The external unit identifier is not connected to a sequential file. The REWIND statement
positionsto the first record in thefile.

bad character ininput field

The data received from the record in afile does not match the type of theinput list item.
BLANK specifier requires FORM specifier to be’ FORMATTED’

In the OPEN statement, the BLANK specifier may only be used when the FORM specifier
has the value of FORMATTED. The BLANK specifier indicates whether blanks are
treated as zeroes or ignored.

systemfileerror - %sl

A system error has occurred while attempting to access afile. The I/O system error
message is displayed.

format specification does not match data type

A format specification in the FMT specifier or FORMAT statement specifies data of one
type and the variable list specifies data of adifferent type.

Input/Output 227

Appendices

10-11

10-12

10-13

10-14

10-15

10-16

10-17

10-18

10-19

10-20

228 Input/Output

input item does not match the data type of list variable

In the READ statement, the data type of avariable listed is not of the same data type in the
datafile. For example, non-digit character data being read into an integer item.

internal fileisfull

Theinterna fileisfull of data. If afileisavariable then the file may only contain one
record. If thefileisa character array then there can be one record for each array element.

RECL specifier isinvalid

In the OPEN statement, the record length specifier must be a positive integer expression.
invalid STATUS specifier in CLOSE statement

The STATUS specifier can only have avalue of KEEP or DELETE. If the STATUS in the
OPEN statement is SCRATCH then the KEEP status on the CLOSE statement cannot be
used.

unit specified is not connected

The unit number specified in the I/O statement has not been previously connected.

attempt to perform data transfer past end of file

An attempt has been made to read or write data after the end of file has been read or
written.

invalid RECL specifier/ACCESS specifier combination

In the OPEN statement, if the ACCESS specifier is DIRECT then the RECL specifier must
be given.

REC specifier required in direct access input/output statements

In the OPEN statement, the ACCESS specified was DIRECT. All subsequent input/output
statements for that file must use the REC specifier to indicate which record to access.

REC specifier not allowed in sequential access input/output statements

In the OPEN statement, the ACCESS specified was SEQUENTIAL. The REC specifier
may not be used in subsequent 1/0 statements for that file. The REC specifier isused to
indicate which record to access when access is DIRECT.

%s1 specifier may not change in a subsegquent OPEN statement

The %s1 specifier may not be changed on a subsequent OPEN statement for the samefile,
in the same program. Only the BLANK specifier may be changed.

Open Watcom F77 Diagnostic Messages

10-21

10-22

10-23

10-24

10-25

10-26

10-27

10-28

invalid STATUS specifier for givenfile

In the OPEN statement, the STATUS specifier does not match with the actual file status:
OLD means the file must exist, NEW means the file must not exist. If the STATUS
specifier is omitted, UNKNOWN is assumed.

invalid STATUS specifier/FILE specifier combination

In the OPEN statement, if the STATUS is SCRATCH, the FILE specifier cannot be used.
If the STATUSisNEW or OLD, the FILE specifier must be given.

record size exceeded during unformatted input/output

Thiserror isissued when the size of ani/o list item exceeds the maximum record size of the
file. Therecord size can be specified using the RECL = specified in the OPEN statement.

unit specified does not exist

The external unit identifier specified in the input/output statement has not yet been
connected. Use preconnection or the OPEN statement to connect afile to the external unit
identifier.

REC specifier isinvalid

The REC specifier must be an unsigned positive integer.

UNIT specifier isinvalid

The UNIT specifier must be an unsigned integer between 0 and 999 inclusive.

formatted record or format edit descriptor istoo large for record size

This error isissued when the amount of formatted datain a READ, WRITE or PRINT
statement exceeds the maximum record size of thefile. The record size can be specified
using the RECL = specified in the OPEN statement.

illegal "%s1=" specifier

In the OPEN or CLOSE statement the val ue associated with the %sl specifier isnot avalid
value. Inthe OPEN statement, STATUS may only be one of OLD, NEW, SCRATCH or
UNKNOWN; ACCESS may only be one of SEQUENTIAL, APPEND or DIRECT; FORM
may only be one of FORMATTED or UNFORMATTED; CARRIAGECONTROL may
only be one of YES or NO; RECORDTY PE may only be one of FIXED, TEXT or
VARIABLE; ACTION may only be one of READ, WRITE or READ/WRITE; and

BLANK may only be one of NULL, or ZERO. Inthe CLOSE statement the STATUS may
only be one of KEEP or DELETE.

Input/Output 229

Appendices

10-29 invalid CARRIAGECONTROL specifier/FORM specifier combination
The CARRIAGECONTROL specifier isonly allowed with formatted i/o statements.

10-30 i/0 operation not consistent with file attributes
An attempt was made to read from afile that was opened with ACTION=WRITE or write
to afile that was opened with ACTION=READ. Thismessageisalso issued if you attempt
to writeto aread-only file or read from awrite-only file.

10-31 symbol %s1 not found in NAMELIST

During NAMELIST-directed input, a symbol was specified that does not belong to the
NAMELIST group specified in the i/o statement.

10-32 syntax error during NAMELI ST-directed input

Bad input was encountered during NAMELIST-directed input. Data must be in a special
form during NAMEL IST-directed input.

10-33 subscripting error during NAMELIST-directed i/o
An array was incorrectly subscripted during NAMELIST-directed inpuit.
10-34 substring error during NAMELIST-directed i/o

An character array element or variable was incorrectly substring during
NAMELIST-directed input.

10-35 BLOCKS ZE specifier isinvalid
In the OPEN statement, the block size specifier must be a positive integer expression.
10-36 invalid operation for files with no record structure
An attempt has been made to perform an i/o operation on afile that requires arecord
structure. For example, itisillegal to use a BACKSPACE statement for afile that has no
record structure.

10-37 integer overflow converting character data to integer

An overflow has occurred while converting the character data read to its internal
representation as an integer.

10-38 range exceeded converting character data to floating-point

An overflow or underflow has occurred while converting the character data read to its
internal representation as a floating-point number.

230 Input/Output

Open Watcom F77 Diagnostic Messages

B.25 Program Termination

KO-01

KO-02

KO-03

KO-04

KO-05

KO-06

KO-07

KO-08

KO-09

floating-point divide by zero

An attempt has been made to divide a number by zero in afloating-point expression.
floating-point overflow

The floating-point expression result has exceeded the maximum floating-point number.
floating-point underflow

The floating-point expression result has exceeded the minimum floating-point number.
integer divide by zero

An attempt has been made to divide a number by zero in an integer expression.
program interrupted from keyboard

The user has interrupted the compilation or execution of a program through use of the
keyboard.

integer overflow

Theinteger expression result has exceeded the maximum integer number.

maximum pages of output exceeded

The specified maximum number of output pages has been exceeded. The maximum
number of output pages can be increased by using the "pages=n" option in the command
line or specifying CBPAGES=n in the sourcefile.

statement count has been exceeded

The maximum number of source statements has been executed. The maximum number of
source statements that can be executed can be increased by using the "statements=n" option
in the command line or specifying C$STATEMENTS=n in the sourcefile.

time limit exceeded

The maximum amount of time for program execution has been exceeded. The maximum

amount of time can be increased by using the "time=t" option in the command line or
specifying CSTIME=t in the source file.

Program Termination 231

Appendices

B.26 Library Routines

LI-01

LI1-02

LI1-03

LI1-05

LI-06

LI-07

LI-08

LI1-09

argument must be greater than zero
The argument to the intrinsic function must be greater than zero (i.e., a positive number).
absolute value of argument to arcsine, arccosine must not exceed one

The absolute value of the argument to the intrinsic function ASIN or ACOS cannot be
greater than or equal to the value 1.0.

argument must not be negative

The argument to the intrinsic function must be greater than or equal to zero.
argument(s) must not be zero

The argument(s) to the intrinsic function must not be zero.

argument of CHAR must be in the range zero to 255

The argument to the intrinsic function CHAR must be in the range 0 to 255 inclusive.
CHAR returns the character represented by an 8-bit pattern.

%s1 intrinsic function cannot be passed 2 complex arguments

The second argument to theintrinsic function CMPLX and DCMPLX cannot be a complex
number.

argument types must be the same for the %sl intrinsic function

The second argument to the intrinsic function CMPLX or DCMPLX must be of the same
type asthe first argument. The second argument may only be used when the first argument
isof type INTEGER, REAL or DOUBLE PRECISION.

expecting numeric argument, but %s1 argument was found

The argument to the intrinsic function, INT, REAL, DBLE, CMPLX, or DCMPLX was of
type %s1 and a numeric argument was expected.

length of ICHAR argument greater than one

The length of the argument to the intrinsic function ICHAR must be of type CHARACTER
and length of 1. ICHAR converts a character to its integer representation.

232 Library Routines

Open Watcom F77 Diagnostic Messages

LI-10

LI-11

LI-12

LI-13

LI-14

LI-15

LI-16

LI-17

LI-18

cannot pass %s1 as argument to intrinsic function

Theitem %s1 cannot be used as an argument to an intrinsic function. Only constants,
simple variables, array elements, and substring array elements may be used as arguments.

intrinsic function requires argument(s)

An attempt has been made to invoke an intrinsic function and no actual arguments were
listed.

%s1 argument type isinvalid for this generic function

The type of the argument used in the generic intrinsic function is not correct.

thisintrinsic function cannot be passed as an argument

Only the specific name of the intrinsic function can be used as an actual argument. The
generic name may not be used. When the generic and intrinsic names are the same, use the
INTRINSIC statement.

expecting %s1 argument, but %s2 argument was found

An argument of type %s2 was passed to afunction but an argument of type %sl was
expected.

intrinsic function was assigned wrong type

The declared type of an intrinsic function does not agree with the actual type.

intrinsic function %sl is not FORTRAN 77 standard

The specified intrinsic function is provided as an extension to the FORTRAN 77 language.

argument to ALLOCATED intrinsic function must be an allocatable array or character* (*)
variable

The argument to the intrinsic function ALLOCATED must be an allocatable array or
character* (*) variable.

invalid argument to ISZEOF intrinsic function

The argument to the intrinsic function | SIZEOF must be a user-defined structure name, a
symbol name, or a constant.

B.27 Mixed Mode

Mixed Mode 233

Appendices

MD-01

MD-02

MD-03

MD-04

MD-05

MD-06

MD-07

MD-08

relational operator hasa logical operand

The operands of arelational expression must either be both arithmetic or both character
expressions. The operand indicated is alogical expression.

mixing DOUBLE PRECISION and COMPLEX typesis not FORTRAN 77 standard

The mixing of items of type DOUBLE PRECISION and COMPLEX in an expression isan
extension to the FORTRAN 77 language.

operator not expecting %s1 operands

Operands of type %s1 cannot be used with the indicated operator. The operators**, /, *, +,
and — may only have numeric type data. The operator // may only have character type data.

operator not expecting %sl and %s2 operands

Operands of conflicting type have been encountered. For example, in arelational
expression, it is not possible to compare a character expression to an arithmetic expression.
Also, the type of the left hand operand of the field selection operator must be a user-defined
structure.

complex quantities can only be compared using .EQ. or .NE.

Complex operands cannot be compared using lessthan (.LT.), lessthan or equal (.LE.),
greater than (.GT.), or greater than or equal (.GE.) operators.

unary operator not expecting %sl type

The unary operators, + and —, may only be used with numeric types. The unary operator
.NOT. may be used only with alogical or integer operand. The indicated operand was of
type %s1 which is not one of the valid types.

logical operator with integer operandsis not FORTRAN 77 standard

Integer operands are permitted with the logical operators .AND., .OR., .EQV., .NEQV .,
.NOT. and .XOR. asan extension to the FORTRAN 77 language.

logical operator %sl is not FORTRAN 77 standard

The specified logical operator is an extension to the FORTRAN 77 standard.

B.28 Memory Overflow

234 Memory Overflow

Open Watcom F77 Diagnostic Messages

MO-01

MO-02

MO-03

MO-04

MO-05

MO-06

%s1 exceeds compiler limit of %u2 bytes

An internal compiler limit has been reached. %s1 describes the limit and %d2 specifies the
limit.

out of memory

All available memory has been used up. During the compilation phase, memory is

primarily used for the symbol table. During execution, memory is used for file descriptors
and buffers, and dynamically allocatable arrays and character* (*) variables.

dynamic memory exhausted due to length of this statement - statement ignored

There was not enough memory to encode the specified statement. This message is usually
issued when the compiler islow on memory or if the statement is a very large statement
that spans many continuation lines. This error does not terminate the compiler since it may
have been caused by avery large statement. The compiler attempts to compile the
remaining statements.

attempt to deallocate an unallocated array or character* (*) variable

An attempt has been made to deallocate an array that has not been previously allocated. An
array or character* (*) variable must be allocated using an ALLOCATE statement.

attempt to allocate an already allocated array or character* (*) variable

An attempt has been made to allocate an array or character* (*) variable that has been
previously allocated in an ALLOCATE statement.

object memory exhausted
The amount of object code generated for the program has exceeded the amount of memory

allocated to store the object code. The "/codesize" option can be used to increase the
amount of memory allocated for object code.

B.29 Parentheses

PC-01

PC-02

missing or misplaced closing parenthesis

An opening parenthesis’ (" was found but no matching closing parenthesis’)’ was found
before the end of the statement.

missing or misplaced opening parenthesis

A closing parenthesis’)’ was found before the matching opening parenthesis’(’.

Parentheses 235

Appendices

PC-03 unexpected parenthesis
A parenthesis was found in a statement where parentheses are not expected.
PC-04 unmatched parentheses

The parentheses in the expression are not balanced.

B.30 PRAGMA Compiler Directive

PR-01 expecting symbolic name
Every auxiliary pragmamust refer to asymbol. This error isissued when the symbolic
nameisillegal or missing. Valid symbolic names are formed from the following
characters. adollar sign, an underscore, digits and any letter of the alphabet. Thefirst
character of a symbolic name must be alphabetic, a dollar sign, or an underscore.
PR-02 illegal size specified for VALUE attribute

The VALUE argument attribute of an auxiliary pragma containsin illegal length
specification. Valid length specificationsare 1, 2, 4 and 8.

PR-03 illegal argument attribute

Anillegal argument attribute was specified. Valid argument attributes are VALUE,
REFERENCE, or DATA_REFERENCE.

PR-04 continuation line must contain a comment character in column 1
When continuing aline of an auxiliary pragma directive, the continued line must end with a
back-dlash ('\') character and the continuation line must begin with a comment character
(c,’C or'*")incolumn 1.

PR-05 expecting '%s1’ near ' %s2’

A syntax error was found while processing aPRAGMA directive. %sl identifiesthe
expected information and %s2 identifies where in the pragmathe error occurred.

PR-06 in-line byte sequence limit exceeded

The limit on the number of bytes of code that can be generated in-line using a an auxiliary
pragma has been exceeded. The limit is 127 bytes.

PR-07 illegal hexadecimal data in byte sequence
Anillegal hexadecimal constant was encountered while processing a in-line byte sequence

of an auxiliary pragma. Valid hexadecimal constantsin an in-line byte sequence must
begin with the letter Z or z and followed by a string of hexadecimal digits.

236 PRAGMA Compiler Directive

Open Watcom F77 Diagnostic Messages

PR-08

symbol '%s1’ in in-line assembly code cannot be resolved

The symbol %s1, referenced in an assembly language instruction in an auxiliary pragma,
could not be resolved.

B.31 RETURN Statement

RE-01

RE-02

alternate return specifier only allowed in subroutine

An alternate return specifier, in the RETURN statement, may only be specified when
returning from a subroutine.

RETURN statement in main programis not FORTRAN 77 standard

A RETURN statement in the main program is allowed as an extension to the FORTRAN 77
standard.

B.32 SAVE Statement

SA-01

SA-02

SA-03

COMMON block %s1 saved but not properly defined

The named COMMON block %s1 was listed in a SAVE statement but there is no named
COMMON block defined by that name.

COMMON block %s1 must be saved in every subprogram in which it appears

The named COMMON block %sl appearsin a SAVE statement in another subprogram and
isnot in a SAVE statement in this subprogram. If anamed COMMON block is specified in
a SAVE statement in a subprogram, it must be specified in a SAVE statement in every
subprogram in which that COMMON block appears.

name already appeared in a previous SAVE statement

Theindicated name has already been referenced in another SAVE statement in this
subprogram.

B.33 Statement Functions

SF-01

statement function definition contains duplicate dummy arguments

A dummy argument is repeated in the argument list of the statement function.

Statement Functions 237

Appendices

SF-02

SF-03

SF-04

SF-05

SF-06

SF-07

character length of statement function name must not be (*)

If the type of acharacter function is character, itslength specification must not be (*); it
must be a constant integer expression.

statement function definition containsillegal dummy argument

A dummy argument of type CHARACTER must have alength specification of an integer
constant expression that is not (*).

cannot pass %s1 %s2 to statement function

The actual arguments to a statement function can be any expression except character
expressions involving the concatenation of an operand whose length specification is (*)
unless the operand is a symbolic constant.

%s1 actual argument was passed to %s2 dummy argument

Theindicated actual argument is of type %sl which is not the same type as that of the
dummy argument of type %s2.

incorrect number of arguments passed to statement function %sl

The number of arguments passed to statement function %s1 does not agree with the number
of dummy arguments specified in its definition.

type of statement function name must not be a user-defined structure

The type of a statement function cannot be a user-defined structure. Valid types for
statement functionsare: LOGICAL*1, LOGICAL, INTEGER*1, INTEGER*2,
INTEGER, REAL, DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX, and
CHARACTER. If the statement function is of type CHARACTER, its length specification
must not be (*); it must be an integer constant expression.

B.34 Source Management

SM-01

SM-02

systemfile error reading %s1 - %s2

An /O error, described by %s2, has occurred while reading the FORTRAN sourcefile
%sL.

error opening file %sl - %s2

The FORTRAN source file %s1 could not be opened. The error is described by %s2.

238 Source Management

Open Watcom F77 Diagnostic Messages

SM-03

SM-04

SM-05

SM-06

SM-07

systemfile error writing %sl - %s2
An /O error, described by %s2, has occurred while writing to the file %s1.
error spawning %sl - %s2

An error, described by %s2, occurred while trying to spawn the external program named
%sL.

error while linking

An error occurred while trying to create the executable file. See the WLINK
documentation for a description of the error.

error opening %s1 - too many temporary files exist

The compiler was not able to open atemporary file for intermediate storage during code
generation. Temporary files are created in the directory specified by the TMP environment
variable. If the TMP environment variable is not set, the temporary file is created in the
current directory. Thiserror isissued if an non-existent directory is specified in the TMP
environment variable, or more than 26 concurrent compiles are taking placein a
multi-tasking environment and the directory in which the temporary files are created is the
same for all compilation processes.

generation of browsing information failed
An error occurred during the generation of browsing information. For example, adisk full

condition encountered during the creation of the browser module file will cause this
message to be issued. Browsing information is generated when the /db switch is specified.

B.35 Structured Programming Features

SP-01

SP-02

SP-03

cannot have both ATEND and the END= specifier

Itisnot valid to usethe AT END control statement and the END= option on the READ
statement. Only one method can be used to control the end-of-file condition.

ATEND must immediately follow a READ statement

Theindicated AT END control statement or block does not immediately follow a READ
statement. The AT END control statement or block is executed when an end-of-file
condition is encountered during the read.

block label must be a symbolic name

Theindicated block label must be a symbolic name. A symbolic name must start with a
letter and contain no more than 32 letters and digits. A letter is an upper or lower case

letter of the alphabet, adollar sign ($), or an underscore (). A digit isacharacter in the
range’'0' to’'9'.

Structured Programming Features 239

Appendices

SP-04

SP-05

SP-06

SP-07

SP-08

SP-09

SP-10

could not find a structure to %s1 from

Thismessageisissued in the following cases. .autonote .note There is no control structure
to QUIT from. The QUIT statement will transfer control to the statement following the
currently active control structure or return from aREMOTE BLOCK if no other control
structures are active within the REMOTE BLOCK. .note There is no control structureto
EXIT from. The EXIT statement is used to exit aloop-processing structure such as DO,
DO WHILE, WHILE and LOOP, to return from aREMOTE BLOCK regardless of the
number of active control structures within the REMOTE BLOCK, or to transfer control
from a GUESS or ADMIT block to the statement following the ENDGUESS statement.
.note There is no active looping control structure from which a CY CLE statement can be
used. A CYCLE statement can only be used within a DO, DO WHILE, WHILE and LOOP
control structure. .endnote

REMOTE BLOCK is not allowed in the range of any control structure

An attempt has been made to define aREMOTE BLOCK inside a control structure.
Control structuresinclude IF, LOOP, WHILE, DO, SELECT and GUESS. When a
REMOTE BLOCK definition is encountered during execution, control is transferred to the
statement following the corresponding END BLOCK statement.

the SELECT statement must be followed immediately by a CASE statement

The statement immediately after the SELECT statement must be a CASE statement. The
SELECT statement allows one of a number of blocks of code (case blocks) to be selected
for execution by means of an integer expression in the SELECT statement.

cases are overlapping

The case lists specified in the CASE statementsin the SELECT control structure arein
conflict. Each caselist must specify a unique integer constant expression or range.

select structure requires at least one CASE statement

In the SELECT control structure, there must be at least one CASE statement.

cannot branch to %i1 from outside control structure in line %d2

The statement in line %d2 passes control to the statement %d1 in a control structure.
Control may only be passed out of a control structure or to another placein that control
structure. Control structuresinclude DO, GUESS, IF, LOOP, SELECT, and WHILE.
cannot branch to %i1 inside structure on line %d2

The statement attempts to pass control to statement %d1 in line %d2 which isin a control
structure. Control may only be passed out of a control structure or to another place in that

control structure. Control structures include DO, GUESS, |IF, LOOP, SELECT, and
WHILE.

240 Structured Programming Features

Open Watcom F77 Diagnostic Messages

SP-11

SP-12

SP-13

SP-14

SP-15

SP-16

SP-17

SP-18

SP-19

low end of range exceeds the high end

The first number, the low end of the range, is greater than the second number, the high end
of therange.

default case block must follow all case blocks

The default case block in the SELECT control structure must be the last case block. A case
block may not follow the default case block.

attempt to branch out of a REMOTE BLOCK

An attempt has been made to transfer execution control out of aREMOTE BLOCK. A
REMOTE BLOCK may only be terminated with the END BLOCK statement. Execution
of aREMOTE BLOCK issimilar in concept to execution of a subroutine.

attempt to EXECUTE undefined REMOTE BLOCK %s1

The REMOTE BLOCK %s1 referenced in the EXECUTE statement does not exist in the
current program unit. A REMOTE BLOCK islocal to the program unit in which it is
defined and may not be referenced from another program unit.

attempted to use REMOTE BLOCK recursively

An attempt was made to execute aREMOTE BLOCK which was already active.

cannot RETURN from subprogram within a REMOTE BLOCK

Anillegal attempt has been made to execute a RETURN statement within aREMOTE
BLOCK in asubprogram.

%sl1 statement is not FORTRAN 77 standard

The statement %s1 is an extension to the FORTRAN 77 language.

%s1 block is unfinished

The block starting with the statement %s1 does not have the ending block statement. For
example: ATENDDO-ENDATEND, DO-ENDDO, GUESS-ENDGUESS, IF-ENDIF,
LOOP-ENDLOOP, SELECT-ENDSELECT, STRUCTURE-ENDSTRUCTURE and
WHILE-ENDWHILE.

%sl1 statement does not match with %s2 statement

The statement %s1, which ends a control structure, cannot be used with statement %s2 to

form acontrol structure. Valid control structuresare: LOOP - ENDLOOP, LOOP -
UNTIL, WHILE - ENDWHILE, and WHILE - UNTIL.

Structured Programming Features 241

Appendices

SP-20

SP-21

SP-22

SP-23

SP-24

SP-25

SP-26

SP-27

SP-28

SP-29

incomplete control structure found at %s1 statement

The ending control structure statement %s1 was found and there was no preceding
matching beginning statement. Valid control structuresinclude: ATENDDO -
ENDATEND, GUESS - ENDGUESS, IF - ENDIF, LOOP - ENDLOOP, REMOTE
BLOCK - ENDBLOCK, and SELECT - ENDSELECT.

%s1 statement is not allowed in %s2 definition

Statement %s1 is not allowed between a %s2 statement and the corresponding END %s2
statement. For example, an EXTERNAL statement is not allowed between a
STRUCTURE and END STRUCTURE statement, a UNION and END UNION statement,
or aMAP and END MAP statement.

no such field name found in structure %s1

A structure reference contained a field name that does not belong to the specified structure.
multiple definition of field name %s1

The field name %s1 has already been defined in a structure.

structure %s1 has not been defined

An attempt has been made to declare a symbol of user-defined type %s1. No structure
definition for %s1 has occurred.

structure %sl has already been defined

The specified structure has already been defined as a structure.
structure %s1 must contain at least onefield

Structures must contain at least one field definition.

recursion detected in definition of structure %sl

Structure %s1 has been defined recursively. For example, it isillegal for structure X to
contain afield that isitself a structure named X.

illegal use of structure %s1 containing union
Structures containing unions cannot be used in formatted |/O statements or data initialized.
allocatable arrays cannot be fields within structures

An dlocatable array cannot appear as a field name within a structure definition.

242 Structured Programming Features

Open Watcom F77 Diagnostic Messages

SP-30 an integer conditional expression is not FORTRAN 77 standard
A conditional expression isthe expression that is evaluated and checked to determine a
path of execution. A conditional expression can be found in an IF or WHILE statement.
FORTRAN 77 requires that the conditional expression be alogical expression. Asan
extension, an integer expression isalso allowed. When an integer expressionis used, it is
converted to alogical expression by comparing the value of the integer expression to zero.
SP-31 %s1 statement must be used within %s2 definition

The statement identified by %s1 must appear within a definition identified by %s2.

B.36 Subprograms

SR-01 name can only appear in an EXTERNAL statement once
A function/subroutine name appears more than once in an EXTERNAL statement.

SR-02 character function %s1 may not be called since size was declared as (*)
In the declaration of the character function name, the length was defined to be (*). The (*)
length specification is only allowed for external functions, dummy arguments or symbolic
character constants.

SR-03 %s1 can only be used an an argument to a subroutine

The specified class of an argument must only be passed to a subroutine. For example, an
alternate return specifier isillegal as a subscript or an argument to a function.

SR-04 name cannot appear in both an INTRINS C and EXTERNAL statement
The same name appearsin an INTRINSIC statement and in an EXTERNAL statement.
SR-05 expecting a subroutine name

The subroutine named in the CALL statement does not define a subroutine. A subroutineis
declared in a SUBROUTINE statement.

SR-06 %s1 statement not allowed in main program
The main program can contain any statements except a FUNCTION, SUBROUTINE,
BLOCK DATA, or ENTRY statement. A SAVE statement is allowed but has no effect in

themain program. A RETURN statement in the main program is an extension to the
FORTRAN 77 language.

Subprograms 243

Appendices

SR-07 not an intrinsic FUNCTION name

A namein the INTRINSIC statement is not an intrinsic function name. Refer to the
Language Reference for a complete list of the intrinsic functions.

SR-08 name can only appear in an INTRINS C statement once
An intrinsic function name appears more than once in the intrinsic function list.
SR-09 subprogram recursion detected

An attempt has been made to recursively invoke a subprogram, that is, to invoke an already
active subprogram.

SR-10 two main program units in the samefile
There are two places in the program that signify the start of amain program. The
PROGRAM statement or the first statement that is not enclosed by a PROGRAM,
FUNCTION, SUBROUTINE or BLOCK DATA statement specifies the main program
start.

SR-11 only one unnamed %sl is allowed in an executable program

There may only be one unnamed BLOCK DATA subprogram or main program in an
executable program.

SR-12 function referenced as a subroutine
An attempt has been made to invoke a function using the CALL statement.

SR-13 attempt to invoke active function/subroutine
An attempt has been made to invoke the current function/subroutine or a
function/subroutine that was used to invoke current function/subroutine. The traceback
produced when the error occurred lists all currently active functions/subroutines.

SR-14 dummy argument %s1 is not in dummy argument list of entered subprogram

The named dummy argument found in the ENTRY statement does not appear in the
subroutine's dummy argument list in the subprogram statement.

SR-15 function referenced as %s1 but defined to be %s2
An attempt has been made to invoke a function of the type %s1 but the function was

defined as %s2 in the FUNCTION or ENTRY statement. The function name's type must
be correctly declared in the main program.

244 Subprograms

Open Watcom F77 Diagnostic Messages

SR-16

SR-17

SR-18

SR-19

SR-20

function referenced as CHARACTER* %ul but defined to be CHARACTER* %u2

The character length of the function in the calling subprogram is %d1 but the length used to
define the function is %d2. These two lengths must match.

missing main program

The program file is either empty or contains only subroutines and functions. Each program
require amain program. A main program starts with an optional PROGRAM statement
and ends with an END statement.

subroutine referenced as a function

An attempt has been made to invoke a name as a function and has been defined as a
subroutinein a SUBROUTINE or ENTRY statement.

attempt to invoke a block data subprogram

An attempt has been made to invoke a block data subprogram. Block data subprograms are
used to initialize variables before program execution commences.

structure type of function %s1 does not match expected structure type

The function returns a structure that is not equivalent to the structure expected. Two
structures are equivalent if the types and orders of each field are the same. Unions are
considered equivalent if their sizes are the same. Field names, and the structure name itself,
do not have to be the same.

B.37 Subscripts and Substrings

SS-01

SS-02

SS-03

substringing of function or statement function return value is not FORTRAN 77 standard

The character value returned from a CHARACTER function or statement function cannot
be substring. Only character variable names and array element names may be substring.

substringing valid only for character variables and array elements

An attempt has been made to substring aname that is not defined to be of type
CHARACTER and is neither avariable nor an array element.

subscript expression out of range; %s1 does not exist

An attempt has been made to reference an element in an array that is out of bounds of the
declared array size. The array element %s1 does not exist.

Subscripts and Substrings 245

Appendices

substring expression (%i1:%i2) is out of range

An expression in the substring is larger than the string length or lessthan thevalue 1. The
substring expression must be one in which .millust begin 1 <= %d1 <= %d2 <= len .millust
end

B.38 Statements and Statement Numbers

ST-01

ST-02

ST-03

ST-05

statement number %i1 has already been defined in line %d2

The two statements, in line %d2 and the current line, in the current program unit have the
same statement label number, namely %d1.

statement function definition appears after first executable statement

There is a statement function definition after the first executable statement in the program
unit. Statement function definitions must follow specification statements and precede
executable statements. Check that the statement function name is not an undeclared array
name.

%s1 statement must not be branched to but wasin line %d2

Line %d2 passed execution control down to the statement %s1. The specification
statements, ADMIT, AT END, BLOCK DATA, CASE, ELSE, ELSE IF, END AT END,
END BLOCK, END DO, END LOOP, END SELECT, END WHILE, ENTRY, FORMAT,
FUNCTION, OTHERWISE, PROGRAM, QUIT, REMOTE BLOCK, SAVE,
SUBROUTINE, and UNTIL statements may not have control of execution transferred to it.

branch to statement %i1 in line %d2 not allowed

An attempt has been made to pass execution control up to the statement labelled %d1 in
line %d2. The specification statements, ADMIT, AT END, BLOCK DATA, CASE, ELSE,
ELSE IF, END AT END, END BLOCK, END DO, END LOOP, END SELECT, END
WHILE, ENTRY, FORMAT, FUNCTION, OTHERWISE, PROGRAM, QUIT, REMOTE
BLOCK, SAVE, SUBROUTINE, and UNTIL statements may not have control of
execution transferred to it.

specification statement must appear before %s1 isinitialized

The variable %sl has been initialized in a specification statement. A COMMON or
EQUIVALENCE statement then references the variable. The COMMON or
EQUIVALENCE statement must appear before the item can beinitialized. Usethe DATA
statement to initialize datain this case.

246 Statements and Statement Numbers

Open Watcom F77 Diagnostic Messages

ST-06

ST-07

ST-08

ST-09

ST-10

ST-11

ST-12

ST-13

ST-14

statement %i1 was referenced as a FORMAT statement in line %d2

The statement in line %d2 references statement label %d1 as a FORMAT statement. The
statement at that label is not aFORMAT statement.

IMPLICIT statement appearstoo late

The current IMPLICIT statement is out of order. The IMPLICIT statement may be
interspersed with the PARAMETER statement but must appear before other specification
statements.

this statement will never be executed due to the preceding branch

Because execution control will always be passed around the indicated statement, the
statement will never be executed.

expecting statement number

The keyword GOTO or ASSIGN has been detected and the next part of the statement was
not a statement number as was expected.

statement number %i1 was not used as a FORMAT statement in line %d2

The statement at line %d2 with statement number %d1 is not a FORMAT statement but the
current statement uses statement number %d1 asif it |abelled a FORMAT statement.

specification statement appearstoo late

Theindicated specification statement appears after a statement function definition or an
executable statement. All specification statements must appear before these types of
statements.

%s1 statement not allowed after %s2 statement

The statement %s1 cannot be the object of a %s2 statement. %s2 represents alogical |F or
WHILE statement. These statementsinclude: specification statements, ADMIT, AT END,
CASE, DO, ELSE, ELSE IF END, END AT END, END BLOCK, END DO, END GUESS,
ENDIF, END LOOP, END SELECT, END WHILE, ENTRY, FORMAT, FUNCTION,
GUESS, logical IF, block IF, LOOP, OTHERWISE, PROGRAM, REMOTE BLOCK,
SAVE, SELECT, SUBROUTINE, UNTIL, and WHILE.

statement number must be 99999 or less

The statement label number specified in the indicated statement has more than 5 digits.

statement number cannot be zero

The statement label number specified in the indicated statement is zero. Statement label
numbers must be greater than 0 and less than or equal to 99999.

Statements and Statement Numbers 247

Appendices

ST-15

ST-16

ST-17

ST-18

ST-19

ST-20

ST-21

ST-22

ST-23

this statement could branch to itself

Theindicated statement refers to a statement label number which appears on the statement
itself and therefore could branch to itself, creating an endless loop.

missing statement number %i1 - used in line %d2

A statement with the statement label number %d1 does not exist in the current program
unit. The statement label number is referenced in line %d2 of the program unit.

undecodeabl e statement or misspelled word %s1

The statement cannot be identified as an assignment statement or any other type of
FORTRAN statement. The first word of a FORTRAN statement must be a statement
keyword or the statement must be an assignment statement.

statement %i1 will never be executed due to the preceding branch

The statement with the statement label number of %d1 will never be executed because the
preceding statement will always pass execution control around the statement and no other
reference is made to the statement |abel.

expecting keyword or symbolic name

Thefirst character of a statement is not an alphabetic. The first word of a statement must
be a statement keyword or a symbolic name. Symbolic names must start with aletter
(upper case or lower case), adollar sign ($) or an underscore ().

number in %sl statement is longer than 5 digits

The number in the PAUSE or STOP statement is longer than 5 digits.

position of DATA statement is not FORTRAN 77 standard

The FORTRAN 77 standard requires DATA statements to appear after all specification
statements. As an extension to the standard, Watcom FORTRAN 77 allows DATA
statements to appear before specification statements. Note that in the latter case, the type of
the symbol must be established before data initialization occurs.

no FORMAT statement with given label

The current statement refersto the label of a FORMAT statement but the label appears on
some other statement that isnot a FORMAT statement.

statement number not in list or not the label of an executable statement

The specified statement number in the indicated statement is not in the list of statement
numbers or it is not the statement label number of an executable statement.

248 Statements and Statement Numbers

Open Watcom F77 Diagnostic Messages

ST-24

attempt to branch into a control structure

An attempt has been made to pass execution control into a control structure. A statement
uses a computed statement label number to transfer control. This value references a
statement inside a control structure.

B.39 Subscripted Variables

Sv-01

Sv-02

Sv-03

Sv-04

SV-05

SV-06

Sv-07

variable %sl in array declarator must bein COMMON or a dummy argument

The variable %s1 was used as an array declarator in a subroutine or function but the
variable was not in a COMMON block nor was it adummy argument in the FUNCTION,
SUBROUTINE or ENTRY statement.

adjustable/assumed size array %s1 must be a dummy argument

The array %s1 used in the current subroutine or function must be a dummy argument.
When the array declarator is adjustable or assumed-size, the array name must be a dummy
argument.

invalid subscript expression

Theindicated subscript expression is not avalid integer expression or the high bound of the
array isless than the low bound of the array when declaring the size of the array.

invalid number of subscripts

The number of subscripts used to describe an array element does not match the number of
subscriptsin the array declaration. The maximum number of subscripts allowed is 7.

using %s1 name incorrectly without list

An attempt has been made to assign a value to the declared array %s1. Values may only be
assigned to elementsin the array. An array element isthe array name followed by integer
expressions enclosed in parentheses and separated by commas.

cannot substring array name %s1

An attempt has been made to substring the array %s1. Only an array element may be
substring.

%s1 treated as an assumed size array
A dummy array argument has been declared with 1 in the last dimension. Thearray is
treated asif an'*’ had been specified in place of the 1. Thisisdone to support afeature

called "pseudo-variable dimensioning" which was supported by some FORTRAN |V
compilersand isidentical in concept to FORTRAN 77 assumed-size arrays.

Subscripted Variables 249

Appendices

SV-08

Sv-09

assumed size array %s1 cannot be used asani/o list itemor a format/unit identifier

Assumed size arrays (arrays whose last dimension is’*") must not appear as an i/o list item
(i.,e. inaPRINT statement), aformat identifier or an interna file specifier.

limit of 65535 elements per dimension has been exceeded

Onthe IBM PC, for 16-bit real mode applications, the number of elementsin a dimension
must not exceed 65535.

B.40 Syntax Errors

SX-01

SX-02

SX-03

SX-04

SX-05

SX-06

250 Syntax Errors

unexpected number or name %sl

The number or name %sl isin an unexpected place in the statement.

bad sequence of operators

Theindicated arithmetic operator isout of order. An arithmetic operator is one of the
following: **,*,/, +, and —. All arithmetic operators must be followed by at least a
primary. A primary isan array element, constant, (expression), function name, or variable
name.

invalid operator

Theindicated operator between the two arithmetic primariesis not avalid operator. Valid
arithmetic operatorsinclude: **,*,/, +,and —. A primary isan array element, constant,
(expression), function name, or variable name.

expecting end of statement after right parenthesis

The end of the statement isindicated by the closing right parenthesis but more characters
were found on theline. Multiple statements per line are not allowed in FORTRAN 77.

expecting an asterisk

The next character of the statement should be an asterisk but another character was found
instead.

expecting colon

A colon () was expecting but not found. For example, the colon separating the low and
high bounds of a character substring was not found.

Open Watcom F77 Diagnostic Messages

SX-07

SX-08

SX-09

SX-10

SX-11

SX-12

SX-13

SX-14

expecting colon or end of statement

On acontrol statement, aword was found at the end of the statement that cannot be related
to the statement. The last word on several of the control statements may be a block label.
All block 1abels must be preceded by a colon (:).

missing comma

A commawas expected and is missing. There must be a comma after the statement
keyword AT END when a statement follows. A comma must occur between the two
statement labelsin the GO TO statement. A comma must occur between the expressionsin
the DO statement. A comma must occur between the names listed in the DATA statement
and specification statements. A comma must occur between the specifiersin 1/0
Statements.

expecting end of statement

The end of the statement was expected but more words were found on the line and cannot
be associated to the statement. FORTRAN 77 only allows for one statement per line.

expecting integer variable
The name indicated in the statement must be of type INTEGER but is not.
expecting %s1 name

A name with the characteristic %sl was expected at the indicated place in the statement but
ismissing.

expecting an integer

The length specifier, asin the IMPLICIT statement, must be an integer constant or an
integer constant expression. The repeat specifier of the value to be assigned to the
variables, asin the DATA statement, must be an integer constant or an integer constant
expression.

expecting INTEGER, REAL, or DOUBLE PRECISION variable

Theindicated DO variable is not one of the types INTEGER, REAL, or DOUBLE
PRECISION.

missing operator

Two primaries were found in an expression and an operator was not found in between. A
primary isan array element, constant, (expression), function name, or variable name.

Syntax Errors 251

Appendices

SX-15

SX-16

SX-17

SX-18

SX-19

SX-20

SX-21

SX-22

SX-23

expecting a slash

A dlash is expected in the indicated place in the statement. Slashes must be balanced as
parentheses. Slashes are used to enclose the initial data values in specification statements
or to enclose names of COMMON blocks.

expecting %sl expression

An expression of type %sl isrequired.

expecting a constant expression

A constant expression is required.

expecting INTEGER, REAL, or DOUBLE PRECISION expression

Theindicated expression is not one of type INTEGER, REAL, or DOUBLE PRECISION.
Each expression following the DO variable must be an expression of one of these types.

expecting INTEGER or CHARACTER constant

In the PAUSE and STOP statement, the name following the keyword must be a constant of
type INTEGER or of type CHARACTER. This constant will be printed on the console
when the statement is executed.

unexpected operator

An operand was expected but none was found. For example, in an 1/0O statement, the
commais used to separate /O list items. Two consecutive commas without an 1/0 list item
between them would result in this error.

no closing quote on literal string

The closing quote of aliteral string was not found before the end of the statement.

missing or invalid constant

InaDATA statement, the constant required to initialize a variable was not found or
incorrectly specified.

expecting character constant

A character constant is required.

B.41 Type Statements

252 Type Statements

Open Watcom F77 Diagnostic Messages

TY-01

TY-02

TY-03

TY-04

TY-05

TY-06

TY-07

length specification before array declarator is not FORTRAN 77 standard

An array declarator specified immediately after the length specification of the array is an
extension to the FORTRAN 77 language.

%i1 isanillegal length for %s2 type

The length specifier %d1 is not valid for the type %s2. For type LOGICAL, valid lengths
are 1l and 4. For thetype INTEGER, valid lengthsare 1, 2, and 4. For the type REAL,
valid lengths are 4 and 8. For the type COMPLEX, valid lengths are 8 and 16. On the IBM
PC, the length specifier for items of type CHARACTER must be greater than 0 and not
exceed 65535.

length specifier in %sl statement is not FORTRAN 77 standard

A length specifier in certain type specification statementsis an extension to the FORTRAN
77 language. Theseinclude: LOGICAL*1, LOGICAL*4, INTEGER*1, INTEGER*2,
INTEGER*4, REAL*4, REAL*8, COMPLEX*8, and COMPLEX* 16.

length specification not allowed with type %sl

A length specification is not allowed in a DOUBLE PRECISION or DOUBLE COMPLEX
Statement.

type of %sl has already been established as %s2

Theindicated name %sl1 has aready been declared to have a different type, namely %s2.
The name %s1 cannot be used in this specification statement.

type of %s1 has not been declared

Theindicated name %s1 has not been declared. This message isonly issued when the
IMPLICIT NONE specification statement is used.

%sL of type %s2 isillegal in %s3 statement

The symbol %s1 with type %s2 cannot be used in statement %s3. For example, a symbol
of type STRUCTURE cannot be used in a PARAMETER statement.

B.42 Variable Names

VA-01

illegal use of %s1 name %s2 in %s3 statement

The name %s2 has been defined as %s1 and cannot be used as a name in the statement %s3.

Variable Names 253

Appendices

VA-02

VA-03

VA-04

VA-05

VA-06

VA-07

VA-08

VA-09

254 Variable Names

symbolic name %sl is longer than 6 characters

Symbolic names greater than 6 charactersis an extension to the FORTRAN 77 language.
The maximum length is 32 characters.

%s1 has already been defined as a %s2

The name %s1 has been previously defined as a %s2 in another statement and cannot be
redefined as specified in the indicated statement.

%s1 %s2 has not been defined

The name %s2 has been referenced to be a %s1 but has not been defined as such in the
program unit.

%s1 is an unreferenced symbol
The name %sL1 has been defined but not referenced.
%sl1 already belongs to this NAMELIST group

The name %s1 can only appear inaNAMELIST group once. However, a name can belong
to multiple NAMELIST groups.

%s1 has been used but not defined

%s1 has not been defined before using it in away that requiresits definition. Note that
symbols that are equivalenced, belong to a common block, are dummy arguments, or
passed as an argument to a subprogram, will not be checked to ensure that they have been
defined before requiring a value.

dynamically allocating %sl is not FORTRAN 77 standard

Allocatable storage are extensions to the FORTRAN 77 standard.

%s1 in NAMELIST %s2 isillegal

Symbol %s1 appearing in NAMELIST %s2 isillegal. Symbols appearinginaNAMELIST
cannot be dummy arguments, allocatable, or of a user-defined type.

Index

38610

aborts (pragma) 132, 183
ACCESS= 39
ACTION= 44, 56
addressing arguments 106, 156
alias name (pragma) 114, 164
alias names
__cdecl 116, 166
_ fastcall 116, 166
__fortran 116, 166
__pascal 116, 166
__stdcall 116, 166
__syscall 166
__watcall 116, 166
ALIGN option 9
argument list (pragma) 121, 172
arguments 59, 69
passing by datareference 123, 174
passing by reference 122, 173
passing by value 123, 174
removing from the stack 128, 179
arguments on the stack 126, 177
assembler subprograms
subroutine FINTR 61
subroutine FINTRF 61
AUTOEXEC.BAT 24
AUTOMATIC option 9
AUX 45
auxiliary pragma 114, 164

BACKSPACE 42

BD option 9

big code model 97, 145
big datamodel 97, 145
BINNT directory 200
BINP directory 200

BINW directory 199
BIOScal 127,178
BLOCKSIZE= 42, 44
BM option 9
BOUNDS option 9
buffer size 44

BW option 9

callback functions 121
calling conventions 101, 149
caling information (pragma) 119, 170
calling subprograms

far 119, 170

near 119, 170
CARRIAGECONTROL= 41, 43
CC option 9
__cdecl diasname 116, 166
__cdecl 116, 166, 171
CHARACTER datatype 84
CHINESE option 10
class

CODE 100, 148

FAR_DATA 100, 148
CLOCK$ 47
CLOSE 48,58
CODE class 100, 148
code generation

memory regquirements 202
code models

big 97, 145

smal 97, 145
CODE option 10
COML1 45, 47
COM2 45, 47
COM3 47
COM4 47
command line 59, 69
command line format 23
compact memory model 146
COMPAT 44
compiletime 202
compiler 23
compiler directives

define 10, 35

gect 33

else 37

elseifdef 37

elseifndef 37

255

Index

endif 36

ifdef 36

ifndef 36

include 34

pragma 35

undefine 36
compiler options 5
compiler options summary 5
compiling

command line format 23
COMPLEX datatype 84
COMPLEX*16 datatype 84
COMPLEX*8 datatype 84
CON 45, 47

Win32 55
conditional compilation 10, 33
CONFIG.SYS 24
connection precedence 51
console device 55
Ctrl/Break 64

Dincolumnl 37

D1 option 10

D2 option 10

data models
big 97, 145
huge 98
small 97, 145

data types
CHARACTER 84
COMPLEX 84
COMPLEX*16 84
COMPLEX*8 84
DOUBLE PRECISION 83
INTEGER 82
INTEGER*1 82
INTEGER*2 82
INTEGER*4 82
LOGICAL 81
LOGICAL*1 81
LOGICAL*4 81
REAL 82
REAL*4 82
REAL*8 83

DEBUG option 10

debugging
bounds check 9-10
di 10

256

d2 10

traceback 10
debugging macro

__debug__ 37-38
debugging statements 37
default memory model 16, 16
default options 7
default windowing

dwfDeleteOnClose 76

dwfSetAboutDIlg 76

dwfSetAppTitle 77

dwfSetConTitle 78

dwfShutDown 78

dwfYield 79
defaults

file name 49, 58

record access 58

record length 58

record type 57
DEFINE compiler directive 35
DEFINE=<macro> option 10
DENYNONE 44
DENYRD 44
DENYRW 44
DENYWR 44
DEPENDENCY option 11
descriptor option 11, 103, 152
device

AUX 45

CLOCKS 47

COM1 45, 47

COM2 45, 47

COM3 47

COM4 47

CON 45, 47

console 55

KBD$ 47

LPT1 45, 47

LPT2 45, 47

LPT3 45, 47

MOUSE$ 47

NUL 45, 47

POINTERS$ 47

printer 56

PRN 45, 47

SCREENS$ 47

serial 57
device names 45, 47
diagnostic messages

language 204
diagnostics

error 26

Open Watcom F77 25

warning 26

Index

DISK option 11

DLL applications 9, 21

DOS subdirectory 29
DOSCALLS.LIB 198
DOSPML.LIB 30

DOSPMM.LIB 30

DOUBLE PRECISION datatype 83
drive name 45

DT=<size> option 11
dwfDeleteOnClose function 76
dwfSetAboutDIg function 76
dwfSetAppTitle function 77
dwfSetConTitle function 78
dwfShutDown function 78
dwfYield function 79

dynamic link library applications 9, 21

EJECT compiler directive 33
EL SE compiler directive 37
EL SEIFDEF compiler directive 37
EL SEIFNDEF compiler directive 37
emu87.lib 32
END= 56
ENDIF compiler directive 36
English diagnostic messages 204
environment string

24

= substitute 24
environment variable 49
environment variables

FINCLUDE 15, 34-35, 59-61, 63-70, 72-74, 197

LFN 197

LIB 197

LIBDOS 198

LIBOS2 198
LIBPHAR 198-199
LIBWIN 198

NO87 32,199

PATH 34, 197, 199-200
TMP 200

use 197

WATCOM 197-199, 201
WCGMEMORY 202
WCL 201

WCL386 201

WD 202-203

WDW 203

WFC 24-25, 203

WFC386 24, 203-204

WFL 204

WFL386 204

WLANG 204-205
error file

.ERR 25
ERROR message 207
ERRORFILE option 11
execute a program 66

exiting with return code 59

EXPLICIT option 11
export (pragma) 121, 172

exporting symbolsin dynamic link libraries 121, 172

extension 45

EXTENSION message 207

EXTENSIONS option 11
EZ option 12

far (pragma) 119, 170
far call 97, 145

farle 171

farl6 (pragma) 170
_ farl6 171

FAR_DATA class 100, 148
_fastcall dliasname 116, 166

_ fastcall 116, 166
FAT file system 45
FDIV bug 14
FEXIT subroutine 59
FGETCMD function 59
FGETENYV function 60
file connection 48
file defaults 57
file designation 45
file handling 39
file name
case sensitivity 45
default 49, 58
filenaming 39
file sharing 44
FILE= 583, 55-57
filename 45
FILESIZE 60

FINCLUDE environment variable 15, 34-35, 59-61,

63-70, 72-74, 197
FINTR subroutine 61
FINTRF subroutine 61
FIXED 42

257

Index

FIXED record type 42 stack growing 21
flat memory model 146 GROWHANDLES function 69
flat model GSFLOATS option 14
libraries 30, 147
float 119
floating-point
consistency of options 13 H
option 13

FLUSHUNIT function 62
FNEXTRECL function 63

FO=<obj_default> option 12 HC option 14
FORMAT option 12 header file
FORMATTED 42 including 27
formatted record 39-40 searching 34
FORTRAN 77 libraries HPFSfile system 45, 47
flat 30 huge data model 98
huge 30 huge memory model 98
in-line 80x87 instructions 30 huge model
large 30 I|brar.|es 30
medium 30 HW option 15
small 30
__fortran alias name 116, 166
FORTRAN libraries
flat 147 |Z|
small 147
_ fortran 116, 166
FP2 option 13 i86 10
FP3 option 13 IARGC function 69
FP5 option 13 IE 72
FP6 option 13 IFDEF compiler directive 36
FPC option 12 IFNDEF compiler directive 36
FPD option 14 IGETARG function 69
FPI option 12 IMPLICIT NONE 11

FPI87 option 12

fpi 10

FPR option 14

FSFLOATS option 14
FSIGNAL function 64
FSPAWN function 66

FSY STEM function 66
FTRACEBACK subroutine 67

in-line 80x87 floating-point instructions 120
in-line 80x87 instructions
libraries 30
in-line assembly
in pragmas 119, 170
in-line assembly language instructions
using mnemonics 120, 171
in-line subprograms 119, 171
in-line subprograms (pragma) 127, 178
INCLIST option 15

G INCLUDE 34-35
directive 27
header file 27
source file 27
general protection fault 21 !NCLUD_E compiler directive 34
GETDAT subroutine 68 includefile
GETTIM subroutine 68 searching 34
GRO increased precision 22

INQUIRE 48, 53, 55

258

Index

INTEGER datatype 82

INTEGER*1 data type 82

INTEGER*2 data type 82

INTEGER*4 datatype 82

invoking Open Watcom FORTRAN 77 23
IOSTAT= 56

IPROMOTE option 15

Japanese diagnostic messages 204
JAPANESE option 15

KBD$ 47
KOREAN option 15

language 204
large memory model 98, 146
large model
libraries 30
LFN environment variable 197
LFWITHFF option 15
LIB environment variable 197
LIBDOS environment variable 198
LIBINFO option 16
LIBOS2 environment variable 198
LIBPHAR environment variable 198-199
library path 201
LIBWIN environment variable 198
LIST option 16
loadds (pragma) 120, 171
loading DS before calling a subprogram 120, 171
loading DS in prologue sequence of a subprogram 120,
172
LOGICAL datatype 81
logical file name 53
device remapping 54
display 55
extended file names 54

LOGICAL*1 datatype 81
LOGICAL*4 datatype 81
LONGJIMP subroutine 72
LPT1 45,47
LPT2 45,47
LPT3 45,47

M

macros 10
predefined 10
MANGLE option 16
math coprocessor 32
option 13
math error functions 70
MC option 16
medium memory model 98, 146
medium model
libraries 30
memory layout 99, 147
memory model 25
memory models
16-bit 97
32-bit 145
compact 146
flat 146
huge 98
large 98, 146
libraries 99, 146
medium 98, 146
mixed 98, 146
small 146
MF option 16
MH option 16
mixed memory model 98, 146
ML option 16
MM option 17
modify exact (pragma) 136-137, 188
modify nomemory (pragma) 133, 135, 184, 187
modify reg_set (pragma) 141, 192
MOUSES$ 47
MS option 17
multi-threaded applications 9, 21

NAME= 55

259

Index

near (pragma) 119, 170
near call 97, 145
NETWARE subdirectory 29
no8087 (pragma) 129, 180

NO87 environment variable 32, 199

NT subdirectory 29

NUL 45, 47

numeric data processor 32
option 13

OB option 17
OBP option 17
OC option 17
OD option 17
ODO option 17
OF option 17
OH option 18
Ol option 18
OK option 18
OL option 18
OL+ option 18
OM option 18
ON option 18
OP option 19
OPEN 39-44, 48, 51-53, 55-58
options 5

AUTOMATIC 9,5
BD 9,5

BM 9,5

BOUNDS 9,5

BW 9,5

CC 9,5

CHINESE 10,5
CODE 10,5

D1 10,5

D2 10,5

DEBUG 10,5

define 5
DEFine=<macro> 10, 35
DEPENDENCY 11,5

260

descriptor 11, 5, 103, 152

DISK 11,5

dt 6

DT=<size> 11
ERRORFILE 11,6
EXPLICIT 11,6
EXTENSIONS 11, 6
EZ 12,6
fo 6

FO=<obj_default> 12

FORMAT 12,6
FP2 13,6

FP3 13,6

FP5 13,6

FP6 13,6

fpc 12, 6, 32
FPD 14,6

fpi 12, 6, 31-32
fpi87 12, 6, 32
FPR 14,6
FSFLOATS 14,6
GSFLOATS 14,6
HC 14,6

HD 14,6

HW 15, 6
INCLIST 15,6
INCPATH 15, 6
IPROMOTE 15, 6
JAPANESE 15, 6
KOREAN 15, 6
LFWITHFF 15, 6
LIBINFO 16, 6
LIST 16,6

m? 29
MANGLE 16, 6
MC 16, 6

MF 16,6

MH 16, 6

ML 16,6

MM 17,6

MS 17,6

OB 17,6

OBP 17,6

OC 17,6

oD 17,6

ODO 17,6

OF 17,6

OH 18,6

Ol 18,6

OK 18,6

OL 18,6

OL+ 18,6

OM 18,6

ON 18,6

Index

OP 19,6

OR 19,6

0S 19,6

OT 19,7

OX 19,7

PRINT 19,7

QUIET 20,7

REFERENCE 20, 7

RESOURCE 20, 7

SAVE 20,7

SC 20,7

SEPCOMMA 20, 7

SG 21,7

SHORT 21,7

SR 21,7

SSFLOATS 21,7

STACK 21,7

SYNTAX 21,7

TERMINAL 21,7

TRACE 21,7

TYPE 21,7

WARNINGS 21,7

WILD 22,7

WINDOWS 22,7

XFLOAT 22,7

XLINE 22,7
options summary 5
OR option 19
OSoption 19
0s/2

DOSCALLS.LIB 198
OS2 subdirectory 29
OT option 19
overview of contents 3
OX option 19

parm (pragma) 124, 175
parm caller (pragma) 128, 179
parm nomemory (pragma) 135, 187
parm reg_set (pragma) 138, 189
parm reverse (pragma) 128, 179
parm routine (pragma) 128, 179
__pascal diasname 116, 166
_ pascal 116, 166, 171
passing arguments 102, 150

in 80x87 registers 138, 190

in registers 102, 150
passing arguments by value 115, 165

path 45
PATH environment variable 34, 197, 199-200
Pentium bug 14
POINTERS$ 47
pragma 113, 163
PRAGMA compiler directive 35
pragmas
=const 119, 170
aborts 132, 183
aliasname 115, 165
alternate name 117, 169
auxiliary 114, 164
caling information 119, 170
describing argument lists 121, 172
describing return value 129, 180
export 121, 172
far 119, 170
farl6 170
in-line assembly 119, 170
in-line subprograms 127, 178
loadds 120, 171
modify exact 136-137, 188
modify nomemory 133, 135, 184, 187
modify reg_set 141, 192
near 119, 170
no8087 129, 180
notation used to describe 113, 163
parm 124, 175
parm caller 128, 179
parm nomemory 135, 187
parm reg_set 138, 189
parm reverse 128, 179
parm routine 128, 179
struct caller 129-130, 180-181
struct float 129, 132, 180, 183
struct routine 129-130, 180-181
value 129-130, 132, 180-181, 183
value [8087] 132, 183
value no8087 132, 183
valuereg_set 141, 192
preconnecting files 51
preconnection 48, 51
predefined macros

386 10,38
_fpi__ 10,38
_i86__ 10,38

__stack _conventions 10, 38
predictable code size 202
print file 43
PRINT option 19
printer device 56
PRN 45, 47

261

Index

QUIET option 20

random number generator 75
READ 41, 48, 51, 56
REAL datatype 82
REAL*4 datatype 82
REAL*8 datatype 83
RECL= 40-43, 58
record

formatted 40

unformatted 39-40
record access 39

default 58
record format 39
record length

default 58
record size 43
record type 42

default 57
RECORDTY PE

FIXED 42

TEXT 42

VARIABLE 42
RECORDTY PE= 41-42
REFERENCE option 20
RESOURCE option 20
RETURN 103, 151
return code 59
return value (pragma) 129, 180

SAVE 20
SAVE option 20
SC option 20
SCREENS$ 47
SEEKUNIT function 71
segment

_TEXT 100, 148

262

segment ordering 99, 147
SEPCOMMA option 20
serial device 57
SET 24
FINCLUDE environment variable 34-35
NO87 environment variable 32
SET command 49, 53
SETIMP function 72
SETSYSHANDLE function 73
SG option 21
SHARE= 44
short option 21, 84
side effects of subprograms 133, 184
small code model 97, 145
small datamodel 97, 145
small memory model 146
small model
libraries 30, 147
software quality assurance 202
source file
including 27
searching 34
SR option 21
SSFLOATS option 21
stack growing 21
__GRO 21
STACK option 21
stack size 9
stack-based calling convention 150-152, 156, 160
writing assembly language subprograms 154
__stack_conventions__ 10
stacking arguments 126, 177
__stdcall aliasname 116, 166
__stdcall 116, 166
string descriptor 84
struct caller (pragma) 129-130, 180-181
struct float (pragma) 129, 132, 180, 183
struct routine (pragma) 129-130, 180-181
subprograms
FEXIT subroutine 59
FGETCMD function 59
FGETENYV function 60
FILESIZE 60
FLUSHUNIT function 62
FNEXTRECL function 63
FSIGNAL function 64
FSPAWN function 66
FSY STEM function 66
FTRACEBACK subroutine 67
function IARGC 69
function IGETARG 69
GROWHANDLES function 69
LONGJIMP subroutine 72
math error functions 70

Index

SEEKUNIT function 71
SETIMP function 72
SETSY SHANDLE function 73
subroutine GETDAT 68
subroutine GETTIM 68
SYSHANDLE function 74
symbol attributes 114, 164
SYNTAX option 21
__syscall aliasname 166
__syscall 166
SYSHANDLE function 74
system initialization
WindowsNT 24
system initialization file
AUTOEXEC.BAT 24
CONFIG.SYS 24

terminal device 55
TERMINAL option 21

TEXT 42

TEXT record type 42

_TEXT segment 100, 148
TMP environment variable 200
TRACE option 21

TYPE option 21

UNDEFINE compiler directive 36

UNFORMATTED 42

unformatted record 39-40

UNIT 49

unit* 48

unit5 48

unit 6 49

unit connection 48

URAND function 75

USE16 segments 147

utility subprograms
FEXIT subroutine 59
FGETCMD function 59
FGETENV function 60
FILESIZE 60
FLUSHUNIT function 62
FNEXTRECL function 63

FSIGNAL function 64
FSPAWN function 66

FSY STEM function 66
FTRACEBACK subroutine 67
function IARGC 69

function IGETARG 69
function URAND 75
GROWHANDLES function 69
LONGJIMP subroutine 72

math error functions 70
SEEKUNIT function 71
SETJIMP function 72
SETSYSHANDLE function 73
subroutine FINTR 61
subroutine FINTRF 61
subroutine GETDAT 68
subroutine GETTIM 68
SYSHANDLE function 74

value (pragma) 129-130, 132, 180-181, 183
value [8087] (pragma) 132, 183

value no8087 (pragma) 132, 183
valuereg_set (pragma) 141, 192
VARIABLE 42

VARIABLE record type 42

w

WARNING message 207

WARNINGS option 21

__watcall aliasname 116, 166

__watcall 116, 166

WATCOM environment variable 197-199, 201
WCGMEMORY environment variable 202
WCL environment variable 201

WCL 386 environment variable 201

WD environment variable 202-203

WDW environment variable 203

WFC environment variable 24-25, 203
WFC386 environment variable 24, 203-204
WFL environment variable 204

WFL 386 environment variable 204

WILD option 22

WIN subdirectory 29

Win32

263

Index

CON 55
Windows NT
systemiinitialization 24
WINDOWS option 22
Windows SDK
Microsoft 30
WINDOWS.LIB 30
WLANG environment variable 204-205
WRITE 40-41, 48, 51-52, 62

XFLOAT option 22
XLINE option 22

264

