
Open Watcom FORTRAN 77

Programmer’s Guide

Version 2.0

Notice of Copyright

Copyright  2002-2023 the Open Watcom Contributors. Portions Copyright  1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit https://github.com/open-watcom/open-watcom-v2 .

Portions of this manual are reprinted with permission from Tenberry Software, Inc.

ii

Preface
The Open Watcom FORTRAN 77 Programmer’s Guide includes the following major components:

• DOS Programming Guide

• The DOS/4GW DOS Extender

• Windows 3.x Programming Guide

• Windows NT Programming Guide

• OS/2 Programming Guide

• Novell NLM Programming Guide

• Mixed Language Programming

• Common Problems

Acknowledgements

This book was produced with the Open Watcom GML electronic publishing system, a software tool
developed by WATCOM. In this system, writers use an ASCII text editor to create source files containing
text annotated with tags. These tags label the structural elements of the document, such as chapters,
sections, paragraphs, and lists. The Open Watcom GML software, which runs on a variety of operating
systems, interprets the tags to format the text into a form such as you see here. Writers can produce output
for a variety of printers, including laser printers, using separately specified layout directives for such things
as font selection, column width and height, number of columns, etc. The result is type-set quality copy
containing integrated text and graphics.

Many users have provided valuable feedback on earlier versions of the Open Watcom FORTRAN 77
compilers and related tools. Their comments were greatly appreciated. If you find problems in the
documentation or have some good suggestions, we would like to hear from you.

July, 1997.

Trademarks Used in this Manual

DOS/4G and DOS/16M are trademarks of Tenberry Software, Inc.

OS/2 is a trademark of International Business Machines Corp. IBM Developer’s Toolkit, Presentation
Manager, and OS/2 are trademarks of International Business Machines Corp. IBM is a registered
trademark of International Business Machines Corp.

Intel and Pentium are registered trademarks of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. Windows NT is a
trademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.

iii

Phar Lap, 286|DOS-Extender and 386|DOS-Extender are trademarks of Phar Lap Software, Inc.

UNIX is a registered trademark of The Open Group.

WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

iv

Table of Contents

1 Open Watcom FORTRAN 77 Application Development ... 1

DOS Programming Guide .. 3

2 Creating 16-bit DOS Applications ... 5
2.1 The Sample Application .. 5
2.2 Building and Running the Sample DOS Application .. 5
2.3 Debugging the Sample DOS Application ... 6

3 Creating 32-bit Phar Lap 386|DOS-Extender Applications ... 9
3.1 The Sample Application .. 9
3.2 Building and Running the Sample 386|DOS-Extender Application ... 10
3.3 Debugging the Sample 386|DOS-Extender Application ... 10

4 Creating 32-bit DOS/4GW Applications ... 13
4.1 The Sample Application .. 13
4.2 Building and Running the Sample DOS/4GW Application .. 13
4.3 Debugging the Sample DOS/4GW Application .. 14

5 32-bit Extended DOS Application Development .. 17
5.1 Introduction ... 17
5.2 How can I write directly to video memory using a DOS extender? ... 17
5.3 How do I issue interrupts in a DOS/4GW application? .. 18
5.4 How do I get information about free memory in the 32-bit environment? ... 19

The DOS/4GW DOS Extender ... 21

6 The Tenberry Software DOS/4GW DOS Extender ... 23

7 Linear Executables ... 25
7.1 The Linear Executable Format .. 25

7.1.1 The Stub Program ... 25
7.2 Memory Use .. 26

8 Configuring DOS/4GW ... 29
8.1 The DOS4G Environment Variable .. 29
8.2 Changing the Switch Mode Setting ... 30
8.3 Fine Control of Memory Usage .. 31

8.3.1 Specifying a Range of Extended Memory .. 31
8.3.2 Using Extra Memory .. 32

8.4 Setting Runtime Options ... 33
8.5 Controlling Address Line 20 ... 34

9 VMM .. 35
9.1 VMM Default Parameters ... 35
9.2 Changing the Defaults ... 36

9.2.1 The .VMC File .. 36

10 Interrupt 21H Functions ... 37
10.1 Functions 25H and 35H: Interrupt Handling in Protected Mode .. 40

v

Table of Contents

10.1.1 32-Bit Gates .. 40
10.1.2 Chaining 16-bit and 32-bit Handlers .. 41
10.1.3 Getting the Address of the Interrupt Handler ... 41

11 Interrupt 31H DPMI Functions .. 43
11.1 Using Interrupt 31H Function Calls .. 43
11.2 Int31H Function Calls ... 44

11.2.1 Local Descriptor Table (LDT) Management Services ... 44
11.2.2 DOS Memory Management Services ... 49
11.2.3 Interrupt Services .. 51
11.2.4 Translation Services ... 53
11.2.5 DPMI Version .. 60
11.2.6 Memory Management Services .. 61
11.2.7 Page Locking Services ... 62
11.2.8 Demand Paging Performance Tuning Services .. 63
11.2.9 Physical Address Mapping ... 64
11.2.10 Virtual Interrupt State Functions .. 65
11.2.11 Vendor Specific Extensions ... 67
11.2.12 Coprocessor Status ... 67

12 Utilities ... 69
12.1 DOS4GW .. 70
12.2 PMINFO .. 71
12.3 PRIVATXM .. 73
12.4 RMINFO ... 74

13 Error Messages ... 77
13.1 Kernel Error Messages .. 77
13.2 DOS/4G Errors .. 80

14 DOS/4GW Commonly Asked Questions ... 85
14.1 Access to Technical Support ... 85
14.2 Differences Within the DOS/4G Product Line ... 86
14.3 Addressing ... 89
14.4 Interrupt and Exception Handling ... 90
14.5 Memory Management ... 92
14.6 DOS, BIOS, and Mouse Services .. 93
14.7 Virtual Memory ... 93
14.8 Debugging ... 96
14.9 Compatibility ... 99

Windows 3.x Programming Guide ... 101

15 Creating 16-bit Windows 3.x Applications ... 103
15.1 The Sample GUI Application .. 103
15.2 Building and Running the GUI Application ... 104
15.3 Debugging the GUI Application ... 104

16 Porting Non-GUI Applications to 16-bit Windows 3.x ... 107
16.1 Console Device in a Windowed Environment .. 107
16.2 The Sample Non-GUI Application ... 108

vi

Table of Contents

16.3 Building and Running the Non-GUI Application ... 108
16.4 Debugging the Non-GUI Application ... 109
16.5 Default Windowing Library Functions ... 110

17 Creating 32-bit Windows 3.x Applications ... 113
17.1 The Sample GUI Application .. 113
17.2 Building and Running the GUI Application ... 114
17.3 Debugging the GUI Application ... 115

18 Porting Non-GUI Applications to 32-bit Windows 3.x ... 117
18.1 Console Device in a Windowed Environment .. 117
18.2 The Sample Non-GUI Application ... 118
18.3 Building and Running the Non-GUI Application ... 118
18.4 Debugging the Non-GUI Application ... 120
18.5 Default Windowing Library Functions ... 121

19 The Open Watcom 32-bit Windows 3.x Extender ... 123
19.1 Pointers .. 123
19.2 Implementation Overview ... 124
19.3 System Structure ... 125
19.4 System Overview .. 126
19.5 Steps to Obtaining a 32-bit Application .. 127

20 Windows 3.x 32-bit Programming Overview .. 129
20.1 WINAPI.FI .. 129
20.2 Environment Notes .. 130
20.3 Floating-point Emulation .. 130
20.4 Multiple Instances ... 130
20.5 Pointer Handling ... 131

20.5.1 When To Convert Incoming Pointers ... 132
20.5.2 When To Convert Outgoing Pointers ... 132

20.5.2.1 SendMessage and SendDlgItemMessage .. 133
20.5.3 GlobalAlloc and LocalAlloc ... 134
20.5.4 Callback Function Pointers ... 134

20.5.4.1 Window Sub-classing .. 136
20.6 Calling 16-bit DLLs .. 137
20.7 _16 Functions .. 138

21 Windows 32-Bit Dynamic Link Libraries ... 139
21.1 Introduction to 32-Bit DLLs ... 139
21.2 A Sample 32-bit DLL .. 140
21.3 Calling Functions in a 32-bit DLL from a 16-bit Application .. 141
21.4 Calling Functions in a 32-bit DLL from a 32-bit Application .. 143
21.5 A Sample 32-bit DLL Using a Structure ... 144
21.6 Creating and Debugging Dynamic Link Libraries .. 147

21.6.1 Building the Applications ... 148
21.6.2 Installing the Examples under Windows .. 148
21.6.3 Running the Examples .. 149
21.6.4 Debugging a 32-bit DLL .. 149
21.6.5 Summary ... 150

22 Interfacing Visual Basic and Open Watcom FORTRAN 77 DLLs ... 151

vii

Table of Contents

22.1 Introduction to Visual Basic and DLLs ... 151
22.2 A Working Example .. 152
22.3 Sample Visual Basic DLL Programs .. 154

22.3.1 Source Code for VBDLL32.DLL ... 154
22.3.2 Source code for COVER16.DLL ... 155

22.4 Compiling and Linking the Examples ... 156

23 WIN386 Library Subprograms .. 159
AllocAlias16 .. 160
AllocHugeAlias16 ... 161
_Call16 ... 162
DefineDLLEntry .. 164
DefineUserProc16 .. 166
FreeAlias16 .. 168
FreeHugeAlias16 ... 169
FreeIndirectFunctionHandle .. 170
GetIndirectFunctionHandle ... 172
GetProc16 .. 174
InvokeIndirectFunction .. 176
MapAliasToFlat ... 178
PASS_WORD_AS_POINTER .. 179
ReleaseProc16 .. 180

24 32-bit Extended Windows Application Development ... 181
24.1 Can you call 16-bit code from a 32-bit code? ... 181
24.2 How do I add my Windows resources? ... 181
24.3 What size of function pointers passed to Windows? ... 182
24.4 Why are 32-bit callback routines FAR? .. 182
24.5 Why use the _16 API functions? ... 182

25 Special Windows API Functions ... 183

Windows NT Programming Guide ... 187

26 Windows NT Programming Overview .. 189
26.1 Windows NT Character-mode Versus GUI .. 189

27 Creating Windows NT Character-mode Applications ... 191
27.1 The Sample Character-mode Application ... 191
27.2 Building and Running the Character-mode Application ... 192
27.3 Debugging the Character-mode Application ... 192

28 Windows NT Multi-threaded Applications ... 195
28.1 Programming Considerations .. 195
28.2 Creating Threads ... 195

28.2.1 Creating a New Thread ... 195
28.2.2 Terminating the Current Thread ... 196
28.2.3 Getting the Current Thread Identifier ... 196

28.3 A Multi-threaded Example .. 196

29 Windows NT Dynamic Link Libraries .. 199

viii

Table of Contents

29.1 Creating Dynamic Link Libraries ... 199
29.2 Creating a Sample Dynamic Link Library .. 200
29.3 Using Dynamic Link Libraries .. 202
29.4 The Dynamic Link Library Data Area .. 203
29.5 Dynamic Link Library Initialization/Termination .. 204

OS/2 Programming Guide .. 207

30 Creating 16-bit OS/2 1.x Applications ... 209
30.1 The Sample Application .. 209
30.2 Building and Running the Sample OS/2 1.x Application ... 210
30.3 Debugging the Sample OS/2 1.x Application ... 210

31 Creating 32-bit OS/2 Applications ... 213
31.1 The Sample Application .. 213
31.2 Building and Running the Sample OS/2 Application ... 214
31.3 Debugging the Sample OS/2 Application ... 214

32 OS/2 2.x Multi-threaded Applications ... 217
32.1 Programming Considerations .. 217
32.2 Creating Threads ... 217

32.2.1 Creating a New Thread ... 217
32.2.2 Terminating the Current Thread ... 218
32.2.3 Getting the Current Thread Identifier ... 218

32.3 A Multi-threaded Example .. 218
32.4 Thread Limits .. 220

33 OS/2 2.x Dynamic Link Libraries .. 221
33.1 Creating Dynamic Link Libraries ... 221
33.2 Creating a Sample Dynamic Link Library .. 222
33.3 Using Dynamic Link Libraries .. 223
33.4 The Dynamic Link Library Data Area .. 224
33.5 Dynamic Link Library Initialization/Termination .. 225

34 Programming for OS/2 Presentation Manager ... 227
34.1 Porting Existing FORTRAN 77 Applications ... 227

34.1.1 An Example .. 227
34.2 Calling Presentation Manager API Functions ... 228

Novell NLM Programming Guide .. 233

35 Creating NetWare 386 NLM Applications .. 235

Mixed Language Programming .. 237

36 Inter-Language calls: C and FORTRAN ... 239
36.1 Symbol Naming Convention ... 239
36.2 Argument Passing Convention .. 240
36.3 Memory Model Compatibility .. 240

ix

Table of Contents

36.4 Linking Considerations ... 241
36.5 Integer Type Compatibility ... 241
36.6 How do I pass integers from C to a FORTRAN function? ... 241
36.7 How do I pass integers from FORTRAN to a C function? ... 242
36.8 How do I pass a string from a C function to FORTRAN? .. 243
36.9 How do I pass a string from FORTRAN to a C function? .. 244
36.10 How do I access a FORTRAN common block from within C? .. 245
36.11 How do I call a C function that accepts a variable number of arguments? 246

Common Problems ... 247

37 Commonly Asked Questions and Answers .. 249
37.1 Determining my current patch level .. 249
37.2 Converting to Open Watcom F77 ... 250
37.3 What you should know about optimization ... 251
37.4 Reading a stream of binary data from a file .. 251
37.5 Redefining math error handling with Open Watcom F77 ... 252
37.6 The compiler cannot find my include files .. 258
37.7 The linker reports a "stack segment not found" error ... 258
37.8 Resolving an "Undefined Reference" linker error .. 258
37.9 Why local variable values are not maintained between subprogram calls .. 259
37.10 What "Stack Overflow!" means .. 259
37.11 What are the probable causes of a General Protection Fault in 32-bit applications? 260
37.12 Which floating-point compiler option should I use for my application? .. 261
37.13 How more than 20 files at a time can be opened .. 262
37.14 How source files can be seen in the debugger .. 263
37.15 The difference between the "d1" and "d2" compiler options .. 265
37.16 The difference between the "debug" and "d2" compiler options .. 265

x

List of Figures

Figure 1. Basic Memory Layout ... 27
Figure 2. Physical Memory/Linear Address Space .. 28
Figure 3. Access Rights/Type .. 47
Figure 4. Extended Access Rights/Type .. 48
Figure 5. WIN386 Structure ... 125
Figure 6. 32-bit Application Structure ... 126

xi

xii

1 Open Watcom FORTRAN 77 Application
Development

This document contains guides to application development for several environments including 16-bit DOS,
32-bit extended DOS, Windows 3.x, 32-bit extended Windows 3.x, Windows NT/2000/XP, Win9x, OS/2,
and Novell NLMs. It also describes mixed language (C, FORTRAN) application development. It
concludes with a chapter on some general questions and the answers to them.

This document covers the following topics:

• DOS Programming Guide

Creating 16-bit DOS Applications
Creating 32-bit Phar Lap 386|DOS-Extender Applications
Creating 32-bit DOS/4GW Applications
32-bit Extended DOS Application Development

• The DOS/4GW DOS Extender

The Tenberry Software DOS/4GW DOS Extender
Linear Executables
Configuring DOS/4GW
VMM
Interrupt 21H Functions
Interrupt 31H DPMI Functions
Utilities
Error Messages
DOS/4GW Commonly Asked Questions

• Windows 3.x Programming Guide

Creating 16-bit Windows 3.x Applications
Porting Non-GUI Applications to 16-bit Windows 3.x
Creating 32-bit Windows 3.x Applications
Porting Non-GUI Applications to 32-bit Windows 3.x
The Open Watcom 32-bit Windows Extender
Windows 3.x 32-bit Programming Overview
Windows 32-Bit Dynamic Link Libraries
Interfacing Visual Basic and Open Watcom FORTRAN 77 DLLs
WIN386 Library Subprograms
32-bit Extended Windows Application Development
Special Windows API Functions

• Windows NT Programming Guide

Open Watcom FORTRAN 77 Application Development 1

Chapter 1

Windows NT Programming Overview
Creating Windows NT GUI Applications
Porting Non-GUI Applications to Windows NT GUI
Windows NT Multi-threaded Applications
Windows NT Dynamic Link Libraries

• OS/2 Programming Guide

Creating 16-bit OS/2 1.x Applications
Creating 32-bit OS/2 Applications
OS/2 Multi-threaded Applications
OS/2 Dynamic Link Libraries
Programming for OS/2 Presentation Manager

• Novell NLM Programming Guide

Creating NetWare 386 NLM Applications

• Mixed Language Programming

Inter-Language calls: C and FORTRAN

• Common Problems

Commonly Asked Questions and Answers

2 Open Watcom FORTRAN 77 Application Development

DOS Programming Guide

DOS Programming Guide

4

2 Creating 16-bit DOS Applications

This chapter describes how to compile and link 16-bit DOS applications simply and quickly.

We will illustrate the steps to creating 16-bit DOS applications by taking a small sample application and
showing you how to compile, link, run and debug it.

2.1 The Sample Application

To demonstrate the creation of 16-bit DOS applications using command-line oriented tools, we introduce a
simple sample program. For our example, we are going to use the "sieve" program.

* This program computes the prime numbers between 1 and 10,000
* using the Sieve of Eratosthenes algorithm.

IMPLICIT NONE
INTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER I, K, PRIMES
LOGICAL*1 NUMBERS(2:UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORM=’(A,I5,A,I5)’)
DO I = 2, UPBOUND

NUMBERS(I) = .TRUE.
ENDDO
PRIMES = 0
DO I = 2, UPBOUND

IF(NUMBERS(I))THEN
PRIMES = PRIMES + 1
DO K = I + I, UPBOUND, I

NUMBERS(K) = .FALSE.
ENDDO

ENDIF
ENDDO
PRINT FORM, ’The Number of Primes between 1 and ’, UPBOUND,

1 ’ are: ’, PRIMES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Sieve of
Eratosthenes algorithm to accomplish this task. We will take you through the steps necessary to produce
this result.

2.2 Building and Running the Sample DOS Application

To compile and link our example program which is stored in the file sieve.for, enter the following
command:

C>wfl -l=dos sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Building and Running the Sample DOS Application 5

DOS Programming Guide

C>wfl -l=dos sieve.for
Open Watcom F77/16 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc sieve.for
Open Watcom FORTRAN 77/16 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 21 statements, 311 bytes, 6 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating a DOS executable

Provided that no errors were encountered during the compile or link phases, the "sieve" program may now
be run.

C>sieve
The Number of Primes between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are
sieve.obj (the result of compiling sieve.for) and sieve.exe (the result of linking sieve.obj
with the appropriate Open Watcom FORTRAN 77 libraries). It is sieve.exe that is run by DOS when
you enter the "sieve" command.

2.3 Debugging the Sample DOS Application

Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL command, this is fairly straightforward. WFL recognizes the Open Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Open Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

C>wfl -l=dos -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

6 Debugging the Sample DOS Application

Creating 16-bit DOS Applications

C>wfl -l=dos -d2 sieve.for
Open Watcom F77/16 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc sieve.for -d2
Open Watcom FORTRAN 77/16 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 21 statements, 392 bytes, 6 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating a DOS executable

The "d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL will make sure that this debugging information is included in the executable
file that is produced by the linker.

The "bytes" value is larger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. You can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship
between the object code and the original source language code.

To request the Open Watcom Debugger to assist in debugging the application, the following command may
be issued.

C>wd sieve

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Open Watcom Debugger User’s Guide.

Debugging the Sample DOS Application 7

DOS Programming Guide

8 Debugging the Sample DOS Application

3 Creating 32-bit Phar Lap 386|DOS-Extender
Applications

This chapter describes how to compile and link 32-bit Phar Lap 386|DOS-Extender applications simply and
quickly.

We will illustrate the steps to creating 32-bit Phar Lap 386|DOS-Extender applications by taking a small
sample application and showing you how to compile, link, run and debug it.

3.1 The Sample Application

To demonstrate the creation of 32-bit Phar Lap 386|DOS-Extender applications using command-line
oriented tools, we introduce a simple sample program. For our example, we are going to use the "sieve"
program.

* This program computes the prime numbers between 1 and 10,000
* using the Sieve of Eratosthenes algorithm.

IMPLICIT NONE
INTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER I, K, PRIMES
LOGICAL*1 NUMBERS(2:UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORM=’(A,I5,A,I5)’)
DO I = 2, UPBOUND

NUMBERS(I) = .TRUE.
ENDDO
PRIMES = 0
DO I = 2, UPBOUND

IF(NUMBERS(I))THEN
PRIMES = PRIMES + 1
DO K = I + I, UPBOUND, I

NUMBERS(K) = .FALSE.
ENDDO

ENDIF
ENDDO
PRINT FORM, ’The Number of Primes between 1 and ’, UPBOUND,

1 ’ are: ’, PRIMES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Sieve of
Eratosthenes algorithm to accomplish this task. We will take you through the steps necessary to produce
this result.

The Sample Application 9

DOS Programming Guide

3.2 Building and Running the Sample 386|DOS-Extender
Application

To compile and link our example program which is stored in the file sieve.for, enter the following
command:

C>wfl386 -l=pharlap sieve.for

The typical messages that appear on the screen are shown in the following illustration.

C>wfl386 -l=pharlap sieve.for
Open Watcom F77/32 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc386 sieve.for
Open Watcom FORTRAN 77/32 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 21 statements, 172 bytes, 6 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating a Phar Lap simple executable

Provided that no errors were encountered during the compile or link phases, the "sieve" program may now
be run.

C>run386 sieve
The Number of Primes between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are
sieve.obj (the result of compiling sieve.for) and sieve.exp (the result of linking sieve.obj
with the appropriate Open Watcom FORTRAN 77 libraries). It is sieve.exp that is run by DOS when
you enter the "run386 sieve" command.

3.3 Debugging the Sample 386|DOS-Extender Application

Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL386 command, this is fairly straightforward. WFL386 recognizes the Open Watcom
F77 compiler "debug" options and will create the appropriate debug directives for the Open Watcom
Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

10 Debugging the Sample 386|DOS-Extender Application

Creating 32-bit Phar Lap 386|DOS-Extender Applications

C>wfl386 -l=pharlap -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

C>wfl386 -l=pharlap -d2 sieve.for
Open Watcom F77/32 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc386 sieve.for -d2
Open Watcom FORTRAN 77/32 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 21 statements, 237 bytes, 6 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating a Phar Lap simple executable

The "d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL386 will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "bytes" value is larger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. You can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship
between the object code and the original source language code.

To request the Open Watcom Debugger to assist in debugging the application, the following command may
be issued.

C>wd /trap=pls sieve

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Open Watcom Debugger User’s Guide.

Debugging the Sample 386|DOS-Extender Application 11

DOS Programming Guide

12 Debugging the Sample 386|DOS-Extender Application

4 Creating 32-bit DOS/4GW Applications

This chapter describes how to compile and link 32-bit DOS/4GW applications simply and quickly.

We will illustrate the steps to creating 32-bit DOS/4GW applications by taking a small sample application
and showing you how to compile, link, run and debug it.

4.1 The Sample Application

To demonstrate the creation of 32-bit DOS/4GW applications using command-line oriented tools, we
introduce a simple sample program. For our example, we are going to use the "sieve" program.

* This program computes the prime numbers between 1 and 10,000
* using the Sieve of Eratosthenes algorithm.

IMPLICIT NONE
INTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER I, K, PRIMES
LOGICAL*1 NUMBERS(2:UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORM=’(A,I5,A,I5)’)
DO I = 2, UPBOUND

NUMBERS(I) = .TRUE.
ENDDO
PRIMES = 0
DO I = 2, UPBOUND

IF(NUMBERS(I))THEN
PRIMES = PRIMES + 1
DO K = I + I, UPBOUND, I

NUMBERS(K) = .FALSE.
ENDDO

ENDIF
ENDDO
PRINT FORM, ’The Number of Primes between 1 and ’, UPBOUND,

1 ’ are: ’, PRIMES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Sieve of
Eratosthenes algorithm to accomplish this task. We will take you through the steps necessary to produce
this result.

4.2 Building and Running the Sample DOS/4GW Application

To compile and link our example program which is stored in the file sieve.for, enter the following
command:

C>wfl386 -l=dos4g sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Building and Running the Sample DOS/4GW Application 13

DOS Programming Guide

C>wfl386 -l=dos4g sieve.for
Open Watcom F77/32 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc386 sieve.for
Open Watcom FORTRAN 77/32 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 21 statements, 172 bytes, 6 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating a DOS/4G executable

Provided that no errors were encountered during the compile or link phases, the "sieve" program may now
be run.

C>sieve
The Number of Primes between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are
sieve.obj (the result of compiling sieve.for) and sieve.exe (the result of linking sieve.obj
with the appropriate Open Watcom FORTRAN 77 libraries). It is sieve.exe that is run by DOS when
you enter the "sieve" command.

4.3 Debugging the Sample DOS/4GW Application

Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL386 command, this is fairly straightforward. WFL386 recognizes the Open Watcom
F77 compiler "debug" options and will create the appropriate debug directives for the Open Watcom
Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

C>wfl386 -l=dos4g -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

14 Debugging the Sample DOS/4GW Application

Creating 32-bit DOS/4GW Applications

C>wfl386 -l=dos4g -d2 sieve.for
Open Watcom F77/32 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc386 sieve.for -d2
Open Watcom FORTRAN 77/32 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 21 statements, 237 bytes, 6 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating a DOS/4G executable

The "d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL386 will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "bytes" value is larger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. You can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship
between the object code and the original source language code.

To request the Open Watcom Debugger to assist in debugging the application, the following command may
be issued.

C>wd /trap=rsi sieve

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Open Watcom Debugger User’s Guide.

Debugging the Sample DOS/4GW Application 15

DOS Programming Guide

16 Debugging the Sample DOS/4GW Application

5 32-bit Extended DOS Application Development

5.1 Introduction

The purpose of this chapter is to anticipate common programming questions for 32-bit extended DOS
application development. Note that these programming solutions may be DOS-extender specific and
therefore may not work for other DOS extenders.

The following topics are discussed in this chapter:

• How can I write directly to video memory using DOS/4GW?

• How do I issue interrupts in a DOS/4GW application?

• How do I get information about free memory with DOS/4GW?

Please refer to the DOS Protected-Mode Interface (DPMI) Specification for information on DPMI
services. In the past, the DPMI specification could be obtained free of charge by contacting Intel Literature
JP26 at 800-548-4725 or by writing to the address below. We have been advised that the DPMI
specification is no longer available in printed form.

Intel Literature JP26
3065 Bowers Avenue
P.O. Box 58065
Santa Clara, California
U.S.A. 95051-8065

However, the DPMI 1.0 specification can be obtained from the Intel ftp site. Here is the URL.

ftp://ftp.intel.com/pub/IAL/software_specs/dpmiv1.zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

5.2 How can I write directly to video memory using a DOS
extender?

Many programmers require access to video RAM in order to directly manipulate data on the screen. Under
DOS, it was standard practice to use a far pointer, with the segment part of the far pointer set to the screen
segment. Under DOS extenders, this practice is not so standard. Each DOS extender provides its own
method for accessing video memory. The following program demonstrates the method used with
DOS/4GW.

How can I write directly to video memory using a DOS extender? 17

DOS Programming Guide

* FSCREEN.FOR
* The following program shows how to access screen memory
* from a FORTRAN program under the DOS/4GW DOS extender.

* Compile & Link: wfl386 -l=dos4g fscreen

program screen

* Allocatable arrays must be declared by specifying their
* dimensions using colons only (see Open Watcom FORTRAN 77
* Language Reference on the ALLOCATE statement for details).

character*1 screen(:,:)
integer SCRSIZE, i

parameter (SCRSIZE = 80*25)
* Under DOS/4GW, the first megabyte of physical memory - the
* real memory - is mapped as a shared linear address space.
* This allows your application to access video RAM using its
* linear address. The DOS segment:offset of B800:0000
* corresponds to a linear address of B8000.

allocate(screen(0:1,0:SCRSIZE-1), location=’B8000’x)

do i = 0, SCRSIZE - 1
screen(0,i) = ’*’

enddo

end

5.3 How do I issue interrupts in a DOS/4GW application?

The Open Watcom F77 library files contain the FINTR and the FINTRF subroutines which allows the user
to perform interrupt calls within a FORTRAN 77 program. This subroutine is described in the Subprogram
Library section of the Open Watcom FORTRAN 77 User’s Guide.

The following sample program illustrates the use of the FINTR subroutine to set up the register information
required for Interrupt 21h. The register information is loaded into the regs structure. This structure is
defined in the DOS.FI file located in the \WATCOM\SRC\FORTRAN\DOS directory. Assign values to
the register elements according to the interrupt call requirements. For example, Interrupt 21h, function 4Eh
needs valid values for the AH, ECX, DS and EDX to set up the registers for the Interrupt 21h call. This
procedure can be used to perform any interrupt calls that are supported in protected mode by DOS/4GW.

* DTA.FOR
* This program demonstrates the use of the FINTR
* function to list the files of the current directory.
* Interrupt 21 Functions for FIND FIRST, FIND NEXT,
* and GET DTA are used.

* Compile & Link: set finclude=\watcom\src\fortran\dos
* wfl386 -l=dos4g dta

*$pragma aux GetDS = "mov ax,ds" value [ax]

program dta
implicit integer*2 (i-n)
integer*2 res
integer*2 GetDS
integer*4 dir,addr
integer*1 dta(:)
character fname*1(12), fname2*12
equivalence (fname, fname2)

18 How do I issue interrupts in a DOS/4GW application?

32-bit Extended DOS Application Development

* DTA is declared as a FAR array. When referencing an array
* element, the pointer to the array is a FAR pointer. With a
* character variable, the result is a pointer to a string
* control block (SCB). The run-time library expects the SCB
* to contain a near pointer. To get around the problem, we
* define the DTA as a byte array, then use the CHAR function
* to get the character equivalent for printing a filename.

*$pragma array dta far
include ’dos.fi’

*
* Listing of current directory
*

call fsystem(’dir/w *.*’//char(0))
dir = loc(’*.*’//char(0))

i = 0
10 i = i + 1

if(i .eq. 1)then
*
* Find first file
*

AH = ’4E’x
ECX = 0
DS = GetDS()
EDX = dir

else
*
* Find next file
*

AH = ’4F’x
endif
call fintr(’21’x, regs)
res = AX
if(res .eq. 0)then

*
* Extract filename from DTA
*

AH = ’2F’x
call fintr(’21’x, regs)

addr = ISHL(IAND(INT(ES), ’0000FFFF’x), 16)
addr = IOR(addr, IAND(INT(BX), ’0000FFFF’x))
allocate(dta(0:42), location=addr)
fname2 = ’ ’
do j = 30, 41

if(dta(j) .eq. 0) goto 20
fname(j - 29) = char(dta(j))

enddo
20 print *, fname2

deallocate(dta)
goto 10

endif

end

5.4 How do I get information about free memory in the 32-bit
environment?

Under a virtual memory system, programmers are often interested in the amount of physical memory they
can allocate. Information about the amount of free memory that is available is always provided under a
DPMI host, however, the manner in which this information is provided may differ under various
environments. Keep in mind that in a multi-tasking environment, the information returned to your task
from the DPMI host can easily become obsolete if other tasks allocate memory independently of your task.

How do I get information about free memory in the 32-bit environment? 19

DOS Programming Guide

DOS/4GW provides a DPMI interface through interrupt 0x31. This allows you to use DPMI service
0x0500 to get free memory information. The following program illustrates this procedure.

* FMEMORY.FOR
* This example shows how to get information about free
* memory using DPMI call 0500h under DOS/4GW using Open Watcom
* FORTRAN 77. Note that only the first field of the
* structure is guaranteed to contain a valid value; any
* field not returned by DOS/4GW is set to -1 (0FFFFFFFFh).

* Compile & Link: set finclude=\watcom\src\fortran\dos
* wfl386 -l=dos4g fmemory

* Pragma to get the default data segment

*$pragma aux GetDS = "mov ax,ds" value [ax] modify exact [ax]

program memory
implicit none
include ’dos.fi’

structure /meminfo/
integer*4 LargestBlockAvail
integer*4 MaxUnlockedPage
integer*4 LargestLockablePage
integer*4 LinAddrSpace
integer*4 NumFreePagesAvail
integer*4 NumPhysicalPagesFree
integer*4 TotalPhysicalPages
integer*4 FreeLinAddrSpace
integer*4 SizeOfPageFile
integer*4 Reserved1
integer*4 Reserved2

end structure
* Set up the register information for the interrupt call

record /meminfo/ MemInfo
integer interrupt_no
integer*2 GetDS

parameter(interrupt_no=’31’x)
DS = FS = GS = 0
EAX = ’00000500’x
ES = GetDS()
EDI = loc(MemInfo)

call fintr(interrupt_no, regs)
* Report the information returned by the DPMI host

print *,’--’
print *,’Largest available block (in bytes): ’,

& Meminfo.LargestBlockAvail
print *,’Maximum unlocked page allocation: ’,

& MemInfo.MaxUnlockedPage
print *,’Pages that can be allocated and locked: ’,

& MemInfo.LargestLockablePage
print *,’Total linear address space including’ //

& ’ allocated pages:’, MemInfo.LinAddrSpace
print *,’Number of free pages available: ’,

& MemInfo.NumFreePagesAvail
print *,’Number of physical pages not in use: ’,

& MemInfo.NumPhysicalPagesFree
print *,’Total physical pages managed by host: ’,

& MemInfo.TotalPhysicalPages
print *,’Free linear address space (pages): ’,

& MemInfo.FreeLinAddrSpace
print *,’Size of paging/file partition (pages): ’,

& MemInfo.SizeOfPageFile

end

20 How do I get information about free memory in the 32-bit environment?

The DOS/4GW DOS Extender

The DOS/4GW DOS Extender

22

6 The Tenberry Software DOS/4GW DOS Extender

The chapters in this section describe the 32-bit Tenberry Software DOS/4GW DOS Extender which is
provided with the Open Watcom F77 package. DOS/4GW is a subset of Tenberry Software’s DOS/4G
product. DOS/4GW is customized for use with the Open Watcom F77 package. Key differences are:

• DOS/4GW will only execute programs built with a Open Watcom 32-bit compiler such as Open
Watcom F77 and linked with its run-time libraries.

• The DOS/4GW virtual memory manager (VMM), included in the package, is restricted to 32MB of
memory.

• DOS/4GW does not provide extra functionality such as TSR capability and VMM performance
tuning enhancements.

If your application has requirements beyond those provided by DOS/4GW, you may wish to acquire
DOS/4GW Professional or DOS/4G from:

Tenberry Software, Inc.
PO Box 20050
Fountain Hills, Arizona
U.S.A 85269-0050

WWW: http://www.tenberry.com/dos4g/
Email: info@tenberry.com
Phone: 1.480.767.8868
Fax: 1.480.767.8709

Programs developed to use the restricted version of DOS/4GW which is included in the Open Watcom F77
package can be distributed on a royalty-free basis, subject to the licensing terms of the product.

The Tenberry Software DOS/4GW DOS Extender 23

The DOS/4GW DOS Extender

24 The Tenberry Software DOS/4GW DOS Extender

7 Linear Executables

To build a linear executable, compile and link it as described in the chapter entitled "Creating 32-bit
DOS/4GW Executables". The resulting file will not run independently: you can run it under the Open
Watcom Debugger, Tenberry Software Instant-D debugger, or with the standalone "DOS4GW.EXE".

7.1 The Linear Executable Format

DOS/4GW works with files that use the Linear Executable (LE) file format. The format represents a
protected-mode program in the context of a 32-bit 386 runtime environment with linear to physical address
translation hardware enabled. It uses a flat address space.

This file format is similar to the Segmented Executable (NE) format used in OS/2 1.x and MS Windows.
Both support Dynamic Linking, Resources, and are geared toward protected-mode programs. Both formats
use tables of "counted ASCII" names, and they use similar relocation formats.

Both formats begin with a DOS style stub program that sophisticated loaders skip. This stub program
executes when the DOS/4GW loader is not present, displaying the message, This program cannot run in
DOS mode.

When the Open Watcom Linker is used to link a DOS/4GW application, it automatically replaces the
default stub program with one that calls DOS4GW.

7.1.1 The Stub Program

The stub at the beginning of a linear executable is a real-mode program that you can modify as you like.
For example, you can:

• make the stub program do a checksum on the "DOS4GW.EXE" file to make sure it’s the correct
version.

• copy protect your program.

• specify a search path for the "DOS4GW.EXE" file.

• add command line arguments.

The SRC directory contains source code for a sample stub program. "WSTUB.C" is a simple example, a
good base to start from when you construct your own stub. Please note that you will require a 16-bit C
compiler to compile a new stub program. Following is the code in "WSTUB.C":

The Linear Executable Format 25

The DOS/4GW DOS Extender

#include <stdio.h>
#include <stdlib.h>
#include <process.h>
#include <errno.h>
#include <string.h>

/* Add environment strings to be searched here */
char *paths_to_check[] = {

"DOS4GPATH",
"PATH"};

char *dos4g_path()
{

static char fullpath[80];
int i;

for(i = 0;
i < sizeof(paths_to_check) / sizeof(paths_to_check[0]);
i++) {

_searchenv("dos4gw.exe", paths_to_check[i], fullpath);
if(fullpath[0]) return(&fullpath);

}
for(i = 0;

i < sizeof(paths_to_check) / sizeof(paths_to_check[0]);
i++) {

_searchenv("dos4g.exe", paths_to_check[i], fullpath);
if(fullpath[0]) return(&fullpath);

}
return("dos4gw.exe");

}

main(int argc, char *argv[])
{

char *av[4];
auto char cmdline[128];

av[0] = dos4g_path(); /* Locate the DOS/4G loader */
av[1] = argv[0]; /* name of executable to run */
av[2] = getcmd(cmdline); /* command line */
av[3] = NULL; /* end of list */

#ifdef QUIET
putenv("DOS4G=QUIET"); /* disables DOS/4G Copyright banner */

#endif
execvp(av[0], av);
puts("Stub exec failed:");
puts(av[0]);
puts(strerror(errno));
exit(1); /* indicate error */

}

If you do not have a C compiler, you can create an assembly language version of the above sample stub
program and use it to create your own version of the stub program.

7.2 Memory Use

This section explains how a DOS/4GW application uses the memory on a 386-based PC/AT. The basic
memory layout of an AT machine consists of 640KB of DOS memory, 384KB of upper memory, and an
undetermined amount of extended memory. DOS memory and upper memory together compose real
memory, the memory that can be addressed when the processor is running in real mode.

26 Memory Use

Linear Executables

Extended
Memory

Upper
Memory

DOS
Memory

Interrupt
Vectors

DOS and
Real-Mode
Software

ROMs and
Hardware

1 MB

640 KB

1 KB

Figure 1. Basic Memory Layout

Under DOS/4GW, the first megabyte of physical memory — the real memory — is mapped as a shared
linear address space. This allows your application to use absolute addresses in real memory, to access
video RAM or BIOS ROM, for example. Because the real memory is available to all processes, you are not
guaranteed to be able to allocate a particular area in real memory: another process may have allocated it
already.

Most code and data is placed in a paged linear address space starting at 4MB. The linear address space
starts at 4MB, the first address in the second page table, to avoid conflicts with VCPI system software.

This split mapping — an executable that is linked to start at 4MB in the linear address space, with the first
MB in the address space mapped to the first MB of physical memory — is called a split flat model.

The illustration below shows the layout of physical memory on the left, and the layout of the linear address
space on the right.

Memory Use 27

The DOS/4GW DOS Extender

Mapped
to all
processes

1 KB

4 MB

4 KB

1 MB

640 KB
DOS and
Real-Mode
Software

Mapped into
process as
needed

Mapped
as
needed

4KB pages

VCPI code
1-4 MB unmapped
for VCPI
compatibility

Process code
and data}

Figure 2. Physical Memory/Linear Address Space

The 1KB label in the diagram indicates the top of the real-mode interrupt vectors. 4KB marks the end of
the first page.

28 Memory Use

8 Configuring DOS/4GW

This chapter explains various options that can be specified with the DOS4G environment variable
including how to suppress the banner that is displayed by DOS/4GW at startup. It also explains how to use
the DOS16M environment variable to select the switch mode setting, if necessary, and to specify the range
of extended memory in which DOS/4GW will operate. DOS/4GW is based on Tenberry Software’s
DOS/16M 16-bit Protected-Mode support; hence the DOS16M environment variable name remains
unchanged.

8.1 The DOS4G Environment Variable

A number of options can be selected by setting the DOS4G environment variable. The syntax for setting
options is:

set DOS4G=option1,option2,...

Do not insert a space between DOS4G and the equal sign. A space to the right of the equal sign is optional.

Options:

QUIET Use this option to suppress the DOS/4GW banner.

The banner that is displayed by DOS/4GW at startup can be suppressed by issuing the
following command:

set DOS4G=quiet

Note: Use of the quiet switch is only permitted pursuant to the terms and conditions of the
WATCOM Software License Agreement and the additional redistribution rights described
in the Getting Started manual. Under these terms, suppression of the copyright by using
the quiet switch is not permitted for applications which you distribute to others.

VERBOSE Use this option to maximize the information available for postmortem debugging.

Before running your application, issue the following command:

set DOS4G=verbose

Reproduce the crash and record the output.

NULLP Use this option to trap references to the first sixteen bytes of physical memory.

Before running your application, issue the following command:

set DOS4G=nullp

To select a combination of options, list them with commas as separators.

The DOS4G Environment Variable 29

The DOS/4GW DOS Extender

Example:
set DOS4G=nullp,verbose

8.2 Changing the Switch Mode Setting

In almost all cases, DOS/4GW programs can detect the type of machine that is running and automatically
choose an appropriate real- to protected-mode switch technique. For the few cases in which this default
setting does not work we provide the DOS16M DOS environment variable, which overrides the default
setting.

Change the switch mode settings by issuing the following command:

set DOS16M=value

Do not insert a space between DOS16M and the equal sign. A space to the right of the equal sign is
optional.

The table below lists the machines and the settings you would use with them. Many settings have
mnemonics, listed in the column "Alternate Name", that you can use instead of the number. Settings that
you must set with the DOS16M variable have the notation req’d in the first column. Settings you may use
are marked option, and settings that will automatically be set are marked auto.

Alternate
Status Machine Setting Name Comment

auto 386/486 w/ DPMI 0 None Set automatically if DPMI is active
req’d NEC 98-series 1 9801 Must be set for NEC 98-series
auto PS/2 2 None Set automatically for PS/2
auto 386/486 3 386, 80386 Set automatically for 386 or 486
auto 386 INBOARD None 386 with Intel Inboard
req’d Fujitsu FMR-70 5 None Must be set for Fujitsu FMR-70
auto 386/486 w/ VCPI 11 None Set automatically if VCPI detected
req’d Hitachi B32 14 None Must be set for Hitachi B32
req’d OKI if800 15 None Must be set for OKI if800
option IBM PS/55 16 None May be needed for some PS/55s

The following procedure shows you how to test the switch mode setting.

1. If you have one of the machines listed below, set the DOS16M environment variable to the
value shown for that machine and specify a range of extended memory. For example, if your
machine is a NEC 98-series, set DOS16M=1 @2M-4M. See the section entitled "Fine Control
of Memory Usage" on page 31 in this chapter for more information about setting the memory
range.

30 Changing the Switch Mode Setting

Configuring DOS/4GW

Machine Setting

NEC 98-series 1
Fujitsu FMR-60,-70 5
Hitachi B32 14
OKI if800 15

Before running DOS/4GW applications, check the switch mode setting by following this
procedure:

2. Run PMINFO and note the switch setting reported on the last line of the display. (PMINFO,
which reports on the protected-mode resources available to your programs, is described in more
detail in the chapter entitled "Utilities" on page 69)

If PMINFO runs, the setting is usable on your machine.

3. If you changed the switch setting, add the new setting to your AUTOEXEC.BAT file.

Note: PMINFO will run successfully on 286 machines. If your DOS/4GW application does not run, and
PMINFO does, check the CPU type reported on the first line of the display.

You are authorized (and encouraged) to distribute PMINFO to your customers. You may also include a
copy of this section in your documentation.

8.3 Fine Control of Memory Usage

In addition to setting the switch mode as described above, the DOS16M environment variable enables you
to specify which portion of extended memory DOS/4GW will use. The variable also allows you to instruct
DOS/4GW to search for extra memory and use it if it is present.

8.3.1 Specifying a Range of Extended Memory

Normally, you don’t need to specify a range of memory with the DOS16M variable. You must use the
variable, however, in the following cases:

• You are running on a Fujitsu FMR-series, NEC 98-series, OKI if800-series or Hitachi B-series
machine.

• You have older programs that use extended memory but don’t follow one of the standard disciplines.

• You want to shell out of DOS/4GW to use another program that requires extended memory.

If none of these conditions applies to you, you can skip this section.

The general syntax is:

set DOS16M= [switch_mode] [@start_address [- end_address]] [:size]

In the syntax shown above, start_address, end_address and size represent numbers, expressed
in decimal or in hexadecimal (hex requires a 0x prefix). The number may end with a K to indicate an

Fine Control of Memory Usage 31

The DOS/4GW DOS Extender

address or size in kilobytes, or an M to indicate megabytes. If no suffix is given, the address or size is
assumed to be in kilobytes. If both a size and a range are specified, the more restrictive interpretation is
used.

The most flexible strategy is to specify only a size. However, if you are running with other software that
does not follow a convention for indicating its use of extended memory, and these other programs start
before DOS/4GW, you will need to calculate the range of memory used by the other programs and specify a
range for DOS/4GW programs to use.

DOS/4GW ignores specifications (or parts of specifications) that conflict with other information about
extended memory use. Below are some examples of memory usage control:

set DOS16M= 1 @2m-4m Mode 1, for NEC 98-series machines, and use extended memory
between 2.0 and 4.0MB.

set DOS16M= :1M Use the last full megabyte of extended memory, or as much as
available limited to 1MB.

set DOS16M= @2m Use any extended memory available above 2MB.

set DOS16M= @ 0 - 5m Use any available extended memory from 0.0 (really 1.0) to
5.0MB.

set DOS16M= :0 Use no extended memory.

As a default condition DOS/4GW applications take all extended memory that is not otherwise in use.
Multiple DOS/4GW programs that execute simultaneously will share the reserved range of extended
memory. Any non-DOS/4GW programs started while DOS/4GW programs are executing will find that
extended memory above the start of the DOS/4GW range is unavailable, so they may not be able to run.
This is very safe. There will be a conflict only if the other program does not check the BIOS configuration
call (Interrupt 15H function 88H, get extended memory size).

To create a private pool of extended memory for your DOS/4GW application, use the PRIVATXM
program, described in the chapter entitled "Utilities" on page 69.

The default memory allocation strategy is to use extended memory if available, and overflow into DOS
(low) memory.

In a VCPI or DPMI environment, the start_address and end_address arguments are not
meaningful. DOS/4GW memory under these protocols is not allocated according to specific addresses
because VCPI and DPMI automatically prevent address conflicts between extended memory programs.
You can specify a size for memory managed by VCPI or DPMI, but DOS/4GW will not necessarily
allocate this memory from the highest available extended memory address, as it does for memory managed
under other protocols.

8.3.2 Using Extra Memory

Some machines contain extra non-extended, non-conventional memory just below 16MB. When
DOS/4GW runs on a Compaq 386, it automatically uses this memory because the memory is allocated
according to a certain protocol, which DOS/4GW follows. Other machines have no protocol for allocating
this memory. To use the extra memory that may exist on these machines, set DOS16M with the + option.

set DOS16M=+

32 Fine Control of Memory Usage

Configuring DOS/4GW

Setting the + option causes DOS/4GW to search for memory in the range from FA0000 to FFFFFF and
determine whether the memory is usable. DOS/4GW does this by writing into the extra memory and
reading what it has written. In some cases, this memory is mapped for DOS or BIOS usage, or for other
system uses. If DOS/4GW finds extra memory that is mapped this way, and is not marked read-only, it will
write into that memory. This will cause a crash, but won’t have any other effect on your system.

8.4 Setting Runtime Options

The DOS16M environment variable sets certain runtime options for all DOS/4GW programs running on the
same system.

To set the environment variable, the syntax is:

set DOS16M=[switch_mode_setting]^options.

Note: Some command line editing TSRs, such as CED, use the caret (^) as a delimiter. If you want to set
DOS16M using the syntax above while one of these TSRs is resident, modify the TSR to use a different
delimiter.

These are the options:

0x01 check A20 line -- This option forces DOS/4GW to wait until the A20 line is enabled before
switching to protected mode. When DOS/4GW switches to real mode, this option suspends
your program’s execution until the A20 line is disabled, unless an XMS manager (such as
HIMEM.SYS) is active. If an XMS manager is running, your program’s execution is
suspended until the A20 line is restored to the state it had when the CPU was last in real
mode. Specify this option if you have a machine that runs DOS/4GW but is not truly
AT-compatible. For more information on the A20 line, see the section entitled
"Controlling Address Line 20" on page 34.

0x02 prevent initialization of VCPI -- By default, DOS/4GW searches for a VCPI server and, if
one is present, forces it on. This option is useful if your application does not use EMS
explicitly, is not a resident program, and may be used with 386-based EMS simulator
software.

0x04 directly pass down keyboard status calls -- When this option is set, status requests are
passed down immediately and unconditionally. When disabled, pass-downs are limited so
the 8042 auxiliary processor does not become overloaded by keyboard polling loops.

0x10 restore only changed interrupts -- Normally, when a DOS/4GW program terminates, all
interrupts are restored to the values they had at the time of program startup. When you use
this option, only the interrupts changed by the DOS/4GW program are restored.

0x20 set new memory to 00 -- When DOS/4GW allocates a new segment or increases the size of a
segment, the memory is zeroed. This can help you find bugs having to do with
uninitialized memory. You can also use it to provide a consistent working environment
regardless of what programs were run earlier. This option only affects segment allocations
or expansions that are made through the DOS/4GW kernel (with DOS function 48H or
4AH). This option does not affect memory allocated with a compiler’s malloc function.

0x40 set new memory to FF -- When DOS/4GW allocates a new segment or increases the size of
a segment, the memory is set to 0xFF bytes. This is helpful in making reproducible cases

Setting Runtime Options 33

The DOS/4GW DOS Extender

of bugs caused by using uninitialized memory. This option only affects segment
allocations or expansions that are made through the DOS/4GW kernel (with DOS function
48H or 4AH). This option does not affect memory allocated with a compiler’s malloc
function.

0x80 new selector rotation -- When DOS/4GW allocates a new selector, it usually looks for the
first available (unused) selector in numerical order starting with the highest selector used
when the program was loaded. When this option is set, the new selector search begins after
the last selector that was allocated. This causes new selectors to rotate through the range.
Use this option to find references to stale selectors, i.e., segments that have been cancelled
or freed.

8.5 Controlling Address Line 20

This section explains how DOS/4GW uses address line 20 (A20) and describes the related DOS16M
environment variable settings. It is unlikely that you will need to use these settings.

Because the 8086 and 8088 chips have 20-bit address spaces, their highest addressable memory location is
one byte below 1MB. If you specify an address at 1MB or over, which would require a twenty-first bit to
set, the address wraps back to zero. Some parts of DOS depend on this wrap, so on the 286 and 386, the
twenty-first address bit is disabled. To address extended memory, DOS/4GW enables the twenty-first
address bit (the A20 line). The A20 line must be enabled for the CPU to run in protected mode, but it may
be either enabled or disabled in real mode.

By default, when DOS/4GW returns to real mode, it disables the A20 line. Some software depends on the
line being enabled. DOS/4GW recognizes the most common software in this class, the XMS managers
(such as HIMEM.SYS), and enables the A20 line when it returns to real mode if an XMS manager is
present. For other software that requires the A20 line to be enabled, use the A20 option. The A20 option
makes DOS/4GW restore the A20 line to the setting it had when DOS/4GW switched to protected mode.
Set the environment variable as follows:

set DOS16M=A20

To specify more than one option on the command line, separate the options with spaces.

The DOS16M variable also lets you to specify the length of the delay between a DOS/4GW instruction to
change the status of the A20 line and the next DOS/4GW operation. By default, this delay is 1 loop
instruction when DOS/4GW is running on a 386 machine. In some cases, you may need to specify a longer
delay for a machine that will run DOS/4GW but is not truly AT-compatible. To change the delay, set
DOS16M to the desired number of loop instructions, preceded by a comma:

set DOS16M=,loops

34 Controlling Address Line 20

9 VMM

The Virtual Memory Manager (VMM) uses a swap file on disk to augment RAM. With VMM you can use
more memory than your machine actually has. When RAM is not sufficient, part of your program is
swapped out to the disk file until it is needed again. The combination of the swap file and available RAM
is the virtual memory.

Your program can use VMM if you set the DOS environment variable, DOS4GVM, as follows. To set the
DOS4GVM environment variable, use the format shown below.

set DOS4GVM= [option[#value]] [option[#value]]

A "#" is used with options that take values since the DOS command shell will not accept "=".

If you set DOS4GVM equal to 1, the default parameters are used for all options.

Example:
C>set DOS4GVM=1

9.1 VMM Default Parameters

VMM parameters control the options listed below.

MINMEM The minimum amount of RAM managed by VMM. The default is 512KB.

MAXMEM The maximum amount of RAM managed by VMM. The default is 4MB.

SWAPMIN The minimum or initial size of the swap file. If this option is not used, the size of the
swap file is based on VIRTUALSIZE (see below).

SWAPINC The size by which the swap file grows.

SWAPNAME The swap file name. The default name is "DOS4GVM.SWP". By default the file is in
the root directory of the current drive. Specify the complete path name if you want to
keep the swap file somewhere else.

DELETESWAP Whether the swap file is deleted when your program exits. By default the file is not
deleted. Program startup is quicker if the file is not deleted.

VIRTUALSIZE The size of the virtual memory space. The default is 16MB.

VMM Default Parameters 35

The DOS/4GW DOS Extender

9.2 Changing the Defaults

You can change the defaults in two ways.

1. Specify different parameter values as arguments to the DOS4GVM environment variable, as
shown in the example below.

set DOS4GVM=deleteswap maxmem#8192

2. Create a configuration file with the filetype extension ".VMC", and use that as an argument to
the DOS4GVM environment variable, as shown below.

set DOS4GVM=@NEW4G.VMC

9.2.1 The .VMC File

A ".VMC" file contains VMM parameters and settings as shown in the example below. Comments are
permitted. Comments on lines by themselves are preceded by an exclamation point (!). Comments that
follow option settings are preceded by white space. Do not insert blank lines: processing stops at the first
blank line.

!Sample .VMC file
!This file shows the default parameter values.
minmem = 512 At least 512K bytes of RAM is required.
maxmem = 4096 Uses no more than 4MB of RAM
virtualsize = 16384 Swap file plus allocated memory is 16MB
!To delete the swap file automatically when the program exits, add
!deleteswap
!To store the swap file in a directory called SWAPFILE, add
!swapname = c:\swapfile\dos4gvm.swp

36 Changing the Defaults

10 Interrupt 21H Functions

When you call an Interrupt 21H function under DOS/4GW, the 32-bit registers in which you pass values are
translated into the appropriate 16-bit registers, since DOS works only with 16 bits. However, you can use
32-bit values in your DOS calls. You can allocate blocks of memory larger than 64KB or use an address
with a 32-bit offset, and DOS/4GW will translate the call appropriately, to use 16-bit registers. When the
Interrupt 21H function returns, the value is widened - placed in a 32-bit register, with the high order bits
zeroed.

DOS/4GW uses the following rules to manage registers:

• When you pass a parameter to an Interrupt 21H function that expects a 16-bit quantity in a general
register (for example, AX), pass a 32-bit quantity in the corresponding extended register (for
example, EAX). When a DOS function returns a 16-bit quantity in a general register, expect to
receive it (with high-order zero bits) in the corresponding extended register.

• When an Interrupt 21H function expects to receive a 16:16 pointer in a segment:general register pair
(for example, ES:BX), supply a 16:32 pointer using the same segment register and the corresponding
extended general register (ES:EBX). DOS/4GW will copy data and translate pointers so that DOS
ultimately receives a 16:16 real-mode pointer in the correct registers.

• When DOS returns a 16:16 real-mode pointer, DOS/4GW translates the segment value into an
appropriate protected-mode selector and generates a 32-bit offset that results in a 16:32 pointer to the
same location in the linear address space.

• Many DOS functions return an error code in AX if the function fails. DOS/4GW checks the status of
the carry flag, and if it is set, indicating an error, zero-extends the code for EAX. It does not change
any other registers.

• If the value is passed or returned in an 8-bit register (AL or AH, for example), DOS/4GW puts the
value in the appropriate location and leaves the upper half of the 32-bit register untouched.

The table below lists all the Interrupt 21h functions. For each, it shows the registers that are widened or
narrowed. Footnotes provide additional information about some of the interrupts that require special
handling. Following the table is a section that provides a detailed explanation of interrupt handling under
DOS/4GW.

Interrupt 21H Functions 37

The DOS/4GW DOS Extender

Function Purpose Managed Registers

00H Terminate Process None
01H Character Input with Echo None
02H Character Output None
03H Auxiliary Input None
04H Auxiliary Output None
05H Print Character None
06H Direct Console I/O None
07H Unfiltered Character Input Without Echo None
08H Character Input Without Echo None
09H Display String EDX
0AH Buffered Keyboard Input EDX
0BH Check Keyboard Status None
0CH Flush Buffer, Read Keyboard EDX
0DH Disk Reset None
0EH Select Disk None
0FH Open File with FCB EDX

10H Close File with FCB EDX
11H Find First File EDX
12H Find Next File EDX
13H Delete File EDX
14H Sequential Read EDX
15H Sequential Write EDX
16H Create File with FCB EDX
17H Rename File EDX
19H Get Current Disk None
1AH Set DTA Address EDX
1BH Get Default Drive Data Returns in EBX, ECX, and EDX
1CH Get Drive Data Returns in EBX, ECX, and EDX

21H Random Read EDX
22H Random Write EDX
23H Get File Size EDX
24H Set Relative Record EDX
25H Set Interrupt Vector EDX
26H Create New Program Segment Prefix None
27H Random Block Read EDX, returns in ECX
28H Random Block Write EDX, returns in ECX
29H Parse Filename ESI, EDI, returns in EAX, ESI and EDI (1.)
2AH Get Date Returns in ECX
2BH Set Date None
2CH Get Time None
2DH Set Time None
2EH Set/Reset Verify Flag None
2FH Get DTA Address Returns in EBX

30H Get MS-DOS Version Number Returns in ECX
31H Terminate and Stay Resident None
33H Get/Set Control-C Check Flag None
34H Return Address of InDOS Flag Returns in EBX
35H Get Interrupt Vector Returns in EBX
36H Get Disk Free Space Returns in EAX, EBX, ECX, and EDX

38 Interrupt 21H Functions

Interrupt 21H Functions

38H Get/Set Current Country EDX, returns in EBX
39H Create Directory EDX
3AH Remove Directory EDX
3BH Change Current Directory EDX
3CH Create File with Handle EDX, returns in EAX
3DH Open File with Handle EDX, returns in EAX
3EH Close File None
3FH Read File or Device EBX, ECX, EDX, returns in EAX (2.)

40H Write File or Device EBX, ECX, EDX, returns in EAX (2.)
41H Delete File EDX
42H Move File Pointer Returns in EDX, EAX
43H Get/Set File Attribute EDX, returns in ECX
44H IOCTL (3.)

00H Get Device Information Returns in EDX
01H SetDevice Information None
02H Read Control Data from CDD EDX, returns in EAX
03H Write Control Data to CDD EDX, returns in EAX
04H Read Control Data from BDD EDX, returns in EAX
05H Write Control Data to BDD EDX, returns in EAX
06H Check Input Status None
07H Check Output Status None
08H Check if Block Device is Removeable Returns in EAX
09H Check if Block Device is Remote Returns in EDX
0AH Check if Handle is Remote Returns in EDX
0BH Change Sharing Retry Count None
0CH Generic I/O Control for Character Devices EDX
0DH Generic I/O Control for Block Devices EDX
0EH Get Logical Drive Map None
0FH Set Logical Drive Map None

45H Duplicate File Handle Returns in EAX
46H Force Duplicate File Handle None
47H Get Current Directory ESI
48H Allocate Memory Block Returns in EAX
49H Free Memory Block None
4AH Resize Memory Block None
4BH Load and Execute Program (EXEC) EBX, EDX (4.)
4CH Terminate Process with Return Code None
4DH Get Return Code of Child Process None
4EH Find First File EDX
4FH Find Next File None

52H Get List of Lists (not supported)
54H Get Verify Flag None
56H Rename File EDX, EDI
57H Get/Set Date/Time of File Returns in ECX, and EDX
58H Get/Set Allocation Strategy Returns in EAX
59H Get Extended Error Information Returns in EAX
5AH Create Temporary File EDX, returns in EAX and EDX
5BH Create New File EDX, returns in EAX
5CH Lock/Unlock File Region None
5EH Network Machine Name/Printer Setup

00H Get Machine Name EDX
02H Set Printer Setup String ESI

Interrupt 21H Functions 39

The DOS/4GW DOS Extender

03H Get Printer Setup String EDI, returns in ECX
5FH Get/Make Assign List Entry

02H Get Redirection List Entry ESI, EDI, returns in ECX
03H Redirect Device ESI, EDI
04H Cancel Device Redirection ESI

62H Get Program Segment Prefix Address Returns in EBX
63H Get Lead Byte Table (version 2.25 only) Returns in ESI
65H Get Extended Country Information EDI
66H Get or Set Code Page None
67H Set Handle Count None

This list of functions is excerpted from The MS-DOS Encyclopedia , Copyright (c) 1988 by Microsoft
Press. All Rights Reserved.

1. For Function 29H, DS:ESI and ES:EDI contain pointer values that are not changed by the call.

2. You can read and write quantities larger than 64KB with Functions 3FH and 40H. DOS/4GW
breaks your request into chunks smaller than 64KB, and calls the DOS function once for each
chunk.

3. You can’t transfer more than 64KB using Function 44h, subfunctions 02H, 03H, 04H, or 05H.
DOS/4GW does not break larger requests into DOS-sized chunks, as it does for Functions 3FH
and 40H.

4. When you call Function 4B under DOS/4GW, you pass it a data structure that contains 16:32 bit
pointers. DOS/4GW translates these into 16:16 bit pointers in the structure it passes to DOS.

10.1 Functions 25H and 35H: Interrupt Handling in Protected
Mode

By default, interrupts that occur in protected mode are passed down: the entry in the IDT points to code in
DOS/4GW that switches the CPU to real mode and resignals the interrupt. If you install an interrupt
handler using Interrupt 21H, Function 25H, that handler will get control of any interrupts that occur while
the processor is in protected mode. If the interrupt for which you installed the handler is in the autopassup
range, your handler will also get control of interrupts signalled in real mode.

The autopassup range runs from 08H to 2EH inclusive, but excluding 21H. If the interrupt is in the
autopassup range, the real-mode vector will be modified when you install the protected-mode handler to
point to code in the DOS/4GW kernel. This code switches the processor to protected mode and resignals
the interrupt-where your protected-mode handler will get control.

10.1.1 32-Bit Gates

The DOS/4GW kernel always assigns a 32-bit gate for the interrupt handlers it installs. It does not
distinguish between 16-bit and 32-bit handlers for consistency with DPMI.

This 32-bit gate points into the DOS/4GW kernel. When DOS/4GW handles the interrupt, it switches to its
own 16-bit stack, and from there it calls the interrupt handler (yours or the default). This translation is

40 Functions 25H and 35H: Interrupt Handling in Protected Mode

Interrupt 21H Functions

transparent to the handler, with one exception: since the current stack is not the one on which the interrupt
occurred, the handler cannot look up the stack for the address at which the interrupt occurred.

10.1.2 Chaining 16-bit and 32-bit Handlers

If your program hooks an interrupt, write a normal service routine that either handles the interrupt and
IRETs or chains to the previous handler. As part of handling the interrupt, your handler can PUSHF/CALL
to the previous handler. The handler must IRET (or IRETD) or chain.

For each protected-mode interrupt, DOS/4GW maintains separate chains of 16-bit and 32-bit handlers. If
your 16-bit handler chains, the previous handler is a 16-bit program. If your 32-bit handler chains, the
previous handler is a 32-bit program.

If a 16-bit program hooks a given interrupt before any 32-bit programs hook it, the 16-bit chain is executed
first. If all the 16-bit handlers unhook later and a new 16-bit program hooks the interrupt while 32-bit
handlers are still outstanding, the 32-bit handlers will be executed first.

If the first program to hook an interrupt is 32-bit, the 32-bit chain is executed first.

10.1.3 Getting the Address of the Interrupt Handler

When you signal Interrupt 21H, Function 35, it always returns a non-null address even if no other program
of your bitness (i.e., 16-bit or 32-bit) has hooked the interrupt. The address points to a dummy handler that
looks to you as though it does an IRET to end the chain. This means that you can’t find an unused interrupt
by looking for a NULL pointer. Since this technique is most frequently used by programs that are looking
for an unclaimed real-mode interrupt on which to install a TSR, it shouldn’t cause you problems.

Functions 25H and 35H: Interrupt Handling in Protected Mode 41

The DOS/4GW DOS Extender

42 Functions 25H and 35H: Interrupt Handling in Protected Mode

11 Interrupt 31H DPMI Functions

When a DOS/4GW application runs under a DPMI host, such as Windows 3.1 in enhanced mode, an OS/2
virtual DOS machine, 386Max (with DEBUG=DPMIXCOPY), or QEMM/QDPMI (with EXTCHKOFF),
the DPMI host provides the DPMI services, not DOS/4GW. The DPMI host also provides virtual memory,
if any. Performance (speed and memory use) under different DPMI hosts varies greatly due to the quality
of the DPMI implementation.

DPMI services are accessed using Interrupt 31H.

The following describes the services provided by DOS/4GW and DOS/4GW Professional in the absence of
a DPMI host. DOS/4GW supports many of the common DPMI system services. Not all of the services
described below are supported by other DPMI hosts.

Some of the information in this chapter was obtained from the the DOS Protected-Mode Interface (DPMI)
specification. It is no longer in print; however the DPMI 1.0 specification can be obtained from the Intel
ftp site. Here is the URL.

ftp://ftp.intel.com/pub/IAL/software_specs/dpmiv1.zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

11.1 Using Interrupt 31H Function Calls

Interrupt 31H DPMI function calls can be used only by protected-mode programs.

The general ground rules for Interrupt 31H calls are as follows:

• All Interrupt 31H calls modify the AX register. Unsupported or unsuccessful calls return an error
code in AX. Other registers are saved unless they contain specified return values.

• All Interrupt 31H calls modify flags: Unsupported or unsuccessful calls return with the carry flag
set. Successful calls clear the carry flag. Only memory management and interrupt flag management
calls modify the interrupt flag.

• Memory management calls can enable interrupts.

• All calls are reentrant.

The flag and register information for each call is listed in the following descriptions of supported Interrupt
31H function calls.

Using Interrupt 31H Function Calls 43

The DOS/4GW DOS Extender

11.2 Int31H Function Calls

The Interrupt 31H subfunction calls supported by DOS/4GW are listed below by category:

• Local Descriptor Table (LDT) management services

• DOS memory management services

• Interrupt services

• Translation services

• DPMI version

• Memory management services

• Page locking services

• Demand paging performance tuning services

• Physical address mapping

• Virtual interrupt state functions

• Vendor specific extensions

• Coprocessor status

Only the most commonly used Interrupt 31H function calls are supported in this version.

11.2.1 Local Descriptor Table (LDT) Management Services

Function 0000H This function allocates a specified number of descriptors from the LDT and returns the
base selector. Pass the following information:

AX = 0000H
CX = number of descriptors to be allocated

If the call succeeds, the carry flag is clear and the base selector is returned in AX. If the
call fails, the carry flag is set.

An allocated descriptor is set to the present data type, with a base and limit of zero. The
privilege level of an allocated descriptor is set to match the code segment privilege level of
the application. To find out the privilege level of a descriptor, use the lar instruction.

Allocated descriptors must be filled in by the application. If more than one descriptor is
allocated, the returned selector is the first of a contiguous array. Use Function 0003H to
get the increment for the next selector in the array.

Function 0001H This function frees the descriptor specified. Pass the following information:

44 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0001H
BX = the selector to free

Use the selector returned with function 0000h when the descriptor was allocated. To free
an array of descriptors, call this function for each descriptor. Use Function 0003H to find
out the increment for each descriptor in the array.

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

You can use this function to free the descriptors allocated for the program’s initial CS, DS,
and SS segments, but you should not free other segments that were not allocated with
Function 0000H or Function 000DH.

Function 0002H This function converts a real-mode segment to a descriptor that a protected-mode
program can address. Pass the following information:

AX = 0002H
BX = real-mode segment address

If the call succeeds, it clears the carry flag and returns the selector mapped to the real-mode
segment in AX. If the call fails, the carry flag is set.

If you call this function more than once with the same real-mode segment address, you get
the same selector value each time. The descriptor limit is set to 64KB.

The purpose of this function is to give protected-mode programs easy access to commonly
used real-mode segments. However, because you cannot modify or free descriptors created
by this function, it should be used infrequently. Do not use this function to get descriptors
for private data areas.

To examine real-mode addresses using the same selector, first allocate a descriptor, and
then use Function 0007H to change the linear base address.

Function 0003H This function returns the increment value for the next selector. Use this function to get
the value you add to the base address of an allocated array of descriptors to get the next
selector address. Pass the following information:

AX = 0003H

This call always succeeds. The increment value is returned in AX. This value is always a
power of two, but no other assumptions can be made.

Function 0006H This function gets the linear base address of a selector. Pass the following information:

AX = 0006H
BX = selector

If the call succeeds, the carry flag is clear and CX:DX contains the 32-bit linear base
address of the segment. If the call fails, it sets the carry flag.

If the selector you specify in BX is invalid, the call fails.

Function 0007H This function changes the base address of a specified selector. Only descriptors allocated
through Function 0000H should be modified. Pass the following information:

Int31H Function Calls 45

The DOS/4GW DOS Extender

AX = 0007H
BX = selector
CX:DX = the new 32-bit linear base address for the segment

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set.

If the selector you specify in BX is invalid, the call fails.

Function 0008H This function sets the upper limit of a specified segment. Use this function to modify
descriptors allocated with Function 0000H only. Pass the following information:

AX = 0008H
BX = selector
CX:DX = 32-bit segment limit

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set.

The call fails if the specified selector is invalid, or if the specified limit cannot be set.

Segment limits greater than 1MB must be page-aligned. This means that limits greater than
1MB must have the low 12 bits set.

To get the limit of a segment, use the 32-bit form of lsl for segment limits greater than
64KB.

Function 0009H This function sets the descriptor access rights. Use this function to modify descriptors
allocated with Function 0000H only. To examine the access rights of a descriptor, use the
lar instruction. Pass the following information:

AX = 0009H
BX = selector
CL = Access rights/type byte
CH = 386 extended access rights/type byte

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set. If the
selector you specify in BX is invalid, the call fails. The call also fails if the access
rights/type byte does not match the format and meet the requirements shown in the figures
below.

46 Int31H Function Calls

Interrupt 31H DPMI Functions

The access rights/type byte passed in CL has the format shown in the figure below.

6 5 4 3 2 1 07

P DPL 1 C/D E/C W/R A

0 => Not accessed
1 => Accessed

Data: 0 => Read, 1=> R/W
Code: Must be 1 (readable)

Data: 0=> Exp-up, 1=> Exp-dn
Code: Must be 0 (non-conform)

0 => Data, 1=> Code

Must be 1

Must equal caller’s CPL

0 = > Absent, 1=> Present

Figure 3. Access Rights/Type

Int31H Function Calls 47

The DOS/4GW DOS Extender

The extended access rights/type byte passed in CH has the following format.

6 5 4 3 2 1 07

G B/D Avl0 Reserved

Ignored

Can be 0 or 1

Must be 0

0 => Byte Granular, 1=> Page Granular

0 => Default 16-bit., 1=> Default 32-bit

Figure 4. Extended Access Rights/Type

Function 000AH This function creates an alias to a code segment. This function creates a data descriptor
that has the same base and limit as the specified code segment descriptor. Pass the
following information:

AX = 000AH
BX = code segment selector

If the call succeeds, the carry flag is clear and the new data selector is returned in AX. If
the call fails, the carry flag is set. The call fails if the selector passed in BX is not a valid
code segment.

To deallocate an alias to a code segment, use Function 0001H.

After the alias is created, it does not change if the code segment descriptor changes. For
example, if the base or limit of the code segment change later, the alias descriptor stays the
same.

Function 000BH This function copies the descriptor table entry for a specified descriptor. The copy is
written into an 8-byte buffer. Pass the following information:

AX = 000BH
BX = selector
ES:EDI = a pointer to the 8-byte buffer for the descriptor copy

48 Int31H Function Calls

Interrupt 31H DPMI Functions

If the call succeeds, the carry flag is clear and ES:EDI contains a pointer to the buffer that
contains a copy of the descriptor. If the call fails, the carry flag is set. The call fails if the
selector passed in BX is invalid or unallocated.

Function 000CH This function copies an 8-byte buffer into the LDT for a specified descriptor. The
descriptor must first have been allocated with Function 0000H. Pass the following
information:

AX = 000CH
BX = selector
ES:EDI = a pointer to the 8-byte buffer containing the descriptor

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set. The call fails if
the descriptor passed in BX is invalid.

The type byte, byte 5, has the same format and requirements as the access rights/type byte
passed to Function 0009H in CL. The format is shown in the first figure presented with the
description of Function 0009H.

The extended type byte, byte 6, has the same format and requirements as the extended
access rights/type byte passed to Function 0009H in CH, except that the limit field can have
any value, and the low order bits marked reserved are used to set the upper 4 bits of the
descriptor limit. The format is shown in the second figure presented with the description of
Function 0009H.

Function 000DH This function allocates a specific LDT descriptor. Pass the following information:

AX = 000DH
BX = selector

If the call succeeds, the carry flag is clear and the specified descriptor is allocated. If the
call fails, the carry flag is set.

The call fails if the specified selector is already in use, or if it is not a valid LDT descriptor.
The first 10h (16 decimal) descriptors are reserved for this function, and should not be used
by the host. Some of these descriptors may be in use, however, if another client application
is already loaded.

To free the descriptor, use Function 0001H.

11.2.2 DOS Memory Management Services

Function 0100H This function allocates memory from the DOS free memory pool. This function returns
both the real-mode segment and one or more descriptors that can be used by
protected-mode applications. Pass the following information:

AX = 0100H
BX = the number of paragraphs (16-byte blocks) requested

If the call succeeds, the carry flag is clear. AX contains the initial real-mode segment of
the allocated block and DX contains the base selector for the allocated block.

Int31H Function Calls 49

The DOS/4GW DOS Extender

If the call fails, the carry flag is set. AX contains the DOS error code. If memory is
damaged, code 07H is returned. If there is not enough memory to satisfy the request, code
08H is returned. BX contains the number of paragraphs in the largest available block of
DOS memory.

If you request a block larger than 64KB, contiguous descriptors are allocated. Use
Function 0003H to find the value of the increment to the next descriptor. The limit of the
first descriptor is set to the entire block. Subsequent descriptors have a limit of 64KB,
except for the final descriptor, which has a limit of blocksize MOD 64KB.

You cannot modify or deallocate descriptors allocated with this function. Function 101H
deallocates the descriptors automatically.

Function 0101H This function frees a DOS memory block allocated with function 0100H. Pass the
following information:

AX = 0101H
DX = selector of the block to be freed

If the call succeeds, the carry flag is clear.

If the call fails, the carry flag is set and the DOS error code is returned in AX. If the
incorrect segment was specified, code 09H is returned. If memory control blocks are
damaged, code 07H is returned.

All descriptors allocated for the specified memory block are deallocated automatically and
cannot be accessed correctly after the block is freed.

Function 0102H This function resizes a DOS memory block allocated with function 0100H. Pass the
following information:

AX = 0102H
BX = the number of paragraphs (16-byte blocks) in the resized block
DX = selector of block to resize

If the call succeeds, the carry flag is clear.

If the call fails, the carry flag is set, the maximum number of paragraphs available is
returned in BX, and the DOS error code is returned in AX. If memory code blocks are
damaged, code 07H is returned. If there isn’t enough memory to increase the size as
requested, code 08H is returned. If the incorrect segment is specified, code 09h is returned.

Because of the difficulty of finding additional contiguous memory or descriptors, this
function is not often used to increase the size of a memory block. Increasing the size of a
memory block might well fail because other DOS allocations have used contiguous space.
If the next descriptor in the LDT is not free, allocation also fails when the size of a block
grows over the 64KB boundary.

If you shrink the size of a memory block, you may also free some descriptors allocated to
the block. The initial selector remains unchanged, however; only the limits of subsequent
selectors will change.

50 Int31H Function Calls

Interrupt 31H DPMI Functions

11.2.3 Interrupt Services

Function 0200H This function gets the value of the current task’s real-mode interrupt vector for the
specified interrupt. Pass the following information:

AX = 0200H
BL = interrupt number

This call always succeeds. All 100H (256 decimal) interrupt vectors are supported by the
host. When the call returns, the carry flag is clear, and the segment:offset of the
real-mode interrupt handler is returned in CX:DX.

Because the address returned in CX is a segment, and not a selector, you cannot put it into a
protected-mode segment register. If you do, a general protection fault may occur.

Function 0201H This function sets the value of the current task’s real-mode interrupt vector for the
specified interrupt. Pass the following information:

AX = 0201H
BL = interrupt number
CX:DX = segment:offset of the real-mode interrupt handler

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

The address passed in CX:DX should be a real-mode segment:offset, such as
function 0200H returns. For this reason, the interrupt handler must reside in DOS
addressable memory. You can use Function 0100H to allocate DOS memory. This version
does not support the real-mode callback address function.

If you are hooking a hardware interrupt, you have to lock all segments involved. These
segments include the segment in which the interrupt handler runs, and any segment it may
touch at interrupt time.

Function 0202H This function gets the processor exception handler vector. This function returns the
CS:EIP of the current protected-mode exception handler for the specified exception
number. Pass the following information:

AX = 0202H
BL = exception/fault number (00h - 1Fh)

If the call succeeds, the carry flag is clear and the selector:offset of the
protected-mode exception handler is returned in CX:EDX. If it fails, the carry flag is set.

The value returned in CX is a valid protected-mode selector, not a real-mode segment.

Function 0203H This function sets the processor exception handler vector. This function allows
protected-mode applications to intercept processor exceptions that are not handled by the
DPMI environment. Programs may wish to handle exceptions such as "not present segment
faults" which would otherwise generate a fatal error. Pass the following information:

Int31H Function Calls 51

The DOS/4GW DOS Extender

AX = 0203H
BL = exception/fault number (00h - 1Fh)
CX:EDX = selector:offset of the exception handler

If the call succeeds, the carry flag is clear. If it fails, the carry flag is set.

The address passed in CX must be a valid protected-mode selector, such as Function 204H
returns, and not a real-mode segment. A 32-bit implementation must supply a 32-bit offset
in the EDX register. If the handler chains to the next handler, it must use a 32-bit interrupt
stack frame to do so.

The handler should return using a far return instruction. The original SS:ESP, CS:EIP and
flags on the stack, including the interrupt flag, will be restored.

All fault stack frames have an error code. However the error code is only valid for
exceptions 08h, 0Ah, 0Bh, 0Ch, 0Dh, and 0Eh.

The handler must preserve and restore all registers.

The exception handler will be called on a locked stack with interrupts disabled. The
original SS, ESP, CS, and EIP will be pushed on the exception handler stack frame.

The handler must either return from the call by executing a far return or jump to the next
handler in the chain (which will execute a far return or chain to the next handler).

The procedure can modify any of the values on the stack pertaining to the exception before
returning. This can be used, for example, to jump to a procedure by modifying the CS:EIP
on the stack. Note that the procedure must not modify the far return address on the stack —
it must return to the original caller. The caller will then restore the flags, CS:EIP and
SS:ESP from the stack frame.

If the DPMI client does not handle an exception, or jumps to the default exception handler,
the host will reflect the exception as an interrupt for exceptions 0, 1, 2, 3, 4, 5 and 7.
Exceptions 6 and 8 - 1Fh will be treated as fatal errors and the client will be terminated.

Exception handlers will only be called for exceptions that occur in protected mode.

Function 0204H This function gets the CS:EIP selector:offset of the current protected-mode
interrupt handler for a specified interrupt number. Pass the following information:

AX = 0204H
BL = interrupt number

This call always succeeds. All 100H (256 decimal) interrupt vectors are supported by the
host. When the call returns, the carry flag is clear and CX:EDX contains the
protected-mode selector:offset of the exception handler.

A 32-bit offset is returned in the EDX register.

Function 0205H This function sets the address of the specified protected-mode interrupt vector. Pass the
following information:

52 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0205H
BL = interrupt number
CX:EDX = selector:offset of the exception handler

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

The address passed in CX must be a valid protected-mode selector, such as Function 204H
returns, and not a real-mode segment. A 32-bit implementation must supply a 32-bit offset
in the EDX register. If the handler chains to the next handler, it must use a 32-bit interrupt
stack frame to do so.

11.2.4 Translation Services

These services are provided so that protected-mode programs can call real-mode software that DPMI does
not support directly. The protected-mode program must set up a data structure with the appropriate register
values. This "real-mode call structure" is shown below.

Int31H Function Calls 53

The DOS/4GW DOS Extender

Offset Register

00H EDI

04H ESI

08H EBP

0CH Reserved by system

10H EBX

14H EDX

18H ECX

1CH EAX

20H Flags

22H ES

24H DS

26H FS

28H GS

2AH IP

2CH CS

2EH SP

30H SS

After the call or interrupt is complete, all real-mode registers and flags except SS, SP, CS, and IP will be
copied back to the real-mode call structure so that the caller can examine the real-mode return values.

The values in the segment registers should be real-mode segments, not protected-mode selectors.

The translation services will provide a real-mode stack if the SS:SP fields are zero. However, the stack
provided is relatively small. If the real-mode procedure/interrupt routine uses more than 30 words of stack
space then you should provide your own real-mode stack.

Function 0300H This function simulates a real-mode interrupt. This function simulates an interrupt in real
mode. It will invoke the CS:IP specified by the real-mode interrupt vector and the handler
must return by executing an iret. Pass the following information:

54 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0300H
BL = interrupt number
BH = flags Bit 0 = 1 resets the interrupt controller and A20 line. Other flags are

reserved and must be 0.
CX = number of words to copy from protected-mode stack to real-mode stack
ES:EDI = the selector:offset of real-mode call structure

If the call fails, the carry flag is set.

If the call succeeds, the carry flag is clear and ES:EDI contains the selector:offset
of the modified real-mode call structure.

The CS:IP in the real-mode call structure is ignored by this service. The appropriate
interrupt handler will be called based on the value passed in BL.

The flags specified in the real-mode call structure will be pushed on the real-mode stack
iret frame. The interrupt handler will be called with the interrupt and trace flags clear.

It is up to the caller to remove any parameters that were pushed on the protected-mode
stack.

The flag to reset the interrupt controller and the A20 line is ignored by DPMI
implementations that run in Virtual 8086 mode. It causes DPMI implementations that
return to real mode to set the interrupt controller and A20 address line hardware to its
normal real-mode state.

Function 0301H (DOS/4GW Professional only) This function calls a real-mode procedure with a FAR
return frame. The called procedure must execute a FAR return when it completes. Pass the
following information:

AX = 0301H
BH = flags Bit 0 = 1 resets the interrupt controller and A20 line. Other flags reserved

and must be 0.
CX = Number of words to copy from protected-mode to real-mode stack
ES:EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flag is clear and ES:EDI contains the selector:offset
of modified real-mode call structure.

If the call fails, the carry flag is set.

Notes:

1. The CS:IP in the real-mode call structure specifies the address of the real-mode
procedure to call.

2. The real-mode procedure must execute a FAR return when it has completed.

3. If the SS:SP fields are zero then a real-mode stack will be provided by the DPMI
host. Otherwise, the real-mode SS:SP will be set to the specified values before
the procedure is called.

4. When the Int 31h returns, the real-mode call structure will contain the values that
were returned by the real-mode procedure.

Int31H Function Calls 55

The DOS/4GW DOS Extender

5. It is up to the caller to remove any parameters that were pushed on the
protected-mode stack.

6. The flag to reset the interrupt controller and A20 line is ignored by DPMI
implementations that run in Virtual 8086 mode. It causes DPMI
implementations that return to real mode to set the interrupt controller and A20
address line hardware to its normal real-mode state.

Function 0302H (DOS/4GW Professional only) This function calls a real-mode procedure with an iret
frame. The called procedure must execute an iret when it completes. Pass the following
information:

AX = 0302H
BH = flags Bit 0 = 1 resets the interrupt controller and A20 line. Other flags reserved

and must be 0.
CX = Number of words to copy from protected-mode to real-mode stack
ES:EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flag is clear and ES:EDI contains the selector:offset
of modified real-mode call structure.

If the call fails, the carry flag is set.

Notes:

1. The CS:IP in the real-mode call structure specifies the address of the real-mode
procedure to call.

2. The real-mode procedure must execute an iret when it has completed.

3. If the SS:SP fields are zero then a real-mode stack will be provided by the DPMI
host. Otherwise, the real-mode SS:SP will be set to the specified values before
the procedure is called.

4. When the Int 31h returns, the real-mode call structure will contain the values that
were returned by the real-mode procedure.

5. The flags specified in the real-mode call structure will be pushed the real-mode
stack iret frame. The procedure will be called with the interrupt and trace
flags clear.

6. It is up to the caller to remove any parameters that were pushed on the
protected-mode stack.

7. The flag to reset the interrupt controller and A20 line is ignored by DPMI
implementations that run in Virtual 8086 mode. It causes DPMI
implementations that return to real mode to set the interrupt controller and A20
address line hardware to its normal real-mode state.

Function 0303H (DOS/4GW Professional only) This function allocates a real-mode callback address. This
service is used to obtain a unique real-mode SEG:OFFSET that will transfer control from
real mode to a protected-mode procedure.

56 Int31H Function Calls

Interrupt 31H DPMI Functions

At times it is necessary to hook a real-mode interrupt or device callback in a
protected-mode driver. For example, many mouse drivers call an address whenever the
mouse is moved. Software running in protected mode can use a real-mode callback to
intercept the mouse driver calls. Pass the following information:

AX = 0303H
DS:ESI = selector:offset of procedure to call
ES:EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flag is clear and CX:DX contains the segment:offset of
real-mode callback address.

If the call fails, the carry flag is set.

Callback Procedure Parameters

Interrupts disabled
DS:ESI = selector:offset of real-mode SS:SP
ES:EDI = selector:offset of real-mode call structure
SS:ESP = Locked protected-mode API stack
All other registers undefined

Return from Callback Procedure

Execute an IRET to return
ES:EDI = selector:offset of real-mode call structure
to restore (see note)

Notes:

1. Since the real-mode call structure is static, you must be careful when writing
code that may be reentered. The simplest method of avoiding reentrancy is to
leave interrupts disabled throughout the entire call. However, if the amount of
code executed by the callback is large then you will need to copy the real-mode
call structure into another buffer. You can then return with ES:EDI pointing to
the buffer you copied the data to — it does not have to point to the original real
mode call structure.

2. The called procedure is responsible for modifying the real-mode CS:IP before
returning. If the real-mode CS:IP is left unchanged then the real-mode callback
will be executed immediately and your procedure will be called again. Normally
you will want to pop a return address off of the real-mode stack and place it in
the real-mode CS:IP. The example code in the next section demonstrates
chaining to another interrupt handler and simulating a real-mode iret.

3. To return values to the real-mode caller, you must modify the real-mode call
structure.

4. Remember that all segment values in the real-mode call structure will contain
real-mode segments, not selectors. If you need to examine data pointed to by a
real-mode seg:offset pointer, you should not use the segment to selector service
to create a new selector. Instead, allocate a descriptor during initialization and
change the descriptor’s base to 16 times the real-mode segment’s value. This is

Int31H Function Calls 57

The DOS/4GW DOS Extender

important since selectors allocated though the segment to selector service can
never be freed.

5. DPMI hosts should provide a minimum of 16 callback addresses per task.

The following code is a sample of a real-mode interrupt hook. It hooks the DOS Int 21h
and returns an error for the delete file function (AH=41h). Other calls are passed through
to DOS. This example is somewhat silly but it demonstrates the techniques used to hook a
real mode interrupt. Note that since DOS calls are reflected from protected mode to real
mode, the following code will intercept all DOS calls from both real mode and protected
mode.

58 Int31H Function Calls

Interrupt 31H DPMI Functions

;**
; This procedure gets the current Int 21h real-mode
; Seg:Offset, allocates a real-mode callback address,
; and sets the real-mode Int 21h vector to the call-
; back address.
;**
Initialization_Code:
;
; Create a code segment alias to save data in
;

mov ax, 000Ah
mov bx, cs
int 31h
jc ERROR
mov ds, ax
ASSUMES DS,_TEXT

;
; Get current Int 21h real-mode SEG:OFFSET
;

mov ax, 0200h
mov bl, 21h
int 31h
jc ERROR
mov [Orig_Real_Seg], cx
mov [Orig_Real_Offset], dx

;
; Allocate a real-mode callback
;

mov ax, 0303h
push ds
mov bx, cs
mov ds, bx
mov si, OFFSET My_Int_21_Hook
pop es
mov di, OFFSET My_Real_Mode_Call_Struc
int 31h
jc ERROR

;
; Hook real-mode int 21h with the callback address
;

mov ax, 0201h
mov bl, 21h
int 31h
jc ERROR

;**
;
; This is the actual Int 21h hook code. It will return
; an "access denied" error for all calls made in real
; mode to delete a file. Other calls will be passed
; through to DOS.
;
; ENTRY:
; DS:SI -> Real-mode SS:SP
; ES:DI -> Real-mode call structure
; Interrupts disabled
;
; EXIT:
; ES:DI -> Real-mode call structure
;
;**

My_Int_21_Hook:
cmp es:[di.RealMode_AH], 41h
jne Chain_To_DOS

;
; This is a delete file call (AH=41h). Simulate an
; iret on the real-mode stack, set the real-mode
; carry flag, and set the real-mode AX to 5 to indicate
; an access denied error.
;

Int31H Function Calls 59

The DOS/4GW DOS Extender

cld
lodsw ; Get real-mode ret IP
mov es:[di.RealMode_IP], ax
lodsw ; Get real-mode ret CS
mov es:[di.RealMode_CS], ax
lodsw ; Get real-mode flags
or ax, 1 ; Set carry flag
mov es:[di.RealMode_Flags], ax
add es:[di.RealMode_SP], 6
mov es:[di.RealMode_AX], 5
jmp My_Hook_Exit

;
; Chain to original Int 21h vector by replacing the
; real-mode CS:IP with the original Seg:Offset.
;
Chain_To_DOS:

mov ax, cs:[Orig_Real_Seg]
mov es:[di.RealMode_CS], ax
mov ax, cs:[Orig_Real_Offset]
mov es:[di.RealMode_IP], ax

My_Hook_Exit:
iret

Function 0304H (DOS/4GW Professional only) This function frees a real-mode callback address that was
allocated through the allocate real-mode callback address service. Pass the following
information:

AX = 0304H
CX:DX = Real-mode callback address to free

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

Notes:

1. Real-mode callbacks are a limited resource. Your code should free any break
point that it is no longer using.

11.2.5 DPMI Version

Function 0400H This function returns the version of DPMI services supported. Note that this is not
necessarily the version of any operating system that supports DPMI. It should be used by
programs to determine what calls are legal in the current environment. Pass the following
information:

AX = 0400H

The information returned is:

AH = Major version
AL = Minor version
BX = Flags Bit 0 = 1 if running under an 80386 DPMI implementation. Bit 1 = 1 if

processor is returned to real mode for reflected interrupts (as opposed to
Virtual 8086 mode). Bit 2 = 1 if virtual memory is supported. Bit 3 is
reserved and undefined. All other bits are zero and reserved for later use.

CL = Processor type

60 Int31H Function Calls

Interrupt 31H DPMI Functions

02 = 80286
03 = 80386
04 = 80486
05 = Pentium

DH = Current value of virtual master PIC base interrupt
DL = Current value of virtual slave PIC base interrupt
Carry flag clear (call cannot fail)

11.2.6 Memory Management Services

Function 0500H This function gets information about free memory. Pass the following information:

AX = 0500H
ES:EDI = the selector:offset of a 30H byte buffer.

If the call fails, the carry flag is set.

If the call succeeds, the carry flag is clear and ES:EDI contains the selector:offset
of a buffer with the structure shown in the figure below.

Offset Description

00H Largest available block, in bytes

04H Maximum unlocked page allocation

08H Largest block of memory (in pages) that could
be allocated and then locked

0CH Total linear address space size, in pages, including
already allocated pages

10H Total number of free pages and pages currently
unlocked and available for paging out

14H Number of physical pages not in use

18H Total number of physical pages managed by host

1CH Free linear address space, in pages

20H Size of paging/file partition, in pages

24H - Reserved
2FH

Only the first field of the structure is guaranteed to contain a valid value. Any field that is
not returned by DOS/4GW is set to -1 (0FFFFFFFFH).

Int31H Function Calls 61

The DOS/4GW DOS Extender

Function 0501H This function allocates and commits linear memory. Pass the following information:

AX = 0501H
BX:CX = size of memory to allocate, in bytes.

If the call succeeds, the carry flag is clear, BX:CX contains the linear address of the
allocated memory, and SI:DI contains the memory block handle used to free or resize the
block. If the call fails, the carry flag is set.

No selectors are allocated for the memory block. The caller must allocate and initialize
selectors needed to access the memory.

If VMM is present, the memory is allocated as unlocked, page granular blocks. Because of
the page granularity, memory should be allocated in multiples of 4KB.

Function 0502H This function frees a block of memory allocated through function 0501H. Pass the
following information:

AX = 0502H
SI:DI = handle returned with function 0501H when memory was allocated

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set. You must also
free any selectors allocated to point to the freed memory block.

Function 0503H This function resizes a block of memory allocated through the 0501H function. If you
resize a block of linear memory, it may have a new linear address and a new handle. Pass
the following information:

AX = 0503H
BX:CX = new size of memory block, in bytes
SI:DI = handle returned with function 0501H when memory was allocated

If the call succeeds, the carry flag is clear, BX:CX contains the new linear address of the
memory block, and SI:DI contains the new handle of the memory block. If the call fails,
the carry flag is set.

If either the linear address or the handle has changed, update the selectors that point to the
memory block. Use the new handle instead of the old one.

You cannot resize a memory block to zero bytes.

11.2.7 Page Locking Services

These services are only useful under DPMI implementations that support virtual memory. Although
memory ranges are specified in bytes, the actual unit of memory that will be locked will be one or more
pages. Page locks are maintained as a count. When the count is decremented to zero, the page is unlocked
and can be swapped to disk. This means that if a region of memory is locked three times then it must be
unlocked three times before the pages will be unlocked.

62 Int31H Function Calls

Interrupt 31H DPMI Functions

Function 0600H This function locks a specified linear address range. Pass the following information:

AX = 0600H
BX:CX = starting linear address of memory to lock
SI:DI = size of region to lock (in bytes)

If the call fails, the carry flag is set and none of the memory will be locked.

If the call succeeds, the carry flag is clear. If the specified region overlaps part of a page at
the beginning or end of a region, the page(s) will be locked.

Function 0601H This function unlocks a specified linear address range that was previously locked using
the "lock linear region" function (0600h). Pass the following information:

AX = 0601H
BX:CX = starting linear address of memory to unlock
SI:DI = size of region to unlock (in bytes)

If the call fails, the carry flag is set and none of the memory will be unlocked. An error
will be returned if the memory was not previously locked or if the specified region is
invalid.

If the call succeeds, the carry flag is clear. If the specified region overlaps part of a page at
the beginning or end of a region, the page(s) will be unlocked. Even if the call succeeds,
the memory will remain locked if the lock count is not decremented to zero.

Function 0604H This function gets the page size for Virtual Memory (VM) only. This function returns the
size of a single memory page in bytes. Pass the following information:

AX = 0604H

If the call succeeds, the carry flag is clear and BX:CX = Page size in bytes.

If the call fails, the carry flag is set.

11.2.8 Demand Paging Performance Tuning Services

Some applications will discard memory objects or will not access objects for long periods of time. These
services can be used to improve the performance of demand paging.

Although these functions are only relevant for DPMI implementations that support virtual memory, other
implementations will ignore these functions (it will always return carry clear). Therefore your code can
always call these functions regardless of the environment it is running under.

Since both of these functions are simply advisory functions, the operating system may choose to ignore
them. In any case, your code should function properly even if the functions fail.

Function 0702H (DOS/4GW Professional only) This function marks a page as a demand paging candidate.
This function is used to inform the operating system that a range of pages should be placed
at the head of the page out candidate list. This will force these pages to be swapped to disk
ahead of other pages even if the memory has been accessed recently. However, all memory
contents will be preserved.

Int31H Function Calls 63

The DOS/4GW DOS Extender

This is useful, for example, if a program knows that a given piece of data will not be
accessed for a long period of time. That data is ideal for swapping to disk since the
physical memory it now occupies can be used for other purposes. Pass the following
information:

AX = 0702H
BX:CX = Starting linear address of pages to mark
SI:DI = Number of bytes to mark as paging candidates

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

Notes:

1. This function does not force the pages to be swapped to disk immediately.

2. Partial pages will not be discarded.

Function 0703H (DOS/4GW Professional only) This function discards page contents. This function
discards the entire contents of a given linear memory range. It is used after a memory
object that occupied a given piece of memory has been discarded.

The contents of the region will be undefined the next time the memory is accessed. All
values previously stored in this memory will be lost. Pass the following information:

AX = 0703H
BX:CX = Starting linear address of pages to discard
SI:DI = Number of bytes to discard

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

Notes:

1. Partial pages will not be discarded.

11.2.9 Physical Address Mapping

Memory mapped devices such as network adapters and displays sometimes have memory mapped at
physical addresses that lie outside of the normal 1Mb of memory that is addressable in real mode. Under
many implementations of DPMI, all addresses are linear addresses since they use the paging mechanism of
the 80386. This service can be used by device drivers to convert a physical address into a linear address.
The linear address can then be used to access the device memory.

Function 0800H This function is used for Physical Address Mapping.

Some implementations of DPMI may not support this call because it could be used to
circumvent system protection. This call should only be used by programs that absolutely
require direct access to a memory mapped device.

Pass the following information:

64 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0800H
BX:CX = Physical address of memory
SI:DI = Size of region to map in bytes

If the call succeeds, the carry flag is clear and BX:CX = Linear Address that can be used to
access the physical memory.

If the call fails, the carry flag is set.

Notes:

1. Under DPMI implementations that do not use the 80386 paging mechanism, the
call will always succeed and the address returned will be equal to the physical
address parameter passed into this function.

2. It is up to the caller to build an appropriate selector to access the memory.

3. Do not use this service to access memory that is mapped in the first megabyte of
address space (the real-mode addressable region).

Function 0801H This function is used to free Physical Address Mapping. Pass the following information:

AX = 0801H
BX:CX = Linear address returned by Function 0800H.

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

Notes:

1. The client should call this function when it is finished using a device previously
mapped to linear addresses with the Physical Address Mapping function
(Function 0800H).

11.2.10 Virtual Interrupt State Functions

Under many implementations of DPMI, the interrupt flag in protected mode will always be set (interrupts
enabled). This is because the program is running under a protected operating system that cannot allow
programs to disable physical hardware interrupts. However, the operating system will maintain a "virtual"
interrupt state for protected-mode programs. When the program executes a CLI instruction, the program’s
virtual interrupt state will be disabled, and the program will not receive any hardware interrupts until it
executes an STI to reenable interrupts (or calls service 0901h).

When a protected-mode program executes a PUSHF instruction, the real processor flags will be pushed
onto the stack. Thus, examining the flags pushed on the stack is not sufficient to determine the state of the
program’s virtual interrupt flag. These services enable programs to get and modify the state of their virtual
interrupt flag.

The following sample code enters an interrupt critical section and then restores the virtual interrupt state to
it’s previous state.

Int31H Function Calls 65

The DOS/4GW DOS Extender

;
; Disable interrupts and get previous interrupt state
;

mov ax, 0900h
int 31h

;
; At this point AX = 0900h or 0901h
;

.

.

.
;
; Restore previous state (assumes AX unchanged)
;

int 31h

Function 0900H This function gets and disables Virtual Interrupt State. This function will disable the
virtual interrupt flag and return the previous state of the virtual interrupt flag. Pass the
following information:

AX = 0900H

After the call, the carry flag is clear (this function always succeeds) and virtual interrupts
are disabled.

AL = 0 if virtual interrupts were previously disabled.
AL = 1 if virtual interrupts were previously enabled.

Notes:

1. AH will not be changed by this procedure. Therefore, to restore the previous
state, simply execute an Int 31h.

Function 0901H This function gets and enables the Virtual Interrupt State. This function will enable the
virtual interrupt flag and return the previous state of the virtual interrupt flag. Pass the
following information:

AX = 0901H

After the call, the carry flag is clear (this function always succeeds) and virtual interrupts
are enabled.

AL = 0 if virtual interrupts were previously disabled.
AL = 1 if virtual interrupts were previously enabled.

Notes:

1. AH will not be changed by this procedure. Therefore, to restore the previous
state, simply execute an Int 31h.

Function 0902H This function gets the Virtual Interrupt State. This function will return the current state of
the virtual interrupt flag. Pass the following information:

66 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0902H

After the call, the carry flag is clear (this function always succeeds).

AL = 0 if virtual interrupts are disabled.
AL = 1 if virtual interrupts are enabled.

11.2.11 Vendor Specific Extensions

Some DOS extenders provide extensions to the standard set of DPMI calls. This call is used to obtain an
address which must be called to use the extensions. The caller points DS:ESI to a null terminated string
that specifies the vendor name or some other unique identifier to obtain the specific extension entry point.

Function 0A00H This function gets Tenberry Software’s API Entry Point. Pass the following information:

AX = 0A00H
DS:ESI = Pointer to null terminated string "RATIONAL DOS/4G"

If the call succeeds, the carry flag is clear and ES:EDI = Extended API entry point. DS,
FS, GS, EAX, EBX, ECX, EDX, ESI, and EBP may be modified.

If the call fails, the carry flag is set.

Notes:

1. Execute a far call to call the API entry point.

2. All extended API parameters are specified by the vendor.

3. The string comparison used to return the API entry point is case sensitive.

11.2.12 Coprocessor Status

Function 0E00H This function gets the coprocessor status. Pass the following information:

AX = 0E00H

If the call succeeds, the carry flag is clear and AX contains the coprocessor status.

Bit Significance

0 MPv (MP bit in the virtual MSW/CR0).
0 = Numeric coprocessor is disabled for this client.
1 = Numeric coprocessor is disabled for this client.

1 EMv (EM bit in the virtual MSW/CR0).
0 = Client is not emulating coprocessor instructions.
1 = Client is emulating coprocessor instructions.

2 MPr (MP bit from the actual MSW/CR0).
0 = Numeric coprocessor is not present.
1 = Numeric coprocessor is present.

Int31H Function Calls 67

The DOS/4GW DOS Extender

1 EMr (EM bit from the actual MSW/CR0).
0 = Host is not emulating coprocessor instructions.
1 = Host is emulating coprocessor instructions.

4-7 Coprocessor type.

00H = no coprocessor.
02H = 80287
03H = 80387
04H = 80486 with numeric coprocessor
05H = Pentium

8-15 Not applicable.

If the call fails, the carry flag is set.

Notes:

1. If the real EM (EMr) bit is set, the host is supplying or is capable of supplying
floating-point emulation.

2. If the MPv bit is not set, the host may not need to save the coprocessor state for
this virtual machine to improve system performance.

3. The MPr bit setting should be consistent with the setting of the coprocessor type
information. Ignore MPr bit information if it is in conflict with the coprocessor
type information.

4. If the virtual EM (EMv) bit is set, the host delivers all coprocessor exceptions to
the client, and the client is performing its own floating-point emulation (wether
or not a coprocessor is present or the host also has a floating-point emulator). In
other words, if the EMv bit is set, the host sets the EM bit in the real CR0 while
the virtual machine is active, and reflects coprocessor not present faults (int 7) to
the virtual machine.

5. A client can determine the CPU type with int 31H Function 0400H, but a client
should not draw any conclusions about the presence or absence of a coprocessor
based on the CPU type alone.

Function 0E01H This function sets coprocessor emulation. Pass the following information:

AX = 0E01H
BX = coprocessor bits

Bit Significance

0 New value of MPv bit for client’s virtual CR0.
0 = Disable numeric coprocessor for this client.
1 = Enable numeric coprocessor for this client.

1 New value of EMv bit for client’s virtual CR0.
0 = client will not supply coprocessor emulation.
1 = client will supply coprocessor emulation.

2-15 Not applicable.

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

68 Int31H Function Calls

12 Utilities

This chapter describes the Tenberry Software DOS/4GW utility programs provided with the Open Watcom
F77 package. Each program is described using the following format:

Purpose: This is a brief statement of what the utility program does. More specific information is provided
under "Notes".

Syntax: This shows the syntax of the program. The fixed portion of each command is in a
typewriter font, while variable parts of the command are in italics. Optional parts are
enclosed in [brackets].

Notes: These are explanatory remarks noting major features and possible pitfalls. We explain anything
special that you might need to know about the program.

See Also: This is a cross-reference to any information that is related to the program.

Example: You’ll find one or more sample uses of the utility program with an explanation of what the
program is doing.

Some of the utilities are DOS/4GW-based, protected-mode programs. To determine which programs run in
protected mode and which in real, run the program. If you see the DOS/4GW banner, the program runs in
protected mode.

Utilities 69

The DOS/4GW DOS Extender

12.1 DOS4GW

Purpose: Loads and executes linear executables.

Syntax: linear_executable

Notes: The stub program at the beginning of the linear executable invokes this program, which loads the
linear executable and starts up the DOS extender. The stub program must be able to find
DOS4GW: make sure it is in the path.

70 DOS4GW

Utilities

12.2 PMINFO

Purpose: Measures the performance of protected/real-mode switching and extended memory.

Syntax: PMINFO.EXE

Notes: We encourage you to distribute this program to your users.

The time-based measurements made by PMINFO may vary slightly from run to run.

Example: The following example shows the output of the PMINFO program on a 386 AT-compatible
machine.

C>pminfo
Protected Mode and Extended Memory Performance Measurement -- 5.00

Copyright (c) Tenberry Software, Inc. 1987 - 1993

DOS memory Extended memory CPU performance equivalent to 67.0 MHz 80486
---------- ---------------

736 8012 K bytes configured (according to BIOS).
640 15360 K bytes physically present (SETUP).
651 7887 K bytes available for DOS/16M programs.

22.0 (3.0) 18.9 (4.0) MB/sec word transfer rate (wait states).
42.9 (3.0) 37.0 (4.0) MB/sec 32-bit transfer rate (wait states).

Overall cpu and memory performance (non-floating point) for typical
DOS programs is 10.36 æ 1.04 times an 8MHz IBM PC/AT.

Protected/Real switch rate = 36156/sec (27 usec/switch, 15 up + 11 down),
DOS/16M switch mode 11 (VCPI).

The top information line shows that the CPU performance is equivalent to a 67.0 MHz 80486.
Below are the configuration and timings for both the DOS memory and extended memory. If the
computer is not equipped with extended memory, or none is available for DOS/4GW, the
extended memory measurements may be omitted ("--").

The line "according to BIOS" shows the information provided by the BIOS (interrupts 12h and
15h function 88h). The line "SETUP", if displayed, is the configuration obtained directly from
the CMOS RAM as set by the computer’s setup program. It is displayed only if the numbers are
different from those in the BIOS line. They will be different for computers where the BIOS has
reserved memory for itself or if another program has allocated some memory and is intercepting
the BIOS configuration requests to report less memory available than is physically configured.
The "DOS/16M memory range", if displayed, shows the low and high addresses available to
DOS/4GW in extended memory.

Below the configuration information is information on the memory speed (transfer rate).
PMINFO tries to determine the memory architecture. Some architectures will perform well
under some circumstances and poorly under others; PMINFO will show both the best and worst
cases. The architectures detected are cache, interleaved, page-mode (or static column), and
direct. Measurements are made using 32-bit accesses and reported as the number of megabytes
per second that can be transferred. The number of wait states is reported in parentheses. The
wait states can be a fractional number, like 0.5, if there is a wait state on writes but not on reads.
Memory bandwidth (i.e., how fast the CPU can access memory) accounts for 60% to 70% of the
performance for typical programs (that are not heavily dependent on floating-point math).

PMINFO 71

The DOS/4GW DOS Extender

A performance metric developed by Tenberry Software is displayed, showing the expected
throughput for the computer relative to a standard 8MHz IBM PC/AT (disk accesses and floating
point are excluded). Finally, the speed with which the computer can switch between real and
protected mode is displayed, both as the maximum number of round-trip switches that can occur
per second, and the time for a single round-trip switch, broken out into the real-to-protected (up)
and protected-to-real (down) components.

72 PMINFO

Utilities

12.3 PRIVATXM

Purpose: Creates a private pool of memory for DOS/4GW programs.

Syntax: PRIVATXM [-r]

Notes: This program may be distributed to your users.

Without PRIVATXM, a DOS/4GW program that starts up while another DOS/4GW program is
active uses the pool of memory built by the first program. The new program cannot change the
parameters of this memory pool, so setting DOS16M to increase the size of the pool has no
effect. To specify that the two programs use different pools of memory, use PRIVATXM.

PRIVATXM marks the active DOS/4GW programs as private, preventing subsequent DOS/4GW
programs from using the same memory pool. The first DOS/4GW program to start after
PRIVATXM sets up a new pool of memory for itself and any subsequent DOS/4GW programs.
To release the memory used by the private programs, use the PRIVATXM -r option.

PRIVATXM is a TSR that requires less than 500 bytes of memory. It is not supported under
DPMI.

Example: The following example creates a 512KB memory pool that is shared by two DOS/4GW TSRs.
Subsequent DOS/4GW programs use a different memory pool.

C>set DOS16M= :512 Specifies the size of the memory pool.

C>TSR1 Sets up the memory pool at startup.

C>TSR2 This TSR shares the pool built by TSR1.

C>PRIVATXM Makes subsequent DOS/4GW programs use a new memory pool.

C>set DOS16M= Specifies an unlimited size for the new pool.

C>PROGRAM3 This program uses the new memory pool.

C>PRIVATXM -R Releases the 512KB memory pool used by the TSRs. (If the TSRs
shut down, their memory is not released unless PRIVATXM is
released.)

PRIVATXM 73

The DOS/4GW DOS Extender

12.4 RMINFO

Purpose: Supplies configuration information and the basis for real/protected-mode switching in your
machine.

Syntax: RMINFO.EXE

Notes: This program may be distributed to your users.

RMINFO starts up DOS/4GW, but stops your machine just short of switching from real mode to
protected mode and displays configuration information about your computer. The information
shown by RMINFO can help determine why DOS/4GW applications won’t run on a particular
machine. Run RMINFO if PMINFO does not run to completion.

Example: The following example shows the output of the RMINFO program on an 386 AT-compatible
machine.

C>rminfo

DOS/16M Real Mode Information Program 5.00
Copyright (C) Tenberry Software, Inc. 1987 - 1993

Machine and Environment:
Processor: i386, coprocessor present
Machine type: 10 (AT-compatible)
A20 now: enabled
A20 switch rigor: disabled
DPMI host found

Switching Functions:
To PM switch: DPMI
To RM switch: DPMI
Nominal switch mode: 0
Switch control flags: 0000

Memory Interfaces:
DPMI may provide: 16384K returnable
Contiguous DOS memory: 463K

The information provided by RMINFO includes:

Machine and Environment:

Processor: processor type, coprocessor present/not present

Machine type:

74 RMINFO

Utilities

(NEC 9801)
(PS/2-compatible)
(AT-compatible)
(FM R)
(AT&T 6300+)
(AT-compatible)
(C&T 230 chipset)
(AT-compatible)
(AT-compatible)
(Acer)
(Zenith)
(Hitachi)
(Okidata)
(PS/55)

A20 now: Current state of Address line 20.

A20 switch rigor: Whether DOS4GW rigorously controls enabling and disabling of Address line
20 when switching modes.

PS feature flag

XMS host found Whether your system has any software using extended memory under the XMS
discipline.

VCPI host found Whether your system has any software using extended memory under the
VCPI discipline.

page table 0 at: x000h

DPMI host found

DOS/16M resident with private/public memory

Switching Functions:

A20 switching:

To PM switch: reset catch:
pre-PM prep:
post-PM-switch:

To RM switch:
pre-RM prep:
reset method:
post-reset:
reset uncatch:

Nominal switch mode: x

Switch control flags: xxxxh

RMINFO 75

The DOS/4GW DOS Extender

Memory Interfaces:

(VCPI remapping in effect)

DPMI may provide: xxxxxK returnable

VCPI may provide: xxxxxK returnable

Top-down

Other16M

Forced

Contiguous DOS memory:

76 RMINFO

13 Error Messages

The following lists DOS/4G error messages, with descriptions of the circumstances in which the error is
most likely to occur, and suggestions for remedying the problem. Some error messages pertaining to
features — like DLLs — that are not supported in DOS/4GW will not arise with that product. In the
following descriptions, references to DOS/4G, DOS4G, or DOS4G.EXE may be replaced by DOS/4GW,
DOS4GW, or DOS4GW.EXE should the error message arise when using DOS/4GW.

13.1 Kernel Error Messages

This section describes error messages from the DOS/16M kernel embedded in DOS/4G. Kernel error
messages may occur because of severe resource shortages, corruption of DOS4GW.EXE, corruption of
memory, operating system incompatibilities, or internal errors in DOS/4GW. All of these messages are
quite rare.

0. involuntary switch to real mode

The computer was in protected mode but switched to real mode without going through DOS/16M. This
error most often occurs because of an unrecoverable stack segment exception (stack overflow), but can
also occur if the Global Descriptor Table or Interrupt Descriptor Table is corrupted. Increase the stack
size, recompile your program with stack overflow checking, or look into ways that the descriptor tables
may have been overwritten.

1. not enough extended memory

2. not a DOS/16M executable <filename>

DOS4G.EXE, or a bound DOS/4G application, has probably been corrupted in some way. Rebuild or
recopy the file.

3. no DOS memory for transparent segment

4. cannot make transparent segment

5. too many transparent segments

6. not enough memory to load program

There is not enough memory to load DOS/4G. Make more memory available and try again.

7. no relocation segment

8. cannot open file <filename>

The DOS/16M loader cannot load DOS/4G, probably because DOS has run out of file units. Set a
larger FILES= entry in CONFIG.SYS, reboot, and try again.

Kernel Error Messages 77

The DOS/4GW DOS Extender

9. cannot allocate tstack

There is not enough memory to load DOS/4G. Make more memory available and try again.

10. cannot allocate memory for GDT

There is not enough memory to load DOS/4G. Make more memory available and try again.

11. no passup stack selectors -- GDT too small

This error indicates an internal error in DOS/4G or an incompatibility with other software.

12. no control program selectors -- GDT too small

This error indicates an internal error in DOS/4G or an incompatibility with other software.

13. cannot allocate transfer buffer

There is not enough memory to load DOS/4G. Make more memory available and try again.

14. premature EOF

DOS4G.EXE, or a bound DOS/4G application, has probably been corrupted in some way. Rebuild or
recopy the file.

15. protected mode available only with 386 or 486

DOS/4G requires an 80386 (or later) CPU. It cannot run on an 80286 or earlier CPU.

16. cannot run under OS/2

17. system software does not follow VCPI or DPMI specifications

Some memory resident program has put your 386 or 486 CPU into Virtual 8086 mode. This is done to
provide special memory services to DOS programs, such as EMS simulation (EMS interface without
EMS hardware) or high memory. In this mode, it is not possible to switch into protected mode unless
the resident software follows a standard that DOS/16M supports (DPMI, VCPI, and XMS are the most
common). Contact the vendor of your memory management software.

18. you must specify an extended memory range (SET DOS16M=)

On some Japanese machines that are not IBM AT-compatible, and have no protocol for managing
extended memory, you must set the DOS16M environment variable to specify the range of available
extended memory.

19. computer must be AT- or PS/2- compatible

20. unsupported DOS16M switchmode choice

21. requires DOS 3.0 or later

22. cannot free memory

This error probably indicates that memory was corrupted during execution of your program.

78 Kernel Error Messages

Error Messages

23. no memory for VCPI page table

There is not enough memory to load DOS/4G. Make more memory available and try again.

24. VCPI page table address incorrect

This is an internal error.

25. cannot initialize VCPI

This error indicates an incompatibility with other software. DOS/16M has detected that VCPI is
present, but VCPI returns an error when DOS/16M tries to initialize the interface.

26. 8042 timeout

27. extended memory is configured but it cannot be allocated

28. memory error, avail loop

This error probably indicates that memory was corrupted during execution of your program. Using an
invalid or stale alias selector may cause this error. Incorrect manipulation of segment descriptors may
also cause it.

29. memory error, out of range

This error probably indicates that memory was corrupted during execution of your program. Writing
through an invalid or stale alias selector may cause this error.

30. program must be built -AUTO for DPMI

31. protected mode already in use in this DPMI virtual machine

32. DPMI host error (possibly insufficient memory)

33. DPMI host error (need 64K XMS)

34. DPMI host error (cannot lock stack)

Any of these errors (32, 33, 34) probably indicate insufficient memory under DPMI. Under Windows,
you might try making more physical memory available by eliminating or reducing any RAM drives or
disk caches. You might also try editing DEFAULT.PIF so that at least 64KB of XMS memory is
available to non-Windows programs. Under OS/2, you want to increase the DPMI_MEMORY_LIMIT
in the DOS box settings.

35. General Protection Fault

This message probably indicates an internal error in DOS/4G. Faults generated by your program should
cause error 2001 instead.

36. The DOS16M.386 virtual device driver was never loaded

37. Unable to reserve selectors for DOS16M.386 Windows driver

Kernel Error Messages 79

The DOS/4GW DOS Extender

38. Cannot use extended memory: HIMEM.SYS not version 2

This error indicates an incompatibility with an old version of HIMEM.SYS.

39. An obsolete version of DOS16M.386 was loaded

40. not enough available extended memory (XMIN)

This message probably indicates an incompatibility with your memory manager or its configuration.
Try configuring the memory manager to provide more extended memory, or change memory managers.

13.2 DOS/4G Errors

1000 "can’t hook interrupts"

A DPMI host has prevented DOS/4G from loading. Please contact Tenberry Technical Support.

1001 "error in interrupt chain"

DOS/4G internal error. Please contact Tenberry Technical Support.

1003 "can’t lock extender kernel in memory"

DOS/4G couldn’t lock the kernel in physical memory, probably because of a memory shortage.

1004 "syntax is DOS4G <executable.xxx>"

You must specify a program name.

1005 "not enough memory for dispatcher data"

There is not enough memory for DOS/4G to manage user-installed interrupt handlers properly. Free
some memory for the DOS/4G application.

1007 "can’t find file <program> to load"

DOS/4G could not open the specified program. Probably the file didn’t exist. It is possible that
DOS ran out of file handles, or that a network or similar utility has prohibited read access to the
program. Make sure that the file name was spelled correctly.

1008 "can’t load executable format for file <filename> [<error code>]"

DOS/4G did not recognize the specified file as a valid executable file. DOS/4G can load linear
executables (LE and LX) and EXPs (BW). The error code is for Tenberry Software’s use.

1009 "program <filename> is not bound"

This message does not occur in DOS/4G, only DOS/4GW Professional; the latter requires that the
DOS extender be bound to the program file. The error signals an attempt to load

1010 "can’t initialize loader <loader> [<error code>]"

80 DOS/4G Errors

Error Messages

DOS/4G could not initialize the named loader, probably because of a resource shortage. Try making
more memory available. If that doesn’t work, please contact Tenberry Technical Support. The error
code is for Tenberry Software’ use.

1011 "VMM initialization error [<error code>]"

DOS/4G could not initialize the Virtual Memory Manager, probably because of a resource shortage.
Try making more memory available. If that doesn’t work, please contact Tenberry Technical
Support. The error code is for Tenberry Software’ use.

1012 "<filename> is not a WATCOM program"

This message does not occur in DOS/4G, only DOS/4GW and DOS/4GW Professional. Those
extenders only support WATCOM 32-bit compilers.

1013 "int 31h initialization error"

DOS/4G was unable to initialize the code that handles Interrupt 31h, probably because of an internal
error. Please call Tenberry Technical Support.

1100 "assertion \"<statement>\" failed (<file>:<line>)"

DOS/4G internal error. Please contact Tenberry Technical Support.

1200 "invalid EXP executable format"

DOS/4G tried to load an EXP, but couldn’t. The executable file is probably corrupted.

1201 "program must be built -AUTO for DPMI"

Under DPMI, DOS/4G can only load EXPs that have been linked with the GLU -AUTO or -DPMI
switch.

1202 "can’t allocate memory for GDT"

There is not enough memory available for DOS/4G to build a Global Descriptor Table. Make more
memory available.

1203 "premature EOF"

DOS/4G tried to load an EXP but couldn’t. The file is probably corrupted.

1204 "not enough memory to load program"

There is not enough memory available for DOS/4G to load your program. Make more memory
available.

1301 "invalid linear executable format"

DOS/4G cannot recognize the program file as a LINEXE format. Make sure that you specified the
correct file name.

1304 "file I/O seek error"

DOS/4G Errors 81

The DOS/4GW DOS Extender

DOS/4G was unable to seek to a file location that should exist. This usually indicates truncated
program files or problems with the storage device from which your program loads. Run CHKDSK
or a similar utility to begin determining possible causes.

1305 "file I/O read error"

DOS/4G was unable to read a file location that should contain program data. This usually indicates
truncated program files or problems with the storage device from which your program loads. Run
CHKDSK or a similar utility to begin determining possible causes.

1307 "not enough memory"

As it attempted to load your program, DOS/4G ran out of memory. Make more memory available,
or enable VMM.

1308 "can’t load requested program"

1309 "can’t load requested program"

1311 "can’t load requested program"

1312 "can’t load requested program"

DOS/4G cannot load your program for some reason. Contact Tenberry Technical Support.

1313 "can’t resolve external references"

DOS/4G was unable to resolve all references to DLLs for the requested program, or the program
contained unsupported fixup types. Use EXEHDR or a similar LINEXE dump utility to see what
references your program makes and what special fixup records might be present.

1314 "not enough lockable memory"

As it attempted to load your program, DOS/4G encountered a refusal to lock a virtual memory
region. Some memory must be locked in order to handle demand-load page faults. Make more
physical memory available.

1315 "can’t load requested program"

1316 "can’t load requested program"

DOS/4G cannot load your program for some reason. Contact Tenberry Technical Support.

1317 "program has no stack"

DOS/4G reports this error when you try to run a program with no stack. Rebuild your program,
building in a stack.

2000 "deinitializing twice"

DOS/4G internal error. Please contact Tenberry Technical Support.

2001 "exception <exception_number> (<exception_description>) at <selector:offset>"

82 DOS/4G Errors

Error Messages

Your program has generated an exception. For information about interpreting this message, see the
file COMMON.DOC.

2002 "transfer stack overflow at <selector:offset>"

Your program has overflowed the DOS/4G transfer stack. For information about interpreting this
message, see the file COMMON.DOC.

2300 " can’t find <DLL>.<ordinal> - referenced from <module>"

DOS/4G could not find the ordinal listed in the specified DLL, or it could not find the DLL at all.
Correct or remove the reference, and make sure that DOS/4G can find the DLL.

DOS/4G looks for DLLs in the following directories:

• The directory specified by the Libpath32 configuration option (which defaults to the directory
of the main application file).

• The directory or directories specified by the LIBPATH32 environment variable.

• Directories specified in the PATH.

2301 "can’t find <DLL>.<name> - referenced from <module>"

DOS/4G could not find the entry point named in the specified module. Correct or remove the
reference, and make sure that DOS/4G can find the DLL.

2302 "DLL modules not supported"

This DOS/4GW Professional error message arises when an application references or tries to
explicitly load a DLL. DOS/4GW Professional does not support DLLs.

2303 "internal LINEXE object limit reached"

DOS/4G currently handles a maximum of 128 LINEXE objects, including all .DLL and .EXE files.
Most .EXE or .DLL files use only three or four objects. If possible, reduce the number of objects, or
contact Tenberry Technical Support.

2500 "can’t connect to extender kernel"

DOS/4G internal error. Please contact Tenberry Technical Support.

2503 "not enough disk space for swapping - <count> byes required"

VMM was unable to create a swap file of the required size. Increase the amount of disk space
available.

2504 "can’t create swap file \<filename>\""

VMM was unable to create the swap file. This could be because the swap file is specified for a
nonexistent drive or on a drive that is read-only. Set the SWAPNAME parameter to change the
location of the swap file.

DOS/4G Errors 83

The DOS/4GW DOS Extender

2505 "not enough memory for <table>"

VMM was unable to get sufficient extended memory for internal tables. Make more memory
available. If <table> is page buffer, make more DOS memory available.

2506 "not enough physical memory (minmem)"

There is less physical memory available than the amount specified by the MINMEM parameter.
Make more memory available.

2511 "swap out error [<error code>]"

Unknown disk error. The error code is for Tenberry Software’ use.

2512 "swap in error [<error code>]"

Unknown disk error. The error code is for Tenberry Software’ use.

2514 "can’t open trace file"

VMM could not open the VMM.TRC file in the current directory for writing. If the directory
already has a VMM.TRC file, delete it. If not, there may not be enough memory on the drive for the
trace file, or DOS may not have any more file handles.

2520 "can’t hook int 31h"

DOS/4G internal error. Please contact Tenberry Technical Support.

2523 "page fault on non-present mapped page"

Your program references memory that has been mapped to a nonexistent physical device, using
DPMI function 508h. Make sure the device is present, or remove the reference.

2524 "page fault on uncommitted page"

Your program references memory reserved with a call to DPMI function

504h, but never committed (using a DPMI 507h or 508h call). Commit the memory before you reference
it.

3301 "unhandled EMPTYFWD, GATE16, or unknown relocation"

3302 "unhandled ALIAS16 reference to unaliased object"

3304 "unhandled or unknown relocation"

If your program was built for another platform that supports the LINEXE format, it may contain a
construct that DOS/4G does not currently support, such as a call gate. This message may also occur
if your program has a problem mixing 16- and 32-bit code. A linker error is another likely cause.

84 DOS/4G Errors

14 DOS/4GW Commonly Asked Questions

The following information has been provided by Tenberry Software, Inc. for their DOS/4GW and
DOS/4GW Professional product. The content of this chapter has been edited by Open Watcom. In most
cases, the information is applicable to both products.

This chapter covers the following topics:

• Access to technical support

• Differences within the DOS/4G product line

• Addressing

• Interrupt and exception handling

• Memory management

• DOS, BIOS, and mouse services

• Virtual memory

• Debugging

• Compatibility

14.1 Access to Technical Support

1a. How to reach technical support.

Here are the various ways you may contact Tenberry Software for technical support.

WWW: http://www.tenberry.com/dos4g/
Email: 4gwhelp@tenberry.com
Phone: 1.480.767.8868
Fax: 1.480.767.8709
Mail: Tenberry Software, Inc.

PO Box 20050
Fountain Hills, Arizona
U.S.A 85269-0050

PLEASE GIVE YOUR SERIAL NUMBER WHEN YOU CONTACT TENBERRY.

Access to Technical Support 85

The DOS/4GW DOS Extender

1b. When to contact Open Watcom, when to contact Tenberry.

Since DOS/4GW Professional is intended to be completely compatible with DOS/4GW, you may wish
to ascertain whether your program works properly under DOS/4GW before contacting Tenberry
Software for technical support. (This is likely to be the second question we ask you, after your serial
number.)

If your program fails under both DOS/4GW and DOS/4GW Professional, and you suspect your own
code or a problem compiling or linking, you may wish to contact Open Watcom first. Tenberry
Software support personnel are not able to help you with most programming questions, or questions
about using the Open Watcom tools.

If your program only fails with DOS/4GW Professional, you have probably found a bug in DOS/4GW
Professional, so please contact us right away.

1c. Telephone support.

Tenberry Software’s hours for telephone support are 9am-6pm EST. Please note that telephone support
is free for the first 30 days only. A one-year contract for continuing telephone support on DOS/4GW
Professional is US$500 per developer, including an update subscription for one year, to customers in the
United States and Canada; for overseas customers, the price is $600. Site licenses may be negotiated.

There is no time limit on free support by fax, mail, or electronic means.

1d. References.

The DOS/4GW documentation from Open Watcom is the primary reference for DOS/4GW Professional
as well. Another useful reference is the DPMI specification. In the past, the DPMI specification could
be obtained free of charge by contacting Intel Literature. We have been advised that the DPMI
specification is no longer available in printed form.

However, the DPMI 1.0 specification can be obtained at:

http://www.delorie.com/djgpp/doc/dpmi/

Online HTML as well as a downloadable archive are provided.

14.2 Differences Within the DOS/4G Product Line

2a. DOS/4GW Professional versus DOS/4GW

DOS/4GW Professional was designed to be a higher-performance version of DOS/4GW suitable for
commercial applications. Here is a summary of the advantages of DOS/4GW Professional with respect
to DOS/4GW:

• Extender binds to the application program file

• Extender startup time has been reduced

• Support for Open Watcom floating-point emulator has been optimized

• Virtual memory manager performance has been greatly improved

86 Differences Within the DOS/4G Product Line

DOS/4GW Commonly Asked Questions

• Under VMM, programs are demand loaded

• Virtual address space is 4 GB instead of 32 MB

• Extender memory requirements have been reduced by more than 50K

• Extender disk space requirements have been reduced by 40K

• Can omit virtual memory manager to save 50K more disk space

• Support for INT 31h functions 301h-304h and 702h-703h

DOS/4GW Professional is intended to be fully compatible with programs written for DOS/4GW 1.9 and
up. The only functional difference is that the extender is bound to your program instead of residing in a
separate file. Not only does this help reduce startup time, but it eliminates version-control problems
when someone has both DOS/4GW and DOS/4GW Professional applications present on one machine.

2b. DOS/4GW Professional versus DOS/4G.

DOS/4GW Professional is not intended to provide any other new DOS extender functionality. Tenberry
Software’s top-of-the-line 32-bit extender, DOS/4G, is not sold on a retail basis but is of special interest
to developers who require more flexibility (such as OEMs). DOS/4G offers these additional features
beyond DOS/4GW and DOS/4GW Professional:

• Complete documentation

• DLL support

• TSR support

• Support for INT 31h functions 301h-306h, 504h-50Ah, 702h-703h

• A C language API that offers more control over interrupt handling and program loading, as well
as making it easier to use the extender

• An optional (more protected) nonzero-based flat memory model

• Remappable error messages

• More configuration options

• The D32 debugger, GLU linker, and other tools

• Support for other compilers besides Open Watcom

• A higher level of technical support

• Custom work is available (e.g., support for additional executable formats, operating system API
emulations, mixed 16-bit and 32-bit code)

Please contact Tenberry Software if you have questions about other products (present or future) in the
DOS/4G line.

Differences Within the DOS/4G Product Line 87

The DOS/4GW DOS Extender

2c. DPMI functions supported by DOS/4GW.

Note that when a DOS/4GW application runs under a DPMI host, such as Windows 3.1 in enhanced
mode, an OS/2 virtual DOS machine, 386Max (with DEBUG=DPMIXCOPY), or QDPMI (with
EXTCHKOFF), the DPMI host provides the DPMI services, not DOS/4GW. The DPMI host also
provides virtual memory, if any. Performance (speed and memory use) under different DPMI hosts
varies greatly due to the quality of the DPMI implementation.

These are the services provided by DOS/4GW and DOS/4GW Professional in the absence of a DPMI
host.

0000 Allocate LDT Descriptors
0001 Free LDT Descriptor
0002 Map Real-Mode Segment to Descriptor
0003 Get Selector Increment Value
0006 Get Segment Base Address
0007 Set Segment Base Address
0008 Set Segment Limit
0009 Set Descriptor Access Rights
000A Create Alias Descriptor
000B Get Descriptor
000C Set Descriptor
000D Allocate Specific LDT Descriptor

0100 Allocate DOS Memory Block
0101 Free DOS Memory Block
0102 Resize DOS Memory Block

0200 Get Real-Mode Interrupt Vector
0201 Set Real-Mode Interrupt Vector
0202 Get Processor Exception Handler
0203 Set Processor Exception Handler
0204 Get Protected-Mode Interrupt Vector
0205 Set Protected-Mode Interrupt Vector

0300 Simulate Real-Mode Interrupt
0301 Call Real-Mode Procedure with Far Return Frame (DOS/4GW Professional only)
0302 Call Real-Mode Procedure with IRET Frame (DOS/4GW Professional only)
0303 Allocate Real-Mode Callback Address (DOS/4GW Professional only)
0304 Free Real-Mode Callback Address (DOS/4GW Professional only)

0400 Get DPMI Version

0500 Get Free Memory Information
0501 Allocate Memory Block
0502 Free Memory Block
0503 Resize Memory Block

0600 Lock Linear Region
0601 Unlock Linear Region
0604 Get Page Size (VM only)

0702 Mark Page as Demand Paging Candidate (DOS/4GW Professional only)

88 Differences Within the DOS/4G Product Line

DOS/4GW Commonly Asked Questions

0703 Discard Page Contents (DOS/4GW Professional only)

0800 Physical Address Mapping
0801 Free Physical Address Mapping

0900 Get and Disable Virtual Interrupt State
0901 Get and Enable Virtual Interrupt State
0902 Get Virtual Interrupt State

0A00 Get Tenberry Software API Entry Point

0E00 Get Coprocessor Status
0E01 Set Coprocessor Emulation

14.3 Addressing

3a. Converting between pointers and linear addresses.

Because DOS/4GW uses a zero-based flat memory model, converting between pointers and linear
addresses is trivial. A pointer value is always relative to the current segment (the value in CS for a code
pointer, or in DS or SS for a data pointer). The segment bases for the default DS, SS, and CS are all
zero. Hence a near pointer is exactly the same thing as a linear address: a null pointer points to linear
address 0, and a pointer with value 0x10000 points to linear address 0x10000.

3b. Converting between code and data pointers.

Because DS and CS have the same base address, they are natural aliases for each other. To create a data
alias for a code pointer, merely create a data pointer and set it equal to the code pointer. It’s not
necessary for you to create your own alias descriptor. Similarly, to create a code alias for a data pointer,
merely create a code pointer and set it equal to the data pointer.

3c. Converting between pointers and low memory addresses.

Linear addresses under 1 MB map directly to physical memory. Hence the real-mode interrupt vector
table is at address 0, the BIOS data segment is at address 0x400, the monochrome video memory is at
address 0xB0000, and the color video memory is at address 0xB8000. To read and write any of these,
you can just use a pointer set to the proper address. You don’t need to create a far pointer, using some
magic segment value.

3d. Converting between linear and physical addresses.

Linear addresses at or above 1 MB do not map directly to physical memory, so you can not in general
read or write extended memory directly, nor can you tell how a particular block of extended memory
has been used.

DOS/4GW supports the DPMI call INT 31h/800h, which maps physical addresses to linear addresses.
In other words, if you have a peripheral device in your machine that has memory at a physical address
of 256 MB, you can issue this call to create a linear address that points to that physical memory. The
linear address is the same thing as a near pointer to the memory and can be manipulated as such.

There is no way in a DPMI environment to determine the physical address corresponding to a given
linear address. This is part of the design of DPMI. You must design your application accordingly.

Addressing 89

The DOS/4GW DOS Extender

3e. Null pointer checking.

DOS/4GW will trap references to the first sixteen bytes of physical memory if you set the environment
variable DOS4G=NULLP. This is currently the only null-pointer check facility provided by
DOS/4GW.

As of release 1.95, DOS/4GW traps both reads and writes. Prior to this, it only trapped writes.

You may experience problems if you set DOS4G=NULLP and use some versions of the Open Watcom
Debugger with a 1.95 or later extender. These problems have been corrected in later versions of the
Open Watcom Debugger.

14.4 Interrupt and Exception Handling

4a. Handling asynchronous interrupts.

Under DOS/4GW, there is a convenient way to handle asynchronous interrupts and an efficient way to
handle them.

Because your CPU may be in either protected mode (when 32-bit code is executing) or real mode (a
DOS or BIOS call) when a hardware interrupt comes in, you have to be prepared to handle interrupts in
either mode. Otherwise, you may miss interrupts.

You can handle both real-mode and protected-mode interrupts with a single handler, if 1) the interrupt
is in the auto-passup range, 8 to 2Eh; and 2) you install a handler with INT 21h/25h or _dos_setvect();
3) you do not install a handler for the same interrupt using any other mechanism. DOS/4GW will route
both protected-mode interrupts and real-mode interrupts to your protected-mode handler. This is the
convenient way.

The efficient way is to install separate real-mode and protected-mode handlers for your interrupt, so
your CPU won’t need to do unnecessary mode switches. Writing a real-mode handler is tricky; all you
can reasonably expect to do is save data in a buffer and IRET. Your protected-mode code can
periodically check the buffer and process any queued data. (Remember, protected-mode code can
access data and execute code in low memory, but real-mode code can’t access data or execute code in
extended memory.)

For performance, it doesn’t matter how you install the real-mode handler, but we recommend the DPMI
function INT 31h/201h for portability.

It does matter how you install the protected-mode handler. You can’t install it directly into the IDT,
because a DPMI provider must distinguish between interrupts and exceptions and maintain separate
handler chains. Installing with INT 31h/205h is the recommended way to install your protected-mode
handler for both performance and portability.

If you install a protected-mode handler with INT 21h/25h, both interrupts and exceptions will be
funneled to your handler, to mimic DOS. Since DPMI exception handlers and interrupt handlers are
called with different stack frames, DOS/4GW executes a layer of code to cover these differences up; the
same layer is used to support the DOS/4G API (not part of DOS/4GW). This layer is the reason that
hooking with INT 21h/25h is less efficient than hooking with INT 31h/205h.

90 Interrupt and Exception Handling

DOS/4GW Commonly Asked Questions

4b. Handling asynchronous interrupts in the second IRQ range.

Because the second IRQ range (normally INTs 70h-77h) is outside the DOS/4GW auto-passup range
(8-2Eh, excluding 21h) you may not handle these interrupts with a single handler, as described above
(the "convenient" method). You must install separate real-mode and protected-mode handlers (the
"efficient" method).

DOS/4G does allow you to specify additional passup interrupts, however.

4c. Asynchronous interrupt handlers and DPMI.

The DPMI specification requires that all code and data referenced by a hardware interrupt handler
MUST be locked at interrupt time. A DPMI virtual memory manager can use the DOS file system to
swap pages of memory to and from the disk; because DOS is not reentrant, a DPMI host is not required
to be able to handle page faults during asynchronous interrupts. Use INT 31h/600h (Lock Linear
Region) to lock an address range in memory.

If you fail to lock all of your code and data, your program may run under DOS/4GW, but fail under the
DOS/4GW Virtual Memory Manager or under another DPMI host such as Windows or OS/2.

You should also lock the code and data of a mouse callback function.

4d. Open Watcom signal() function and Ctrl-Break.

In earlier versions of the Open Watcom C/C++ library, there was a bug that caused signal(SIGBREAK)
not to work. Calling signal(SIGBREAK) did not actually install an interrupt handler for Ctrl-Break
(INT 1Bh), so Ctrl-Break would terminate the application rather than invoking the signal handler.

With these earlier versions of the library, you could work around this problem by hooking INT 1Bh
directly. With release 10.0, this problem has been fixed.

4e. More tips on writing hardware interrupt handlers.

• It’s more like handling interrupts in real mode than not.

The same problems arise when writing hardware interrupt handlers for protected mode as arise for real
mode. We assume you know how to write real-mode handlers; if our suggestions don’t seem clear,
you might want to brush up on real-mode interrupt programming.

• Minimize the amount of time spent in your interrupt handlers.

When your interrupt handlers are called, interrupts are disabled. This means that no other system tasks
can be performed until you enable interrupts (an STI instruction) or until your handler returns. In
general, it’s a good idea to handle interrupts as quickly as possible.

• Minimize the amount of time spent in the DOS extender by installing separate real-mode and
protected-mode handlers.

If you use a passup interrupt handler, so that interrupts received in real mode are resignalled in
protected mode by the extender, your application has to switch from real mode to protected mode to
real mode once per interrupt. Mode switching is a time-consuming process, and interrupts are disabled
during a mode switch. Therefore, if you’re concerned about performance, you should install separate
handlers for real-mode and protected-mode interrupts, eliminating the mode switch.

Interrupt and Exception Handling 91

The DOS/4GW DOS Extender

• If you can’t just set a flag and return, enable interrupts (STI).

Handlers that do more than just set a flag or store data in a buffer should re-enable interrupts as soon as
it’s safe to do so. In other words, save your registers on the stack, establish your addressing
conventions, switch stacks if you’re going to — and then enable interrupts (STI), to give priority to
other hardware interrupts.

• If you enable interrupts (STI), you should disable interrupts (CLI).

Because some DPMI hosts virtualize the interrupt flag, if you do an STI in your handler, you should be
sure to do a CLI before you return. (CLI, then switch back to the original stack if you switched away,
then restore registers, then IRET.) If you don’t do this, the IRET will not necessarily restore the
previous interrupt flag state, and your program may crash. This is a difference from real-mode
programming, and it tends to show up as a problem when you try running your program in a Windows
or OS/2 DOS box for the first time (but not before).

• Add a reentrancy check.

If your handler doesn’t complete its work by the time the next interrupt is signalled, then interrupts can
quickly nest to the point of overflowing the transfer stack. This is a design flaw in your program, not
in the DOS extender; a real-mode DOS program can have exactly the same behavior. If you can
conceive of a situation where your interrupt handler can be called again before the first instance
returns, you need to code in a reentrancy check of some sort (before you switch stacks and enable
interrupts (STI), obviously).

Remember that interrupts can take different amounts of time to execute on different machines; the CPU
manufacturer, CPU speed, speed of memory accesses, and CMOS settings (e.g. "system BIOS
shadowing") can all affect performance in subtle ways. We recommend you program defensively and
always check for unexpected reentry, to avoid transfer stack overflows.

• Switch to your own stack.

Interrupt handlers are called on a stack that typically has only a small amount of stack available (512
bytes or less). If you need to use more stack than this, you have to switch to your own stack on entry
into the handler, and switch back before returning.

If you want to use C run-time library functions, which are compiled for flat memory model (SS == DS,
and the base of CS == the base of DS), you need to switch back to a stack in the flat data segment first.

Note that switching stacks by itself won’t prevent transfer stack overflows of the kind described above.

14.5 Memory Management

5a. Using the realloc() function.

In versions of Open Watcom C/C++ prior to 9.5b, there was a bug in the library implementation of
realloc() under DOS/4GW and DOS/4GW Professional. This bug was corrected by Open Watcom in
the 9.5b release.

92 Memory Management

DOS/4GW Commonly Asked Questions

5b. Using all of physical memory.

DOS/4GW Professional is currently limited to 64 MB of physical memory. We do not expect to be able
to fix this problem for at least six months. If you need more than 64 MB of memory, you must use
virtual memory.

14.6 DOS, BIOS, and Mouse Services

6a. Speeding up file I/O.

The best way to speed up DOS file I/O in DOS/4GW is to write large blocks (up to 65535 bytes, or the
largest number that will fit in a 16-bit int) at a time from a buffer in low memory. In this case,
DOS/4GW has to copy the least amount of data and make the fewest number of DOS calls in order to
process the I/O request.

Low memory is allocated through INT 31h/0100h, Allocate DOS Memory Block. You can convert the
real-mode segment address returned by INT 31h/0100h to a pointer (suitable for passing to setvbuf()) by
shifting it left four bits.

6b. Spawning.

It is possible to spawn one DOS/4GW application from another. However, two copies of the DOS
extender will be loaded into memory. DOS/4G supports loading of multiple programs atop a single
extender, as well as DLLs.

6c. Mouse callbacks.

DOS/4GW Professional now supports the INT 31h interface for managing real-mode callbacks.
However, you don’t need to bother with them for their single most important application: mouse
callback functions. Just register your protected-mode mouse callback function as you would in real
mode, by issuing INT 33h/0Ch with the event mask in CX and the function address in ES:EDX, and
your function will work as expected.

Because a mouse callback function is called asynchronously, the same locking requirement exists for a
mouse callback function as for a hardware interrupt handler. See (4c) above.

6d. VESA support.

While DOS/4GW automatically handles most INT 10h functions so that you can you can issue them
from protected mode, it does not translate the INT 10h VESA extensions. The workaround is to use
INT 31h/300h (Simulate Real-Mode Interrupt).

14.7 Virtual Memory

7a. Testing for the presence of VMM.

INT 31h/400h returns a value (BX, bit 2) that tells if virtual memory is available. Under a DPMI host
such as Windows 3.1, this will be the host’s virtual memory manager, not DOS/4GW’s.

Virtual Memory 93

The DOS/4GW DOS Extender

You can test for the presence of a DOS/4G-family DOS extender with INT 31h/0A00h, with a pointer
to the null-terminated string "RATIONAL DOS/4G" in DS:ESI. If the function returns with carry clear,
a DOS/4G-family extender is running.

7b. Reserving memory for a spawned application.

If you spawn one DOS/4GW application from another, you should set the DELETESWAP
configuration option (i.e., SET DOS4GVM=deleteswap) so that the two applications don’t try to use the
same swap file. You should also set the MAXMEM option low enough so that the parent application
doesn’t take all available physical memory; memory that’s been reserved by the parent application is
not available to the child application.

7c. Instability under VMM.

A program that hooks hardware interrupts, and works fine without VMM but crashes sporadically with
it, probably needs to lock the code and data for its hardware interrupt handlers down in memory.
DOS/4GW does not support page faults during hardware interrupts, because DOS services may not be
available at that time. See (4c) and (6c) above.

Memory can be locked down with INT 31h/600h (Lock Linear Region).

7d. Running out of memory with a huge virtual address space.

Because DOS/4GW has to create page tables to describe your virtual address space, we recommend that
you set your VIRTUALSIZE parameter just large enough to accommodate your program. If you set
your VIRTUALSIZE to 4 GB, the physical memory occupied by the page tables will be 4 MB, and that
memory will not be available to DOS/4GW.

7e. Reducing the size of the swap file.

DOS/4GW will normally create a swap file equal to your VIRTUALSIZE setting, for efficiency.
However, if you set the SWAPMIN parameter to a size (in KB), DOS/4GW will start with a swap file
of that size, and will grow the swap file when it has to. The SWAPINC value (default 64 KB) controls
the incremental size by which the swap file will grow.

7f. Deleting the swap file.

The DELETESWAP option has two effects: telling DOS/4GW to delete the swap file when it exits, and
causing DOS/4GW to provide a unique swap file name if an explicit SWAPNAME setting was not
given.

DELETESWAP is required if one DOS/4GW application is to spawn another; see (7b) above.

7g. Improving demand-load performance of large static arrays.

DOS/4GW demand-loading feature normally cuts the load time of a large program drastically.
However, if your program has large amounts of global, zero-initialized data (storage class BSS), the
Open Watcom startup code will explicitly zero it (version 9.5a or earlier). Because the zeroing
operation touches every page of the data, the benefits of demand-loading are lost.

Demand loading can be made fast again by taking advantage of the fact that DOS/4GW automatically
zeroes pages of BSS data as they are loaded. You can make this change yourself by inserting a few
lines into the startup routine, assembling it (MASM 6.0 will work), and listing the modified object
module first when you link your program.

94 Virtual Memory

DOS/4GW Commonly Asked Questions

Here are the changes for \watcom\src\startup\386\cstart3r.asm (startup module from
the C/C++ 9.5 compiler, library using register calling conventions). You can modify the workaround
easily for other Open Watcom compilers:

... ; cstart3r.asm, circa line 332

; end of _BSS segment (start of STACK)
mov ecx,offset DGROUP:_end

; start of _BSS segment
mov edi,offset DGROUP:_edata

;-------------------------------; RSI OPTIMIZATION
mov eax, edi ; minimize _BSS initialization loop
or eax, 0FFFh ; compute address of first page after
inc eax ; start of _BSS
cmp eax, ecx ; if _BSS extends onto that page,
jae allzero ; then we can rely on the loader
mov ecx, eax ; zeroing the remaining pages

allzero: ;
;-------------------------------; END RSI OPTIMIZATION

sub ecx,edi ; calc # of bytes in _BSS segment
mov dl,cl ; save bottom 2 bits of count in edx
shr ecx,2 ; calc # of dwords
sub eax,eax ; zero the _BSS segment
rep stosd ; ...
mov cl,dl ; get bottom 2 bits of count
and cl,3 ; ...
rep stosb ; ...
...

Note that the 9.5b and later versions of the Open Watcom C library already contain this enhancement.

7h. How should I configure VM for best performance?

Here are some recommendations for setting up the DOS/4GW virtual memory manager.

VIRTUALSIZE Set to no more than twice the total amount of memory (virtual and otherwise) your
program requires. If your program has 16 MB of code and data, set to 32 MB. (There
is only a small penalty for setting this value larger than you will need, but your program
won’t run if you set it too low.) See (7d) above.

MINMEM Set to the minimum hardware requirement for running your application. (If you require
a 2 MB machine, set to 2048).

MAXMEM Set to the maximum amount of memory you want your application to use. If you don’t
spawn any other applications, set this large (e.g., 32000) to make sure you can use all
available physical memory. If you do spawn, see (7b) above.

SWAPMIN Don’t use this if you want the best possible VM performance. The trade-off is that
DOS/4GW will create a swap file as big as your VIRTUALSIZE.

SWAPINC Don’t use this if you want the best possible VM performance.

DELETESWAP DOS/4GW’s VM will start up slightly slower if it has to create the swap file afresh
each time. However, unless your swap file is very large, DELETESWAP is a
reasonable choice; it may be required if you spawn another DOS/4GW program at the
same time. See (7b) above.

Virtual Memory 95

The DOS/4GW DOS Extender

14.8 Debugging

8a. Attempting to debug a bound application.

You can’t debug a bound application. The 4GWBIND utility (included with DOS/4GW Professional)
will allow you to take apart a bound application so that you can debug it:

4GWBIND -U <boundapp.exe> <yourapp.exe>

8b. Debugging with an old version of the Open Watcom debugger.

DOS/4GW supports versions 8.5 and up of the Open Watcom C, C++ and FORTRAN compilers.
However, in order to debug your unbound application with a Open Watcom debugger, you must have
version 9.5a or later of the debugger.

If you have an older version of the debugger, we strongly recommend that you contact Open Watcom to
upgrade your compiler and tools. The only way to debug a DOS/4GW Professional application with an
old version of the debugger is to rename 4GWPRO.EXE to DOS4GW.EXE and make sure that it’s
either in the current directory or the first DOS4GW.EXE on the DOS PATH.

Tenberry will not provide technical support for this configuration; it’s up to you to keep track of which
DOS extender is which.

8c. Meaning of "unexpected interrupt" message/error 2001.

In version 1.95 of DOS/4GW, we revised the "unexpected interrupt" message to make it easier to
understand.

For example, the message:

Unexpected interrupt 0E (code 0) at 168:10421034

is now printed:

error (2001): exception 0Eh (page fault) at 168:10421034

followed by a register dump, as before.

This message indicates that the processor detected some form of programming error and signaled an
exception, which DOS/4GW trapped and reported. Exceptions which can be trapped include:

00h divide by zero
01h debug exception OR null pointer used
03h breakpoint
04h overflow
05h bounds
06h invalid opcode
07h device not available
08h double fault
09h overrun
0Ah invalid TSS
0Bh segment not present
0Ch stack fault
0Dh general protection fault
0Eh page fault

96 Debugging

DOS/4GW Commonly Asked Questions

When you receive this message, this is the recommended course of action:

1. Record all of the information from the register dump.

2. Determine the circumstances under which your program fails.

3. Consult your debugger manual, or an Intel 386, 486 or Pentium Programmer’s Reference
Manual, to determine the circumstances under which the processor will generate the reported
exception.

4. Get the program to fail under your debugger, which should stop the program as soon as the
exception occurs.

5. Determine from the exception context why the processor generated an exception in this
particular instance.

8d. Meaning of "transfer stack overflow" message/error 2002.

In version 1.95 of DOS/4GW, we added more information to the "transfer stack overflow" message.
The message (which is now followed by a register dump) is printed:

error (2002): transfer stack overflow
on interrupt <number> at <address>

This message means DOS/4GW detected an overflow on its interrupt handling stack. It usually
indicates either a recursive fault, or a hardware interrupt handler that can’t keep up with the rate at
which interrupts are occurring. The best way to understand the problem is to use the VERBOSE option
in DOS/4GW to dump the interrupt history on the transfer stack; see (8e) below.

8e. Making the most of a DOS/4GW register dump.

If you can’t understand your problem by running it under a debugger, the DOS/4GW register dump is
your best debugging tool. To maximize the information available for postmortem debugging, set the
environment variable DOS4G to VERBOSE, then reproduce the crash and record the output.

Here’s a typical register dump with VERBOSE turned on, with annotations.

1 DOS/4GW error (2001): exception 0Eh (page fault)

at 170:0042C1B2
2 TSF32: prev_tsf32 67D8
3 SS 178 DS 178 ES 178 FS 0 GS 20

EAX 1F000000 EBX 0 ECX 43201C EDX E
ESI E EDI 0 EBP 431410 ESP 4313FC
CS:IP 170:0042C1B2 ID 0E COD 0 FLG 10246

4 CS= 170, USE32, page granular, limit FFFFFFFF, base 0, acc CF9B
SS= 178, USE32, page granular, limit FFFFFFFF, base 0, acc CF93
DS= 178, USE32, page granular, limit FFFFFFFF, base 0, acc CF93
ES= 178, USE32, page granular, limit FFFFFFFF, base 0, acc CF93
FS= 0, USE16, byte granular, limit 0, base 15, acc 0
GS= 20, USE16, byte granular, limit FFFF, base 6AA0, acc 93

5 CR0: PG:1 ET:1 TS:0 EM:0 MP:0 PE:1 CR2: 1F000000 CR3: 9067
6 Crash address (unrelocated) = 1:000001B2
7 Opcode stream: 8A 18 31 D2 88 DA EB 0E 50 68 39 00 43 00 E8 1D

Stack:
8 0178:004313FC 000E 0000 0000 0000 C2D5 0042 C057 0042 0170 0000 0000 0000

0178:00431414 0450 0043 0452 0043 0000 0000 1430 0043 CBEF 0042 011C 0000
0178:0043142C C568 0042 0000 0000 0000 0000 0000 0000 F248 0042 F5F8 0042
0178:00431444 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0178:0043145C 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0178:00431474 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

9 Last 4 ints: 21 @ 170:42CF48/21 @ 170:42CF48/21 @ 170:42CF48/E @ 170:42C1B2/

Debugging 97

The DOS/4GW DOS Extender

1. The error message includes a synopsis of the problem. In this case, the processor signaled a
page fault exception while executing at address 170:0042C1B2.

2. The prev_tsf32 field is not usually of interest.

3. These are the register values at the time of the exception. The interrupt number and error
code (pushed on the stack by the processor for certain exceptions) are also printed.

4. The descriptors referenced by each segment register are described for your convenience.
USE32 segments in general belong to your program; USE16 segments generally belong to
the DOS extender. Here, CS points to your program’s code segment, and SS, DS, and ES
point to your data segment. FS is NULL and GS points to a DOS extender segment.

5. The control register information is not of any general interest, except on a page fault, when
CR2 contains the address value that caused the fault. Since EAX in this case contains the
same value, an attempt to dereference EAX could have caused this particular fault.

6. If the crash address (unrelocated) appears, it tells you where the crash occurred relative to
your program’s link map. You can therefore tell where a crash occurred even if you can’t
reproduce the crash in a debugger.

7. The opcode stream, if it appears, shows the next 16 bytes from the code segment at the point
of the exception. If you disassemble these instructions, you can tell what instructions caused
the crash, even without using a debugger. In this case, 8A 18 is the instruction mov
bl,[eax].

8. 72 words from the top of the stack, at the point of the exception, may be listed next. You
may be able to recognize function calls or data from your program on the stack.

9. The four interrupts least to most recently handled by DOS/4GW in protected mode are listed
next. In this example, the last interrupt issued before the page fault occurred was an INT 21h
(DOS call) at address 170:42CF48. Sometimes, this information provides helpful context.

Here’s an abridged register dump from a stack overflow.

DOS/4GW error (2002): transfer stack overflow
on interrupt 70h at 170:0042C002

TSF32: prev_tsf32 48C8
SS C8 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1D1D1 EBP B1B1B1B1 ESP 4884

1 CS:IP 170:0042C002 ID 70 COD 0 FLG 2
...

2 Previous TSF:
TSF32: prev_tsf32 498C
SS C8 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1D1D1 EBP B1B1B1B1 ESP 4960

3 CS:IP 170:0042C002 ID 70 COD 0 FLG 2
...
Previous TSF:
TSF32: prev_tsf32 67E4
SS 178 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1D1D1 EBP B1B1B1B1 ESP 42FFE0

4 CS:IP 170:0042C039 ID 70 COD 0 FLG 202
5 Opcode stream: CF 66 B8 62 25 66 8C CB 66 8E DB BA 00 C0 42 00

Last 4 ints: 70 @ 170:42C002/70 @ 170:42C002/70 @ 170:42C002/70 @ 170:42C002/

1. We overflowed the transfer stack while trying to process an interrupt 70h at 170:0042C002.

98 Debugging

DOS/4GW Commonly Asked Questions

2. The entire interrupt history from the transfer stack is printed next. The prev_tsf32 numbers
increase as we progress from most recent to least recent interrupt. All of these interrupts are
still pending, which is why we ran out of stack space.

3. Before we overflowed the stack, we got the same interrupt at the same address. For a
recursive interrupt situation, this is typical.

4. The oldest frame on the transfer stack shows the recursion was touched off at a slightly
different address. Looking at this address may help you understand the recursion.

5. The opcode stream and last four interrupt information comes from the newest transfer stack
frame, not the oldest.

14.9 Compatibility

9a. Running DOS/4GW applications from inside Lotus 1-2-3.

In order to run DOS/4GW applications while "shelled out" from Lotus 1-2-3, you must use the
PRIVATXM program included with your Open Watcom compiler. Otherwise, 1-2-3 will take all of the
memory on your machine and prevent DOS/4GW from using it.

Before starting 1-2-3, you must set the DOS16M environment variable to limit Lotus’ memory use (see
your Open Watcom manual). After shelling out, you must run PRIVATXM, then clear the DOS16M
environment variable before running your application.

9b. EMM386.EXE provided with DOS 6.0.

We know of at least three serious bugs in the EMM386.EXE distributed with MS-DOS 6.0, one
involving mis-counting the amount of available memory, one involving mapping too little of the High
Memory Area (HMA) into its page tables, and one involving allocation of EMS memory. Version 1.95
of DOS/4GW contains workarounds for some of these problems.

If you are having problems with DOS/4GW and you are using an EMM386.EXE dated 3-10-93 at
6:00:00, or later, you may wish to try the following workarounds, in sequence, until the problem goes
away.

• Configure EMM386 with both the NOEMS and NOVCPI options.

• Convert the DEVICEHIGH statements in your CONFIG.SYS to DEVICE statements, and
remove the LH (Load High) commands from your AUTOEXEC.BAT.

• Run in a Windows DOS box.

• Replace EMM386 with another memory manager, such as QEMM-386, 386Max, or an older
version of EMM386.

• Run with HIMEM.SYS alone.

You may also wish to contact Microsoft Corporation to inquire about the availability of a fix.

Compatibility 99

The DOS/4GW DOS Extender

9c. Spawning under OS/2 2.1.

We know of a bug in OS/2 2.1 that prevents one DOS/4GW application from spawning another over
and over again. The actual number of repeated spawns that are possible under OS/2 varies from
machine to machine, but is generally about 30.

This bug also affects programs running under other DOS extenders, and we have not yet found a
workaround, other than linking your two programs together as a single program.

9d. "DPMI host error: cannot lock stack".

This error message almost always indicates insufficient memory, rather than a real incompatibility. If
you see it under an OS/2 DOS box, you probably need to edit your DOS Session settings and make
DPMI_MEMORY_LIMIT larger.

9e. Bug in Novell TCPIP driver.

Some versions of a program from Novell called TCPIP.EXE, a real-mode program, will cause the high
words of EAX and EDX to be altered during a hardware interrupt. This bug breaks protected-mode
software (and other real-mode software that uses the 80386 registers). Novell has released a newer
version of TCPIP that fixes the problem; contact Novell to obtain the fix.

9f. Bugs in Windows NT.

The initial release of Windows NT includes a DPMI host, DOSX.EXE, with several serious bugs, some
of which apparently cannot be worked around. We cannot warranty operation of DOS/4GW under
Windows NT at this time, but we are continuing to exercise our best efforts to work around these
problems.

You may wish to contact Microsoft Corporation to inquire about the availability of a new version of
DOSX.EXE.

100 Compatibility

Windows 3.x Programming Guide

Windows 3.x Programming Guide

102

15 Creating 16-bit Windows 3.x Applications

This chapter describes how to compile and link 16-bit Windows 3.x applications simply and quickly. In
this chapter, we look at applications written to exploit the Windows 3.x Application Programming Interface
(API).

We will illustrate the steps to creating 16-bit Windows 3.x applications by taking a small sample
application and showing you how to compile, link, run and debug it.

15.1 The Sample GUI Application

To demonstrate the creation of 16-bit Windows 3.x applications, we introduce a simple sample program.
For our example, we are going to use the "sieve" program.

*$include winapi.fi
*$noreference

INTEGER*2 FUNCTION FWINMAIN(hInstance, hPrevInstance,
& lpszCmdLine, nCmdShow)

*$reference
IMPLICIT NONE
INTEGER*2 hInstance, hPrevInstance, nCmdShow
INTEGER*4 lpszCmdLine
include ’windows.fi’

* This program computes the prime numbers between 1 and 10,000
* using the Sieve of Eratosthenes algorithm.

INTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER I, K, PRIMES
LOGICAL*1 NUMBERS(2:UPBOUND)
CHARACTER*11 FORM
CHARACTER*60 BUFFER
PARAMETER (FORM=’(A,I5,A,I5)’)
DO I = 2, UPBOUND

NUMBERS(I) = .TRUE.
ENDDO
PRIMES = 0
DO I = 2, UPBOUND

IF(NUMBERS(I))THEN
PRIMES = PRIMES + 1
DO K = I + I, UPBOUND, I

NUMBERS(K) = .FALSE.
ENDDO

ENDIF
ENDDO
WRITE(BUFFER, FORM) ’The Number of Primes between 1 and ’,

& UPBOUND, ’ are: ’, PRIMES
CALL MessageBox(0, BUFFER,

& ’Sieve of Eratosthenes’c,
& MB_OK .OR. MB_TASKMODAL)
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Sieve of
Eratosthenes algorithm to accomplish this task. We will take you through the steps necessary to produce
this result.

The Sample GUI Application 103

Windows 3.x Programming Guide

15.2 Building and Running the GUI Application

To compile and link our example program which is stored in the file sieve.for, enter the following
command:

C>wfl -l=windows -win sieve.for

The typical messages that appear on the screen are shown in the following illustration.

C>wfl -l=windows -win sieve.for
Open Watcom F77/16 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc sieve.for -win
Open Watcom FORTRAN 77/16 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 4305 statements, 356 bytes, 1524 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating a Windows 16-bit executable

If you examine the current directory, you will find that two files have been created. These are
sieve.obj (the result of compiling sieve.for) and sieve.exe (the result of linking sieve.obj
with the appropriate Open Watcom FORTRAN 77 libraries).

The resultant 16-bit Windows 3.x application SIEVE.EXE can now be run under Windows 3.x.

15.3 Debugging the GUI Application

Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL command, this is fairly straightforward. WFL recognizes the Open Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Open Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

C>wfl -l=windows -win -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

104 Debugging the GUI Application

Creating 16-bit Windows 3.x Applications

C>wfl -l=windows -win -d2 sieve.for
Open Watcom F77/16 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc sieve.for -win -d2
Open Watcom FORTRAN 77/16 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 4305 statements, 467 bytes, 1524 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating a Windows 16-bit executable

The "d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL will make sure that this debugging information is included in the executable
file that is produced by the linker.

The "bytes" value is larger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. You can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship
between the object code and the original source language code.

To request the Open Watcom Debugger to assist in debugging the application, select the Open Watcom
Debugger icon. It would be too ambitious to describe the debugger in this introductory chapter so we refer
you to the book entitled Open Watcom Debugger User’s Guide.

There are more extensive examples of Windows applications written in FORTRAN 77 in the
\WATCOM\SAMPLES\FORTRAN\WIN directory. The example programs are ELLIPSE.FOR and
FWCOPY.FOR.

Debugging the GUI Application 105

Windows 3.x Programming Guide

106 Debugging the GUI Application

16 Porting Non-GUI Applications to 16-bit
Windows 3.x

Generally, an application that is to run in a windowed environment must be written in such a way as to
exploit the Windows Application Programming Interface (API). To take an existing character-based (i.e.,
non-graphical) application that ran under a system such as DOS and adapt it to run under Windows can
require some considerable effort. There is a steep learning curve associated with the API function libraries.

This chapter describes how to create a Windows application quickly and simply from an application that
does not use the Windows API. The application will make use of Open Watcom’s default windowing
support.

Suppose you have a set of FORTRAN 77 applications that previously ran under a system like DOS and you
now wish to run them under Windows 3.x. To achieve this, you can simply recompile your application
with the appropriate options and link with the appropriate libraries. We provide a default windowing
system that turns your character-mode application into a simple Windows 3.x Graphical User Interface
(GUI) application.

Normally, a Windows 3.x GUI application makes use of user-interface tools such as menus, icons, scroll
bars, etc. However, an application that was not designed as a windowed application (such as a DOS
application) can run as a GUI application. This is achieved by our default windowing system. The
following sections describe the default windowing system.

16.1 Console Device in a Windowed Environment

In a FORTRAN 77 application that runs under DOS, unit 5 and unit 6 are connected to the standard input
and standard output devices respectively. It is not a recommended practice to read directly from the
standard input device or write to the standard output device when running in a windowed environment. For
this reason, a default windowing environment is created for FORTRAN 77 applications that read from unit
5 or write to unit 6. When your application is started, a window is created in which output to unit 6 is
displayed and input from unit 5 is requested.

In addition to the standard I/O device, it is also possible to perform I/O to the console by explicitly opening
a file whose name is "CON". When this occurs, another window is created and displayed. This window is
different from the one created for standard input and standard output. In fact, every time you open the
console device a different window is created. This provides a simple multi-windowing system for multiple
streams of data to and from the console device.

Console Device in a Windowed Environment 107

Windows 3.x Programming Guide

16.2 The Sample Non-GUI Application

To demonstrate the creation of 16-bit Windows 3.x applications, we introduce a simple sample program.
For our example, we are going to use the "sieve" program.

* This program computes the prime numbers between 1 and 10,000
* using the Sieve of Eratosthenes algorithm.

IMPLICIT NONE
INTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER I, K, PRIMES
LOGICAL*1 NUMBERS(2:UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORM=’(A,I5,A,I5)’)
DO I = 2, UPBOUND

NUMBERS(I) = .TRUE.
ENDDO
PRIMES = 0
DO I = 2, UPBOUND

IF(NUMBERS(I))THEN
PRIMES = PRIMES + 1
DO K = I + I, UPBOUND, I

NUMBERS(K) = .FALSE.
ENDDO

ENDIF
ENDDO
PRINT FORM, ’The Number of Primes between 1 and ’, UPBOUND,

1 ’ are: ’, PRIMES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Sieve of
Eratosthenes algorithm to accomplish this task. We will take you through the steps necessary to produce
this result.

16.3 Building and Running the Non-GUI Application

Very little effort is required to port an existing FORTRAN 77 application to Windows 3.x.

You must compile and link the file sieve.for specifying the "bw" option.

C>wfl -l=windows -bw -win sieve.for

The typical messages that appear on the screen are shown in the following illustration.

108 Building and Running the Non-GUI Application

Porting Non-GUI Applications to 16-bit Windows 3.x

C>wfl -l=windows -bw -win sieve.for
Open Watcom F77/16 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc sieve.for -bw -win
Open Watcom FORTRAN 77/16 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 21 statements, 311 bytes, 6 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating a Windows 16-bit executable

If you examine the current directory, you will find that two files have been created. These are
sieve.obj (the result of compiling sieve.for) and sieve.exe (the result of linking sieve.obj
with the appropriate Open Watcom FORTRAN 77 libraries).

The resultant 16-bit Windows 3.x application SIEVE.EXE can now be run under Windows 3.x as a
Windows GUI application.

16.4 Debugging the Non-GUI Application

Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL command, this is fairly straightforward. WFL recognizes the Open Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Open Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

C>wfl -l=windows -bw -win -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Debugging the Non-GUI Application 109

Windows 3.x Programming Guide

C>wfl -l=windows -bw -win -d2 sieve.for
Open Watcom F77/16 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc sieve.for -bw -win -d2
Open Watcom FORTRAN 77/16 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 21 statements, 392 bytes, 6 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating a Windows 16-bit executable

The "d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL will make sure that this debugging information is included in the executable
file that is produced by the linker.

The "bytes" value is larger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. You can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship
between the object code and the original source language code.

To request the Open Watcom Debugger to assist in debugging the application, select the Open Watcom
Debugger icon. It would be too ambitious to describe the debugger in this introductory chapter so we refer
you to the book entitled Open Watcom Debugger User’s Guide.

16.5 Default Windowing Library Functions

A few library functions have been written to enable some simple customization of the default windowing
system’s behaviour. The following functions are supplied:

dwfDeleteOnClose

integer function dwfDeleteOnClose(unit)
integer unit

This function tells the console window that it should close itself when the file is closed. You must
pass to it the unit number associated with the opened console.

dwfSetAboutDlg

integer function dwfSetAboutDlg(title, text)
character*(*) title
character*(*) text

This function sets the about dialog box of the default windowing system. The "title" points to the
string that will replace the current title. If title is CHAR(0) then the title will not be replaced. The
"text" points to a string which will be placed in the about box. To get multiple lines, embed a new

110 Default Windowing Library Functions

Porting Non-GUI Applications to 16-bit Windows 3.x

line after each logical line in the string. If "text" is CHAR(0), then the current text in the about
box will not be replaced.

dwfSetAppTitle

integer function dwfSetAppTitle(title)
character*(*) title

This function sets the main window’s title.

dwfSetConTitle

integer function dwfSetConTitle(unit, title)
integer unit
character*(*) title

This function sets the console window’s title which corresponds to the unit number passed to it.

dwfShutDown

integer function dwfShutDown()

This function shuts down the default windowing I/O system. The application will continue to
execute but no windows will be available for output.

dwfYield

integer function dwfYield()

This function yields control back to the operating system, thereby giving other processes a chance
to run.

These functions are described more fully in the Open Watcom FORTRAN 77 User’s Guide.

Default Windowing Library Functions 111

Windows 3.x Programming Guide

112 Default Windowing Library Functions

17 Creating 32-bit Windows 3.x Applications

This chapter describes how to compile and link 32-bit Windows 3.x applications simply and quickly. In
this chapter, we look at applications written to exploit the Windows 3.x Application Programming Interface
(API).

We will illustrate the steps to creating 32-bit Windows 3.x applications by taking a small sample
application and showing you how to compile, link, run and debug it.

17.1 The Sample GUI Application

To demonstrate the creation of 32-bit Windows 3.x applications, we introduce a simple sample program.
For our example, we are going to use the "sieve" program.

*$include winapi.fi
*$noreference

INTEGER*2 FUNCTION FWINMAIN(hInstance, hPrevInstance,
& lpszCmdLine, nCmdShow)

*$reference
IMPLICIT NONE
INTEGER*2 hInstance, hPrevInstance, nCmdShow
INTEGER*4 lpszCmdLine
include ’windows.fi’

* This program computes the prime numbers between 1 and 10,000
* using the Sieve of Eratosthenes algorithm.

INTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER I, K, PRIMES
LOGICAL*1 NUMBERS(2:UPBOUND)
CHARACTER*11 FORM
CHARACTER*60 BUFFER
PARAMETER (FORM=’(A,I5,A,I5)’)
DO I = 2, UPBOUND

NUMBERS(I) = .TRUE.
ENDDO
PRIMES = 0
DO I = 2, UPBOUND

IF(NUMBERS(I))THEN
PRIMES = PRIMES + 1
DO K = I + I, UPBOUND, I

NUMBERS(K) = .FALSE.
ENDDO

ENDIF
ENDDO
WRITE(BUFFER, FORM) ’The Number of Primes between 1 and ’,

& UPBOUND, ’ are: ’, PRIMES
CALL MessageBox(0, BUFFER,

& ’Sieve of Eratosthenes’c,
& MB_OK .OR. MB_TASKMODAL)
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Sieve of
Eratosthenes algorithm to accomplish this task. We will take you through the steps necessary to produce
this result.

The Sample GUI Application 113

Windows 3.x Programming Guide

17.2 Building and Running the GUI Application

To compile and link our example program which is stored in the file sieve.for, enter the following
command:

C>wfl386 -l=win386 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

C>wfl386 -l=win386 sieve.for
Open Watcom F77/32 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc386 sieve.for
Open Watcom FORTRAN 77/32 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 4390 statements, 207 bytes, 1585 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating a Windows 32-bit executable

If you examine the current directory, you will find that two files have been created. These are
sieve.obj (the result of compiling sieve.for) and sieve.rex (the result of linking sieve.obj
with the appropriate Open Watcom FORTRAN 77 libraries). The ".rex" file must now be combined with
Open Watcom’s 32-bit Windows supervisor WIN386.EXT using the Open Watcom Bind utility.
WBIND.EXE combines your 32-bit application code and data (".rex" file) with the 32-bit Windows
supervisor. The process involves the following steps:

1. WBIND copies WIN386.EXT into the current directory.

2. WBIND.EXE optionally runs the resource compiler on the 32-bit Windows supervisor so that the
32-bit executable can have access to the applications resources.

3. WBIND.EXE concatenates WIN386.EXT and the ".rex" file, and creates a ".exe" file with the
same name as the ".rex" file.

The following describes the syntax of the WBIND command.

WBIND file_spec [-d] [-n] [-q] [-s supervisor] [-R rc_options]

The square brackets [] denote items which are optional.

114 Building and Running the GUI Application

Creating 32-bit Windows 3.x Applications

WBIND is the name of the Open Watcom Bind utility.

file_spec is the name of the 32-bit Windows EXE to bind.

-d requests that a 32-bit DLL be built.

-n indicates that the resource compiler is NOT to be invoked.

-q requests that WBIND run in quiet mode (no informational messages are
displayed).

-s supervisor specifies the path and name of the Windows supervisor to be bound with the
application. If not specified, a search of the paths listed in the PATH
environment variable is performed. If this search is not successful and the
WATCOM environment variable is defined, the %WATCOM%\BINW directory is
searched.

-R rc_options all options after -R are passed to the resource compiler.

To bind our example program, the following command may be issued:

C>wbind sieve -n

If the "s" option is specified, it must identify the location of the WIN386.EXT file or the W386DLL.EXT
file (if you are building a DLL).

Example:
C>wbind sieve -n -s c:\watcom\binw\win386.ext

If the "s" option is not specified, then the WATCOM environment variable must be defined or the "BINW"
directory must be listed in your PATH environment variable.

Example:
C>set watcom=c:\watcom

or
C>path c:\watcom\binw;c:\dos;c:\windows

The resultant 32-bit Windows 3.x application SIEVE.EXE can now be run under Windows 3.x.

17.3 Debugging the GUI Application

Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL386 command, this is fairly straightforward. WFL386 recognizes the Open Watcom
F77 compiler "debug" options and will create the appropriate debug directives for the Open Watcom
Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

Debugging the GUI Application 115

Windows 3.x Programming Guide

C>wfl386 -l=win386 -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

C>wfl386 -l=win386 -d2 sieve.for
Open Watcom F77/32 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc386 sieve.for -d2
Open Watcom FORTRAN 77/32 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 4390 statements, 293 bytes, 1585 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating a Windows 32-bit executable

The "d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL386 will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "bytes" value is larger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. You can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship
between the object code and the original source language code.

Once again, the ".rex" file must be combined with Open Watcom’s 32-bit Windows supervisor
WIN386.EXT using the Open Watcom Bind utility. This step is described in the previous section.

To request the Open Watcom Debugger to assist in debugging the application, select the Open Watcom
Debugger icon. It would be too ambitious to describe the debugger in this introductory chapter so we refer
you to the book entitled Open Watcom Debugger User’s Guide.

There are more extensive examples of Windows applications written in FORTRAN 77 in the
\WATCOM\SAMPLES\FORTRAN\WIN directory. The example programs are ELLIPSE.FOR and
FWCOPY.FOR.

116 Debugging the GUI Application

18 Porting Non-GUI Applications to 32-bit
Windows 3.x

Generally, an application that is to run in a windowed environment must be written in such a way as to
exploit the Windows Application Programming Interface (API). To take an existing character-based (i.e.,
non-graphical) application that ran under a system such as DOS and adapt it to run under Windows can
require some considerable effort. There is a steep learning curve associated with the API function libraries.

This chapter describes how to create a Windows application quickly and simply from an application that
does not use the Windows API. The application will make use of Open Watcom’s default windowing
support.

Suppose you have a set of FORTRAN 77 applications that previously ran under a system like DOS and you
now wish to run them under Windows 3.x. To achieve this, you can simply recompile your application
with the appropriate options and link with the appropriate libraries. We provide a default windowing
system that turns your character-mode application into a simple Windows 3.x Graphical User Interface
(GUI) application.

Normally, a Windows 3.x GUI application makes use of user-interface tools such as menus, icons, scroll
bars, etc. However, an application that was not designed as a windowed application (such as a DOS
application) can run as a GUI application. This is achieved by our default windowing system. The
following sections describe the default windowing system.

18.1 Console Device in a Windowed Environment

In a FORTRAN 77 application that runs under DOS, unit 5 and unit 6 are connected to the standard input
and standard output devices respectively. It is not a recommended practice to read directly from the
standard input device or write to the standard output device when running in a windowed environment. For
this reason, a default windowing environment is created for FORTRAN 77 applications that read from unit
5 or write to unit 6. When your application is started, a window is created in which output to unit 6 is
displayed and input from unit 5 is requested.

In addition to the standard I/O device, it is also possible to perform I/O to the console by explicitly opening
a file whose name is "CON". When this occurs, another window is created and displayed. This window is
different from the one created for standard input and standard output. In fact, every time you open the
console device a different window is created. This provides a simple multi-windowing system for multiple
streams of data to and from the console device.

Console Device in a Windowed Environment 117

Windows 3.x Programming Guide

18.2 The Sample Non-GUI Application

To demonstrate the creation of 32-bit Windows 3.x applications, we introduce a simple sample program.
For our example, we are going to use the "sieve" program.

* This program computes the prime numbers between 1 and 10,000
* using the Sieve of Eratosthenes algorithm.

IMPLICIT NONE
INTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER I, K, PRIMES
LOGICAL*1 NUMBERS(2:UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORM=’(A,I5,A,I5)’)
DO I = 2, UPBOUND

NUMBERS(I) = .TRUE.
ENDDO
PRIMES = 0
DO I = 2, UPBOUND

IF(NUMBERS(I))THEN
PRIMES = PRIMES + 1
DO K = I + I, UPBOUND, I

NUMBERS(K) = .FALSE.
ENDDO

ENDIF
ENDDO
PRINT FORM, ’The Number of Primes between 1 and ’, UPBOUND,

1 ’ are: ’, PRIMES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Sieve of
Eratosthenes algorithm to accomplish this task. We will take you through the steps necessary to produce
this result.

18.3 Building and Running the Non-GUI Application

Very little effort is required to port an existing FORTRAN 77 application to Windows 3.x.

You must compile and link the file sieve.for specifying the "bw" option.

C>wfl386 -l=win386 -bw sieve.for

The typical messages that appear on the screen are shown in the following illustration.

118 Building and Running the Non-GUI Application

Porting Non-GUI Applications to 32-bit Windows 3.x

C>wfl386 -l=win386 sieve.for
Open Watcom F77/32 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc386 sieve.for -bw
Open Watcom FORTRAN 77/32 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 21 statements, 172 bytes, 6 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating a Windows 32-bit executable

If you examine the current directory, you will find that two files have been created. These are
sieve.obj (the result of compiling sieve.for) and sieve.rex (the result of linking sieve.obj
with the appropriate Open Watcom FORTRAN 77 libraries). The ".rex" file must now be combined with
Open Watcom’s 32-bit Windows supervisor WIN386.EXT using the Open Watcom Bind utility.
WBIND.EXE combines your 32-bit application code and data (".rex" file) with the 32-bit Windows
supervisor. The process involves the following steps:

1. WBIND copies WIN386.EXT into the current directory.

2. WBIND.EXE optionally runs the resource compiler on the 32-bit Windows supervisor so that the
32-bit executable can have access to the applications resources.

3. WBIND.EXE concatenates WIN386.EXT and the ".rex" file, and creates a ".exe" file with the
same name as the ".rex" file.

The following describes the syntax of the WBIND command.

WBIND file_spec [-d] [-n] [-q] [-s supervisor] [-R rc_options]

The square brackets [] denote items which are optional.

WBIND is the name of the Open Watcom Bind utility.

file_spec is the name of the 32-bit Windows EXE to bind.

-d requests that a 32-bit DLL be built.

-n indicates that the resource compiler is NOT to be invoked.

-q requests that WBIND run in quiet mode (no informational messages are
displayed).

-s supervisor specifies the path and name of the Windows supervisor to be bound with the
application. If not specified, a search of the paths listed in the PATH

Building and Running the Non-GUI Application 119

Windows 3.x Programming Guide

environment variable is performed. If this search is not successful and the
WATCOM environment variable is defined, the %WATCOM%\BINW directory is
searched.

-R rc_options all options after -R are passed to the resource compiler.

To bind our example program, the following command may be issued:

C>wbind sieve -n

If the "s" option is specified, it must identify the location of the WIN386.EXT file or the W386DLL.EXT
file (if you are building a DLL).

Example:
C>wbind sieve -n -s c:\watcom\binw\win386.ext

If the "s" option is not specified, then the WATCOM environment variable must be defined or the "BINW"
directory must be listed in your PATH environment variable.

Example:
C>set watcom=c:\watcom

or
C>path c:\watcom\binw;c:\dos;c:\windows

The resultant 32-bit Windows 3.x application SIEVE.EXE can now be run under Windows 3.x as a
Windows GUI application.

18.4 Debugging the Non-GUI Application

Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL386 command, this is fairly straightforward. WFL386 recognizes the Open Watcom
F77 compiler "debug" options and will create the appropriate debug directives for the Open Watcom
Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

C>wfl386 -l=win386 -bw -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

120 Debugging the Non-GUI Application

Porting Non-GUI Applications to 32-bit Windows 3.x

C>wfl386 -l=win386 -d2 sieve.for
Open Watcom F77/32 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc386 sieve.for -bw -d2
Open Watcom FORTRAN 77/32 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 21 statements, 237 bytes, 6 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating a Windows 32-bit executable

The "d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL386 will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "bytes" value is larger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. You can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship
between the object code and the original source language code.

Once again, the ".rex" file must be combined with Open Watcom’s 32-bit Windows supervisor
WIN386.EXT using the Open Watcom Bind utility. This step is described in the previous section.

To request the Open Watcom Debugger to assist in debugging the application, select the Open Watcom
Debugger icon. It would be too ambitious to describe the debugger in this introductory chapter so we refer
you to the book entitled Open Watcom Debugger User’s Guide.

18.5 Default Windowing Library Functions

A few library functions have been written to enable some simple customization of the default windowing
system’s behaviour. The following functions are supplied:

dwfDeleteOnClose

integer function dwfDeleteOnClose(unit)
integer unit

This function tells the console window that it should close itself when the file is closed. You must
pass to it the unit number associated with the opened console.

dwfSetAboutDlg

integer function dwfSetAboutDlg(title, text)
character*(*) title
character*(*) text

Default Windowing Library Functions 121

Windows 3.x Programming Guide

This function sets the about dialog box of the default windowing system. The "title" points to the
string that will replace the current title. If title is CHAR(0) then the title will not be replaced. The
"text" points to a string which will be placed in the about box. To get multiple lines, embed a new
line after each logical line in the string. If "text" is CHAR(0), then the current text in the about
box will not be replaced.

dwfSetAppTitle

integer function dwfSetAppTitle(title)
character*(*) title

This function sets the main window’s title.

dwfSetConTitle

integer function dwfSetConTitle(unit, title)
integer unit
character*(*) title

This function sets the console window’s title which corresponds to the unit number passed to it.

dwfShutDown

integer function dwfShutDown()

This function shuts down the default windowing I/O system. The application will continue to
execute but no windows will be available for output.

dwfYield

integer function dwfYield()

This function yields control back to the operating system, thereby giving other processes a chance
to run.

These functions are described more fully in the Open Watcom FORTRAN 77 User’s Guide.

122 Default Windowing Library Functions

19 The Open Watcom 32-bit Windows 3.x Extender

Open Watcom FORTRAN 77 contains the necessary tools and libraries to create 32-bit applications for
Windows 3.x. Using Open Watcom FORTRAN 77 gives the programmer the benefits of a 32-bit flat
memory model and access to the full Windows API (along with the usual FORTRAN 77 and C library
functions).

The general model of the environment is as follows: The 32-bit flat memory model program is linked
against a special 32-bit Windows library. This library contains the necessary information to invoke special
16-bit functions, which lie in the supervisor (WIN386.EXT). The 32-bit program is then bound (using
WBIND.EXE) with the supervisor to create a Windows executable. At the same time as the 32-bit
program is being bound, the resource compiler is run on the supervisor, and all the resources for the
application are placed there. When the application is started, the supervisor obtains the 32-bit memory,
relocates the 32-bit application into the memory, and invokes the 32-bit application.

All Windows functions are invoked from the supervisor, and all callback routines lie within the supervisor.
The local heap resides within the supervisor as well.

If you are starting from a 16-bit Windows application, most of the code will not change when you port it to
the 32-bit Windows environment. However, because of the nature of the Windows API and its implicit
dependencies on a 16-bit environment, some source changes are necessary. These source changes are
minimal, and are backwards compatible with the 16-bit environment.

19.1 Pointers

Throughout this document, there will be references to both near and far, and 16-bit and 32-bit pointers.
Since this can rapidly become confusing, some initial explanations will be given here.

A far pointer is a pointer that is composed of both a selector and an offset. A selector determines a specific
region of memory, and the offset is relative to the start of this region. A near pointer is a pointer that has
an offset only, the selector is automatically assumed by the CPU.

The problem with far pointers is the selector overhead. Using a far pointer is much more expensive than
using a near pointer. This is the advantage of the 32-bit flat memory model - all pointers within the
program are near, and yet you can address up to 4 gigabytes of memory.

A 16-bit near pointer occupies 2 bytes of memory (i.e., the offset is 16 bits long). This pointer can
reference up to 64K of data.

A 16-bit far pointer occupies 4 bytes of memory. There is a 16-bit selector and a 16-bit offset. This
pointer can reference up to 64K of data.

A 32-bit near pointer occupies 4 bytes of memory (i.e., the offset is 32 bits long). This pointer can
reference up to 4 gigabytes of data.

A 32-bit far pointer occupies 6 bytes of memory. There is a 16-bit selector and a 32-bit offset. This
pointer can reference up to 4 gigabytes of data.

Pointers 123

Windows 3.x Programming Guide

Windows, in general, uses 16-bit far pointers to pass information around. These 16-bit far pointers can also
be used by a 32-bit Windows application. The conversion from a 16-bit pointer to a 32-bit pointer will
occur automatically when you map a dynamically allocatable array to the memory pointed to by the 16-bit
pointer using the LOCATION= specifier of the ALLOCATE statement. You must also declare the
allocatable array as far using the array pragma. The syntax for the array pragma is:

$*pragma array ARRAY_NAME far

where ARRAY_NAME is the array name.

19.2 Implementation Overview

This section provides an overview of the issues that require consideration when creating a 32-bit Windows
application for a 16-bit Windows environment.

First, all modules have to be recompiled for the 32-bit flat memory model with a compiler capable of
generating 32-bit instructions.

Pointers to data passed to Windows are all far pointers. We will be passing pointers to data in our 32-bit
flat address space, and these pointers are near pointers. As well, notice that these 32-bit near pointers are
the same size as as their 16-bit far pointer counterparts (4 bytes). This is good, since all data structures
containing pointers will remain the same size.

Windows cannot be called from 32-bit code on a 32-bit stack. This means that in order to call the API
functions, it is necessary to write a set of cover functions that will accept the parameters, switch into a
16-bit environment, and then call Windows. There is another issue, though. Windows only understands
16-bit pointers, so before calling Windows, all pointers being passed to Windows must be converted to
16-bit far pointers.

It turns out that Windows can also call back to your application. Windows can only call 16-bit code,
though, so there is a need for a bridge from the 16-bit side to the 32-bit side. It is necessary to allocate
16-bit call back routines that can be passed to Windows. These call back routines will then switch into the
32-bit environment and call whatever 32-bit function is required. The 32-bit call back has to be declared as
a far function, since it is necessary to issue a far call to enter it from the 16-bit side. If it is a far function,
then the compiler will generate the appropriate code for it to return from the far call.

Once Windows calls you back, it can hand you 16-bit far pointers in a long (4 byte) parameter. This
pointer can only be used in the 32-bit environment if it is a 32-bit far pointer, not a 16-bit far pointer. The
conversion is simple: the 16-bit offset is extended to a 32-bit offset (the high word is zeroed out). Any far
pointer that Windows hands to you must be converted in this way. This conversion is performed
automatically when a dynamically allocatable array is mapped to a 16-bit far pointer using the LOCATION
specifier of the Open Watcom FORTRAN 77 ALLOCATE statement and the array pragma. The syntax for
the array pragma is:

$*pragma array ARRAY_NAME far

where ARRAY_NAME is the array name.

124 Implementation Overview

The Open Watcom 32-bit Windows 3.x Extender

Example:
subroutine DLLSUB(arg_list)

structure /argtypes/
integer w1
integer w2
integer w3
integer sum

end structure
record /argtypes/ args(:)

*$pragma array args far
integer*4 arg_list

allocate(args(1), location=arg_list)

In the preceding example, arg_list is a 16-bit far pointer to a structure with the elements described by
the argtypes structure. The allocatable array args is described as far using the array pragma.

Sometimes, a Windows application wants to call a procedure in a DLL. The procedure address is a 16-bit
far pointer. It is not possible to issue an indirect call to this address from the 32-bit environment, so some
sort of interface is needed. This interface would switch into the 16-bit environment, and then call the 16-bit
function.

These issues, along with other minor items, are handled by Open Watcom FORTRAN 77, and are discussed
in more technical detail in later sections.

19.3 System Structure

C
al

lb
ac

k

A
PI

/D
O

S
C

al
l

32-16

Translation
(DOS Calls Only)

32-16

Translation
(DOS Calls Only)

C
al

lb
ac

k

32-bit
FORTRAN 77

Library

32-16

Translation
Windows

Supervisor

Windows
3.x

32-bit
Windows

API

32-bit
Application

Figure 5. WIN386 Structure

System Structure 125

Windows 3.x Programming Guide

0

Stack Code Global
Data

Heap

Figure 6. 32-bit Application Structure

19.4 System Overview

• WIN386.EXT is the key component of a 32-bit Windows application. It is a 16-bit Windows
application which contains:

• All application resources.
• A 16-bit local heap.
• A 16-bit stack.

• W386DLL.EXT is similar to WIN386.EXT, only it provides a DLL interface.

WIN386.EXT is bound to your 32-bit application to create a 32-bit application that will run under
Windows 3.x. WIN386.EXT provides the following functionality:

• supervisor to bring the 32-bit application into memory and start it running.

• "glue" functions to connect to Windows for both API and DOS functionality. This interface is
designed to transparently set up the calling functions’ pointers and parameters to their 16-bit
counterparts.

• "glue-back" functions to allow Windows to call back 32-bit routines.

• special code to allow debugging of 32-bit applications.

• A number of files with file extension .fi are located in the \WATCOM\SRC\FORTRAN\WIN
directory. The file WINAPI.FI describes the calling convention of each Windows API function.
Other files define Windows constants and data structures.

• WIN386.LIB contains all the necessary library functions to connect to the 32-bit supervisor
WIN386.EXT. All Windows API calls and Open Watcom FORTRAN 77 library DOS calls are
found here.

• The standard FORTRAN 77 and C library functions, specially modified to run in the 32-bit
environment, are located in the \WATCOM\LIB386\WIN directory.

• WBIND.EXE merges your 32-bit executable and the appropriate Supervisor into a single executable.

126 System Overview

The Open Watcom 32-bit Windows 3.x Extender

19.5 Steps to Obtaining a 32-bit Application

The following is an overview of the procedure for creating a 32-bit Windows Application:

1. If you are starting with a 16-bit Windows application, you must adapt your source code to the
32-bit environment.

2. You must compile the application using a 32-bit compiler.
3. You must link the application with the 32-bit libraries.
4. You must bind the 32-bit application with the 32-bit supervisor.
5. You can then run and/or debug the application.

Steps to Obtaining a 32-bit Application 127

Windows 3.x Programming Guide

128 Steps to Obtaining a 32-bit Application

20 Windows 3.x 32-bit Programming Overview

This chapter includes the following topics:

• WINAPI.FI and WINDOWS.FI

• Environment Notes

• Floating-point Emulation

• Multiple Instances

• Pointer Handling

• When To Convert Incoming Pointers

• When To Convert Outgoing Pointers

• SendMessage and SendDlgItemMessage

• GlobalAlloc and LocalAlloc

• Callback Function Pointers

• Window Sub-classing

• Calling 16-bit DLLs

• _16 Functions

20.1 WINAPI.FI

When developing programs, make sure WINAPI.FI is included at the start of all source files and the
necessary include files (particularly WINDOWS.FI) are included in each function or subroutine.

It is especially important to get the correct function and argument typing information for Windows API
functions. Due to the default typing rules of FORTRAN, many Windows API functions have a default
result type of REAL when they may in fact return an INTEGER or INTEGER*2 result. By including the
appropriate include files, you ensure that this never happens. For example, the function CreateDialog
is described in WINDLG.FI. as a function returning an INTEGER*2 result.

WINAPI.FI 129

Windows 3.x Programming Guide

Example:
external CreateDialog
integer*2 CreateDialog

Failure to specify the correct type of a function will result in code that looks correct but does not execute
correctly. Similarly, you should make sure that all symbolic constants are properly defined by including
the appropriate include files. For example, the constant DEFAULT_QUALITY is described in
WINFONT.FI as an INTEGER constant whose value is 0.

Example:
integer DEFAULT_QUALITY
parameter (DEFAULT_QUALITY = 0)

Without this information, DEFAULT_QUALITY would be assumed to be a REAL variable and would not
have any assigned value.

The "EXPLICIT" compiler option is useful in this regard. It requires that all symbols be explicitly typed.

20.2 Environment Notes

• The 32-bit Windows Supervisor uses the first 256 bytes of the 32-bit application’s stack to save state
information. If this is corrupted, your application will abnormally terminate.

• The 32-bit Windows Supervisor provides resources for up to 512 callback routines. Note that this
restriction is only on the maximum number of active callbacks.

20.3 Floating-point Emulation

The file WEMU387.386 is included to support floating-point emulation for 32-bit applications running
under Windows. This file is installed in the [386Enh] section of your SYSTEM.INI file. By using the
floating-point emulator, your application can be compiled with the "fpi87" option to use inline
floating-point instructions, and it will run on a machine without a numeric coprocessor.

Only one of WEMU387.386 and WDEBUG.386 may be installed in your [386Enh] section.
WEMU387.386 may be distributed with your application.

20.4 Multiple Instances

Since the 32-bit application resides in a flat memory space, it is NOT possible to share code with other
instances. This means that you must register new window classes with callbacks into the new instance’s
code space. A simple way of accomplishing this is as follows:

integer*2 function FWINMAIN(hInstance,

& hPrevInstance,
& lpszCmdLine,
& nCmdShow)

integer*2 hInstance
integer*2 hPrevInstance
integer*2 nCmdShow
integer*4 lpszCmdLine

130 Multiple Instances

Windows 3.x 32-bit Programming Overview

include ’win386.fi’
include ’wincreat.fi’
include ’wincurs.fi’
include ’windefn.fi’
include ’windisp.fi’
include ’winmsg.fi’
include ’winmsgs.fi’
include ’windtool.fi’
include ’winutil.fi’

external WndProc

integer*2 hWnd
record /MSG/ msg
record /WNDCLASS/ wndclass
character*14 class

wndclass.style = CS_HREDRAW .or. CS_VREDRAW
wndclass.lpfnWndProc = loc(WndProc)
wndclass.cbClsExtra = 0
wndclass.cbWndExtra = 0
wndclass.hInstance = hInstance
wndclass.hIcon = NULL_HANDLE
wndclass.hCursor = LoadCursor(NULL_HANDLE, IDC_ARROW)
wndclass.hbrBackground = GetStockObject(WHITE_BRUSH)
wndclass.lpszMenuName = NULL
write(class, ’(’’Ellipses’’,i5.5,a)’) hInstance, char(0)
wndclass.lpszClassName = Loc(class)
call RegisterClass(wndclass)

hWnd = CreateWindow(class,

& ’Application’c,
& WS_OVERLAPPEDWINDOW,
& CW_USEDEFAULT,
& 0,
& CW_USEDEFAULT,
& 0,
& NULL_HANDLE,
& NULL_HANDLE,
& hInstance,
& NULL)

The variable class contains a unique name based on the instance of the application.

20.5 Pointer Handling

Windows 3.x is a 16-bit operating system. Function pointers that Windows deals with are 16-bit far
pointers, and any data you communicate to Windows with are 16-bit far pointers. 16-bit far pointers
occupy 4 bytes of data, and are capable of addressing up to 64K. For data objects larger than 64K, huge
pointers are used (a sequence of far pointers that map out consecutive 64K segments for the data object).
16-bit far pointers are expensive to use due to the overhead of selector loads (each time you use the pointer,
a segment register must have a value put in it). 16-bit huge pointers are even more expensive: not only is
there the overhead of selector loads, but a run-time call is necessary to perform any pointer arithmetic.

In a 32-bit flat memory model, such as that of the Open Watcom F77 for Windows environment, all
pointers are 32-bit near pointers (occupying 4 bytes of data as well). However, these pointers may access
objects of up to 4 gigabytes in size, and there is no selector load overhead.

For a 32-bit environment to communicate with Windows 3.x, there are some considerations. All pointers
sent to Windows must be converted from 32-bit near pointers to 16-bit far pointers. These conversions are
handled by the Supervisor.

Pointer Handling 131

Windows 3.x Programming Guide

It is important to remember that all API functions which accept pointers (with the exception of functions
that accept function pointers) accept 32-bit near pointers in this 32-bit model. If you attempt to pass a
32-bit far pointer, the conversion will not take place correctly.

16-bit far pointers to data may be passed into the API functions, and the Supervisor will not do any
conversion.

Incoming pointers must be converted from 16-bit far pointers to 32-bit far pointers. This conversion is a
trivial one: the offset portion of the 16-bit far pointer is extended to 32-bits. The pointer conversion will
occur automatically when you map a dynamically allocatable array to the memory pointed to by the 16-bit
pointer using the LOCATION= specifier of the ALLOCATE statement. You must also declare the array as
far using the array pragma. The syntax for the array pragma is:

$*pragma array ARRAY_NAME far

where ARRAY_NAME is the array name. Pointers from Windows are by their nature far (that is, the data is
pointed to by its own selector), and must be used as far in the 32-bit environment. Of course, conversions
are only required if you actually need to reference the pointer.

Function pointers (i.e., pointers to callback routines) used by Windows are not converted from 32-bit to
16-bit. Rather, a 16-bit thunking layer that transfers control from the 16-bit environment to the 32-bit
environment must be used. This thunking layer is provided by the Supervisor.

20.5.1 When To Convert Incoming Pointers

Whenever you wish to use a pointer passed to you by Windows, you must map a dynamically allocatable
array to the memory pointed to by the pointer using the LOCATION specifier of the ALLOCATE
statement. You must also declare the array as far using the array pragma. The pointer conversion will
occur automatically.

Some places where pointer conversion may be required are:

• LocalLock
• GlobalLock
• the lParam in a window callback routine (if it is a pointer)

20.5.2 When To Convert Outgoing Pointers

Typically, there is no need to do any kind of conversions on your pointers when passing them to Windows.
The Supervisor handles all 32-bit to 16-bit translations for you, in the case of the regular Windows API
functions. However, if you are passing a 32-bit pointer to some other 16-bit application in the Windows
environment, then pointer conversions must by done. There are two types of "outgoing" pointers: data
pointers and function pointers.

Function pointers (to callback routines) must have a thunking layer provided, using the GetProc16 function
(this is explained in detail in a later section).

Data pointers can be translated from 32-bit to 16-bit using the AllocAlias16 and AllocHugeAlias16
functions. These functions create 16-bit far pointers that have the same linear address as the 32-bit near
pointer that was converted.

132 Pointer Handling

Windows 3.x 32-bit Programming Overview

It is important to remember that when passing a pointer to a data structure in this fashion, any pointers in
the data structure must also be converted.

The Supervisor will convert any pointers that it knows about; but there are some complications created by
the fact that Windows allows you to pass pointers in functions that are prototyped to take a long integer.

The Windows API functions SendMessage and SendDlgItemMessage rely on other fields determining the
nature of the long data item that they accept; this is discussed in detail in the next section.

20.5.2.1 SendMessage and SendDlgItemMessage

SendMessage and SendDlgItemMessage have special cover functions that determine when the 32-bit
integer is really a pointer and needs to be converted. These cover functions are used automatically, unless
the macro NOCOVERSENDS is defined before including WINAPI.FI as in the following example.

*$define NOCOVERSENDS
*$include winapi.fi

SendMessage and SendDlgItemMessage will do pointer conversions automatically using AllocAlias16 and
FreeAlias16 (unless NOCOVERSENDS is defined) for the following message types:

• combo boxes (CB_ messages)
• edit controls (EM_ messages)
• list boxes (LB_ messages)
• certain windows messages (WM_ messages);

The messages that are intercepted by the cover functions for SendMessage and SendDlgItemMessage are:

CB_ADDSTRING CB_DIR CB_FINDSTRING
CB_FINDSTRINGEXACT CB_GETLBTEXT CB_INSERTSTRING
CB_SELECTSTRING

EM_GETLINE EM_GETRECT EM_REPLACESEL
EM_SETRECT EM_SETRECTNP EM_SETTABSTOPS

LB_ADDSTRING LB_DIR LB_FINDSTRING
LB_FINDSTRINGEXACT LB_GETITEMRECT LB_GETSELITEMS
LB_GETTEXT LB_INSERTSTRING LB_SELECTSTRING
LB_SETTABSTOPS

WM_MDICREATE WM_NCCALCSIZE

Note that for SendMessage and SendDlgItemMessage, some of the messages may NOT require pointer
conversion:

• CB_ADDSTRING, CB_FINDSTRING, CB_FINDSTRINGEXACT, CB_INSERTSTRING will not
need a conversion if the combo box was created as owner-draw style without CBS_HASSTRINGS
style.

• LB_ADDSTRING, LB_FINDSTRING, LB_FINDSTRINGEXACT, LB_INSERTSTRING will not
need a conversion if the list box was created as owner-draw style without LBS_HASSTRINGS style.

The macro NOCOVERSENDS should be defined in modules where messages like these are being sent.
With these messages, the lParam data item does not contain a pointer, and the automatic pointer conversion
would be incorrect. By doing

Pointer Handling 133

Windows 3.x Programming Guide

*$define NOCOVERSENDS
*$include winapi.fi

modules that send messages like the above will not have the pointer conversion performed.

20.5.3 GlobalAlloc and LocalAlloc

The functions GlobalAlloc and LocalAlloc are the typical way of allocating memory in the 16-bit Windows
environment. In the 32-bit environment, there is no need to use these functions. The only time
GlobalAlloc is needed is when allocating shared memory, i.e., GMEM_DDESHARE.

The ALLOCATE and DEALLOCATE statements can be used to allocate memory from your 32-bit near
heap. By allocating memory in this way, you may create data objects as large as the enhanced mode
Windows memory manager will permit.

20.5.4 Callback Function Pointers

To access a callback function, an instance of it must be created using MakeProcInstance. This creates a
"thunk" (a special piece of code) that automatically puts the application’s data segment into the AX
register, and then calls the specified callback function.

In Windows 3.x, it is not possible to do a MakeProcInstance directly on a 32-bit callback routine, since
Windows 3.x does not understand 32-bit applications. Therefore, it is necessary to use a 16-bit callback
routine that passes control to the 32-bit callback routine. This 16-bit callback routine is automatically
created by the Supervisor when using any of the standard Windows API functions that accept a callback
routine.

The 16-bit callback routine for a 32-bit application is a special layer that transfers the parameters from a
16-bit stack to the 32-bit stack, and then passes control to 32-bit code. These 16-bit callback routines are
found in the Supervisor. The function GetProc16 provides pointers to these 16-bit callback routines.

However, it is not often necessary to use the GetProc16 function to obtain a 16-bit/32-bit callback interface
function.

In the general case, one would have to write code as follows:

integer*4 pCb, fpProc

pCb = GetProc16(A_Function, GETPROC_callbacktype)
fpProc = MakeProcInstance(pCb, hInstance)

* do stuff

call Do_it(..., fpProc, ...)

* do more stuff

call FreeProcInstance(fpProc)
call ReleaseProc16(pCb)

It is not necessary to use this general code in the case of the regular Windows API functions. The
following functions will automatically allocate the correct 16-bit/32-bit callback interface functions:

134 Pointer Handling

Windows 3.x 32-bit Programming Overview

• ChooseColor
• ChooseFont
• CreateDialog
• CreateDialogIndirect
• CreateDialogIndirectParam
• CreateDialogParam
• DialogBox
• DialogBoxIndirect
• DialogBoxIndirectParam
• DialogBoxParam
• EnumChildWindows
• EnumFonts
• EnumMetaFile
• EnumObjects
• EnumProps
• EnumTaskWindows
• EnumWindows
• Escape (SETABORTPROC option)
• FindText
• GetOpenFileName
• GetSaveFileName
• GlobalNotify
• GrayString
• LineDDA
• PrintDlg
• RegisterClass
• ReplaceText
• SetClassLong (GCL_WNDPROC option)
• SetResourceHandler
• SetTimer
• SetWindowLong (GWL_WNDPROC option)
• SetWindowsHook

As well, the following functions are covered to provide support for automatic creation of 16-bit callback
routines:

• FreeProcInstance
• MakeProcInstance
• UnhookWindowsHook

If you need to get a callback that is not used by one of the above functions, then you must code the general
case. Typically, this is required when a DLL needs a callback routine. In modules where this is necessary,
you define the macro NOAUTOPROCS before you include WINAPI.FI as in the following example.

*$define NOAUTOPROCS
*$include winapi.fi

Be careful of the following when using NOAUTOPROCS.

1. The call to MakeProcInstance and FreeProcInstance for the callback function occurs in a
module with NOAUTOPROCS defined.

2. No Windows API functions (listed above) are used in the module with NOAUTOPROCS
defined. If they are, you must code the general case to use them.

Pointer Handling 135

Windows 3.x Programming Guide

Note that NOAUTOPROCS is in effect on a module-to-module basis only.

RegisterClass automatically does a GetProc16 for the callback function, unless the macro NOCOVERRC is
specified before including WINAPI.FI as in the following example.

*$define NOCOVERRC
*$include winapi.fi

20.5.4.1 Window Sub-classing

Sub-classing a Windows control in the 32-bit environment is straightforward. In fact, the code is identical
to the code used in the 16-bit environment. A simple example is:

*$include winapi.fi
*$pragma aux (callback) SubClassProc parm(value, value, value, value)

integer*4 function SubClassProc(hWnd, msg, wp, lp)
integer*2 hWnd
integer*2 msg
integer*2 wp
integer*4 lp

include ’windows.fi’

common fpOldProc
integer*4 fpOldProc

! code for sub-classing here

SubClassProc = CallWindowProc(fpOldProc, hWnd, msg, wp, lp)

end

program SubClassDemo
integer*2 hControl
common fpOldProc
integer*4 fpOldProc
integer*4 fp;

include ’windows.fi’

integer*4 SubClassProc
external SubClassProc
integer*4 ProgramInstance
external ProgramInstance

! assume hControl gets created in here

fpOldProc = GetWindowLong(hControl, GWL_WNDPROC)
fp = MakeProcInstance(SubClassProc, ProgramInstance)
call SetWindowLong(hControl, GWL_WNDPROC, fp)

! set it back
call SetWindowLong(hControl, GWL_WNDPROC, fpOldProc)
call FreeProcInstance(fp)

end

Note that SetWindowLong is covered to recognize GWL_WNDPROC and automatically creates a 16-bit
callback for the 32-bit callback. When replacing the callback routine with the original 16-bit routine, the
covered version of SetWindowLong recognizes that the function is not a 32-bit callback, and so passes the
pointer right through to Windows unchanged.

136 Pointer Handling

Windows 3.x 32-bit Programming Overview

20.6 Calling 16-bit DLLs

A 16-bit function in a DLL can be called using the _Call16 function. The first argument to _Call16 is the
address of the 16-bit function. This address is usually obtained by calling GetProcAddress with the name
of the desired function. The second argument to _Call16 is a string identifying the types of the parameters
to be passed to the 16-bit function.

Character Parameter Type

c call a ’cdecl’ function as opposed to a ’pascal’ function (if specified, it must be listed first)
b unsigned BYTE
w 16-bit WORD
d 32-bit DWORD
f double precision floating-point
p 32-bit flat pointer (converted to 16:16 far pointer)

The 16-bit function must use either the PASCAL or CDECL calling convention. PASCAL calling
convention is the default. If the function uses the CDECL calling convention, then you must specify the
letter "c" as the first character of the argument type string.

Pointer types will automatically be converted from 32-bit near pointers to 16-bit far pointers before the
function is invoked. Note that this pointer is only valid over the period of the call; after control returns to
the 32-bit application, the 16-bit pointer created by the Supervisor is no longer valid.

The return value from _Call16 is a DWORD.

*$include winapi.fi

integer*2 function FWinMain(hInstance,
& hPrevInstance,
& lpszCmdLine,
& nCmdShow)
integer*2 hInstance
integer*2 hPrevInstance
integer*4 lpszCmdLine
integer*2 nCmdShow

include ’windows.fi’

integer*2 hDrv, hWnd
integer*4 lpfn, cb

hDrv = LoadLibrary(’your.dll’c)
if(hDrv .lt. 32)then

return
end if
lpfn = GetProcAddress(hDrv, ’ExtDeviceMode’c)
if(lpfn .eq. 0)then

return
end if
! Invoke the function.
cb = _Call16(lpfn, ’wwdppddw’c,

& hWnd, hDrv, NULL,
& ’POSTSCRIPT PRINTER’c,
& ’LPT1’c,
& NULL, NULL, 0)

Calling 16-bit DLLs 137

Windows 3.x Programming Guide

20.7 _16 Functions

Every Windows API function that accepts a pointer has a corresponding _16 function. The _16 version of
the function will not convert any of the pointers that it accepts; it will assume that all pointers are 16-bit far
pointers already. This applies to both data and function pointers.

138 _16 Functions

21 Windows 32-Bit Dynamic Link Libraries

21.1 Introduction to 32-Bit DLLs

Open Watcom FORTRAN 77 allows the creation of 32-bit Dynamic Link Libraries (DLL). In fact, 32-bit
DLLs are simpler to write than 16-bit DLLs. A 16-bit DLL runs on the caller’s stack, and thus DS != SS.
This creates difficulties in the small and medium memory models because near pointers to local variables
are different from near pointers to global variables. The 32-bit DLL runs on its own stack, in the usual flat
memory space, which eliminates these concerns.

There is a special version of the supervisor, W386DLL.EXT that performs a similar job to WIN386.EXT.
However, the 32-bit DLL supervisor is a 16-bit Windows DLL, rather than a 16-bit Windows application.
On the first use of the 32-bit DLL, the DLL supervisor loads the 32-bit DLL and invokes the 32-bit
initialization routine (the DLL’s FWinMain routine). The initialization routine declares all entry points
(via DefineDLLEntry) and performs any other necessary initialization. An index number in the range 1
to 128 is used to identify all external 32-bit DLL routines. DefineDLLEntry is used to assign an index
number to each routine, as well as to identify the arguments.

The DLL supervisor contains a general entry point for Windows applications to call into called
Win386LibEntry. It also contains 128 specific entry points called DLL1 to DLL128 which correspond
to the entry points established via DefineDLLEntry (the first argument to DefineDLLEntry is an
index number in the range 1 to 128). All applications call into the 32-bit DLL via these entry points. They
build the necessary stack frame and switch to the 32-bit DLL’s data space.

If you call via Win386LibEntry then you pass the DLL entry point number or index (1 to 128) as the
last argument. Win386LibEntry uses this index number to call the appropriate 32-bit DLL routine.
From a pseudo-code point of view, the 16-bit supervisor might look like the following:

DLL1:: set index=1

invoke 32bitDLLindirect

DLL2:: set index=2
invoke 32bitDLLindirect

.

.

.
DLL128:: set index=128

invoke 32bitDLLindirect

Win386LibEntry::
set index from index_argument
invoke 32bitDLLindirect

32bitDLLindirect:
set up stack frame
switch to 32-bit data space
call indirect registration_list[index]

.

.

.

Introduction to 32-Bit DLLs 139

Windows 3.x Programming Guide

When you are creating a 32-bit DLL, keep in mind that the entry points you define may be invoked by a
16-bit application as well as a 32-bit application. It is for this reason that all far pointers passed to a 32-bit
DLL are 16-bit far pointers. Hence, whenever a pointer is passed as an argument to a 32-bit DLL entry
point and you wish to access the data it points to, you must convert the pointer appropriately. To do this,
you must map a dynamically allocatable array to the memory pointed to by the 16-bit far pointer.

21.2 A Sample 32-bit DLL

Let us begin our discussion of DLLs by showing the code for a simple DLL. The source code for these
examples is provided in the \WATCOM\SAMPLES\FORTRAN\WIN\DLL directory. We describe how to
compile and link the examples in the section entitled "Creating and Debugging Dynamic Link Libraries" on
page 147.

*$include winapi.fi

* WINDLLV.FOR

* Setup: set finclude=\WATCOM\src\fortran\win
* Compile and Link: wfl386 windllv -explicit -d2 -bd -l=win386
* Bind: wbind windllv -d -n

*$pragma aux (dll_function) Add3

integer function Add3(w1, w2, w3)
integer*4 w1, w2, w3

include ’windows.fi’

character*128 str

write(str, ’(16hDLL 1 arguments:, 3i10, a)’) w1, w2, w3,
& char(0)
call MessageBox(NULL, str, ’DLL Function 1’c, MB_OK)
Add3 = w1 + w2 + w3

end

*$pragma aux (dll_function) Add2

integer function Add2(w1, w2)
integer*4 w1, w2

include ’windows.fi’

character*128 str

write(str, ’(16hDLL 2 arguments:, 2i10, a)’) w1, w2, char(0)
call MessageBox(NULL, str, ’DLL Function 2’c, MB_OK)
Add2 = w1 + w2

end

integer*2 function FWinMain(hInstance,
& hPrevInstance,
& lpszCmdLine,
& nCmdShow)
integer*2 hInstance
integer*2 hPrevInstance
integer*4 lpszCmdLine
integer*2 nCmdShow

include ’windows.fi’

external Add3, Add2
integer rc

140 A Sample 32-bit DLL

Windows 32-Bit Dynamic Link Libraries

call BreakPoint
rc = DefineDLLEntry(1, Add3, DLL_DWORD, DLL_DWORD, DLL_DWORD,

& DLL_ENDLIST)
if(rc .ne. 0)then

FWinMain = 0
return

end if
rc = DefineDLLEntry(2, Add2, DLL_DWORD, DLL_DWORD,

& DLL_ENDLIST)
if(rc .ne. 0)then

FWinMain = 0
return

end if
call MessageBox(NULL, ’32-bit DLL started’c,

& ’WINDLLV’c, MB_OK)
FWinMain = 1

end

There are two entry points defined, Add3 (index number 1) and Add2 (index number 2). Add3 has three
INTEGER*4 arguments and Add2 has two INTEGER*4 arguments. The argument lists are described by
calling DefineDLLEntry. All arguments are passed by value. As previously mentioned, all pointers
passed to 32-bit DLLs are 16-bit far pointers. Since, by default, FORTRAN 77 passes arguments by
reference (a pointer to the data is passed instead of the actual data), a level of complexity is introduced
since some pointer conversions must take place when accessing the data pointed to by a 16-bit far pointer in
a 32-bit environment. We will deal with this problem in a following example. First, let us deal with
passing arguments by value to 32-bit DLLs from 16 and 32-bit Windows applications.

Note that each entry name must be given the dll_function attribute using an auxiliary pragma. This
alias name is defined in the file WINAPI.FI.

FWinMain returns zero to notify Windows that the DLL initialization failed, and returns a one if
initialization succeeds.

FWinMain accepts the same arguments as the FWinMain procedure of a regular Windows program,
however, only two arguments are used. hInstance is the DLL handle and lpszCmdLine is the
command line passed to the DLL.

21.3 Calling Functions in a 32-bit DLL from a 16-bit
Application

The following is a 16-bit Windows program that demonstrates how to call the two routines defined in our
DLL example.

*$include winapi.fi

* GEN16V.FOR

* Setup: set finclude=\WATCOM\src\fortran\win
* Compile and Link: wfl gen16v -explicit -d2 -windows -l=windows
* -"op desc ’16-bit DLL Test’"

*$pragma aux (dll32_call) indirect_1 \
* parm(value*4, value*4, value*4)
*$pragma aux (dll32_call) indirect_2 \
* parm(value*4, value*4)

Calling Functions in a 32-bit DLL from a 16-bit Application 141

Windows 3.x Programming Guide

integer*2 function FWinMain(hInstance,
& hPrevInstance,
& lpszCmdLine,
& nCmdShow)
integer*2 hInstance
integer*2 hPrevInstance
integer*4 lpszCmdLine
integer*2 nCmdShow

include ’windows.fi’

integer*2 hlib
integer*4 indirect_1, indirect_2
integer*4 dll_1, dll_2, cb
character*128 str

hlib = LoadLibrary(’windllv.dll’c)
if(hlib .lt. 32) then

call MessageBox(NULL, ’Can’’t load WINDLLV’c,
& ’Gen16V’c, MB_OK)

stop
endif

dll_1 = GetProcAddress(hlib, ’DLL1’c)
dll_2 = GetProcAddress(hlib, ’DLL2’c)

cb = indirect_1(111, 22222, 3333, dll_1)
write(str, ’(15hDLL 1 returned , i10, a)’) cb, char(0)
call MessageBox(NULL, str, ’Gen16V Test 1’c, MB_OK)

cb = indirect_2(4444, 55, dll_2)
write(str, ’(15hDLL 2 returned , i10, a)’) cb, char(0)
call MessageBox(NULL, str, ’Gen16V Test 2’c, MB_OK)

FWinMain = 0

end

The addresses of the routines DLL1 and DLL2 in the 32-bit DLL are obtained and stored in the variables
dll_1 and dll_2. Since the FORTRAN 77 language does not support indirect function calls, we need a
mechanism to call these functions indirectly. We do this using the two indirect functions called
indirect_1 and indirect_2. These two functions are given the dll32_call attribute using an
auxiliary pragma which is defined in the file WINAPI.FI. Note that the last argument of the calls to
indirect_1 or indirect_2 is the actual address of the DLL routine.

What you should realize is that the indirect_1 and indirect_2 functions do not really exist. The
code that is generated for statements like the following is really an indirect call to the function whose
address is represented in the last argument.

cb = indirect_1(111, 22222, 3333, dll_1)
cb = indirect_2(4444, 55, dll_2)

This is a result of using the dll32_call auxiliary pragma attribute to describe both indirect_1 and
indirect_2. You can verify this by disassembling the object file that is generated when this code is
compiled.

142 Calling Functions in a 32-bit DLL from a 16-bit Application

Windows 32-Bit Dynamic Link Libraries

21.4 Calling Functions in a 32-bit DLL from a 32-bit
Application

The following is a 32-bit Windows program that demonstrates how to call the two routines defined in our
32-bit DLL example. Since this is a 32-bit Windows program, we will use the _Call16 function to call
functions in our 32-bit DLL. Note that we get to the 32-bit DLL functions by going indirectly through the
16-bit supervisor that forms the "front end" for our 32-bit DLL.

*$include winapi.fi

* GEN32V.FOR

* Setup: set finclude=\WATCOM\src\fortran\win
* Compile and Link: wfl386 gen32v -explicit -d2 -l=win386
* Bind: wbind gen32v -n -D "32-bit DLL Test"

integer*2 function FWinMain(hInstance,
& hPrevInstance,
& lpszCmdLine,
& nCmdShow)
integer*2 hInstance
integer*2 hPrevInstance
integer*4 lpszCmdLine
integer*2 nCmdShow

include ’windows.fi’

integer*2 hlib
integer*4 dll_1, dll_2, cb
character*128 str

hlib = LoadLibrary(’windllv.dll’c)
if(hlib .lt. 32) then

call MessageBox(NULL, ’Can’’t load WINDLLV’c,
& ’Gen32V’c, MB_OK)

stop
endif

dll_1 = GetProcAddress(hlib, ’DLL1’c)
dll_2 = GetProcAddress(hlib, ’DLL2’c)

cb = _Call16(dll_1, ’ddd’c, 111, 22222, 3333)
write(str, ’(15hDLL 1 returned , i10, a)’) cb, char(0)
call MessageBox(NULL, str, ’Gen32V Test 1’c, MB_OK)

cb = _Call16(dll_2, ’dd’c, 4444, 55)
write(str, ’(15hDLL 2 returned , i10, a)’) cb, char(0)
call MessageBox(NULL, str, ’Gen32V Test 2’c, MB_OK)

FWinMain = 0

end

Note that the first argument of a call to _Call16 is the DLL function address returned by
GetProcAddress and must be a 32-bit argument. The second argument of a call to _Call16 is a
string describing the types of arguments that will be passed to the DLL function.

Calling Functions in a 32-bit DLL from a 32-bit Application 143

Windows 3.x Programming Guide

21.5 A Sample 32-bit DLL Using a Structure

As previously mentioned, passing pointers from a 16 or 32-bit Windows application to a 32-bit DLL poses
a problem since all pointers are passed as 16-bit far pointers. The pointer must be converted from a 16-bit
far pointer to a 32-bit far pointer. This is achieved by mapping a dynamically allocatable array to each
argument that is passed by reference using the LOCATION specifier of the ALLOCATE statement.
Furthermore, you must specify the far attribute for each such array using the array pragma. Since this
is cumbersome if you wish to pass many arguments, it is recommended that a single argument be passed
that is actually a pointer to a structure that contains the actual arguments. Furthermore, since each call to a
DLL routine is made indirectly through one of Win386LibEntry or DLL1 through DLL128, you
should also return any values in the same structure since the return value from any of these functions is only
32-bits wide.

The following example is a 32-bit DLL that receives its arguments and returns values using a structure.
The source code for these examples is provided in the \WATCOM\SAMPLES\FORTRAN\WIN\DLL
directory. We describe how to compile and link the examples in the section entitled "Creating and
Debugging Dynamic Link Libraries" on page 147.

*$include winapi.fi

* WINDLL.FOR

* Setup: set finclude=\WATCOM\src\fortran\win
* Compile and Link: wfl386 windll -explicit -d2 -bd -l=win386
* Bind: wbind windll -d -n

*$pragma aux (dll_function) Add3

subroutine Add3(arg_list)
integer*4 arg_list
structure /argtypes/

integer w1
integer w2
integer w3
integer sum

end structure
record /argtypes/ args(:)

*$pragma array args far

include ’windows.fi’

character*128 str

allocate(args(1), location=arg_list)
write(str, ’(16hDLL 1 arguments:, 3i10, a)’) args(1).w1,

& args(1).w2,
& args(1).w3,
& char(0)
call MessageBox(NULL, str, ’DLL Function 1’c, MB_OK)
args(1).sum = args(1).w1 + args(1).w2 + args(1).w3
deallocate(args)

end

144 A Sample 32-bit DLL Using a Structure

Windows 32-Bit Dynamic Link Libraries

*$pragma aux (dll_function) Add2

subroutine Add2(arg_list)
integer*4 arg_list
structure /argtypes/

real w1
real w2
real sum

end structure
record /argtypes/ args(:)

*$pragma array args far

include ’windows.fi’

character*128 str

allocate(args(1), location=arg_list)
write(str, ’(16hDLL 2 arguments:, 2f10.2, a)’) args(1).w1,

& args(1).w2,
& char(0)
call MessageBox(NULL, str, ’DLL Function 2’c, MB_OK)
args(1).sum = args(1).w1 + args(1).w2
deallocate(args)

end

integer*2 function FWinMain(hInstance,
& hPrevInstance,
& lpszCmdLine,
& nCmdShow)
integer*2 hInstance
integer*2 hPrevInstance
integer*4 lpszCmdLine
integer*2 nCmdShow

include ’windows.fi’

external Add3, Add2
integer rc

call BreakPoint
rc = DefineDLLEntry(1, Add3, DLL_PTR, DLL_ENDLIST)
if(rc .ne. 0)then

FWinMain = 0
return

end if
rc = DefineDLLEntry(2, Add2, DLL_PTR, DLL_ENDLIST)
if(rc .ne. 0)then

FWinMain = 0
return

end if
call MessageBox(NULL, ’32-bit DLL started’c,

& ’WINDLL’c, MB_OK)
FWinMain = 1

end

The following example is a 16-bit Windows application that passes arguments to a 32-bit DLL using a
structure.

*$include winapi.fi

* GEN16.FOR

* Setup: set finclude=\WATCOM\src\fortran\win
* Compile and Link: wfl gen16 -explicit -d2 -windows -l=windows
* -"op desc ’16-bit DLL Test’"

*$pragma aux (dll32_call) indirect_1 parm(reference, value*4)
*$pragma aux (dll32_call) indirect_2 parm(reference, value*4)

A Sample 32-bit DLL Using a Structure 145

Windows 3.x Programming Guide

integer*2 function FWinMain(hInstance,
& hPrevInstance,
& lpszCmdLine,
& nCmdShow)
integer*2 hInstance
integer*2 hPrevInstance
integer*4 lpszCmdLine
integer*2 nCmdShow

include ’windows.fi’

integer*2 hlib
integer*4 dll_1, dll_2
character*128 str

structure /args_1/
integer w1
integer w2
integer w3
integer sum

end structure

structure /args_2/
real w1
real w2
real sum

end structure

record /args_1/ args_1/111, 22222, 3333, 0/
record /args_2/ args_2/714.3, 35.7, 0.0/

hlib = LoadLibrary(’windll.dll’c)
if(hlib .lt. 32) then

call MessageBox(NULL, ’Can’’t load WINDLL’c,
& ’Gen16’c, MB_OK)

stop
endif

dll_1 = GetProcAddress(hlib, ’DLL1’c)
dll_2 = GetProcAddress(hlib, ’DLL2’c)

call indirect_1(args_1, dll_1)
write(str, ’(15hDLL 1 returned , i10, a)’) args_1.sum,

& char(0)
call MessageBox(NULL, str, ’Gen16 Test 1’c, MB_OK)

call indirect_2(args_2, dll_2)
write(str, ’(15hDLL 2 returned , f10.2, a)’) args_2.sum,

& char(0)
call MessageBox(NULL, str, ’Gen16 Test 2’c, MB_OK)

FWinMain = 0

end

The following example is a 32-bit Windows application that passes arguments to a 32-bit DLL using a
structure.

*$include winapi.fi

* GEN32.FOR

* Setup: set finclude=\WATCOM\src\fortran\win
* Compile and Link: wfl386 gen32 -explicit -d2 -l=win386
* Bind: wbind gen32 -n -D "32-bit DLL Test"

146 A Sample 32-bit DLL Using a Structure

Windows 32-Bit Dynamic Link Libraries

integer*2 function FWinMain(hInstance,
& hPrevInstance,
& lpszCmdLine,
& nCmdShow)
integer*2 hInstance
integer*2 hPrevInstance
integer*4 lpszCmdLine
integer*2 nCmdShow

include ’windows.fi’

integer*2 hlib
integer*4 dll_1, dll_2, cb
character*128 str

structure /args_1/
integer w1
integer w2
integer w3
integer sum

end structure

structure /args_2/
real w1
real w2
real sum

end structure

record /args_1/ args_1/111, 22222, 3333, 0/
record /args_2/ args_2/714.3, 35.7, 0.0/

hlib = LoadLibrary(’windll.dll’c)
if(hlib .lt. 32) then

call MessageBox(NULL, ’Can’’t load WINDLL’c,
& ’Gen32’c, MB_OK)

stop
endif

dll_1 = GetProcAddress(hlib, ’DLL1’c)
dll_2 = GetProcAddress(hlib, ’DLL2’c)

cb = _Call16(dll_1, ’p’c, loc(args_1))
write(str, ’(15hDLL 1 returned , i10, a)’) args_1.sum,

& char(0)
call MessageBox(NULL, str, ’Gen32 Test 1’c, MB_OK)

cb = _Call16(dll_2, ’p’c, loc(args_2))
write(str, ’(15hDLL 2 returned , f10.2, a)’) args_2.sum,

& char(0)
call MessageBox(NULL, str, ’Gen32 Test 2’c, MB_OK)

FWinMain = 0

end

21.6 Creating and Debugging Dynamic Link Libraries

In the following sections, we will take you through the steps of compiling, linking, and debugging 32-bit
Dynamic Link Libraries (DLLs).

We will use example programs that are provided in source-code form in the Open Watcom F77 package.
The files described in this chapter are located in the directory
\WATCOM\SAMPLES\FORTRAN\WIN\DLL. The following files are provided:

Creating and Debugging Dynamic Link Libraries 147

Windows 3.x Programming Guide

WINDLLV.FOR is the source code for a simple 32-bit DLL containing two library routines that
use integer arguments to pass information.

GEN16V.FOR is the source code for a generic 16-bit Windows application that calls functions
in the "WINDLLV" 32-bit Windows DLL.

GEN32V.FOR is the source code for a generic 32-bit Windows application that calls functions
in the "WINDLLV" 32-bit Windows DLL.

WINDLL.FOR is the source code for a simple 32-bit DLL containing two library routines that
use structures to pass information.

GEN16.FOR is the source code for a generic 16-bit Windows application that calls functions
in the "WINDLL" 32-bit Windows DLL.

GEN32.FOR is the source code for a generic 32-bit Windows application that calls functions
in the "WINDLL" 32-bit Windows DLL.

MAKEFILE is a makefile for compiling and linking the programs described above.

21.6.1 Building the Applications

To create the DLLs and test applications, we will use the WATCOM Open Watcom Make utility and the
supplied makefile.

Example:
C>wmake -f makefile

21.6.2 Installing the Examples under Windows

Start up Microsoft Windows 3.x if you have not already done so. Add the GEN16V.EXE and
GEN32V.EXE files to one of your Window groups using the Microsoft Program Manager.

1. Select the "New..." entry from the "File" menu of the Microsoft Windows Program Manager.

2. Select "Program Item" from the "New Program Object" window and press the "OK" button.

3. Enter "16-bit DLL Test" as a description for the GEN16V program. Enter the full path to the
GEN16V program as a command line.

Example:
Description: 16-bit DLL Test
Command Line: c:\work\dll\gen16v.exe

4. Enter "32-bit DLL Test" as a description for the GEN32V program. Enter the full path to the
GEN32V program as a command line.

148 Creating and Debugging Dynamic Link Libraries

Windows 32-Bit Dynamic Link Libraries

Example:
Description: 32-bit DLL Test
Command Line: c:\work\dll\gen32v.exe

Use a similar procedure to install the GEN16.EXE and GEN32.EXE programs.

21.6.3 Running the Examples

Start the 16-bit application by double clicking on its icon. A number of message boxes are presented. You
may wish to compare the output in each message box with the source code of the program to determine if
the correct results are being obtained. Click on the "OK" button as each of them are displayed.

Similarly, start the 32-bit application by double-clicking on its icon and observe the results.

21.6.4 Debugging a 32-bit DLL

The Open Watcom Debugger can be used to debug a DLL. To debug a 32-bit DLL, a "breakpoint"
instruction must be inserted into the source code for the DLL at the "FWinMain" entry point. This is done
using the "pragma" compiler directive. We have already added the breakpoint to the source code for the
32-bit DLL.

.
.
.

integer*2 function FWinMain(hInstance,
& hPrevInstance,
& lpszCmdLine,
& nCmdShow)

integer*2 hInstance
integer*2 hPrevInstance
integer*4 lpszCmdLine
integer*2 nCmdShow

include ’windows.fi’

external Add3, Add2
integer rc

call BreakPoint
rc = DefineDLLEntry(1, Add3, DLL_DWORD, DLL_DWORD, DLL_DWORD,

& DLL_ENDLIST)
if(rc .ne. 0)then

FWinMain = 0
return

end if
.
.
.

The pragma for "BreakPoint" is defined in the "WINAPI.FI" file.

Start up Microsoft Windows 3.x if you have not already done so. Start the debugger by double-clicking on
the Open Watcom Debugger icon. At the prompt, enter the path specification for the application. When
the debugger has successfully loaded GEN32v, start execution of the program. When the breakpoint is
encountered in the 32-bit DLL, the debugger is re-entered. The debugger will automatically skip past the
breakpoint.

From this point on, you can symbolically debug the 32-bit DLL. You might, for example, set breakpoints
at the start of each DLL routine to debug each of them as they are called.

Creating and Debugging Dynamic Link Libraries 149

Windows 3.x Programming Guide

21.6.5 Summary

Note that the "FWinMain" entry point is only called once, at the start of any application requesting it. After
this, the "FWinMain" entry point is no longer called. You may have to restart Windows to debug this
section of code a second or third time.

150 Creating and Debugging Dynamic Link Libraries

22 Interfacing Visual Basic and Open Watcom
FORTRAN 77 DLLs

22.1 Introduction to Visual Basic and DLLs

This chapter describes how to interface Microsoft Visual Basic 3.0 applications and 32-bit Dynamic Link
Libraries (DLLs) created by Open Watcom FORTRAN 77. It describes how to write functions for a 32-bit
DLL, how to compile and link them, and how to call these functions from Visual Basic. One of the
proposed techniques involves the use of a set of cover functions in a 16-bit DLL so, indirectly, this chapter
also describes interfacing to 16-bit DLLs.

It is possible to invoke the Win386LibEntry function (Open Watcom’s 32-bit function entry point,
described below) directly from Visual Basic. However, this technique limits the arguments that can be
passed to a 32-bit DLL. The procedure and problems are explained below.

To work around the problem, a 16-bit DLL can be created, that covers the 32-bit DLL. Within the 16-bit
DLL, we will place cover functions that will call the corresponding 32-bit function in the 32-bit DLL. We
illustrate the creation of the 16-bit DLL using the 16-bit C compiler in Open Watcom C/C++.

Before we begin our example, there are some important technical issues to consider.

The discussion in this chapter assumes that you, the developer, have a working knowledge of Visual Basic,
including how to bring up the general declarations screen, how to create command buttons, and how to
associate code with command buttons. You must use Visual Basic 3.0 or later. Visual Basic Version 2.x
will not work because of a deficiency in this product regarding the calling of functions in DLLs.

For the purposes of the following discussion, you should have installed the 32-bit version of Open Watcom
FORTRAN 77, as well as version 3.0 or later of Visual Basic. If you also have the 16-bit Open Watcom C
compiler, you can use this to create a 16-bit DLL containing the 16-bit cover functions. Ensure that the
PATH amd FINCLUDE environment variables are defined to include at least the directories indicated.
We have assumed that Open Watcom FORTRAN 77 is installed in the c:\watcom directory, and Visual
Basic is in the c:\vb directory:

set path=c:\watcom\binw;c:\vb;c:\dos;c:\windows
set finclude=c:\watcom\src\fortran\win

Open Watcom’s 32-bit DLL supervisor contains a general entry point for Windows applications to call into
called Win386LibEntry. It also contains 128 specific entry points called DLL1 to DLL128 which
correspond to the entry points established via DefineDLLEntry (the first argument to
DefineDLLEntry is an index number in the range 1 to 128). All applications call into the 32-bit DLL
via these entry points. They build the necessary stack frame and switch to the 32-bit DLL’s data space.

If you call via Win386LibEntry then you pass the DLL entry point number or index (1 to 128) as the
last argument. Win386LibEntry uses this index number to call the appropriate 32-bit DLL routine.

In many languages and programs (such as C and Microsoft Excel), function calls are very flexible. In other
words, a function can be called with different argument types each time. This is generally necessary for

Introduction to Visual Basic and DLLs 151

Windows 3.x Programming Guide

calling Win386LibEntry in a 32-bit extended DLL function. The reason is that this function takes the
same arguments as the function being called, as well as the index number of the called function. After the
32-bit flat model has been set up, Win386LibEntry then calls this function. In Visual Basic, once a
function is declared as having certain arguments, it cannot be redeclared. For example, suppose we have a
declaration as follows:

Example:
Declare Function Win386LibEntry Lib "c:\path\vbdll32.dll"
=> (ByVal v1 As Long, ByVal v2 As Long, ByVal
=> v3 As Long, ByVal I As Integer) As Long

(Note: the => means to continue the statement on the same line.) In this example, we could only call a
function in any 32-bit extended DLL with three 32-bit integers as arguments. There are three ways to work
around this deficiency in Visual Basic:

1. Use the Visual Basic "Alias" attribute to declare Win386LibEntry differently for each DLL
routine. Reference the different DLL routines using these aliases.

2. Use the specific entry point, one of DLL1 through DLL128, corresponding to the DLL routine
that you want to call. Each entry point can be described to take different arguments. We can
still use the "Alias" attribute to make the link between the name we use in the Visual Basic
function and the name in the 32-bit extended DLL. This is the method that we will use in the
"Direct Call" technique discussed below. It is simpler to use since it requires one less argument
(you don’t require the index number).

3. Use a method which involves calling functions in a 16-bit "cover" DLL written in a
flexible-argument language, which then calls the functions in the 32-bit DLL. This is the
"Indirect Call" method discussed below.

22.2 A Working Example

The best way to demonstrate these techniques is through an example. This example consists of a Visual
Basic application with 3 push buttons. The first push button invokes a direct call to a 32-bit DLL which
will display a message window with its arguments, the second push button invokes an indirect call to the
same function through a 16-bit DLL, and the third button exits the Visual Basic application.

To create a Visual Basic application:

(1) Start up a new project folder from the "File" menu.

(2) Select "View Form" from the "Project" window.

(3) Draw three command buttons on the form by selecting command buttons from the "Toolbox"
window.

(4) Change the caption on each button. To do this, highlight the first button. Then, open the
"Properties" window. Double click on the "Caption window", and change the caption to "Direct call".
Highlight the second button, and change its caption to "Indirect call". Highlight the third, changing
the caption to "Exit".

Now, your Visual Basic application should have three push buttons, "Direct call", "Indirect call", and
"Exit".

152 A Working Example

Interfacing Visual Basic and Open Watcom FORTRAN 77 DLLs

(5) Double click on the "Direct Call" button.

An edit window will pop up. Enter the following code:

Sub Command1_Click ()

Dim var1, var2, var3, worked As Long

var1 = 230
var2 = 215
var3 = 32
worked = Add3(var1, var2, var3)
Print worked
worked = Add2(var2, var3)
Print worked

End Sub

(6) Double click on the "Indirect Call" button.

Another edit window will pop up. Enter the following code:

Sub Command2_Click ()

Dim var1, var2, var3, worked As Long

var1 = 230
var2 = 215
var3 = 32
worked = Function1(var1, var2, var3)
Print worked
worked = Function2(var2, var3)
Print worked

End Sub

(7) Double click on the "Exit" command button and enter the following code in the pop-up window:

Sub Command3_Click ()

End
End Sub

(8) Select "View Code" from the "Project" window. To interface these Visual Basic functions to the
DLLs, the following code is needed in the

Object: [general] Proc: [declarations]

section of the code. This code assumes that VBDLL32.DLL and COVER16.DLL are in the
c:\path directory. Modify the pathnames appropriately if this is not the case. (Note: the => means
to continue the statement on the same line.)

A Working Example 153

Windows 3.x Programming Guide

Declare Function Function1 Lib "c:\path\cover16.dll"
=> (ByVal v1 As Long, ByVal v2 As Long, ByVal v3 As Long)
=> As Long

Declare Function Function2 Lib "c:\path\cover16.dll"
=> (ByVal v1 As Long, ByVal v2 As Long) As Long

Declare Function Add3 Lib "c:\path\vbdll32.dll"
=> Alias "DLL1"
=> (ByVal v1 As Long, ByVal v2 As Long, ByVal v3 As Long)
=> As Long

Declare Function Add2 Lib "c:\path\vbdll32.dll"
=> Alias "DLL2"
=> (ByVal v1 As Long, ByVal v2 As Long) As Long

Now, when all of the code below is compiled correctly, and the Visual Basic program is run, the "Direct
call" button will call the DLL1 and DLL2 functions directly, aliased as the functions Add3 and Add2
respectively. The "Indirect call" button will call the 16-bit DLL, which will then call the 32-bit DLL, for
both Function1 and Function2. To run the Visual Basic program, select "Start" from the "Run"
menu.

22.3 Sample Visual Basic DLL Programs

The sample programs provided below are for a 32-bit DLL, and a 16-bit cover DLL, which will call the two
functions contained in the 32-bit DLL.

22.3.1 Source Code for VBDLL32.DLL

*$include winapi.fi

* VBDLL32.FOR

* Setup: set finclude=\WATCOM\src\fortran\win
* Compile and Link: wfl386 vbdll32 -explicit -d2 -bd -l=win386
* Bind: wbind vbdll32 -d -n

*$pragma aux (dll_function) Add3

integer function Add3(w1, w2, w3)
integer w1, w2, w3

include ’windows.fi’

character*128 str

write(str, ’(16hDLL 1 arguments:, 3i10, a)’) w1, w2, w3,
& char(0)

call MessageBox(NULL, str, ’F77 VBDLL32’c, MB_OK)
Add3 = w1 + w2 + w3

end

154 Sample Visual Basic DLL Programs

Interfacing Visual Basic and Open Watcom FORTRAN 77 DLLs

*$pragma aux (dll_function) Add2

integer function Add2(w1, w2)
integer w1, w2

include ’windows.fi’

character*128 str

write(str, ’(16hDLL 2 arguments:, 2i10, a)’) w1, w2, char(0)
call MessageBox(NULL, str, ’F77 VBDLL32’c, MB_OK)
Add2 = w1 + w2

end

integer*2 function FWinMain(hInstance,
& hPrevInstance,
& lpszCmdLine,
& nCmdShow)

integer*2 hInstance
integer*2 hPrevInstance
integer*4 lpszCmdLine
integer*2 nCmdShow

include ’windows.fi’

external Add3, Add2
integer rc

rc = DefineDLLEntry(1, Add3, DLL_DWORD, DLL_DWORD, DLL_DWORD,
& DLL_ENDLIST)

if(rc .ne. 0)then
FWinMain = 0
return

end if
rc = DefineDLLEntry(2, Add2, DLL_DWORD, DLL_DWORD,

& DLL_ENDLIST)
if(rc .ne. 0)then

FWinMain = 0
return

end if
call MessageBox(NULL, ’32-bit DLL started’c,

& ’F77 VBDLL32’c, MB_OK)
FWinMain = 1

end

22.3.2 Source code for COVER16.DLL

The functions in this 16-bit DLL will call the functions in the 32-bit DLL, VBDLL32.DLL, shown above,
with the appropriate Win386LibEntry call for each function.

/*
* COVER16.C
*/

#include <stdio.h>
#include <windows.h> /* required for all Windows applications */

typedef long (FAR PASCAL *FPROC)();

FPROC DLL_1;
FPROC DLL_2;

Sample Visual Basic DLL Programs 155

Windows 3.x Programming Guide

long FAR PASCAL __export Function1(long var1,
long var2,
long var3)

{
return((long) DLL_1(var1, var2, var3));

}

long FAR PASCAL __export Function2(long var1, long var2)
{

return((long) DLL_2(var1, var2));
}

#pragma off (unreferenced);
BOOL FAR PASCAL LibMain(HANDLE hInstance, WORD wDataSegment,

WORD wHeapSize, LPSTR lpszCmdLine)
#pragma on (unreferenced);
{

HANDLE hlib;

/* Do our DLL initialization */
hlib = LoadLibrary("vbdll32.dll");
if(hlib < 32) {

MessageBox(NULL,
"Make sure your PATH contains VBDLL32.DLL",
"COVER16", MB_OK | MB_ICONEXCLAMATION);

return(FALSE);
}
DLL_1 = (FPROC) GetProcAddress(hlib, "DLL1");
DLL_2 = (FPROC) GetProcAddress(hlib, "DLL2");
return(TRUE);

}

22.4 Compiling and Linking the Examples

To create the 32-bit DLL VBDLL32.DLL, type the following at the command line (make sure that
VBDLL32.for is in your current directory):

set finclude=c:\watcom\src\fortran\win
wfl386 vbdll32 -explicit -bd -d2 -l=win386
wbind vbdll32 -d -n

To create the 16-bit DLL COVER16.DLL, type the following at the command line (make sure that
COVER16.C are in your current directory):

wcl cover16 -mc -bt=windows -bd -zu -d2 -l=windows_dll

Notes:

1. An object file is provided for COVER16.C if you do not have access to the 16-bit Open Watcom
C compiler. In this case, the DLL can be generated from the object file using the following
command:

wfl cover16.obj -d2 -l=windows_dll

2. The "mc" option selects the compact memory model (small code, big data). The code for 16-bit
DLLs must be compiled with one of the big data models.

3. The "bd" option indicates that a DLL will be created from the object files.

4. The "bt" option selects the "windows" target. This option causes the C or C++ compiler to
generate Windows prologue/epilogue code sequences which are required for Microsoft Windows

156 Compiling and Linking the Examples

Interfacing Visual Basic and Open Watcom FORTRAN 77 DLLs

applications. It also causes the compiler to use the WINDOWS_INCLUDE environment
variable for header file searches. It also causes the compiler to define the macro
__WINDOWS__ and, for the 32-bit C or C++ compiler only, the macro __WINDOWS_386__.

5. The "zu" option is used when compiling 16-bit code that is to be placed in a Dynamic Link
Library (DLL) since the SS register points to the stack segment of the calling application upon
entry to the function.

6. The "d2" option is used to disable optimizations and include debugging information in the object
file and DLL. The techniques for debugging DLLs are described in the chapter entitled
"Windows 32-Bit Dynamic Link Libraries" on page 139.

You are now ready to run the Visual Basic application.

Compiling and Linking the Examples 157

Windows 3.x Programming Guide

158 Compiling and Linking the Examples

23 WIN386 Library Subprograms

Each special Windows subprogram in the Open Watcom F77 library is described in this chapter. Each
description consists of a number of subsections:

Synopsis: This subsection gives the include files that should be included within a source file that references the
subprogram. It also shows an appropriate declaration for the function or for a function that could be
substituted for a macro. This declaration is not included in your program; only the include file(s) should be
included.

Description: This subsection is a description of the subprogram.

Returns: This subsection describes the return value (if any) for the subprogram.

See Also: This optional subsection provides a list of related subprograms.

Example: This optional subsection consists of one or more examples of the use of the subprogram. The examples are
often just fragments of code (not complete programs) for illustration purposes.

Classification: This subsection provides an indication of where the subprogram is commonly found. The subprograms
in this section are all classified as "WIN386" (i.e., they pertain to 32-bit Windows programming).

__

WIN386 Library Subprograms 159

AllocAlias16

Synopsis: c$include ’winapi.fi’
integer*4 function AllocAlias16(ptr)
integer*4 ptr

Description: The AllocAlias16 function obtains a 16-bit far pointer equivalent of a 32-bit near pointer. These
pointers are used when passing data pointers to Windows through functions that have INTEGER*4
arguments, and for any pointers within data structures passed this way.

Returns: The AllocAlias16 function returns a 16-bit far pointer (as an INTEGER*4) usable by Windows, or
returns 0 if the alias cannot be allocated.

See Also: FreeAlias16

Example: integer*4 mcs_16
record /MDICREATESTRUCT/ mcs
mcs.szTitle = AllocAlias16(loc(’Title’c))
mcs.szClass = AllocAlias16(loc(’mdichild’c))
mcs.hOwner = hInst
mcs.x = mcs.cx = CW_USEDEFAULT
mcs.y = mcs.cy = CW_USEDEFAULT
mcs.style = 0
! Send a message to an MDI client to create a window.
! Since the pointer to the structure is passed in an
! argument that may not be a pointer (depending on the
! type of message), there is no implicit 32 to 16-bit
! conversion done so the conversion must be done by the
! programmer.
mcs_16 = AllocAlias16(loc(mcs))
hwnd = SendMessage(hwndMDI, WM_MDICREATE, 0, mcs_16)
FreeAlias16(mcs_16)
FreeAlias16(mcs.szClass)
FreeAlias16(mcs.szTitle)

Classification: WIN386
__

160 WIN386 Library Subprograms

AllocHugeAlias16

Synopsis: c$include ’winapi.fi’
integer*4 function AllocHugeAlias16(ptr, size)
integer*4 ptr, size

Description: The AllocHugeAlias16 function obtains a 16-bit far pointer to a 32-bit memory object that is size bytes
in size. This is similar to the function AllocAlias16, except that AllocAlias16 will only give
16-bit far pointers to 32-bit memory objects of up to 64K in size. To get 16-bit far pointers to 32-bit
memory objects larger than 64K, AllocHugeAlias16 should be used.

Returns: The AllocHugeAlias16 function returns a 16-bit far pointer (as an INTEGER*4) usable by Windows, or
returns 0 if the alias cannot be allocated.

See Also: AllocAlias16, FreeAlias16, FreeHugeAlias16

Example: integer ierr, SIZE
integer*4 alias
parameter (SIZE=300000)
integer*1 tmp(SIZE)

allocate(tmp(SIZE), stat=ierr)
if(ierr .ne. 0)then

alias = AllocHugeAlias16(loc(tmp), SIZE)

! Windows calls using the alias ...

call FreeHugeAlias16(alias, SIZE)
endif

Classification: WIN386
__

WIN386 Library Subprograms 161

_Call16

Synopsis: c$include ’winapi.fi’
integer*4 function _Call16(lpFunc, fmt, ...)
integer*4 lpFunc
character*(*) fmt

Description: The _Call16 function performs the same function as GetIndirectFunctionHandle,
InvokeIndirectFunctionHandle and FreeIndirectFunctionHandle but is much
easier to use. The first argument lpFunc is the address of the 16-bit function to be called. This address
is usually obtained by calling GetProcAddress with the name of the desired function. The second
argument fmt is a string identifying the types of the parameters to be passed to the 16-bit function.

Character Parameter Type

c call a ’cdecl’ function as opposed to a ’pascal’ function (if specified, it must be listed
first)

b unsigned BYTE
w 16-bit WORD (INTEGER*2)
d 32-bit DWORD (INTEGER*4, REAL*4)
f double precision floating-point (DOUBLE PRECISION, REAL*8)
p 32-bit flat pointer (converted to 16:16 far pointer) (LOC(x))

The 16-bit function must use either the PASCAL or CDECL calling convention. PASCAL calling
convention is the default. If the function uses the CDECL calling convention, then you must specify the
letter "c" as the first character of the argument type string.

Pointer types will automatically be converted from 32-bit near pointers to 16-bit far pointers before the
function is invoked. Note that this pointer is only valid over the period of the call; after control returns
to the 32-bit application, the 16-bit pointer created by the Supervisor is no longer valid.

Returns: The _Call16 function returns a 32-bit DWORD (as an INTEGER*4) which represents the return value
from the 16-bit function that was called.

See Also: GetIndirectFunctionHandle, FreeIndirectFunctionHandle

Example: c$include winapi.fi

include ’windows.fi’
integer*2 hlib
integer*4 dll_1, cb
character*128 str

hlib = LoadLibrary(’windllv.dll’c)
dll_1 = GetProcAddress(hlib, ’DLL1’c)

cb = _Call16(dll_1, ’ddd’c, 111, 22222, 3333)

Classification: WIN386

162 WIN386 Library Subprograms

_Call16

__

WIN386 Library Subprograms 163

DefineDLLEntry

Synopsis: c$include ’winapi.fi’
integer*4 function DefineDLLEntry(index, routine, ...)
integer*4 index
external routine

Description: The DefineDLLEntry function defines an index number for the 32-bit DLL procedure routine. The
parameter index defines the index number that must be used in order to invoke the 32-bit FAR
procedure routine. The variable argument list defines the types of parameters that will be received by
the 32-bit DLL routine. Valid parameter types are:

DLL_PTR 16-bit far pointer
DLL_DWORD 32-bits
DLL_WORD 16-bits
DLL_CHAR 8-bits
DLL_ENDLIST Marks the end of the variable argument list.

In the above synopsis, "..." in the argument list is not valid FORTRAN 77 syntax; it is used only to
indicate a variable number of arguments.

Note that all pointers are received as 16-bit far pointers. To access the data from the 32-bit DLL, a
dynamically allocatable array must be mapped to the memory pointed to by the 16-bit far pointer using
the LOCATION specifier of the ALLOCATE statement and assigning the FAR attribute to the array using
the array pragma.

Returns: The DefineDLLEntry function returns zero if successful, and a non-zero value otherwise.

Example: c$include winapi.fi

c$pragma aux (dll_function) DLL_1

integer function DLL_1(w1, w2, w3)
integer*4 w1, w2, w3
include ’win386.fi’
include ’windefn.fi’
include ’winerror.fi’
character*128 str
write(str, ’(16hDLL 1 arguments:, 3i10, a)’) w1,

& w2, w3, char(0)
call MessageBox(NULL, str,

& ’DLL Function 1’c, MB_OK)
DLL_1 = w1 + w2 + w3
end

integer*2 function FWINMAIN(hInstance,
& hPrevInstance,
& lpszCmdLine,
& nCmdShow)

integer*2 hInstance, hPrevInstance, nCmdShow
integer*4 lpszCmdLine
include ’win386.fi’
include ’windefn.fi’
include ’winerror.fi’
external DLL_1
integer rc
rc = DefineDLLEntry(1, DLL_1, DLL_DWORD,

164 WIN386 Library Subprograms

DefineDLLEntry

& DLL_DWORD, DLL_DWORD,
& DLL_ENDLIST)

if(rc .ne. 0)then
FWinMain = 0
return

end if
call MessageBox(NULL,

& ’32-bit DLL started’c,
& ’32-bit DLL’c, MB_OK)

FWinMain = 1
end

Classification: WIN386
__

WIN386 Library Subprograms 165

DefineUserProc16

Synopsis: *$include ’winapi.fi’
integer*4 function DefineUserProc16(typ, routine, ...)
integer*4 typ
external routine

Description: The DefineUserProc16 function defines the arguments accepted by the user defined callback procedure
routine. There may be up to 32 user defined callbacks. The parameter typ indicates which one of
GETPROC_USERDEFINED_1 through GETPROC_USERDEFINED_32 is being defined (see
GetProc16). The callback routine must be declared as FAR PASCAL, or as FAR cdecl. The
variable argument list defines the types of parameters that will be received by the user defined callback
procedure routine. Valid parameter types are:

UDP16_PTR 16-bit far pointer

UDP16_DWORD 32-bits

UDP16_WORD 16-bits

UDP16_CHAR 8-bits

UDP16_CDECL callback routine will be declared as type cdecl rather than as type PASCAL.
This keyword may be placed anywhere before the UDP16_ENDLIST
keyword.

UDP16_ENDLIST Marks the end of the variable argument list.

Once the DefineUserProc16 function has been used to declare the user callback routine, then
GetProc16 may be used to get a 16-bit function pointer that may be used by Windows.

In the above synopsis, "..." in the argument list is not valid FORTRAN 77 syntax; it is used only to
indicate a variable number of arguments.

Returns: The DefineUserProc16 function returns zero if it succeeds; and non-zero if it fails.

See Also: GetProc16

Example:

166 WIN386 Library Subprograms

DefineUserProc16

c$include winapi.fi

c$pragma aux TestProc parm(value)

subroutine TestProc(i)
integer i
character*128 str
write(str, ’(2hi=, i10, a)’) i, char(0)
call MessageBox(NULL, str, ’TEST’c, MB_OK)
end

integer function DefineTest()
integer*4 cb
external TestProc
call DefineUserProc16(GETPROC_USERDEFINED_1,

& TestProc,
& UDP16_DWORD,
& UDP16_ENDLIST)
cb = GetProc16(TestProc, GETPROC_USERDEFINED_1)
! cb may then be used whenever a pointer to the
! callback is required by 16-bit Windows
end

Classification: WIN386
__

WIN386 Library Subprograms 167

FreeAlias16

Synopsis: c$include ’winapi.fi’
subroutine FreeAlias16(fp16)
integer*4 fp16

Description: FreeAlias16 frees a 16-bit far pointer alias for a 32-bit near pointer that was allocated with
AllocAlias16. This is important to do when there is no further use for the pointer since there are a
limited number of 16-bit aliases available (due to limited space in the local descriptor table).

Returns: FreeAlias16 is a subroutine.

See Also: AllocAlias16

Example: integer*4 mcs_16
record /MDICREATESTRUCT/ mcs
mcs.szTitle = AllocAlias16(loc(’Title’c))
mcs.szClass = AllocAlias16(loc(’mdichild’c))
mcs.hOwner = hInst
mcs.x = mcs.cx = CW_USEDEFAULT
mcs.y = mcs.cy = CW_USEDEFAULT
mcs.style = 0
! Send a message to an MDI client to create a window.
! Since the pointer to the structure is passed in an
! argument that may not be a pointer (depending on the
! type of message), there is no implicit 32 to 16-bit
! conversion done so the conversion must be done by the
! programmer.
mcs_16 = AllocAlias16(loc(mcs))
hwnd = SendMessage(hwndMDI, WM_MDICREATE, 0, mcs_16)
FreeAlias16(mcs_16)
FreeAlias16(mcs.szClass)
FreeAlias16(mcs.szTitle)

Classification: WIN386
__

168 WIN386 Library Subprograms

FreeHugeAlias16

Synopsis: c$include ’winapi.fi’
subroutine FreeHugeAlias16(fp16, size)
integer*4 fp16, size

Description: FreeHugeAlias16 frees a 16-bit far pointer alias that was allocated with AllocHugeAlias16. The
size of the original 32-bit memory object must be specified. It is important to use
FreeHugeAlias16 when there is no further use for the pointer, since there are a limited number of
16-bit aliases available (due to limited space in the local descriptor table).

Returns: FreeHugeAlias16 is a subroutine.

See Also: AllocHugeAlias16, AllocAlias16, FreeAlias16

Example: integer ierr, SIZE
integer*4 alias
parameter (SIZE=300000)
integer*1 tmp(SIZE)

allocate(tmp(SIZE), stat=ierr)
if(ierr .ne. 0)then

alias = AllocHugeAlias16(loc(tmp), SIZE)

! Windows calls using the alias ...

call FreeHugeAlias16(alias, SIZE)
endif

Classification: WIN386
__

WIN386 Library Subprograms 169

FreeIndirectFunctionHandle

Synopsis: c$include ’winapi.fi’
subroutine FreeIndirectFunctionHandle(handle)
integer*4 handle

Description: FreeIndirectFunctionHandle frees a handle that was obtained using
GetIndirectFunctionHandle. This is important to do when there is no further use for the
pointer since there are a limited number of 16-bit aliases available (due to limited space in the local
descriptor table).

Returns: FreeIndirectFunctionHandle is a subroutine.

See Also: _Call16, GetIndirectFunctionHandle, InvokeIndirectFunction

Example: c$include winapi.fi

integer*2 hDrv
integer*4 lpfn

hDrv = LoadLibrary(’your.lib’c)
if(hDrv .lt. 32) return
lpfn = GetProcAddress(hDrv,

& ’ExtDeviceMode’c)
if(lpfn .eq 0) return

hIndir = GetIndirectFunctionHandle(
& lpfn,
& INDIR_WORD,
& INDIR_WORD,
& INDIR_DWORD,
& INDIR_PTR,
& INDIR_PTR,
& INDIR_DWORD,
& INDIR_DWORD,
& INDIR_WORD,
& INDIR_ENDLIST)

cb = InvokeIndirectFunction(
& hIndir,
& hwnd,
& hDrv,
& NULL,
& ’POSTSCRIPT PRINTER’c,
& ’LPT1’c,
& NULL,
& NULL,
& 0)
call FreeIndirectFunctionHandle(hIndir)

Classification: WIN386

170 WIN386 Library Subprograms

FreeIndirectFunctionHandle

__

WIN386 Library Subprograms 171

GetIndirectFunctionHandle

Synopsis: c$include ’winapi.fi’
integer*4 function GetIndirectFunctionHandle(prc, ...)
integer*4 prc

Description: The GetIndirectFunctionHandle function gets a handle for a 16-bit procedure that is to be invoked
indirectly. The procedure is assumed to have PASCAL calling convention, unless the INDIR_CDECL
parameter is used, to indicate that Microsoft C calling convention is to be used. The 16-bit far pointer
prc is supplied to GetIndirectFunctionHandle, and a list of the type of each parameter (in the order that
they will be passed to the 16-bit function). The parameter types are:

INDIR_DWORD A INTEGER*4 will be passed.

INDIR_WORD A INTEGER*2 will be passed.

INDIR_CHAR A INTEGER*1 will be passed.

INDIR_PTR A pointer will be passed. This is only used if pointer conversion from 32-bit
to 16-bit is required, otherwise; INDIR_DWORD is specified.

INDIR_CDECL This option may be included anywhere in the list before the
INDIR_ENDLIST keyword. When this is used, the calling convention used
to invoke the 16-bit function will be the Microsoft C calling convention.

INDIR_ENDLIST Marks the end of the parameter list.

In the above synopsis, "..." in the argument list is not valid FORTRAN 77 syntax; it is used only to
indicate a variable number of arguments.

This handle is a data structure that was created using the malloc function. To free the handle, just use
one of the FreeIndirectFunctionHandle or free functions.

You may find it easier to use _Call16 rather than GetIndirectFunctionHandle followed by a call to
InvokeIndirectFunction.

Returns: The GetIndirectFunctionHandle function returns a handle to the indirect function, or NULL if a handle
could not be allocated. This handle is used in conjunction with InvokeIndirectFunction to call
the 16-bit procedure.

See Also: _Call16, FreeIndirectFunctionHandle, InvokeIndirectFunction

Example: c$include winapi.fi

integer*2 hDrv
integer*4 lpfn

hDrv = LoadLibrary(’your.lib’c)
if(hDrv .lt. 32) return
lpfn = GetProcAddress(hDrv,

& ’ExtDeviceMode’c)
if(lpfn .eq 0) return

172 WIN386 Library Subprograms

GetIndirectFunctionHandle

hIndir = GetIndirectFunctionHandle(
& lpfn,
& INDIR_WORD,
& INDIR_WORD,
& INDIR_DWORD,
& INDIR_PTR,
& INDIR_PTR,
& INDIR_DWORD,
& INDIR_DWORD,
& INDIR_WORD,
& INDIR_ENDLIST)

cb = InvokeIndirectFunction(
& hIndir,
& hwnd,
& hDrv,
& NULL,
& ’POSTSCRIPT PRINTER’c,
& ’LPT1’c,
& NULL,
& NULL,
& 0)
call FreeIndirectFunctionHandle(hIndir)

Classification: WIN386
__

WIN386 Library Subprograms 173

GetProc16

Synopsis: c$include ’winapi.fi’
integer*4 function GetProc16(fcn, type)
integer*4 fcn, type

Description: The GetProc16 function returns a 16-bit far function pointer suitable for use as a Windows callback
function. This callback function will invoke the 32-bit far procedure specified by fcn. The types of
callback functions that may be allocated are:

GETPROC_CALLBACK This is the most common form of callback; suitable as the callback routine
for a window.

GETPROC_ABORTPROC This is the callback type used for trapping abort requests when printing.

GETPROC_ENUMCHILDWINDOWS This callback is used with the EnumChildWindows
Windows function.

GETPROC_ENUMFONTS This callback type is used with the EnumFonts Windows function.

GETPROC_ENUMMETAFILE This callback is used with the EnumMetaFile Windows function.

GETPROC_ENUMOBJECTS This callback is used with the EnumObjects Windows function.

GETPROC_ENUMPROPS_FIXED_DS This callback is used with the EnumProps Windows
function, when the fixed data segments callback is needed.

GETPROC_ENUMPROPS_MOVEABLE_DS This callback is used with the EnumProps Windows
function, when the moveable data segments callback is needed.

GETPROC_ENUMTASKWINDOWS This callback is used with the EnumTaskWindows Windows
function.

GETPROC_ENUMWINDOWS This callback is used with the EnumWindows Windows function.

GETPROC_GLOBALNOTIFY This callback is used with the GlobalNotify Windows function.

GETPROC_GRAYSTRING This callback is used with the GrayString Windows function.

GETPROC_LINEDDA This callback is used with the LineDDA Windows function.

GETPROC_SETRESOURCEHANDLER This callback is used with the SetResourceHandler
Windows function.

GETPROC_SETTIMER This callback is used with the SetTimer Windows function.

GETPROC_SETWINDOWSHOOK This callback is used with the SetWindowsHook Windows
function.

GETPROC_USERDEFINED_x This callback is used in conjunction with DefineUserProc16
function to create a callback routine with an arbitrary set of parameters. Up to 32 user
defined callbacks are allowed, they are identified by using
GETPROC_USERDEFINED_1 through GETPROC_USERDEFINED_32. The user
defined callback must be declared as a FAR PASCAL function, or as a FAR cdecl
function.

174 WIN386 Library Subprograms

GetProc16

Returns: The GetProc16 function returns a 16-bit far pointer to a callback procedure. This pointer may then be
fed to any Windows function that requires a pointer to a function within the 32-bit program. Note that
the callback function within the 32-bit program must be declared as FAR.

See Also: ReleaseProc16

Example: c$include winapi.fi

integer*4 cbp
integer*4 lpProcAbout

! get a 16-bit callback routine to point at
! our About dialogue procedure, then create
! the dialogue.
cbp = GetProc16(About, GETPROC_CALLBACK)
lpProcAbout = MakeProcInstance(cbp, hInst)
call DialogBox(hInst,

& ’AboutBox’c,
hWnd,
lpProcAbout)

call FreeProcInstance(lpProcAbout)
call ReleaseProc16(cbp)

Classification: WIN386
__

WIN386 Library Subprograms 175

InvokeIndirectFunction

Synopsis: c$include ’winapi.fi’
integer*4 function InvokeIndirectFunction(handle, ...)
integer*4 handle

Description: The InvokeIndirectFunction function invokes the 16-bit function pointed to by the specified handle.
The handle must have been previously allocated using the GetIndirectFunctionHandle
function. The handle is followed by the list of parameters to be passed to the 16-bit function.

If you specified INDIR_PTR as a parameter when allocating the handle, then a 16-bit pointer is
allocated for a 32-bit pointer that you pass. However, this pointer is freed when the 16-bit function
being invoked returns.

In the above synopsis, "..." in the argument list is not valid FORTRAN 77 syntax; it is used only to
indicate a variable number of arguments.

Returns: The InvokeIndirectFunction function returns the value which the 16-bit function returned.

See Also: _Call16, FreeIndirectFunctionHandle, GetIndirectFunctionHandle

Example: c$include winapi.fi

integer*2 hDrv
integer*4 lpfn

hDrv = LoadLibrary(’your.lib’c)
if(hDrv .lt. 32) return
lpfn = GetProcAddress(hDrv,

& ’ExtDeviceMode’c)
if(lpfn .eq 0) return

hIndir = GetIndirectFunctionHandle(
& lpfn,
& INDIR_WORD,
& INDIR_WORD,
& INDIR_DWORD,
& INDIR_PTR,
& INDIR_PTR,
& INDIR_DWORD,
& INDIR_DWORD,
& INDIR_WORD,
& INDIR_ENDLIST)

cb = InvokeIndirectFunction(
& hIndir,
& hwnd,
& hDrv,
& NULL,
& ’POSTSCRIPT PRINTER’c,
& ’LPT1’c,
& NULL,
& NULL,
& 0)
call FreeIndirectFunctionHandle(hIndir)

Classification: WIN386

176 WIN386 Library Subprograms

InvokeIndirectFunction

__

WIN386 Library Subprograms 177

MapAliasToFlat

Synopsis: c$include ’winapi.fi’
integer*4 function MapAliasToFlat(alias)
integer*4 alias

Description: The MapAliasToFlat function returns a 32-bit near pointer equivalent of a pointer allocated previously
with AllocAlias16 or AllocHugeAlias16. This is useful if you are communicating with a
16-bit application that is returning pointers that you previously gave it.

Returns: The MapAliasToFlat function returns a 32-bit near pointer (as an INTEGER*4) usable by the 32-bit
application.

See Also: AllocAlias16, AllocHugeAlias16

Example: c$include winapi.fi

integer alias
integer ptr

alias = AllocAlias16(loc(alias))
alias += 5
ptr = MapAliasToFlat(alias)
if(ptr .eq. loc(alias) + 5)then

call MessageBox(NULL, ’It Worked’c, ’’c, MB_OK)
else

call MessageBox(NULL, ’It Failed’c, ’’c, MB_OK)
end if

Classification: WIN386
__

178 WIN386 Library Subprograms

PASS_WORD_AS_POINTER

Synopsis: c$include ’winapi.fi’
integer*4 function PASS_WORD_AS_POINTER(dw)
integer*4 dw

Description: Some Windows API functions have pointer parameters that do not always take pointers. Sometimes
these parameters are pure data. In order to stop the supervisor from trying to convert the data into a
16-bit far pointer, the PASS_WORD_AS_POINTER function is used.

Returns: The PASS_WORD_AS_POINTER returns a 32-bit "near" pointer, that is really the parameter dw.

Example: c$include winapi.fi

call Func(PASS_WORD_AS_POINTER(1))

Classification: WIN386
__

WIN386 Library Subprograms 179

ReleaseProc16

Synopsis: c$include ’winapi.fi’
subroutine ReleaseProc16(cbp)
integer*4 cbp

Description: ReleaseProc16 releases the callback function allocated by GetProc16. Since the callback routines are
a limited resource, it is important to release the routines when they are no longer required.

Returns: ReleaseProc16 is a subroutine.

See Also: GetProc16

Example: c$include winapi.fi

integer*4 cbp
integer*4 lpProcAbout
! get a 16-bit callback routine to point at
! our About dialogue procedure, then create
! the dialogue.
cbp = GetProc16(About, GETPROC_CALLBACK)
lpProcAbout = MakeProcInstance(cbp, hInst)
call DialogBox(hInst, ’AboutBox’c,

& hWnd, lpProcAbout)
call FreeProcInstance(lpProcAbout)
call ReleaseProc16(cbp)

Classification: WIN386

180 WIN386 Library Subprograms

24 32-bit Extended Windows Application
Development

The purpose of this chapter is to anticipate some common questions about 32-bit Windows application
development.

The following topics are discussed in this chapter:

• Can you call 16-bit code from a 32-bit code?
• How do I add my Windows resources?
• What size of function pointers passed to Windows?
• Why are 32-bit callback routines FAR?
• Why use the _16 API functions?

24.1 Can you call 16-bit code from a 32-bit code?

A 32-bit Windows application can make a call to 16-bit code through the use of the Open Watcom
_Call16 or InvokeIndirectFunction procedures. These functions ensure that the Open Watcom
Windows Supervisor prepares the stack for the 16-bit call and return to the 32-bit code. The 32-bit
application uses LoadLibrary function to bring the 16-bit DLL into memory and then calls the 16-bit
procedures. To invoke 16-bit procedures, use GetProcAddress to get the 16-bit far pointer to the
function. Use the _Call16 procedure to call the 16-bit function since it is simpler to use than the
GetIndirectFunctionHandle, InvokeIndirectFunction, and
FreeIndirectFunctionHandle sequence. An example of this process is provided under the
_Call16 Windows library function description.

This method can be used to call any 16-bit Dynamic Link Library (DLL) procedure or any 32-bit extended
DLL procedure from within a 32-bit application, including DLLs that are available as products through
Independent Software Vendors (ISVs).

24.2 How do I add my Windows resources?

The WBIND utility automatically runs the resource compiler to add the resources to the 32-bit Windows
supervisor (since the supervisor is a 16-bit Windows application). Note that resource compiler options may
be specified by using the "R" option of WBIND.

How do I add my Windows resources? 181

Windows 3.x Programming Guide

24.3 What size of function pointers passed to Windows?

All function pointers passed to Windows must be 16-bit far pointers since no translation is applied to any
function pointers passed to Windows. Translation is often not possible, since any functions that Windows
is to call back must be exported, and only 16-bit functions can be exported.

A 16-bit far pointer to a function is obtained in one of two ways: either Windows gives it to you (via
GetProcAddr, for example), or you obtain a pointer from the supervisor, via GetProc16.

Function pointers obtained from Windows may either be fed into other Windows functions requiring
function pointers, or called indirectly by using _Call16 or by using the
GetIndirectFunctionHandle, InvokeIndirectFunction, and
FreeIndirectFunctionHandle sequence.

The function GetProc16 returns a 16-bit far pointer to a callback function that Windows can use. This
callback function will direct control into the desired 32-bit routine.

24.4 Why are 32-bit callback routines FAR?

The callback routines are declared as FAR so that the compiler will generate a far return from the
procedure. This is necessary since the 32-bit callback routine is "far" called from the supervisor.

The callback routine is still "near" in the sense that it lies within the 32-bit flat address space of the
application. This means that GetProc16 only needs the offset of the 32-bit callback function in order to
set up the 16-bit procedure to call back correctly. Thus, GetProc16 accepts type PROCPTR which is in
fact only 4 bytes long. The compiler will provide the offset only, which is, as already stated, all that is
needed.

24.5 Why use the _16 API functions?

The regular Windows API functions used in Open Watcom F77 automatically convert any pointers to
16-bit far pointers for use by Windows. Sometimes, you may have a set of pointers that are 16-bit far
pointers already (e.g., obtained from GlobalLock), and do not need any conversion. The "_16..." API
functions do not convert pointers, they simply pass them on directly to Windows. See the appendix entitled
"Special Windows API Functions" on page 183 for a list of the "_16..." API functions.

182 Why use the _16 API functions?

25 Special Windows API Functions

On rare occasions, you want to use 16-bit far pointers directly in a Windows function. Since all Windows
functions in the 32-bit environment are expecting 32-bit near pointers, you cannot simply use the 16-bit far
pointer directly in the function.

The following functions are special versions of Windows API functions that do NOT convert any of the
pointers from 32-bit to 16-bit. There are _16 versions of all Windows API functions that accept data
pointers.

_16AddAtom
_16AddFontResource
_16AdjustWindowRect
_16AdjustWindowRectEx
_16AnimatePalette
_16AnsiLower
_16AnsiLowerBuff
_16AnsiToOem
_16AnsiToOemBuff
_16AnsiUpper
_16AnsiUpperBuff
_16BuildCommDCB
_16CallMsgFilter
_16ChangeMenu
_16ClientToScreen
_16ClipCursor
_16CopyMetaFile
_16CopyRect
_16CreateBitmap
_16CreateBitmapIndirect
_16CreateBrushIndirect
_16CreateCursor
_16CreateDC
_16CreateDialog
_16CreateDialogIndirect
_16CreateDialogIndirectParam
_16CreateDialogParam
_16CreateDIBitmap
_16CreateEllipticRgnIndirect
_16CreateFont
_16CreateFontIndirect
_16CreateIC
_16CreateIcon
_16CreateMetaFile
_16CreatePalette
_16CreatePenIndirect
_16CreatePolygonRgn
_16CreatePolyPolygonRgn
_16CreateRectRgnIndirect

Special Windows API Functions 183

Windows 3.x Programming Guide

_16CreateWindow
_16CreateWindowEx
_16DialogBox
_16DialogBoxIndirect
_16DialogBoxIndirectParam
_16DialogBoxParam
_16DispatchMessage
_16DlgDirList
_16DlgDirListComboBox
_16DlgDirSelect
_16DlgDirSelectComboBox
_16DPtoLP
_16DrawFocusRect
_16DrawText
_16EndPaint
_16EnumChildWindows
_16EnumFonts
_16EnumMetaFile
_16EnumObjects
_16EnumProps
_16EnumTaskWindows
_16EnumWindows
_16EqualRect
_16Escape
_16ExtTextOut
_16FillRect
_16FindAtom
_16FindResource
_16FindWindow
_16FrameRect
_16FreeProcInstance
_16GetAtomName
_16GetBitmapBits
_16GetCaretPos
_16GetCharWidth
_16GetClassInfo
_16GetClassName
_16GetClientRect
_16GetClipboardFormatName
_16GetClipBox
_16GetCodeInfo
_16GetCommError
_16GetCommState
_16GetCursorPos
_16GetDIBits
_16GetDlgItemInt
_16GetDlgItemText
_16GetEnvironment
_16GetKeyboardState
_16GetKeyNameText
_16GetMenuString
_16GetMetaFile
_16GetModuleFileName
_16GetModuleHandle

184 Special Windows API Functions

Special Windows API Functions

_16GetObject
_16GetPaletteEntries
_16GetPriorityClipboardFormat
_16GetPrivateProfileInt
_16GetPrivateProfileString
_16GetProcAddress
_16GetProfileInt
_16GetProfileString
_16GetProp
_16GetRgnBox
_16GetScrollRange
_16GetSystemDirectory
_16GetSystemPaletteEntries
_16GetTabbedTextExtent
_16GetTempFileName
_16GetTextExtent
_16GetTextFace
_16GetTextMetrics
_16GetUpdateRect
_16GetWindowRect
_16GetWindowsDirectory
_16GetWindowText
_16GlobalAddAtom
_16GlobalFindAtom
_16GlobalGetAtomName
_16GlobalNotify
_16GrayString
_16InflateRect
_16IntersectRect
_16InvalidateRect
_16InvertRect
_16IsDialogMessage
_16IsRectEmpty
_16LineDDA
_16LoadAccelerators
_16LoadBitmap
_16LoadCursor
_16LoadIcon
_16LoadLibrary
_16LoadMenu
_16LoadMenuIndirect
_16LoadModule
_16LoadString
_16LPtoDP
_16MakeProcInstance
_16MapDialogRect
_16MessageBox
_16OemToAnsi
_16OemToAnsiBuff
_16OffsetRect
_16OpenComm
_16OpenFile
_16OutputDebugString
_16PlayMetaFileRecord

Special Windows API Functions 185

Windows 3.x Programming Guide

_16Polygon
_16Polyline
_16PolyPolygon
_16PtInRect
_16ReadComm
_16RectInRegion
_16RectVisible
_16RegisterClipboardFormat
_16RegisterWindowMessage
_16RemoveFontResource
_16RemoveProp
_16ScreenToClient
_16ScrollDC
_16ScrollWindow
_16SetBitmapBits
_16SetCommState
_16SetDIBits
_16SetDIBitsToDevice
_16SetDlgItemText
_16SetEnvironment
_16SetKeyboardState
_16SetPaletteEntries
_16SetProp
_16SetRect
_16SetRectEmpty
_16SetResourceHandler
_16SetSysColors
_16SetTimer
_16SetWindowsHook
_16SetWindowText
_16StretchDIBits
_16TabbedTextOut
_16TextOut
_16ToAscii
_16TrackPopupMenu
_16TranslateAccelerator
_16TranslateMDISysAccel
_16TranslateMessage
_16UnhookWindowsHook
_16UnionRect
_16UnregisterClass
_16ValidateRect
_16WinExec
_16WinHelp
_16WriteComm
_16WritePrivateProfileString
_16WriteProfileString
_16_lread
_16_lwrite

186 Special Windows API Functions

Windows NT Programming Guide

Windows NT Programming Guide

188

26 Windows NT Programming Overview

Windows NT supports both non-windowed character-mode applications and windowed Graphical User
Interface (GUI) applications. In addition, Windows NT supports Dynamic Link Libraries and applications
with multiple threads of execution.

We have supplied all the necessary tools for native development on Windows NT. You can also cross
develop for Windows NT using either the DOS-hosted compilers and tools, the Windows 95-hosted
compilers and tools, or the OS/2-hosted compilers and tools. Testing and debugging of your Windows NT
application must be done on Windows NT or Windows 95.

If you are creating a character-mode application, you may also be interested in a special DOS extender
from Phar Lap (TNT) that can run your Windows NT character-mode application under DOS.

26.1 Windows NT Character-mode Versus GUI

Basically, there are two classes of FORTRAN 77 applications that can run in a windowed environment like
Windows NT.

The first are those FORTRAN 77 applications that do not use any of the Win32 API functions; they are
strictly FORTRAN 77 applications that do not rely on the features of a particular operating system.

• This Application must be created as Windows NT Character-mode Application.

The second class of FORTRAN 77 applications are those that actually call Win32 API functions directly.
These are applications that have been tailored for the Win32 operating environment.

• Open Watcom FORTRAN 77 does not provide direct support for these types of applications. While
we do provide include files that map out 16-bit Windows structures and the interface to 16-bit
Windows API calls, we do not provide this for Win32 API. The Win32 application developer must
create these as required.

• An alternate solution, for those so-inclined, is to develop the GUI part of the interface in C and call
these functions from FORTRAN code.

A subsequent chapters deal with the creation of different application types for Windows NT target.

Windows NT Character-mode Versus GUI 189

Windows NT Programming Guide

190 Windows NT Character-mode Versus GUI

27 Creating Windows NT Character-mode
Applications

This chapter describes how to compile and link Windows NT Character-mode applications simply and
quickly. In this chapter, we look at applications written to exploit the Windows NT Application
Programming Interface (API).

We will illustrate the steps to creating Windows NT Character-mode applications by taking a small sample
application and showing you how to compile, link, run and debug it.

27.1 The Sample Character-mode Application

To demonstrate the creation of Windows NT Character-mode applications, we introduce a simple sample
program. For our example, we are going to use the "sieve" program.

* This program computes the prime numbers between 1 and 10,000
* using the Sieve of Eratosthenes algorithm.

IMPLICIT NONE
INTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER I, K, PRIMES
LOGICAL*1 NUMBERS(2:UPBOUND)
CHARACTER*11 FORM
CHARACTER*60 BUFFER
PARAMETER (FORM=’(A,I5,A,I5)’)
DO I = 2, UPBOUND

NUMBERS(I) = .TRUE.
ENDDO
PRIMES = 0
DO I = 2, UPBOUND

IF(NUMBERS(I))THEN
PRIMES = PRIMES + 1
DO K = I + I, UPBOUND, I

NUMBERS(K) = .FALSE.
ENDDO

ENDIF
ENDDO
PRINT FORM, ’The Number of Primes between 1 and ’, UPBOUND,

1 ’ are: ’, PRIMES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Sieve of
Eratosthenes algorithm to accomplish this task. We will take you through the steps necessary to produce
this result.

The Sample Character-mode Application 191

Windows NT Programming Guide

27.2 Building and Running the Character-mode Application

To compile and link our example program which is stored in the file sieve.for, enter the following
command:

C>wfl386 -l=nt sieve.for

The typical messages that appear on the screen are shown in the following illustration.

C>wfl386 -l=nt sieve.for
Open Watcom F77/32 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc386 sieve.for
Open Watcom FORTRAN 77/32 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 4390 statements, 207 bytes, 1585 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating a Windows NT Character-mode executable

If you examine the current directory, you will find that two files have been created. These are
sieve.obj (the result of compiling sieve.for) and sieve.exe (the result of linking sieve.obj
with the appropriate Open Watcom FORTRAN 77 libraries).

The resultant Windows NT Character-mode application SIEVE.EXE can now be run under Windows NT.

27.3 Debugging the Character-mode Application

Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL386 command, this is fairly straightforward. WFL386 recognizes the Open Watcom
F77 compiler "debug" options and will create the appropriate debug directives for the Open Watcom
Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

C>wfl386 -l=nt -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

192 Debugging the Character-mode Application

Creating Windows NT Character-mode Applications

C>wfl386 -l=nt -d2 sieve.for
Open Watcom F77/32 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc386 sieve.for -d2
Open Watcom FORTRAN 77/32 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 4390 statements, 293 bytes, 1585 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating a Windows NT Character-mode executable

The "d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL386 will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "bytes" value is larger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. You can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship
between the object code and the original source language code.

To request the Open Watcom Debugger to assist in debugging the application, select the Open Watcom
Debugger icon. It would be too ambitious to describe the debugger in this introductory chapter so we refer
you to the book entitled Open Watcom Debugger User’s Guide.

There are more extensive examples of Windows applications written in FORTRAN 77 in the
\WATCOM\SAMPLES\FORTRAN\WIN directory. The example programs are ELLIPSE.FOR and
FWCOPY.FOR.

Debugging the Character-mode Application 193

Windows NT Programming Guide

194 Debugging the Character-mode Application

28 Windows NT Multi-threaded Applications

This chapter describes how to create multi-threaded applications. A multi-threaded application is one
whose tasks are divided among several threads of execution. A process is an executing application and the
resources it uses. A thread is the smallest unit of execution within a process. Each thread has its own stack
and a set of machine registers and shares all resources with its parent process. The path of execution of one
thread does not affect that of another; each thread is an independent entity.

Typically, an application has a single thread of execution. In this type of application, all tasks, once
initiated, are completed before the next task begins. In contrast, tasks in a multi-threaded application can
be performed concurrently since more than one thread is executing at once. For example, each thread may
be designed to perform a separate task.

28.1 Programming Considerations

Since a multi-threaded application consists of many threads of execution, there are a number of issues that
you must consider.

Since threads share the resources of its parent, it may be necessary to serialize access to these resources.
For example, if your application contains more than one thread of execution and each thread uses the
PRINT statement to display output to the console, it would be necessary for the I/O support routines to
allow only one thread to use the PRINT facility at any time. That is, once a thread issues a PRINT request,
the I/O support routines should ensure that no other thread displays information until all information for the
initial thread has been displayed.

28.2 Creating Threads

Each application initially contains a single thread. The run-time libraries contain two functions that create
and terminate threads of execution. The function beginthread creates a thread of execution and the
function endthread ends a thread of execution. The function threadid can be used to determine the
current thread identifier.

WARNING! If any thread uses an I/O statement or calls an intrinsic function, you must use the
beginthread function to create the thread. Do not use the CreateThread API function.

28.2.1 Creating a New Thread

The beginthread function creates a new thread. It is defined as follows.

integer function beginthread(start_address,

stack_size)
integer stack_size
end

Creating Threads 195

Windows NT Programming Guide

where description

start_address is the address of the subroutine that will be called when the newly created thread is
executed. When the thread returns from that subroutine, the thread will be terminated.
Note that a call to the endthread subroutine will also terminate the thread.

stack_size specifies the size of the stack to be allocated by the operating system for the new thread.
The stack size should be a multiple of 4K.

If a new thread is successfully created, the thread identifier of the new thread is returned. Otherwise, a
value of -1 is returned.

The include file thread.fi contains the definition of the beginthread function.

Another thread related function for Windows NT is _beginthreadex. See the Open Watcom C
Library Reference for more information.

28.2.2 Terminating the Current Thread

The endthread subroutine terminates the current thread. It is defined as follows.

subroutine endthread()
end

The include file thread.fi contains the definition of the endthread function.

28.2.3 Getting the Current Thread Identifier

The threadid function can be used to determine the current thread identifier. It is defined as follows.

integer function threadid()
end

The include file thread.fi contains the definition of the threadid function.

28.3 A Multi-threaded Example

Let us create a simple multi-threaded application. The source code for this example can be found in
\watcom\samples\fortran\win32.

196 A Multi-threaded Example

Windows NT Multi-threaded Applications

* MTHREAD.FOR

*$pragma aux (__stdcall) Sleep parm(value)
*$pragma aux (__stdcall) InitializeCriticalSection parm(reference)
*$pragma aux (__stdcall) DeleteCriticalSection parm(reference)
*$pragma aux (__stdcall) EnterCriticalSection parm(reference)
*$pragma aux (__stdcall) LeaveCriticalSection parm(reference)

structure /RTL_CRITICAL_SECTION/
integer*4 DebugInfo
integer*4 LockCount
integer*4 RecursionCount
integer*4 OwningThread
integer*4 LockSemaphore
integer*4 Reserved

end structure

integer NumThreads
logical HoldThreads
volatile HoldThreads, NumThreads
record /RTL_CRITICAL_SECTION/ CriticalSection
common NumThreads, HoldThreads, CriticalSection

integer STACK_SIZE
parameter (STACK_SIZE=8192)
integer NUM_THREADS
parameter (NUM_THREADS=5)

integer i, threadid, beginthread
external a_thread

print ’(’’main thread id = ’’,i4)’, threadid()
NumThreads = 0
HoldThreads = .true.
! main thread counts as 1
call InitializeCriticalSection(CriticalSection)
do i = 2, NUM_THREADS

if(beginthread(a_thread, STACK_SIZE) .eq. -1)then
print ’(’’creation of thread’’,i4,’’failed’’)’, i

else
NumThreads = NumThreads + 1

end if
end do
HoldThreads = .false.
while(NumThreads .ne. 0) do

call Sleep(1)
end while
call DeleteCriticalSection(CriticalSection)
end

subroutine a_thread()

structure /RTL_CRITICAL_SECTION/
integer*4 DebugInfo
integer*4 LockCount
integer*4 RecursionCount
integer*4 OwningThread
integer*4 LockSemaphore
integer*4 Reserved

end structure

integer NumThreads
logical HoldThreads
volatile HoldThreads
record /RTL_CRITICAL_SECTION/ CriticalSection
common NumThreads, HoldThreads, CriticalSection

integer threadid

A Multi-threaded Example 197

Windows NT Programming Guide

while(HoldThreads) do
call Sleep(1)

end while
print ’(’’Hi from thread ’’, i4)’, threadid()
call EnterCriticalSection(CriticalSection)
NumThreads = NumThreads - 1
call LeaveCriticalSection(CriticalSection)
call endthread()
end

Note:

1. In the subroutine a_thread, EnterCriticalSection and LeaveCriticalSection
are called when we modify the variable NumThreads. This ensures that the action of
extracting the value of NumThreads from memory, incrementing the value, and storing the
new result into memory, occurs without interruption. If these functions were not called, it would
be possible for two threads to extract the value of NumThreads from memory before an update
occurred.

Let us assume that the file mthread.for contains the above example. Before compiling the file, make
sure that the WATCOM environment variable is set to the directory in which you installed Open Watcom
FORTRAN 77. Also, the FINCLUDE environment variable must contain the \watcom\src\fortran
directory where "\WATCOM" is the name of the directory in which you installed Open Watcom
FORTRAN 77.

We can now compile and link the application by issuing the following command.

C:\>wfl386 -bm -l=nt mthread

The "bm" option must be specified since we are creating a multi-threaded application. If your
multi-threaded application contains more than one module, each module must be compiled using the "bm"
switch.

The "l" option specifies the target system for which the application is to be linked. The system name nt is
defined in the file wlsystem.lnk which is located in the "BINW" subdirectory of the directory in which
you installed Open Watcom FORTRAN 77.

The multi-threaded application is now ready to be run.

198 A Multi-threaded Example

29 Windows NT Dynamic Link Libraries

A dynamic link library, like a standard library, is a library of functions. When an application uses functions
from a standard library, the library functions referenced by the application become part of the executable
module. This form of linking is called static linking. When an application uses functions from a dynamic
link library, the library functions referenced by the application are not included in the executable module.
Instead, the executable module contains references to these functions which are resolved when the
application is loaded. This form of linking is called dynamic linking.

Let us consider some of the advantages of using dynamic link libraries over standard libraries.

1. Functions in dynamic link libraries are not linked into your program. Only references to the
functions in dynamic link libraries are placed in the program module. These references are
called import definitions. As a result, the linking time is reduced and disk space is saved. If
many applications reference the same dynamic link library, the saving in disk space can be
significant.

2. Since program modules only reference dynamic link libraries and do not contain the actual
executable code, a dynamic link library can be updated without re-linking your application.
When your application is executed, it will use the updated version of the dynamic link library.

3. Dynamic link libraries also allow sharing of code and data between the applications that use
them. If many applications that use the same dynamic link library are executing concurrently,
the sharing of code and data segments improves memory utilization.

29.1 Creating Dynamic Link Libraries

Once you have developed the source for a library of functions, a number of steps are required to create a
dynamic link library containing those functions.

First, you must compile your source using the "bd" compiler option. This option tells the compiler that the
module you are compiling is part of a dynamic link library. Once you have successfully compiled your
source, you must create a linker directive file that describes the attributes of your dynamic link library. The
following lists the most common linker directives required to create a dynamic link library.

1. The "SYSTEM" directive is used to specify that a dynamic link library is to be created.
2. The "EXPORT" directive is used to to specify which functions in the dynamic link library are to

be exported.
3. The "OPTION" directive is used to specify attributes such as the name of the dynamic link

library and how to allocate the automatic data segment when the dynamic link library is
referenced.

4. The "SEGMENT" directive is used to specify attributes of segments. For example, a segment
may be read-only or read-write.

Once the dynamic link library is created, you must allow access to the dynamic link library to client
applications that wish to use it. This can be done by creating an import library for the dynamic link library

Creating Dynamic Link Libraries 199

Windows NT Programming Guide

or creating a linker directive file that contains "IMPORT" directives for each of the entry points in the
dynamic link library.

29.2 Creating a Sample Dynamic Link Library

Let us now create a dynamic link library using the following example. The source code for this example
can be found in \watcom\samples\fortran\win\dll. Unlike applications developed in the C or
C++ language, the FORTRAN 77 developer must not provide a LibMain entry point. This entry point is
already defined in the Open Watcom FORTRAN 77 run-time libraries. The run-time system’s LibMain
provides for the proper initialization of the FORTRAN 77 run-time system and includes hooks to call
developer-written process attach/detach and thread attach/detach routines. These routines are optional but
we show skeleton versions in the following example so that you can develop your own if required.

* DLLSAMP.FOR

integer function __fdll_initialize_()
* Called from LibMain during "DLL PROCESS ATTACH"

* do process initialization
print *, ’Hi from process attach’

* returning 0 indicates failure
__fdll_initialize_ = 1
return
end

integer function __fthrd_initialize_()
* Called from LibMain during "DLL THREAD ATTACH"

* do thread initialization
print *, ’Hi from thread attach’

* returning 0 indicates failure
__fthrd_initialize_ = 1
return
end

integer function __fthrd_terminate_()
* Called from LibMain during "DLL THREAD DETACH"

* do thread cleanup
print *, ’Hi from thread detach’

* returning 0 indicates failure
__fthrd_terminate_ = 1
return
end

integer function __fdll_terminate_()
* Called from LibMain during "DLL PROCESS DETACH"

* do process cleanup
print *, ’Hi from process detach’

* returning 0 indicates failure
__fdll_terminate_ = 1
return
end

subroutine dll_entry_1()
print *, ’Hi from dll entry #1’
end

subroutine dll_entry_2()
print *, ’Hi from dll entry #2’
end

200 Creating a Sample Dynamic Link Library

Windows NT Dynamic Link Libraries

Here are some explanatory notes on this example.

Function Description

__FDLL_INITIALIZE_ This function is called when the DLL is attaching to the address space of the
current process as a result of the process starting up or as a result of a call to
LoadLibrary. A DLL can use this opportunity to initialize any instance data.

During initial process startup or after a call to LoadLibrary, the operating system scans
the list of loaded DLLs for the process. For each DLL that has not already been called with
the DLL_PROCESS_ATTACH value, the system calls the DLL’s LibMain entry-point (in
the Open Watcom FORTRAN 77 run-time system). This call is made in the context of the
thread that caused the process address space to change, such as the primary thread of the
process or the thread that called LoadLibrary.

__FTHRD_INITIALIZE_ This function is called when the current process is creating a new thread. When
this occurs, the system calls the LibMain entry-point (in the Open Watcom FORTRAN 77
run-time system) of all DLLs currently attached to the process. The call is made in the
context of the new thread. DLLs can use this opportunity to initialize thread specific data.
A thread calling the DLL’s LibMain with the DLL_PROCESS_ATTACH value does not
call LibMain with the DLL_THREAD_ATTACH value. Note that LibMain is called with
this value only by threads created after the DLL is attached to the process. When a DLL is
attached by LoadLibrary, existing threads do not call the LibMain entry-point of the
newly loaded DLL.

__FTHRD_TERMINATE_ This function is called when a thread is exiting normally. The DLL uses this
opportunity to do thread specific termination such as closing files that were opened by the
thread. The operating system calls the LibMain entry-point (in the Open Watcom
FORTRAN 77 run-time system) of all currently loaded DLLs with this value. The call is
made in the context of the exiting thread. There are cases in which LibMain is called for
a terminating thread even if the DLL never attached to the thread. For example, LibMain
is never called with the DLL_THREAD_ATTACH value in the context of the thread in either
of these two situations:

• The thread was the initial thread in the process, so the system called LibMain with
the DLL_PROCESS_ATTACH value.

• The thread was already running when a call to the LoadLibrary function was
made, so the system never called LibMain for it.

__FDLL_TERMINATE_ This function is called when the DLL is detaching from the address space of the
calling process as a result of either a normal termination or of a call to FreeLibrary.
When a DLL detaches from a process as a result of process termination or as a result of a
call to FreeLibrary, the operating system does not call the DLL’s LibMain with the
DLL_THREAD_DETACH value for the individual threads of the process. The DLL is only
given DLL_PROCESS_DETACH notification. DLLs can take this opportunity to clean up
all resources for all threads attached and known to the DLL.

Note: These functions return 1 if initialization succeeds or 0 if initialization fails. Subsequently,
this value will be returned by the run-time system’s LibMain function.

If the return value is 0 when LibMain is called because the process uses the
LoadLibrary function, LoadLibrary returns NULL.

Creating a Sample Dynamic Link Library 201

Windows NT Programming Guide

If the return value is 0 when LibMain is called during process initialization, the process
terminates with an error.

DLL_ENTRY_1, DLL_ENTRY_2 These are sample DLL entry points that we will call from our simple
test program.

Some further explanation and an example are provided in a later section.

Assume the above example is contained in the file dllsamp.for. We can compile the file using the
following command. Note that we must specify the "bd" compiler option.

C:\>wfc386 -bd dllsamp

Before we can link our example, we must create a linker directive file that describes the attributes and entry
points of our dynamic link library. The following is a linker directive file, called dllsamp.lnk, that
can be used to create the dynamic link library.

system nt_dll initinstance terminstance
export DLL_ENTRY_1
export DLL_ENTRY_2
file dllsamp

Notes:

1. The "SYSTEM" directive specifies that we are creating a Windows NT dynamic link library.

2. When a dynamic link library uses the Open Watcom FORTRAN 77 run-time libraries, an
automatic data segment is created each time a new process accesses the dynamic link library.
For this reason, initialization code must be executed when a process accesses the dynamic link
library for the first time. To achieve this, "INITINSTANCE" must be specified in the
"SYSTEM" directive. Similarly, "TERMINSTANCE" must be specified so that the termination
code is executed when a process has completed its access to the dynamic link library. If the
Open Watcom FORTRAN 77 run-time libraries are not used, these options are not required.

3. The "EXPORT" directive specifies the entry points into the dynamic link library. Note that in
Open Watcom FORTRAN 77, names of all symbols are uppercased. Regardless of the case used
in source files, linker directives must use uppercased symbol names. The linker is case sensitive
by default, although the "OP NOCASEEXACT" directive may be used to override this.

We can now create our dynamic link library by issuing the following command.

C:\>wlink @dllsamp

A file called dllsamp.dll will be created.

29.3 Using Dynamic Link Libraries

Once we have created a dynamic link library, we must allow other applications to access the functions
available in the dynamic link library. There are two ways to achieve this.

The first method is to create a linker directive file which contains an "IMPORT" directive for all entry
points in the dynamic link library. The "IMPORT" directive provides the name of the entry point and the
name of the dynamic link library. When creating an application that references a function in the dynamic

202 Using Dynamic Link Libraries

Windows NT Dynamic Link Libraries

link library, this linker directive file would be included as part of the linking process that created the
application.

The second method is to use import libraries. An import library is a standard library that is created from a
dynamic link library by using the Open Watcom Library Manager. It contains object modules that describe
the entry points in a dynamic link library. The resulting import library can then be specified in a
"LIBRARY" directive in the same way one would specify a standard library.

Using an import library is the preferred method of providing references to functions in dynamic link
libraries. When a dynamic link library is modified, typically the import library corresponding to the
modified dynamic link library is updated to reflect the changes. Hence, any directive file that specifies the
import library in a "LIBRARY" directive need not be modified. However, if you are using "IMPORT"
directives, you may have to modify the "IMPORT" directives to reflect the changes in the dynamic link
library.

Let us create an import library for our sample dynamic link library we created in the previous section. We
do this by issuing the following command.

C:\>wlib dllsamp +dllsamp.dll

A standard library called dllsamp.lib will be created.

Suppose the following sample program, contained in the file dlltest.for, calls the functions from our
sample dynamic link library.

* DLLTEST.FOR

call dll_entry_1()
call dll_entry_2()
end

We can compile and link our sample application by issuing the following command.

C:\>wfl386 -l=nt dlltest dllsamp.lib

If we had created a linker directive file of "IMPORT" directives instead of an import library for the
dynamic link library, the linker directive file, say dllimps.lnk, would be as follows.

import DLL_ENTRY_1 dllsamp
import DLL_ENTRY_2 dllsamp

To compile and link our sample application, we would issue the following command.

C:\>wfl386 -l=nt dlltest -"@dllimps"

29.4 The Dynamic Link Library Data Area

The Open Watcom FORTRAN 77 32-bit run-time library does not support the general case operation of
DLLs in an execution environment where there is only one instance of the DATA segment (DGROUP) for
that DLL.

There are two cases that can lead to a DLL executing with only one instance of the DGROUP.

1. DLLs linked for 32-bit OS/2 without the MANYAUTODATA option.

The Dynamic Link Library Data Area 203

Windows NT Programming Guide

2. DLLs linked for the Win32 API and executing under Win32s.

In these cases the run-time library startup code detects that there is only one instance of the DGROUP when
a second process attempts to attach to the DLL. At that point, it issues a diagnostic for the user and then
notifies the operating system that the second process cannot attach to the DLL.

Developers who require DLLs to operate when there is only one instance of the DGROUP can suppress the
function which issues the diagnostic and notifies the operating system that the second process cannot attach
to the DLL.

Doing so requires good behaviour on the part of processes attaching to the DLL. This good behaviour
consists primarily of ensuring that the first process to attach to the DLL is also the last process to detach
from the DLL thereby ensuring that the DATA segment is not released back to the free memory pool.

To suppress the function which issues the diagnostic and notifies the operating system that the second
process cannot attach to the DLL, the developer must provide a replacement entry point with the following
prototype:

int __disallow_single_dgroup(int);

This function should return zero to indicate that the detected single copy of the DATA segment is allowed.

29.5 Dynamic Link Library Initialization/Termination

Each dynamic link library (DLL) has an initialization and termination routine associated with it. The
initialization routine can either be called the first time any process accesses the DLL ("INITGLOBAL" is
specified at link time) or each time a process accesses the DLL ("INITINSTANCE" is specified at link
time). Similarly, the termination routine can either be called when all processes have completed their
access of the DLL ("TERMGLOBAL" is specified at link time) or each time a process completes its access
of the DLL ("TERMINSTANCE" is specified at link time).

For a DLL that uses the FORTRAN 77 run-time libraries, initialization and termination of the FORTRAN
77 run-time environment is performed automatically. It is also possible for a DLL to do its own special
initialization and termination process.

The FORTRAN 77 run-time environment provides a method for calling user-written DLL initialization and
termination code. The __fdll_initialize_ routine is called for DLL process initialization. The
__fthrd_initialize_ routine is called for DLL thread initialization. The __fthrd_terminate_
routine is called for DLL thread termination. The __fdll_terminate_ routine is called for DLL
process termination. Default stub versions of these routines are included in the run-time library. If you
wish to perform additional initialization/termination processing that is specific to your dynamic link library,
you may write your own versions of these routines.

When a process first attaches to the DLL, the FORTRAN 77 run-time environment is initialized and then
the routine __fdll_initialize_ is called. When a thread is started, the routine
__fthrd_initialize_ is called. When a thread is terminated, the routine __fthrd_terminate_
is called. When the main process relinquishes the DLL, the routine __fdll_terminate_ is called and
then the FORTRAN 77 run-time environment is terminated,

The initialization and termination routines return an integer. A value of 0 indicates failure; a value of 1
indicates success. The following example illustrates sample initialization/termination routines.

204 Dynamic Link Library Initialization/Termination

Windows NT Dynamic Link Libraries

* DLLINIT.FOR

integer function __fdll_initialize_()
integer __fthrd_initialize_, __fthrd_terminate_
integer __fdll_terminate_, dll_entry

integer WORKING_SIZE
parameter (WORKING_SIZE = 16*1024)
integer ierr, WorkingStorage
dimension WorkingStorage(:)

allocate(WorkingStorage(WORKING_SIZE), stat=ierr)
if(ierr .eq. 0)then

__fdll_initialize_ = 1
else

__fdll_initialize_ = 0
endif
return

entry __fthrd_initialize_()
__fthrd_initialize_ = 1
return

entry __fthrd_terminate_()
__fthrd_terminate_ = 1
return

entry __fdll_terminate_()
* Note: no run-time calls allowed under OS/2 Warp

deallocate(WorkingStorage)
__fdll_terminate_ = 1
return

entry dll_entry()
! use WorkingStorage
return

end

In the above example, the process initialization routine allocates storage that the dynamic link library needs,
the routine dll_entry uses the storage, and the process termination routine frees the storage allocated in
the initialization routine.

Dynamic Link Library Initialization/Termination 205

Windows NT Programming Guide

206 Dynamic Link Library Initialization/Termination

OS/2 Programming Guide

OS/2 Programming Guide

208

30 Creating 16-bit OS/2 1.x Applications

An OS/2 application can be one of the following; a fullscreen application, a PM-compatible application, or
a Presentation Manager application. A fullscreen application runs in its own screen group. A
PM-compatible application will run in an OS/2 fullscreen environment or in a window in the Presentation
Manager screen group but does not take direct advantage of menus, mouse or other features available in the
Presentation Manager. A Presentation Manager application has full access to the complete set of
user-interface tools such as menus, icons, scroll bars, etc.

This chapter deals with the creation of OS/2 fullscreen applications. For information on creating
Presentation Manager applications, refer to the section entitled "Programming for OS/2 Presentation
Manager" on page 227.

We will illustrate the steps to creating 16-bit OS/2 1.x applications by taking a small sample application
and showing you how to compile, link, run and debug it.

30.1 The Sample Application

To demonstrate the creation of 16-bit OS/2 1.x applications using command-line oriented tools, we
introduce a simple sample program. For our example, we are going to use the "sieve" program.

* This program computes the prime numbers between 1 and 10,000
* using the Sieve of Eratosthenes algorithm.

IMPLICIT NONE
INTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER I, K, PRIMES
LOGICAL*1 NUMBERS(2:UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORM=’(A,I5,A,I5)’)
DO I = 2, UPBOUND

NUMBERS(I) = .TRUE.
ENDDO
PRIMES = 0
DO I = 2, UPBOUND

IF(NUMBERS(I))THEN
PRIMES = PRIMES + 1
DO K = I + I, UPBOUND, I

NUMBERS(K) = .FALSE.
ENDDO

ENDIF
ENDDO
PRINT FORM, ’The Number of Primes between 1 and ’, UPBOUND,

1 ’ are: ’, PRIMES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Sieve of
Eratosthenes algorithm to accomplish this task. We will take you through the steps necessary to produce
this result.

The Sample Application 209

OS/2 Programming Guide

30.2 Building and Running the Sample OS/2 1.x Application

To compile and link our example program which is stored in the file sieve.for, enter the following
command:

[C:\]wfl -l=os2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

[C:\]wfl -l=os2 sieve.for
Open Watcom F77/16 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc sieve.for
Open Watcom FORTRAN 77/16 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 21 statements, 311 bytes, 6 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating an OS/2 16-bit executable

Provided that no errors were encountered during the compile or link phases, the "sieve" program may now
be run.

[C:\]sieve
The Number of Primes between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are
sieve.obj (the result of compiling sieve.for) and sieve.exe (the result of linking sieve.obj
with the appropriate Open Watcom FORTRAN 77 libraries). It is sieve.exe that is run by OS/2 when
you enter the "sieve" command.

30.3 Debugging the Sample OS/2 1.x Application

Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL command, this is fairly straightforward. WFL recognizes the Open Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Open Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

[C:\]wfl -l=os2 -d2 sieve.for

210 Debugging the Sample OS/2 1.x Application

Creating 16-bit OS/2 1.x Applications

The typical messages that appear on the screen are shown in the following illustration.

[C:\]wfl -l=os2 -d2 sieve.for
Open Watcom F77/16 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc sieve.for -d2
Open Watcom FORTRAN 77/16 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 21 statements, 392 bytes, 6 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating an OS/2 16-bit executable

The "d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL will make sure that this debugging information is included in the executable
file that is produced by the linker.

The "bytes" value is larger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. You can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship
between the object code and the original source language code.

For OS/2, you should also include the BINP\DLL directory in the "LIBPATH" directive of the system
configuration file CONFIG.SYS. It contains the Open Watcom Debugger Dynamic Link Libraries
(DLLs).

Example:
libpath=c:\watcom\binp\dll

To request the Open Watcom Debugger to assist in debugging the application, the following command may
be issued.

[C:\]wd sieve

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Open Watcom Debugger User’s Guide.

Debugging the Sample OS/2 1.x Application 211

OS/2 Programming Guide

212 Debugging the Sample OS/2 1.x Application

31 Creating 32-bit OS/2 Applications

An OS/2 application can be one of the following; a fullscreen application, a PM-compatible application, or
a Presentation Manager application. A fullscreen application runs in its own screen group. A
PM-compatible application will run in an OS/2 fullscreen environment or in a window in the Presentation
Manager screen group but does not take direct advantage of menus, mouse or other features available in the
Presentation Manager. A Presentation Manager application has full access to the complete set of
user-interface tools such as menus, icons, scroll bars, etc.

This chapter deals with the creation of OS/2 fullscreen applications. For information on creating
Presentation Manager applications, refer to the section entitled "Programming for OS/2 Presentation
Manager" on page 227.

We will illustrate the steps to creating 32-bit OS/2 applications by taking a small sample application and
showing you how to compile, link, run and debug it.

31.1 The Sample Application

To demonstrate the creation of 32-bit OS/2 applications using command-line oriented tools, we introduce a
simple sample program. For our example, we are going to use the "sieve" program.

* This program computes the prime numbers between 1 and 10,000
* using the Sieve of Eratosthenes algorithm.

IMPLICIT NONE
INTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER I, K, PRIMES
LOGICAL*1 NUMBERS(2:UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORM=’(A,I5,A,I5)’)
DO I = 2, UPBOUND

NUMBERS(I) = .TRUE.
ENDDO
PRIMES = 0
DO I = 2, UPBOUND

IF(NUMBERS(I))THEN
PRIMES = PRIMES + 1
DO K = I + I, UPBOUND, I

NUMBERS(K) = .FALSE.
ENDDO

ENDIF
ENDDO
PRINT FORM, ’The Number of Primes between 1 and ’, UPBOUND,

1 ’ are: ’, PRIMES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Sieve of
Eratosthenes algorithm to accomplish this task. We will take you through the steps necessary to produce
this result.

The Sample Application 213

OS/2 Programming Guide

31.2 Building and Running the Sample OS/2 Application

To compile and link our example program which is stored in the file sieve.for, enter the following
command:

[C:\]wfl386 -l=os2v2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

[C:\]wfl386 -l=os2v2 sieve.for
Open Watcom F77/32 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc386 sieve.for
Open Watcom FORTRAN 77/32 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 21 statements, 172 bytes, 6 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating an OS/2 32-bit executable

Provided that no errors were encountered during the compile or link phases, the "sieve" program may now
be run.

[C:\]sieve
The Number of Primes between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are
sieve.obj (the result of compiling sieve.for) and sieve.exe (the result of linking sieve.obj
with the appropriate Open Watcom FORTRAN 77 libraries). It is sieve.exe that is run by OS/2 when
you enter the "sieve" command.

31.3 Debugging the Sample OS/2 Application

Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL386 command, this is fairly straightforward. WFL386 recognizes the Open Watcom
F77 compiler "debug" options and will create the appropriate debug directives for the Open Watcom
Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

[C:\]wfl386 -l=os2v2 -d2 sieve.for

214 Debugging the Sample OS/2 Application

Creating 32-bit OS/2 Applications

The typical messages that appear on the screen are shown in the following illustration.

[C:\]wfl386 -l=os2v2 -d2 sieve.for
Open Watcom F77/32 Compile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.

wfc386 sieve.for -d2
Open Watcom FORTRAN 77/32 Optimizing Compiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
sieve.for: 21 statements, 237 bytes, 6 extensions, 0 warnings, 0 errors

Open Watcom Linker
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
loading object files
searching libraries
creating an OS/2 32-bit executable

The "d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL386 will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "bytes" value is larger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. You can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship
between the object code and the original source language code.

To request the Open Watcom Debugger to assist in debugging the application, the following command may
be issued.

[C:\]wd sieve

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Open Watcom Debugger User’s Guide.

Debugging the Sample OS/2 Application 215

OS/2 Programming Guide

216 Debugging the Sample OS/2 Application

32 OS/2 2.x Multi-threaded Applications

This chapter describes how to create multi-threaded applications. A multi-threaded application is one
whose tasks are divided among several threads of execution. A process is an executing application and the
resources it uses. A thread is the smallest unit of execution within a process. Each thread has its own stack
and a set of machine registers and shares all resources with its parent process. The path of execution of one
thread does not affect that of another; each thread is an independent entity.

Typically, an application has a single thread of execution. In this type of application, all tasks, once
initiated, are completed before the next task begins. In contrast, tasks in a multi-threaded application can
be performed concurrently since more than one thread is executing at once. For example, each thread may
be designed to perform a separate task.

32.1 Programming Considerations

Since a multi-threaded application consists of many threads of execution, there are a number of issues that
you must consider.

Since threads share the resources of its parent, it may be necessary to serialize access to these resources.
For example, if your application contains more than one thread of execution and each thread uses the
PRINT statement to display output to the console, it would be necessary for the I/O support routines to
allow only one thread to use the PRINT facility at any time. That is, once a thread issues a PRINT request,
the I/O support routines should ensure that no other thread displays information until all information for the
initial thread has been displayed.

32.2 Creating Threads

Each application initially contains a single thread. The run-time libraries contain two functions that create
and terminate threads of execution. The function beginthread creates a thread of execution and the
function endthread ends a thread of execution. The function threadid can be used to determine the
current thread identifier.

WARNING! If any thread uses an I/O statement or calls an intrinsic function, you must use the
beginthread function to create the thread. Do not use the DosCreateThread API function.

32.2.1 Creating a New Thread

The beginthread function creates a new thread. It is defined as follows.

integer function beginthread(start_address,

stack_size)
integer stack_size
end

Creating Threads 217

OS/2 Programming Guide

where description

start_address is the address of the subroutine that will be called when the newly created thread is
executed. When the thread returns from that subroutine, the thread will be terminated.
Note that a call to the endthread subroutine will also terminate the thread.

stack_size specifies the size of the stack to be allocated by the operating system for the new thread.
The stack size should be a multiple of 4K.

If a new thread is successfully created, the thread identifier of the new thread is returned. Otherwise, a
value of -1 is returned.

The include file thread.fi contains the definition of the beginthread function.

32.2.2 Terminating the Current Thread

The endthread subroutine terminates the current thread. It is defined as follows.

subroutine endthread()
end

The include file thread.fi contains the definition of the endthread function.

32.2.3 Getting the Current Thread Identifier

The threadid function can be used to determine the current thread identifier. It is defined as follows.

integer function threadid()
end

The include file thread.fi contains the definition of the threadid function.

32.3 A Multi-threaded Example

Let us create a simple multi-threaded application. The source code for this example can be found in
\watcom\samples\fortran\os2.

* MTHREAD.FOR

*$pragma aux DosSleep parm(value) [] caller

integer NumThreads
logical HoldThreads
common NumThreads, HoldThreads

integer STACK_SIZE
parameter (STACK_SIZE=32768)
integer NUM_THREADS
parameter (NUM_THREADS=5)

integer i, threadid, beginthread
external a_thread

218 A Multi-threaded Example

OS/2 2.x Multi-threaded Applications

print ’(’’main thread id = ’’, i4)’, threadid()
NumThreads = 0
HoldThreads = .true.
! main thread counts as 1
do i = 2, NUM_THREADS

if(beginthread(a_thread, STACK_SIZE) .eq. -1)then
print ’(’’creation of thread’’, i4, ’’failed’’)’, i

else
NumThreads = NumThreads + 1

end if
end do
HoldThreads = .false.
while(NumThreads .ne. 0)do

call DosSleep(1)
end while
end

subroutine a_thread()
integer NumThreads
logical HoldThreads
common NumThreads, HoldThreads
integer threadid
while(HoldThreads)do

call DosSleep(1)
end while
call DosEnterCritSec()
print ’(’’Hi from thread ’’, i4)’, threadid()
NumThreads = NumThreads - 1
call DosExitCritSec()
call endthread()
end

Note:

1. In the subroutine a_thread, DosEnterCritSec and DosExitCritSec are called when
we modify the variable NumThreads. This ensures that the action of extracting the value of
NumThreads from memory, incrementing the value, and storing the new result into memory,
occurs without interruption. If these functions were not called, it would be possible for two
threads to extract the value of NumThreads from memory before an update occurred.

Let us assume that the file mthread.for contains the above example. Before compiling the file, make
sure that the WATCOM environment variable is set to the directory in which you installed Open Watcom
FORTRAN 77. Also, the FINCLUDE environment variable must contain the
\watcom\src\fortran\os2 directory where "\WATCOM" is the name of the directory in which you
installed Open Watcom FORTRAN 77.

We can now compile and link the application by issuing the following command.

[C:\]wfl386 -bm -l=os2v2 mthread

The "bm" option must be specified since we are creating a multi-threaded application. If your
multi-threaded application contains more than one module, each module must be compiled using the "bm"
switch.

The "l" option specifies the target system for which the application is to be linked. The system name
os2v2 is defined in the file wlsystem.lnk which is located in the "BINW" subdirectory of the
directory in which you installed Open Watcom FORTRAN 77.

The multi-threaded application is now ready to be run.

A Multi-threaded Example 219

OS/2 Programming Guide

32.4 Thread Limits

There is a limit to the number of threads an application can create under 16-bit OS/2. The default limit is
32. This limit can be adjusted by defining the integer function __getmaxthreads which returns the
new thread limit.

Under 32-bit OS/2, there is no limit to the number of threads an application can create. However, due to
the way in which multiple threads are supported in the Open Watcom libraries, there is a small performance
penalty once the number of threads exceeds the default limit of 32 (this number includes the initial thread).
If you are creating more than 32 threads and wish to avoid this performance penalty, you can redefine the
threshold value of 32. You can statically initialize the global variable __MaxThreads.

This limit can be adjusted by defining the integer function __getmaxthreads which returns the new
thread limit. By defining __getmaxthreads as follows, the new threshold value will be set to 48.

integer function __getmaxthreads()
__getmaxthreads = 48
end

This version of __getmaxthreads will replace the default function that is included in the run-time
library. The default function simply returns the current value of the internal variable __MaxThreads.
Your version of this function will return a new value for this variable. Internally, the run-time system
executes code similar to the following:

.
.
.
__MaxThreads = __getmaxthreads()
.
.
.

Thus, the default __getmaxthreads function does not alter the value of __MaxThreads but your
version will.

220 Thread Limits

33 OS/2 2.x Dynamic Link Libraries

A dynamic link library, like a standard library, is a library of functions. When an application uses functions
from a standard library, the library functions referenced by the application become part of the executable
module. This form of linking is called static linking. When an application uses functions from a dynamic
link library, the library functions referenced by the application are not included in the executable module.
Instead, the executable module contains references to these functions which are resolved when the
application is loaded. This form of linking is called dynamic linking.

Let us consider some of the advantages of using dynamic link libraries over standard libraries.

1. Functions in dynamic link libraries are not linked into your program. Only references to the
functions in dynamic link libraries are placed in the program module. These references are
called import definitions. As a result, the linking time is reduced and disk space is saved. If
many applications reference the same dynamic link library, the saving in disk space can be
significant.

2. Since program modules only reference dynamic link libraries and do not contain the actual
executable code, a dynamic link library can be updated without re-linking your application.
When your application is executed, it will use the updated version of the dynamic link library.

3. Dynamic link libraries also allow sharing of code and data between the applications that use
them. If many applications that use the same dynamic link library are executing concurrently,
the sharing of code and data segments improves memory utilization.

33.1 Creating Dynamic Link Libraries

Once you have developed the source for a library of functions, a number of steps are required to create a
dynamic link library containing those functions.

First, you must compile your source using the "bd" compiler option. This option tells the compiler that the
module you are compiling is part of a dynamic link library. Once you have successfully compiled your
source, you must create a linker directive file that describes the attributes of your dynamic link library. The
following lists the most common linker directives required to create a dynamic link library.

1. The "SYSTEM" directive is used to specify that a dynamic link library is to be created.
2. The "EXPORT" directive is used to to specify which functions in the dynamic link library are to

be exported.
3. The "OPTION" directive is used to specify attributes such as the name of the dynamic link

library and how to allocate the automatic data segment when the dynamic link library is
referenced.

4. The "SEGMENT" directive is used to specify attributes of segments. For example, a segment
may be read-only or read-write.

Once the dynamic link library is created, you must allow access to the dynamic link library to client
applications that wish to use it. This can be done by creating an import library for the dynamic link library

Creating Dynamic Link Libraries 221

OS/2 Programming Guide

or creating a linker directive file that contains "IMPORT" directives for each of the entry points in the
dynamic link library.

33.2 Creating a Sample Dynamic Link Library

Let us now create a dynamic link library using the following example. The source code for this example
can be found in \watcom\samples\fortran\os2\dll. Unlike applications developed in the C or
C++ language, the FORTRAN 77 developer must not provide a LibMain entry point. This entry point is
already defined in the Open Watcom FORTRAN 77 run-time libraries. The run-time system’s LibMain
provides for the proper initialization of the FORTRAN 77 run-time system and includes hooks to call
developer-written process attach/detach and thread attach/detach routines. These routines are optional but
we show skeleton versions in the following example so that you can develop your own if required.

* DLLSAMP.FOR

integer function __fdll_initialize_()
* Called from LibMain during "DLL PROCESS ATTACH"

* do process initialization
print *, ’Hi from process attach’

* returning 0 indicates failure
__fdll_initialize_ = 1
return
end

integer function __fdll_terminate_()
* Called from LibMain during "DLL PROCESS DETACH"

* do process cleanup
print *, ’Hi from process detach’

* returning 0 indicates failure
__fdll_terminate_ = 1
return
end

subroutine dll_entry_1()
print *, ’Hi from dll entry #1’
end

subroutine dll_entry_2()
print *, ’Hi from dll entry #2’
end

Assume the above example is contained in the file dllsamp.for. We can compile the file using the
following command. Note that we must specify the "bd" compiler option.

[C:\]wfc386 -bd dllsamp

Before we can link our example, we must create a linker directive file that describes the attributes and entry
points of our dynamic link library. The following is a linker directive file, called dllsamp.lnk, that
can be used to create the dynamic link library.

system os2v2 dll initinstance terminstance
option manyautodata
export DLL_ENTRY_1
export DLL_ENTRY_2
file dllsamp

222 Creating a Sample Dynamic Link Library

OS/2 2.x Dynamic Link Libraries

Notes:

1. The "SYSTEM" directive specifies that we are creating a 32-bit OS/2 dynamic link library.

2. The "MANYAUTODATA" option specifies that the automatic data segment is allocated for
every instance of the dynamic link library. This option must be specified only for a dynamic link
library that uses the Open Watcom FORTRAN 77 run-time libraries. If the Open Watcom
FORTRAN 77 run-time libraries are not used, this option is not required. Our example does use
the Open Watcom FORTRAN 77 run-time libraries so we must specify the
"MANYAUTODATA" option.

As was just mentioned, when a dynamic link library uses the Open Watcom FORTRAN 77
run-time libraries, an automatic data segment is created each time a process accesses the
dynamic link library. For this reason, initialization code must be executed when a process
accesses the dynamic link library for the first time. To achieve this, "INITINSTANCE" must be
specified in the "SYSTEM" directive. Similarly, "TERMINSTANCE" must be specified so that
the termination code is executed when a process has completed its access to the dynamic link
library. If the Open Watcom FORTRAN 77 run-time libraries are not used, these options are not
required.

3. The "EXPORT" directive specifies the entry points into the dynamic link library. Note that in
Open Watcom FORTRAN 77, names of all symbols are uppercased. Regardless of the case used
in source files, linker directives must use uppercased symbol names. The linker is case sensitive
by default, although the "OP NOCASEEXACT" directive may be used to override this.

We can now create our dynamic link library by issuing the following command.

[C:\]wlink @dllsamp

A file called dllsamp.dll will be created.

33.3 Using Dynamic Link Libraries

Once we have created a dynamic link library, we must allow other applications to access the functions
available in the dynamic link library. There are two ways to achieve this.

The first method is to create a linker directive file which contains an "IMPORT" directive for all entry
points in the dynamic link library. The "IMPORT" directive provides the name of the entry point and the
name of the dynamic link library. When creating an application that references a function in the dynamic
link library, this linker directive file would be included as part of the linking process that created the
application.

The second method is to use import libraries. An import library is a standard library that is created from a
dynamic link library by using the Open Watcom Library Manager. It contains object modules that describe
the entry points in a dynamic link library. The resulting import library can then be specified in a
"LIBRARY" directive in the same way one would specify a standard library.

Using an import library is the preferred method of providing references to functions in dynamic link
libraries. When a dynamic link library is modified, typically the import library corresponding to the
modified dynamic link library is updated to reflect the changes. Hence, any directive file that specifies the
import library in a "LIBRARY" directive need not be modified. However, if you are using "IMPORT"

Using Dynamic Link Libraries 223

OS/2 Programming Guide

directives, you may have to modify the "IMPORT" directives to reflect the changes in the dynamic link
library.

Let us create an import library for our sample dynamic link library we created in the previous section. We
do this by issuing the following command.

[C:\]wlib dllsamp +dllsamp.dll

A standard library called dllsamp.lib will be created.

Suppose the following sample program, contained in the file dlltest.for, calls the functions from our
sample dynamic link library.

* DLLTEST.FOR

call dll_entry_1()
call dll_entry_2()
end

We can compile and link our sample application by issuing the following command.

[C:\]wfl386 -l=os2v2 dlltest dllsamp.lib

If we had created a linker directive file of "IMPORT" directives instead of an import library for the
dynamic link library, the linker directive file, say dllimps.lnk, would be as follows.

import DLL_ENTRY_1 dllsamp
import DLL_ENTRY_2 dllsamp

To compile and link our sample application, we would issue the following command.

[C:\]wfl386 -l=os2v2 dlltest -"@dllimps"

33.4 The Dynamic Link Library Data Area

The Open Watcom FORTRAN 77 32-bit run-time library does not support the general case operation of
DLLs in an execution environment where there is only one instance of the DATA segment (DGROUP) for
that DLL.

There are two cases that can lead to a DLL executing with only one instance of the DGROUP.

1. DLLs linked for 32-bit OS/2 without the MANYAUTODATA option.

2. DLLs linked for the Win32 API and executing under Win32s.

In these cases the run-time library startup code detects that there is only one instance of the DGROUP when
a second process attempts to attach to the DLL. At that point, it issues a diagnostic for the user and then
notifies the operating system that the second process cannot attach to the DLL.

Developers who require DLLs to operate when there is only one instance of the DGROUP can suppress the
function which issues the diagnostic and notifies the operating system that the second process cannot attach
to the DLL.

224 The Dynamic Link Library Data Area

OS/2 2.x Dynamic Link Libraries

Doing so requires good behaviour on the part of processes attaching to the DLL. This good behaviour
consists primarily of ensuring that the first process to attach to the DLL is also the last process to detach
from the DLL thereby ensuring that the DATA segment is not released back to the free memory pool.

To suppress the function which issues the diagnostic and notifies the operating system that the second
process cannot attach to the DLL, the developer must provide a replacement entry point with the following
prototype:

int __disallow_single_dgroup(int);

This function should return zero to indicate that the detected single copy of the DATA segment is allowed.

33.5 Dynamic Link Library Initialization/Termination

Each dynamic link library (DLL) has an initialization and termination routine associated with it. The
initialization routine can either be called the first time any process accesses the DLL ("INITGLOBAL" is
specified at link time) or each time a process accesses the DLL ("INITINSTANCE" is specified at link
time). Similarly, the termination routine can either be called when all processes have completed their
access of the DLL ("TERMGLOBAL" is specified at link time) or each time a process completes its access
of the DLL ("TERMINSTANCE" is specified at link time).

For a DLL that uses the FORTRAN 77 run-time libraries, initialization and termination of the FORTRAN
77 run-time environment is performed automatically. It is also possible for a DLL to do its own special
initialization and termination process.

The FORTRAN 77 run-time environment provides a method for calling user-written DLL initialization and
termination code. The __fdll_initialize_ routine is called for DLL process initialization. The
__fdll_terminate_ routine is called for DLL process termination. Default stub versions of these
routines are included in the run-time library. If you wish to perform additional initialization/termination
processing that is specific to your dynamic link library, you may write your own versions of these routines.

Once the FORTRAN 77 run-time environment is initialized, the routine __fdll_initialize_ is
called. After the FORTRAN 77 run-time environment is terminated, the routine __fdll_terminate_
is called. This last point is important since it means that you cannot do any run-time calls in the termination
routine.

The initialization and termination routines return an integer. A value of 0 indicates failure; a value of 1
indicates success. The following example illustrates sample initialization/termination routines.

* DLLINIT.FOR

integer function __fdll_initialize_()
integer __fdll_terminate_, dll_entry

integer WORKING_SIZE
parameter (WORKING_SIZE = 16*1024)
integer ierr, WorkingStorage
dimension WorkingStorage(:)

allocate(WorkingStorage(WORKING_SIZE), stat=ierr)
if(ierr .eq. 0)then

__fdll_initialize_ = 1
else

__fdll_initialize_ = 0
endif
return

Dynamic Link Library Initialization/Termination 225

OS/2 Programming Guide

entry __fdll_terminate_()
* Note: no run-time calls allowed under OS/2 Warp

deallocate(WorkingStorage)
__fdll_terminate_ = 1
return

entry dll_entry()
! use WorkingStorage
return

end

In the above example, the process initialization routine allocates storage that the dynamic link library needs,
the routine dll_entry uses the storage, and the process termination routine frees the storage allocated in
the initialization routine.

226 Dynamic Link Library Initialization/Termination

34 Programming for OS/2 Presentation Manager

Basically, there are two classes of FORTRAN 77 applications that can run in a windowed environment.

The first are those FORTRAN 77 applications that do not use any of the Presentation Manager API
functions; they are strictly FORTRAN 77 applications that do not rely on the features of a particular
operating system.

The second class of FORTRAN 77 applications are those that actually call Presentation Manager API
functions directly. These are applications that have been tailored for the Presentation Manager operating
environment.

It is assumed that the reader is familiar with the concepts of Presentation Manager programming.

34.1 Porting Existing FORTRAN 77 Applications

Suppose you have a set of FORTRAN 77 applications that previously ran under DOS and you now wish to
run them under OS/2. To achieve this, simply recompile your application and link with the appropriate
libraries. Depending on the method with which you linked your application, it can run in an OS/2
fullscreen environment, a PM-compatible window, or as a Presentation Manager application. An OS/2
fullscreen application runs in its own screen group. A PM-compatible application will run in an OS/2
fullscreen environment or in a window in the Presentation Manager screen group but does not take direct
advantage of menus, mouse or other features available in the Presentation Manager. A Presentation
Manager application has full access to the complete set of user-interface tools such as menus, icons, scroll
bars, etc. However, porting a console oriented application to Presentation Manager often requires
significant effort and a substantial redesign of the application.

34.1.1 An Example

Very little effort is required to port an existing FORTRAN 77 application to OS/2. Let us try to run the
following sample program (contained in the file hello.for).

print *, ’Hello world!’
end

First we must compile the file hello.for by issuing the following command.

[C:\]wfc386 hello

Once we have successfully compiled the file, we can link it by issuing the following command.

[C:\]wlink sys os2v2 file hello

It is also possible to compile and link in one step, by issuing the following command.

[C:\]wfl386 -l=os2v2 hello

Porting Existing FORTRAN 77 Applications 227

OS/2 Programming Guide

This will create a PM-compatible application. If you wish to create a fullscreen application, link with the
following command.

[C:\]wlink sys os2v2 fullscreen file hello

34.2 Calling Presentation Manager API Functions

It is also possible for a FORTRAN 77 application to create its own windowing environment. This is
achieved by calling PM API functions directly from your FORTRAN 77 program. The techniques for
developing these applications can be found in the OS/2 Technical Library.

A number of FORTRAN 77 include files (files with extension .fi or .fap) are provided which define
Presentation Manager data structures and constants. They are located in the
\watcom\src\fortran\os2 directory. These include files are equivalent to the C header files that
are available with the IBM OS/2 Developer’s Toolkit.

A sample FORTRAN 77 Presentation Manager application is also located in the
\watcom\samples\fortran\os2 directory. It is contained in the files fshapes.for and
fshapes.fi. The file fshapes.for contains the following.

c$define INCL_WINFRAMEMGR
c$define INCL_WINMESSAGEMGR
c$define INCL_WINWINDOWMGR
c$define INCL_WINTIMER
c$define INCL_GPIPRIMITIVES
c$include os2.fap

program fshapes

integer style
record /QMSG/ qmsg

character*7 watcom
parameter (watcom=’WATCOM’c)

include ’fshapes.fi’

AnchorBlock = WinInitialize(0)
if(AnchorBlock .eq. 0) stop
hMessageQueue = WinCreateMsgQueue(AnchorBlock, 0)
if(hMessageQueue .eq. 0) stop
if(WinRegisterClass(AnchorBlock, watcom, MainDriver,

+ CS_SIZEREDRAW, 0) .eq. 0) stop
style = FCF_TITLEBAR .or. FCF_SYSMENU .or. FCF_SIZEBORDER .or.

+ FCF_MINMAX .or. FCF_SHELLPOSITION .or. FCF_TASKLIST
FrameHandle = WinCreateStdWindow(HWND_DESKTOP, WS_VISIBLE,

+ style, watcom,
+ char(0), 0, NULL,
+ 0, WinHandle)

if(FrameHandle .eq. 0) stop

while(WinGetMsg(AnchorBlock, qmsg, NULL, 0, 0)) do
call WinDispatchMsg(AnchorBlock, qmsg)

end while

call WinDestroyWindow(FrameHandle)
call WinDestroyMsgQueue(hMessageQueue)
call WinTerminate(AnchorBlock)

end

228 Calling Presentation Manager API Functions

Programming for OS/2 Presentation Manager

function MainDriver(hwnd, msg, mp1, mp2)

integer hwnd
integer msg
integer mp1
integer mp2

include ’fshapes.fi’

integer ps
record /RECTL/ rcl

select case (msg)
case (WM_CREATE)

WinHandle = hwnd
call WinStartTimer(AnchorBlock, WinHandle, 1, 150)

case (WM_TIMER)
call DrawEllipse()
MainDriver = 0
return

case (WM_SIZE)
SizeX = SHORT1FROMMP(mp2)
SizeY = SHORT2FROMMP(mp2)
MainDriver = 0
return

case (WM_PAINT)
ps = WinBeginPaint(WinHandle, NULL, NULL_POINTER)
call WinQueryWindowRect(WinHandle, rcl)
call WinFillRect(ps, rcl, CLR_WHITE)
call WinEndPaint(ps)
MainDriver = 0
return

end select

MainDriver = WinDefWindowProc(WinHandle, msg, mp1, mp2)
return

end

subroutine DrawEllipse

record /POINTL/ ptl
integer ps
integer Odd /0/
integer parm1
integer parm2

include ’fshapes.fi’

ps = WinGetPS(WinHandle)
ptl.x = Random(SizeX)
ptl.y = Random(SizeY)
call GpiMove(ps, ptl)
ptl.x = Random(SizeX)
ptl.y = Random(SizeY)
parm1 = Random(32767)
parm2 = Random(32767)
if(Random(10) .ge. 5) then

execute NewColor
call GpiBox(ps, DRO_FILL, ptl, 0, 0)
execute NewColor
call GpiBox(ps, DRO_OUTLINE, ptl, 0, 0)

else
execute NewColor
call GpiBox(ps, DRO_FILL, ptl, parm1, parm2)
execute NewColor
call GpiBox(ps, DRO_OUTLINE, ptl, parm1, parm2)

end if

Calling Presentation Manager API Functions 229

OS/2 Programming Guide

Odd = Odd + 1
Odd = Odd .and. 1
call WinReleasePS(ps)

remote block NewColor
call GpiSetColor(ps, Random(15) + 1)
end block

end

integer function Random(high)
integer high

external urand
real urand
integer seed /75347/
Random = urand(seed) * high

end

The include file fshapes.fi contains the following.

include ’os2.fi’

integer SizeX
integer SizeY
integer FrameHandle
integer WinHandle
integer hMessageQueue
integer AnchorBlock

common /globals/
+ SizeX,
+ SizeY,
+ FrameHandle,
+ WinHandle,
+ hMessageQueue,
+ AnchorBlock

external Random
integer Random

external MainDriver
integer MainDriver

c$pragma aux (FNWP) MainDriver

Notes:

1. Include files with extension .fap define the calling conventions for each of the OS/2 API
functions. These files must be included at the top of each FORTRAN 77 source module.

2. Include files with extension .fi define the data structures and constants used by the OS/2 API
functions. These files must be included in each subprogram that requires them.

3. Each call-back function (i.e. window procedure) must be defined using the following pragma.

c$pragma aux (FNWP) WindowProc

4. The include file os2.fap is included at the beginning of the source file and os2.fi is
included in each subprogram. Also note that a number of macros were defined at the top of the
file. By defining these macros, only those components of the OS/2 API required by the module
will be compiled.

You can compile, link and run this demonstration by issuing the following commands.

230 Calling Presentation Manager API Functions

Programming for OS/2 Presentation Manager

[C:\]set finclude=\watcom\src\fortran\os2
[C:\]wfl386 -l=os2v2_pm fshapes
[C:\]fshapes

Calling Presentation Manager API Functions 231

OS/2 Programming Guide

232 Calling Presentation Manager API Functions

Novell NLM Programming Guide

Novell NLM Programming Guide

234

35 Creating NetWare 386 NLM Applications

Open Watcom FORTRAN 77 supports version 4.0 of the Netware 386 API. We include the following
components:

header files Header files for the Netware 4.0 API are located in the \WATCOM\NOVH directory.

import libraries
Import libraries for the Netware 4.0 API are located in the \WATCOM\NOVI directory.

libraries The FORTRAN 77 libraries for Netware 4.0 is located in the \WATCOM\LIB386 and
\WATCOM\LIB386\NETWARE directories.

debug servers Servers for remote debugging of Netware 4.0 NLMs are located in the \WATCOM\NLM
directory. The same directory also contains the Open Watcom Execution Sampler for
NLMs.

Applications built for version 4.0 will run on 4.1. We do not include support for any API specific to
version 4.1. Netware developers must use the support included with Open Watcom FORTRAN 77 version
10.0 or greater since the version supplied by Novell only works with Open Watcom FORTRAN 77 version
9.5. Netware 4.1 support requires modification to the header files supplied by Novell. Contact Novell for
more information.

The following special notes apply to developing applications for NetWare.

1. You must compile your source files with the small memory model option ("ms").

2. You must compile your source files with the stack-based calling convention option ("sc").

3. You must specify

system NETWARE

when linking an NLM. This is automatic if you are using WFL386 and the "-l=NETWARE"
option.

Creating NetWare 386 NLM Applications 235

Novell NLM Programming Guide

236 Creating NetWare 386 NLM Applications

Mixed Language Programming

Mixed Language Programming

238

36 Inter-Language calls: C and FORTRAN

The purpose of this chapter is to anticipate common questions about mixed-language development using
Open Watcom C/C++ and Open Watcom FORTRAN 77.

The following topics are discussed in this chapter:

• Symbol Naming Convention

• Argument Passing Convention

• Memory Model Compatibility

• Integer Type Compatibility

• How do I pass integers from C to a FORTRAN function?

• How do I pass integers from FORTRAN to a C function?

• How do I pass a string from a C function to FORTRAN?

• How do I pass a string from FORTRAN to a C function?

• How do I access a FORTRAN common block from within C?

• How do I call a C function that accepts a variable number of arguments?

36.1 Symbol Naming Convention

The symbol naming convention describes how a symbol in source form is mapped to its object form.
Because of this mapping, the name generated in the object file may differ from its original source form.

Default symbol naming conventions vary between compilers. Open Watcom C/C++ prefixes an underscore
character to the beginning of variable names and appends an underscore to the end of function names
during the compilation process. Open Watcom FORTRAN 77 converts symbols to upper case. Auxiliary
pragmas can be used to resolve this inconsistency.

Pragmas are compiler directives which can provide several capabilities, one of which is to provide
information used for code generation. When calling a FORTRAN subprogram from C, we want to instruct
the compiler NOT to append the underscore at the end of the function name and to convert the name to
upper case. This is achieved by using the following C auxiliary pragma:

#pragma aux ftnname "^";

The "^" character tells the compiler to convert the symbol name "ftnname" to upper case; no underscore
character will be appended. This solves potential linker problems with "ftnname" since (by C convention)
the linker would attempt to resolve a reference to "ftnname_".

Symbol Naming Convention 239

Mixed Language Programming

When calling C functions from FORTRAN, we need to instruct the compiler to add the underscore at the
end of the function name, and to convert the name to lower case. Since the FORTRAN compiler
automatically converts identifiers to uppercase, it is necessary to force the compiler to emit an equivalent
lowercase name. Both of these things can be done with the following FORTRAN auxiliary pragma:

*$pragma aux CNAME "!_"

There is another less convenient way to do this as shown in the following:

*$pragma aux CNAME "cname_"

In the latter example, the case of the name in quotation marks is preserved.

Use of these pragmas resolves the naming differences, however, the issue of argument passing must still be
resolved.

36.2 Argument Passing Convention

In general, C uses call-by-value (passes argument values) while FORTRAN uses call-by-reference (passes
pointers to argument values). This implies that to pass arguments to a FORTRAN subprogram we must
pass the addresses of arguments rather than their values. C uses the "&" character to signify "address of".

Example:
result = ftnname(&arg);

When calling a C function from FORTRAN, the pragma used to correct the naming conventions must also
instruct the compiler that the C function is expecting values, not addresses.

*$pragma aux CNAME "!_" parm (value)

The "parm (value)" addition instructs the FORTRAN compiler to pass values, instead of addresses.

Character data (strings) are an exception to the general case when used as arguments. In C, strings are not
thought of as a whole entity, but rather as an "array of characters". Since strings are not considered scalar
arguments, they are referenced differently in both C and FORTRAN. This is described in more detail in a
following section.

36.3 Memory Model Compatibility

While it is really not an issue with the 32-bit compilers (both use the default "flat" memory model), it is
important to know that the default memory model used in Open Watcom FORTRAN 77 applications is the
"large" memory model ("ml") with "medium" and "huge" memory models as options. Since the 16-bit
Open Watcom C/C++ default is the "small" memory model, you must specify the correct memory model
when compiling your C/C++ code with the 16-bit C or C++ compiler.

240 Memory Model Compatibility

Inter-Language calls: C and FORTRAN

36.4 Linking Considerations

When both C/C++ and FORTRAN object files are combined into an executable program or dynamic link
library, it is important that you list a least one of the FORTRAN object files first in the Open Watcom
Linker (WLINK) "FILES" directive to guarantee the proper search order of the FORTRAN and C run-time
libraries. If you place a C/C++ object file first, you may inadvertently cause the wrong version of run-time
initialization routines to be loaded by the linker.

36.5 Integer Type Compatibility

In general, the number of bytes used to store an integer type is implementation dependent. In FORTRAN,
the default size of an integer type is always 4 bytes, while in C/C++, the size is architecture dependent. The
size of an "int" is 2 bytes for the 16-bit Open Watcom C/C++ compilers and 4 bytes for the 32-bit
compilers while the size of a "long" is 4 bytes regardless of architecture. It is safest to prototype the
function in C, specifying exactly what size integers are being used. The byte sizes are as follows:

1. LONG - 4 bytes
2. SHORT - 2 bytes

Since FORTRAN uses a default of 4 bytes, we should specify the "long" keyword in C for integer types.

Example:
long int ftnname(long int *, long int *, long int *);

In this case, "ftnname" takes three "pointers to long ints" as arguments, and returns a "long int". By
specifying that the arguments are pointers, and not values, and by specifying "long int" for the return type,
this prototype has solved the problems of argument passing and integer type compatibility.

36.6 How do I pass integers from C to a FORTRAN function?

The following Open Watcom C/C++ routine passes three integers to a FORTRAN function that returns an
integer value.

/* MIX1C.C - This C program calls a FORTRAN function to
* compute the max of three numbers.
*
* Compile/Link: wcl /ml mix1c mix1f.obj /fe=mix1
* wcl386 mix1c mix1f.obj /fe=mix1
*/

#include <stdio.h>

#pragma aux tmax3 "^";
long int tmax3(long int *, long int *, long int *);

How do I pass integers from C to a FORTRAN function? 241

Mixed Language Programming

void main()
{

long int result;
long int i, j, k;

i = -1;
j = 12;
k = 5;
result = tmax3(&i, &j, &k);
printf("Maximum is %ld\n", result);

}

The FORTRAN function:

* MIX1F.FOR - This FORTRAN function accepts three integer
* arguments and returns their maximum.

* Compile: wfc[386] mix1f.for

integer function tmax3(arga, argb, argc)
integer arga, argb, argc

tmax3 = arga
if (argb .gt. tmax3) tmax3 = argb
if (argc .gt. tmax3) tmax3 = argc
end

36.7 How do I pass integers from FORTRAN to a C function?

The following Open Watcom FORTRAN 77 routine passes three integers to a Open Watcom C/C++
function that returns an integer value.

* MIX2F.FOR - This FORTRAN program calls a C function to
* compute the max of three numbers.
*
* Compile/Link: wfl[386] mix2f mix2c.obj /fe=mix2

*$pragma aux tmax3 "!_" parm (value)

program mix2f

integer*4 tmax3
integer*4 result
integer*4 i, j, k

i = -1
j = 12
k = 5
result = tmax3(i, j, k)
print *, ’Maximum is ’, result
end

The C function "tmax3" is shown below.

242 How do I pass integers from FORTRAN to a C function?

Inter-Language calls: C and FORTRAN

/* MIX2C.C - This C function accepts 3 integer arguments
* and returns their maximum.
*
* Compile: wcc /ml mix2c
* wcc386 mix2c
*/

long int tmax3(long int arga,
long int argb,
long int argc)

{
long int result;
result = arga;
if(argb > result) result = argb;
if(argc > result) result = argc;
return(result);

}

36.8 How do I pass a string from a C function to FORTRAN?

Character strings are referenced differently in C and FORTRAN. The C language terminates its strings
with a null character as an End-Of-String (EOS) marker. In this case, C need not store the length of the
string in memory. FORTRAN, however, does not use any EOS marker; hence it must store each string’s
length in memory.

The structure FORTRAN uses to keep track of character data is called a "string descriptor" which consists
of a pointer to the character data (2, 4, or 6 bytes, depending on the data model) followed by an unsigned
integer length (2 bytes or 4 bytes, depending on the data model).

system option size of pointer size of length
------ ------ --------------- --------------
16-bit /MM 16 bits 16 bits
16-bit /ML 32 bits 16 bits
32-bit /MF 32 bits 32 bits
32-bit /ML 48 bits 32 bits

In order to access character data, FORTRAN needs to have access to the data’s string descriptor. Hence,
FORTRAN expects a pointer to a string descriptor to be passed as an argument for character data.

Passing string arguments between C and FORTRAN is a simple task of describing a struct type in C
containing the two fields described above. The first field must contain the pointer to the character data, and
the second field must contain the length of the string being passed. A pointer to this structure can then be
passed to FORTRAN.

* MIX3F.FOR - This FORTRAN program calls a function written
* in C that passes back a string.
*
* Compile/Link: wfl[386] mix3f mix3c.obj /fe=mix3

program mix3f

character*80 sendstr
character*80 cstring

How do I pass a string from a C function to FORTRAN? 243

Mixed Language Programming

cstring = sendstr()
print *, cstring(1:lentrim(cstring))
end

The C function "sendstr" is shown below.

/* MIX3C.C - This C function passes a string back to its
* calling FORTRAN program.
*
* Compile: wcc /ml mix3c
* wcc386 mix3c
*/

#include <string.h>

#pragma aux sendstr "^";

typedef struct descriptor {
char *addr;
unsigned len;

} descriptor;

void sendstr(descriptor *ftn_str_desc)
{

ftn_str_desc->addr = "This is a C string";
ftn_str_desc->len = strlen(ftn_str_desc->addr);

}

36.9 How do I pass a string from FORTRAN to a C function?

By default, FORTRAN passes the address of the string descriptor when passing strings. If the C function
knows it is being passed a string descriptor address, then it is very similar to the above example. If the C
function is expecting normal C-type strings, then a FORTRAN pragma can be used to pass the string
correctly. When the Open Watcom FORTRAN 77 compiler pragma to pass by value is used for strings,
then just a pointer to the string is passed.

Example:
*$pragma aux cname "!_" parm (value)

The following example FORTRAN mainline defines a string, and passes it to a C function that prints it out.

* MIX4F.FOR - This FORTRAN program calls a function written
* in C and passes it a string.
*
* Compile/Link: wfl[386] mix4f mix4c.obj /fe=mix4

*$pragma aux cstr "!_" parm (value)

program mix4f

character*80 forstring

forstring = ’This is a FORTRAN string’//char(0)
call cstr(forstring)
end

244 How do I pass a string from FORTRAN to a C function?

Inter-Language calls: C and FORTRAN

The C function:

/* MIX4C.C - This C function prints a string passed from
* FORTRAN.
*
* Compile: wcc /ml mix4c
* wcc386 mix4c
*/

#include <stdio.h>

void cstr(char *instring)
{

printf("%s\n", instring);
}

36.10 How do I access a FORTRAN common block from
within C?

The following code demonstrates a technique for accessing a FORTRAN common block in a C routine.
The C routine defines an extern struct to correspond to the FORTRAN common block.

* MIX5F.FOR - This program shows how a FORTRAN common
* block can be accessed from C.
*
* Compile/Link: wfl[386] mix5f mix5c.obj /fe=mix5

program mix5f
external put
common/cblk/i,j

i=12
j=10
call put
print *, ’i = ’, i
print *, ’j = ’, j
end

The C function:

/* MIX5C.C - This code shows how to access a FORTRAN
* common block from C.
*
* Compile: wcc /ml mix5c
* wcc386 mix5c
*/

#include <stdio.h>

#pragma aux put "^";
#pragma aux cblk "^";

How do I access a FORTRAN common block from within C? 245

Mixed Language Programming

#ifdef __386__
#define FAR
#else
#define FAR far
#endif

extern struct cb {
long int i,j;

} FAR cblk;

void put(void)
{

printf("i = %ld\n", cblk.i);
printf("j = %ld\n", cblk.j);
cblk.i++;
cblk.j++;

}

For the 16-bit C compiler, the common block "cblk" is described as far to force a load of the segment
portion of the address. Otherwise, since the object is smaller than 32K (the default data threshold), it is
assumed to be located in the DGROUP group which is accessed through the SS segment register.

36.11 How do I call a C function that accepts a variable
number of arguments?

One capability that C possesses is the ability to define functions that accept variable number of arguments.
This feature is not present, however, in the definition of the FORTRAN 77 language. As a result, a special
pragma is required to call these kinds of functions.

*$pragma aux printf "!_" parm (value) caller []

The "caller" specifies that the caller will pop the arguments from the stack. The "[]" indicates that there are
no arguments passed in registers because the printf function takes a variable number of arguments
passed on the stack. The following example is a FORTRAN function that uses this pragma. It calls the
printf function to print the value 47 on the screen.

* MIX6.FOR - This FORTRAN program calls the C
* printf function.

* Compile/Link: wfl[386] mix6

*$pragma aux printf "!_" parm (value) caller []

program mix6

character cr/z0d/, nullchar/z00/

call printf(’Value is %ld.’//cr//nullchar, 47)
end

For more information on the pragmas that are used extensively during inter-language programming, please
refer to the chapter entitled "Pragmas" in both the Open Watcom C/C++ User’s Guide and the Open
Watcom FORTRAN 77 User’s Guide.

246 How do I call a C function that accepts a variable number of arguments?

Common Problems

Common Problems

248

37 Commonly Asked Questions and Answers

As with any sophisticated piece of software, there are topics that are not directly addressed by the
descriptive portions of the manuals. The purpose of this chapter is to anticipate common questions
concerning Open Watcom F77. It is difficult to predict what topics will prove to be useful but with that in
mind, we hope that this chapter will help our customers make full use of Open Watcom F77.

A number of example programs are presented throughout. The source text for these files can be found in
the \WATCOM\SAMPLES\GOODIES directory.

The purpose of this chapter is to present some of the more commonly asked questions from our users and
the answers to these questions. The following topics are discussed:

• How do I determine my current patch level?
• How do I convert to Open Watcom F77?
• What should I know about optimization?
• How do I read a stream of binary data from a file?
• How do I redefine math error handling with Open Watcom F77?
• Why can’t the compiler find my include files?
• Why does the linker report a "stack segment not found" error?
• How do I resolve an "Undefined Reference" linker error?
• Why aren’t local variable values maintained between subprogram calls?
• What does "Stack Overflow!" mean?
• What are the probable causes of a General Protection Fault in 32-bit applications?
• Which floating-point compiler option should I use for my application?
• How can I open more than 20 files at a time?
• How can I see my source files in the debugger?
• What is the difference between the "d1" and "d2" compiler options?
• What is the difference between the "debug" and "d2" compiler options?

37.1 Determining my current patch level

In an effort to immediately correct any problems discovered in the originally shipped product, Open
Watcom provides patches as a continued service to its customers. To determine the current patch level of
your Open Watcom software, a TECHINFO utility program has been provided. This program will display
your current environment variables, the patch level of various Open Watcom software programs, and other
pertinent information, such as your AUTOEXEC.BAT and CONFIG.SYS files. This information proves to
be very useful when reporting a problem to the Technical Support team.

To run TECHINFO, you must ensure the Open Watcom environment variable has been set to the directory
where your Open Watcom software has been installed. TECHINFO will pause after each screenful of
information. The output is also placed in the file TECHINFO.OUT.

Below is an example of some partial output produced by running the TECHINFO utility:

Determining my current patch level 249

Common Problems

Example:
WATCOM’s Techinfo Utility, Version 1.4
Current Time: Thu Oct 27 15:58:34 1994

WATCOM Phone: (519) 884-0702
415 Phillip St. Fax: (519) 747-4971
Waterloo, Ontario
CANADA N2L 3X2

-------------WATCOM C Environment Variables -------------
WATCOM=<c:\watcom>
EDPATH=<c:\watcom\eddat>
INCLUDE=<c:\watcom\h;c:\watcom\h\os2>
FINCLUDE=<c:\watcom\src\fortran;c:\watcom\src\fortran\win>
LIBOS2=<c:\watcom\lib286\os2;c:\watcom\lib286>
PATH=<c:\dos;c:\windows;c:\watcom\binw>
TMP=<h:\temp>
File ’c:\watcom\binw\wcc386.exe’ has been patched to level ’.d’
...etc...

In this example, the software has been patched to level "d". In most cases, all tools will share a common
patch level. However, there are instances where certain tools have been patched to one level while others
are patched to a different level. For example, the compiler may be patched to level "d" while the debugger
is only patched to level "c". Basically, this means that there were no debugger changes in the D-level
patches.

If you run the TECHINFO utility, and determine that you are not at the current patch level, it is
recommended that you update your software. Patches are available on Open Watcom’s bulletin board,
Open Watcom’s FTP site and CompuServe. They are available 24 hours a day. Patches are also available
on the current release CD-ROM. Each patch will include a batch file that allows you to apply the patches
to your existing software. Note that patches must be applied in sequential order, as each patch depends on
the previous one.

37.2 Converting to Open Watcom F77

Applications written in ANSI standard FORTRAN 77 code usually only need to be recompiled with the
Open Watcom F77 compiler. In addition to the ANSI standard, many compilers support specific
extensions. If you are porting code from a UNIX platform or other DOS compilers, check Appendix A -
Extensions to Standard FORTRAN 77 of the Open Watcom FORTRAN 77 Language Reference, to
determine which FORTRAN 77 extensions are supported.

By default, most FORTRAN 77 compilers preserve the values of local variables in a subprogram between
calls. With Open Watcom F77, local variables are kept on the stack and their values are popped from the
stack when exiting a subprogram. To preserve local variables, use the FORTRAN 77 SAVE statement for
variables that you wish to preserve, or the "save" compiler option to preserve all local variables. Note that
the use of the "save" compiler option causes an overall performance degradation.

Open Watcom F77 uses register-based parameter passing as a default, however, the compiler is flexible
enough to use different calling conventions on a per function basis. Auxiliary pragmas can be used to
specify the calling convention that is to be used to interface with assembler code. This enables you to
explicitly state how parameters are to be passed to the assembler code. This topic is described in the
"Pragmas" chapter of the Open Watcom F77 User’s Guide under "Describing Argument Information". See
also the chapter entitled "Inter-Language calls: C and FORTRAN" on page 239.

250 Converting to Open Watcom F77

Commonly Asked Questions and Answers

37.3 What you should know about optimization

The Open Watcom F77 User’s Guide contains a detailed description for each of the optimization options
supported by the compiler. These options allow you to customize the type of code optimizations that are
performed. For instance, the "OS" option can be used to reduce the size of your code, but this may affect
the execution speed. To ensure that the speed of the code is optimized, possibly at the cost of code size, use
the "OT" option. The "OX" option, intended for the maximum number of optimizations, generates code
that is a combination of "OM" (inline math functions), "OL" (loop), "OT" (time) and the "OR" (instruction
scheduling) optimization options. Note that when you are using the "OM" option to generate inline math
functions no argument validation will be done for the intrinsic math functions such as "sin" or "cos".
Consider the needs of your application and select the optimization options that best meet your
requirements.

Hint: The definitive reference on compiler design is the "dragon" book "Compilers - Principles,
Techniques, and Tools", Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, published by
Addison-Wesley, Reading, Massachusetts, 1986. The authors of the "dragon" book advocate a
conservative approach to code generation where optimizations must preserve the semantics of the
original program. The conservative approach is used throughout the Open Watcom F77 compiler to
ensure that programmers can use the compiler without worrying about the semantics of their program
being changed.

There are certain pieces of information which the compiler cannot derive from the source code. The
"*$pragma" compiler directive is used to provide extra information to the compiler. It is necessary to have
a complete understanding of both FORTRAN 77 and the machine architecture (i.e., 80x86) before using the
powerful pragma compiler directives. See the "Pragmas" chapter in the Open Watcom F77 User’s Guide
for more details.

Debugging optimized programs is difficult because variables can be assigned to different locations (i.e.,
memory or registers) in different parts of the function. The "d2" compiler option will restrict the amount of
optimization so that variables occupy one location and can be easily displayed. It follows that the "d2"
option is useful for initial development but production programs should be compiled with only the "d1"
option for the best code quality. Before you distribute your application to others, you may wish to use the
Open Watcom Strip Utility (WSTRIP) to remove debugging information from the executable image on disk
thereby reducing disk space requirements.

Hint: The "d2" compiler option will generate symbolic information (for every local variable) and line
number information for the source file. The "d1" compiler option will only generate line number
information for the source file. The use of these options determines what kind of information will be
available for the particular module during the debugging session.

37.4 Reading a stream of binary data from a file

The Open Watcom F77 allows for three types of binary data file formats:

Reading a stream of binary data from a file 251

Common Problems

• Variable length, unformatted sequential access binary records,

• Fixed length, unformatted direct access binary records, and

• Unformatted, sequential, binary data with a fixed record type.

Variable length binary records are preceded by a four byte descriptor that indicates the length of the record
in bytes. The end of the binary record is also marked by another descriptor tag specifying the length.
Binary records that are of a fixed length are kept in a direct access, unformatted file. Refer to the Open
Watcom F77 User’s Guide section on File Handling for more information on file formats.

Binary data files that have no structure or record length information may be read if you open the file as a
sequential, unformatted file with a fixed record type. This allows you to read files that contain a stream of
binary data without any inherent record format. If you know the type of data that is contained in the binary
file, you may then read the binary data directly into variables. The following program provides an example
of reading binary stream data.

* BINDATA.FOR - This program demonstrates how to read a
* binary data file that does not have any defined records.

program bindata

integer BinArray(20)
integer i

open(unit=1, file=’bindata.fil’,
+ access=’sequential’,
+ form=’unformatted’,
+ recordtype=’fixed’)

* Read 20 integers from the binary data file
do i = 1, 20

read(1) BinArray(i)
end do

* Write the extracted values to standard output
do i = 1, 20

write(*, *) BinArray(i)
end do
end

37.5 Redefining math error handling with Open Watcom F77

If you wish to customize math error handling for your application, you can create your own math error
handling procedure. The following illustrates the procedures for trapping errors by way of an example.
See the Open Watcom F77 User’s Guide for a description of the fsignal subroutine and math library
error handling.

The main program example "MATHDEMO" is a FORTRAN program that contains a floating-point divide
by zero error, a floating-point overflow error, a floating-point underflow error, and an invalid argument to a
math library function.

252 Redefining math error handling with Open Watcom F77

Commonly Asked Questions and Answers

program mathdemo

* MATHDEMO.FOR - This program forms part of a collection of FORTRAN
* code that demonstrates how to take over control of
* math error handling from the run-time system.

* Compile: wfl[386] mathdemo cw87 _matherr

* Notes:
* (1) We call "cw87" to enable underflow exceptions which are
* masked (ignored) by default.
* (2) The signal handler must be re-installed after each signal
* (it can also be re-installed even when there is no signal).
* (3) To prevent compile-time constant folding in expressions,
* we add log(1.0) which is 0. We do this for the sake of
* demonstrating exception handling.

implicit none

double precision x, y, z

call cw87 ! init 80x87 control word

call resetFPE ! install signal handler
print *, ’ ’
print *, ’Divide by zero will be attempted’
x = 1.0d0 + DLOG(1.0d0)
y = 0.0d0
z = x / y
call chkFPE ! check for exception
print *, z

call resetFPE ! install signal handler
print *, ’ ’
print *, ’Overflow will be attempted’
x = 1.2d300 + DLOG(1.0d0)
y = 1.2d300
z = x * y
call chkFPE ! check for exception
print *, z

call resetFPE ! install signal handler
print *, ’ ’
print *, ’Underflow will be attempted’
x = 1.14d-300 + DLOG(1.0d0)
y = 2.24d-308
z = x * y
call chkFPE ! check for exception
print *, z

call resetFPE ! install signal handler
print *, ’ ’
print *, ’Math error will be attempted’
x = -12.0
! an exception will not be generated since the intrinsic function
! will validate the argument - if you compile with -om, the "fsqrt"
! 80x87 instruction will be generated in-line and an exception
! will occur
y = SQRT(x)
call chkFPE ! check for exception
print *, x, y
end

Redefining math error handling with Open Watcom F77 253

Common Problems

subroutine resetFPE
include ’fsignal.fi’
external fpe_handler
logical fpe_flag
integer fpe_sig, fpe_fpe
common fpe_flag, fpe_sig, fpe_fpe
fpe_flag = .false.
call fsignal(SIGFPE, fpe_handler)
end

*$pragma aux fpe_handler parm(value)

subroutine fpe_handler(sig, fpe)
integer sig, fpe
logical fpe_flag
integer fpe_sig, fpe_fpe
common fpe_flag, fpe_sig, fpe_fpe
fpe_flag = .true.
fpe_sig = sig
fpe_fpe = fpe
end

*$pragma aux fwait = "fwait"

subroutine chkFPE
include ’fsignal.fi’
logical fpe_flag
integer fpe_sig, fpe_fpe
common fpe_flag, fpe_sig, fpe_fpe

* Notes:
* (1) An fwait is required to make sure that the last
* floating-point instruction has completed.
* (2) "volatile" is not needed here but would be
* needed in main program if it references "fpe_flag"

call fwait()
if(volatile(fpe_flag)) then

print *, ’*ERROR* exception occurred’,
& fpe_sig, fpe_fpe

if(fpe_fpe .eq. FPE_INVALID)then
print *, ’Invalid’

else if(fpe_fpe .eq. FPE_DENORMAL)then
print *, ’Denormalized operand error’

else if(fpe_fpe .eq. FPE_ZERODIVIDE)then
print *, ’Divide by zero error’

else if(fpe_fpe .eq. FPE_OVERFLOW)then
print *, ’Overflow error’

else if(fpe_fpe .eq. FPE_UNDERFLOW)then
print *, ’Underflow error’

else if(fpe_fpe .eq. FPE_INEXACT)then
print *, ’Inexact result (precision)then error’

else if(fpe_fpe .eq. FPE_UNEMULATED)then
print *, ’Unemulated instruction error’

else if(fpe_fpe .eq. FPE_SQRTNEG)then
print *, ’Square root of a negative number error’

else if(fpe_fpe .eq. FPE_STACKOVERFLOW)then
print *, ’NDP stack overflow error’

else if(fpe_fpe .eq. FPE_STACKUNDERFLOW)then
print *, ’NDP stack underflow error’

else if(fpe_fpe .eq. FPE_EXPLICITGEN)then
print *, ’SIGFPE signal raised (software)’

else if(fpe_fpe .eq. FPE_IOVERFLOW)then
print *, ’Integer overflow error’

endif
else

print *, ’*OK* no exception occurred’
endif
end

The following subroutine illustrates how to enable or disable particular types of floating-point exceptions.

254 Redefining math error handling with Open Watcom F77

Commonly Asked Questions and Answers

subroutine cw87

* CW87.FOR
* This subroutine uses the C Library routine "_control87"
* to modify the math coprocessor exception mask.

* Compile: wfc[386] cw87

include ’fsignal.fi’

character*9 status(0:1)/’ disabled’,’ enabled’/
integer fp_cw, fp_mask, bits, i

* Enable floating-point underflow since default is disabled.
* The mask defines which bits we want to change (1 means change,
* 0 means do not change). The corresponding bit in the control
* word (fp_cw) is set to 0 to enable the exception or 1 to disable
* the exception. In this example, we change only the underflow
* bit and leave the others unchanged.

fp_mask = EM_UNDERFLOW ! mask for the bits to set/reset
fp_cw = ’0000’x ! new bit settings (0=enable/1=disable)
fp_cw = _control87(fp_cw, fp_mask)

* Now get up-to-date setting

fp_cw = _control87(0, 0)

bits = IAND(fp_cw, MCW_EM)
print ’(a,1x,z4)’, ’Interrupt Exception Mask’, bits
i = 0
if(IAND(fp_cw, EM_INVALID) .eq. 0) i = 1
print *, ’ Invalid Operation exception’, status(i)
i = 0
if(IAND(fp_cw, EM_DENORMAL) .eq. 0) i = 1
print *, ’ Denormalized exception’, status(i)
i = 0
if(IAND(fp_cw, EM_ZERODIVIDE) .eq. 0) i = 1
print *, ’ Divide-By-Zero exception’, status(i)
i = 0
if(IAND(fp_cw, EM_OVERFLOW) .eq. 0) i = 1
print *, ’ Overflow exception’, status(i)
i = 0
if(IAND(fp_cw, EM_UNDERFLOW) .eq. 0) i = 1
print *, ’ Underflow exception’, status(i)
i = 0
if(IAND(fp_cw, EM_PRECISION) .eq. 0) i = 1
print *, ’ Precision exception’, status(i)
end

The following subroutine illustrates how to replace the run-time system’s math error handler. Source code
similar to this example is provided with the software (look for the file _matherr.for).

*
* _MATHERR.FOR : math error handler
*
* Compile: wfc[386] _matherr

*$pragma aux __imath2err "*_" parm(value, reference, reference)
*$pragma aux __amath1err "*_" parm(value, reference)
*$pragma aux __amath2err "*_" parm(value, reference, reference)
*$pragma aux __math1err "*_" parm(value, reference)
*$pragma aux __math2err "*_" parm(value, reference, reference)
*$pragma aux __zmath2err "*_" parm(value, reference, reference)
*$pragma aux __qmath2err "*_" parm(value, reference, reference)

Redefining math error handling with Open Watcom F77 255

Common Problems

integer function __imath2err(err_info, arg1, arg2)
integer err_info
integer arg1, arg2
include ’mathcode.fi’
arg1 = arg1 ! to avoid unreferenced warning message
arg2 = arg2 ! to avoid unreferenced warning message
if((err_info .and. M_DOMAIN) .ne. 0)then

select(err_info .and. FUNC_MASK)
case(FUNC_POW)

print *, ’arg2 cannot be <= 0’
case(FUNC_MOD)

print *, ’arg2 cannot be 0’
end select

end if
__imath2err = 0
end

real function __amath1err(err_info, arg1)
integer err_info
real arg1
include ’mathcode.fi’
arg1 = arg1 ! to avoid unreferenced warning message
if((err_info .and. M_DOMAIN) .ne. 0)then

select(err_info .and. FUNC_MASK)
case(FUNC_COTAN)

print *, ’overflow’
end select

end if
__amath1err = 0.0
end

real function __amath2err(err_info, arg1, arg2)
integer err_info
real arg1, arg2
include ’mathcode.fi’
arg1 = arg1 ! to avoid unreferenced warning message
arg2 = arg2 ! to avoid unreferenced warning message
if((err_info .and. M_DOMAIN) .ne. 0)then

select(err_info .and. FUNC_MASK)
case(FUNC_MOD)

print *, ’arg2 cannot be 0’
end select

end if
__amath2err = 0.0
end

double precision function __math1err(err_info, arg1)
integer err_info
double precision arg1, __math2err
__math1err = __math2err(err_info, arg1, arg1)
end

double precision function __math2err(err_info, arg1, arg2)
integer err_info
double precision arg1, arg2
include ’mathcode.fi’
arg1 = arg1 ! to avoid unreferenced warning message
arg2 = arg2 ! to avoid unreferenced warning message

256 Redefining math error handling with Open Watcom F77

Commonly Asked Questions and Answers

if((err_info .and. M_DOMAIN) .ne. 0)then
select(err_info .and. FUNC_MASK)
case(FUNC_SQRT)

print *, ’argument cannot be negative’
case(FUNC_ASIN, FUNC_ACOS)

print *, ’argument must be less than or equal to one’
case(FUNC_ATAN2)

print *, ’both arguments must not be zero’
case(FUNC_POW)

if(arg1 .eq. 0.0)then
print *, ’a zero base cannot be raised to a ’,

& ’negative power’
else ! base < 0 and non-integer power

print *, ’a negative base cannot be raised to a ’,
& ’non-integral power’

endif
case(FUNC_LOG, FUNC_LOG10)

print *, ’argument must not be negative’
end select

else if((err_info .and. M_SING) .ne. 0)then
if(((err_info .and. FUNC_MASK) .eq. FUNC_LOG) .or.

& ((err_info .and. FUNC_MASK) .eq. FUNC_LOG10))then
print *, ’argument must not be zero’

endif
else if((err_info .and. M_OVERFLOW) .ne. 0)then

print *, ’value of argument will cause overflow condition’
else if((err_info .and. M_UNDERFLOW) .ne. 0)then

print *, ’value of argument will cause underflow ’,
& ’condition - return zero’
end if
__math2err = 0
end

complex function __zmath2err(err_info, arg1, arg2)
integer err_info
complex arg1, arg2
include ’mathcode.fi’
arg1 = arg1 ! to avoid unreferenced warning message
arg2 = arg2 ! to avoid unreferenced warning message
if((err_info .and. M_DOMAIN) .ne. 0)then

select(err_info .and. FUNC_MASK)
case(FUNC_POW)

! arg1 is (0,0)
if(imag(arg2) .ne. 0)then

print *, ’a zero base cannot be raised to a’,
& ’ complex power with non-zero imaginary part’

else
print *, ’a zero base cannot be raised to a’,

& ’ complex power with non-positive real part’
endif

end select
end if
__zmath2err = (0,0)
end

Redefining math error handling with Open Watcom F77 257

Common Problems

double complex function __qmath2err(err_info, arg1, arg2)
integer err_info
double complex arg1, arg2
include ’mathcode.fi’
arg1 = arg1 ! to avoid unreferenced warning message
arg2 = arg2 ! to avoid unreferenced warning message
if((err_info .and. M_DOMAIN) .ne. 0)then

select(err_info .and. FUNC_MASK)
case(FUNC_POW)

! arg1 is (0,0)
if(imag(arg2) .ne. 0)then

print *, ’a zero base cannot be raised to a’,
& ’ complex power with non-zero imaginary part’

else
print *, ’a zero base cannot be raised to a’,

& ’ complex power with non-positive real part’
endif

end select
end if
__qmath2err = (0,0)
end

37.6 The compiler cannot find my include files

In order to locate your INCLUDE files, the compiler first searches your current directory, then each
directory listed in the FINCLUDE environment variable (in the order that they are specified). If the
compiler reports that it is unable to find one of your include files, change the FINCLUDE environment
variable by adding the directory path to your include files. For more information on setting the
environment variable, refer to the "Compiling an Application" chapter of the Open Watcom F77 User’s
Guide.

37.7 The linker reports a "stack segment not found" error

The linker usually reports the error "1014: stack segment not found" when it is unable to find the run-time
libraries required to link your application. To ensure you are linking with the correct run-time libraries,
check to see that your link command contains the correct "SYSTEM" directive. As well, the WATCOM
environment variable should be pointing to the directory containing the Open Watcom F77 software. For a
Open Watcom F77 application, if this error is followed by the error "1023: no starting address found", it
may indicate that you are attempting to link code that does not have a main program procedure. Ensure that
you include your main program object module with your linker directives.

With FORTRAN 77, "STACK" is a reserved word. If you use "STACK" as the name of a common block,
this may also result in the "Stack Segment Not Found" error. Check the names of your common blocks and
rename them if necessary.

37.8 Resolving an "Undefined Reference" linker error

The Open Watcom Linker builds an executable file by a process of resolving references to functions or data
items that are declared in other source files. Certain conditions arise that cause the linker to generate an
"Undefined Reference" error message. An "Undefined Reference" error message will be displayed by the
linker when it cannot find a function or data item that was referenced in the program. Verify that you have
included all the required object modules in the linker command and that you are linking with the correct
libraries.

258 Resolving an "Undefined Reference" linker error

Commonly Asked Questions and Answers

The "SYSTEM" linker directive should be used to indicate the target environment for the executable. This
directive specifies the format of the executable and the libraries for the target environment. Verify that the
WATCOM environment variable is set to the directory that Open Watcom F77 was installed in since it is
used to complete the library path in the "SYSTEM" directive. You may also explicitly include a library
using the "LIBRARY" linker directive.

If the linker reports an unresolved reference for "_cstart_", this indicates that the linker could not find the
FORTRAN 77 run-time libraries. In 16-bit applications, the FORTRAN 77 run-time libraries for the
medium memory model (-mm) and the floating-point calls floating-point model (-fpc) would be
flibm.lib. In 32-bit applications, the FORTRAN 77 run-time libraries for the flat memory model
would be flib.lib. Verify that the "LIB" environment variable has been set to point to the correct
WATCOM library directories and that the library corresponds to the memory and floating-point model that
you selected.

37.9 Why local variable values are not maintained between
subprogram calls

By default, the local variables for a subprogram are stored on the stack and are not initialized. When the
subprogram returns, the variables are popped off the stack and their values are lost. If you want to preserve
the value of a local variable, after the execution of a RETURN or END statement in a subprogram, the
FORTRAN 77 SAVE statement or the "save" compiler option can be used.

Using the FORTRAN 77 SAVE statement in your program allows you to explicitly select which values you
wish to preserve. The SAVE statement ensures that space is allocated for a local variable from static
memory and not the stack. Include a SAVE statement in your FORTRAN 77 code for each local variable
that you wish to preserve.

To automatically preserve all local variables, you can use the "save" compiler option. This option adds
code to initialize and allocate space for each local variable in the program. This is equivalent to specifying
a SAVE statement. The "save" option makes it easier to ensure that all the variables are preserved during
program execution, but it increases the size of the code that is generated. You may wish to use this option
during debugging to help diagnose bugs caused by corrupted local values. Usually, it is more efficient to
use SAVE statements rather than the general "save" compiler option. You should selectively use the SAVE
statement for each subprogram variable that you want to preserve until the next call. This leads to smaller
code than the "save" option and avoids the overhead of allocating space and initializing values
unnecessarily.

37.10 What "Stack Overflow!" means

The memory used for local variables is allocated from the function call stack although the Open Watcom
compilers will often use registers for local variables. The size of the function call stack is limited at
link-time and it is possible to exceed the amount of stack space during execution.

There are various ways of protecting against stack overflow errors. First, one should minimize the number
of recursive functions used in an application program. This can be done by recoding recursive functions to
use loops.

The user may also optionally force the compiler to use static storage for all local variables (Open Watcom
F77 "save" option). This would eliminate most stack problems for FORTRAN programs. These
techniques will reduce the amount of stack space required but there still may be times where the default

What "Stack Overflow!" means 259

Common Problems

amount of stack space is insufficient. The Open Watcom Linker (WLINK) allows the user to set the
amount of stack space at link-time through the directive "OPTION STACK=size" where size may be
specified in bytes with an optional "k" suffix for kilobytes (1024 bytes).

Example:
option stack=9k

Note that with the Open Watcom F77 run-time system, the I/O routines require 4k of stack space. If your
application requires 5K of stack space, set aside 9K to allow for 4K of I/O stack space in addition to the
stack space required by the application.

Debugging a program that reports a stack overflow error can be accomplished with the following sequence.

1. Load your application into the debugger

2. Set a breakpoint at __STKOVERFLOW

3. Run the application until the breakpoint at __STKOVERFLOW is triggered

4. Issue the debugger "show calls" command. This will display a stack traceback giving you the
path of calls that led up to the stack overflow situation.

The solution to the stack overflow problem at this point depends on the programmer.

37.11 What are the probable causes of a General Protection
Fault in 32-bit applications?

If you are running a 32-bit application using DOS/4GW, a program crash may report an "Unexpected
Interrupt 0D" general protection fault error. The Phar Lap DOS extender would report an "Abnormal
Program Termination" general protection fault error. This often indicates that something in your program
has tried to access an invalid memory location. In a Open Watcom F77 application, the most likely causes
of a general protection fault are:

• Attempting to access an array out of bounds.

• Running out of stack space.

• Passing incorrect parameter types to a function.

To help locate the cause of the protection fault, compile your program with the "debug" and "stack"
options. With these options, code will be added to your application to help identify these problems and
generate run-time error messages when they are encountered. In addition, the "stack" option checks for
stack overflow conditions by including code at the beginning of each subprogram.

If you still encounter general protection faults after compiling with "debug" and "stack", then debug the
program using the debugger. This will help to identify the location of the crash and the state of your
parameters and variables at the time of the crash.

260 What are the probable causes of a General Protection Fault in 32-bit applications?

Commonly Asked Questions and Answers

37.12 Which floating-point compiler option should I use for
my application?

The answer to this question depends on the expected target machines for your application. If you know that
a co-processor will be available, use the "fpi87" compiler option to optimize the run-time performance of
the application.

When you are running a FORTRAN 77 application on a machine with or without a co-processor and you
want to favour the use of emulation libraries over code size, use the "fpc" option. The "fpc" option will
also take advantage of an 80x87 co-processor if it is available. If your application needs to be flexible
enough to run either with or without a co-processor, the "fpc" option is recommended.

The "fpi" option is the default floating-point option and can be used with or without a co-processor. On
machines that do not have a co-processor, you may notice that programs compiled using "fpc" run faster
than those compiled with "fpi". This occurs because the "fpc" option uses the floating-point libraries
directly whereas the "fpi" option interfaces with an emulator interrupt handler. Although the "fpi" option is
slower than "fpc" without a co-processor, the code that it generates is smaller.

When you are running an application that has been compiled with "fpi", the startup code checks to
determine whether a math co-processor is present. If it is not present, the emulator hook is installed at the
INT 7h interrupt to manage the co-processor requests and convert them to the emulation library calls. Each
time a floating-point operation is requested, the processor issues an INT 7h.

For 16-bit applications, the interrupt handler overhead accounts for the performance discrepancy between
the "fpc" and "fpi" options.

For 32-bit applications, the manner in which this interrupt is handled depends on the DOS extender.
Depending on the DOS extender, there are two methods of managing floating-point instructions through the
interrupt handler. The DOS extender will either pass the interrupt directly to the INT 7h handler or it will
perform some intermediary steps. Similarly, there is a delay after the interrupt as control is passed back
through the DOS extender. Passing floating-point handling from the DOS extender to the interrupt handler
results in the performance degradation. This performance degradation may vary across DOS extenders. It
is the overhead of transferring the call through an interrupt that leads to the speed difference between "fpi"
and "fpc". If you need to run an application on machines without math co-processors, and you want to
ensure that your performance is optimal, build your application using the "fpc" option rather than "fpi".

In a Windows environment, both the "fpi87" and the "fpi" options will use floating-point emulation if a
co-processor is not available. Windows floating-point emulation is provided through Open Watcom’s
"WEMU387.386". "WEMU387.386" is royalty free and may be redistributed with your application. For
machines that do not have a math co-processor, install "WEMU387.386" as a device in the [386Enh]
section of the Windows SYSTEM.INI file to handle the floating-point operations. Note that the speed of
code using "WEMU387.386" on machines without a co-processor will be much slower than code compiled
with the "fpc" option that always uses floating-point libraries.

Which floating-point compiler option should I use for my application? 261

Common Problems

37.13 How more than 20 files at a time can be opened

The number of file handles allowed by Open Watcom F77 is initialized to 20 in stdio.h, but this can be
changed by the application developer. To change the number of file handles allowed with Open Watcom
F77, follow the steps outlined below.

1. Let n represent the number of files the application developer wishes to have open. Ensure that
the stdin, stdout, stderr, stdaux, and stdprn files are included in the count.

2. Change the CONFIG.SYS file to include "files=n" where "n" is the number of file handles
required by the application plus an additional 5 handles for the standard files (this applies to
DOS 5.0). The number "n" may vary depending on your operating system and version. If you
are running a network such as Novell’s NetWare, this will also affect the number of available
file handles. In this case, you may have to increase the number specified in the "files=n"
statement.

3. Add a call to GROWHANDLES in your application.

The following example illustrates the use of GROWHANDLES.

Example:
* FHANDLES.FOR
*
* This FORTRAN program grows the number of file handles so
* more than 16 files can be opened. This program
* illustrates the interaction between GROWHANDLES and
* the DOS 5.0 file system. If you are running a network
* such as Novell’s NetWare, this will also affect the
* number of available file handles. In the actual trial,
* FILES=40 was specified in CONFIG.SYS.

* Compile/Link: set finclude=\watcom\src\fortran
* wfl[386] fhandles

* Get proper typing information from include file
include ’fsublib.fi’

integer i, j, maxh, maxo
integer tmpfile
integer units(7:57)

do i = 25, 40

* Count 5 for stdin, stdout, stderr, stdaux,
* and stdprn

print 100, 5 + i
maxh = growhandles(5 + i)
print *, ’Growhandles=’,maxh
maxo = 0

262 How more than 20 files at a time can be opened

Commonly Asked Questions and Answers

do j = 7, 7 + maxh

print *, ’Attempting file’, j
units(j) = tmpfile(j)
if(units(j) .eq. 0)goto 10
maxo = maxo + 1

enddo

10 print 101, maxo, maxh

do j = 7, 7 + maxo
close(units(j))

enddo
enddo

100 format(’Trying for ’,I2,’ handles... ’,$)
101 format(I2,’/’,I2,’ temp files opened’)

end

integer function tmpfile(un)
integer un, ios
open(unit=un, status=’SCRATCH’, iostat=ios)
if(ios .eq. 0)then

write(unit=un, fmt=’(I2)’, err=20) un
tmpfile = un
return

endif
20 tmpfile = 0

end

37.14 How source files can be seen in the debugger

The selection and use of debugging information is important for getting the most out of the Open Watcom
Debugger. If you are not able to see your source code in the Open Watcom Debugger source window,
there are three areas where things may have gone wrong, namely:

1. using the correct option for the Open Watcom F77.
2. using the correct directives for the Open Watcom Linker.
3. using the right commands in the Open Watcom Debugger.

The Open Watcom F77 compiler takes FORTRAN 77 source and creates an object file containing the
generated code. By default, no debugging information is included in the object file. The compiler will
output debugging information into the object file if you specify a debugging option during the compile.
There are two levels of debugging information that the compiler can generate:

1. Line numbers and local variables ("d2" option)
2. Line numbers ("d1" option)

The options are used to determine how much debugging information will be visible when you are
debugging a particular module. If you use the "d2" option, you will be able to see your source file and
display your local variables. The "d1" option will display the source but will not give you access to local
variable information.

The Open Watcom Linker (WLINK) is the tool that puts together a complete program and sets up the
debugging information for all the modules in the executable file. There is a linker directive that indicates to

How source files can be seen in the debugger 263

Common Problems

the linker when it should include debugging information from the modules. There are five levels of
debugging information that can be collected during the link. These are:

1. global names (DEBUG)
2. global names, line numbers (DEBUG LINE)
3. global names, types (DEBUG TYPES)
4. global names, local variables (DEBUG LOCALS)
5. all of the above (DEBUG ALL)

Notice that global names will always be included in any request for debugging information. The debugging
options can be combined

DEBUG LINE, TYPES

with the above directive resulting in full line number and typing information being available during
debugging. The directives are position dependent so you must precede any object files and libraries with
the debugging directive. For instance, if the file mylink.lnk contained:

#
invoke with: wlink @mylink
#
file main
debug line
file input, output
debug all
file process

then the modules input and output will have global names and source line information available during
debugging. All debugging information in the module process will be available during debugging.

Hint: A subtle point to debugging information is that all the modules will have global names available
if any debugging directive is used. In the above example, the module main will have global name
information even though it does not have a DEBUG directive preceding it.

It is preferable to have one DEBUG directive before any FILE and LIBRARY directives. You might
wonder if this increases the size of the executable file so that it will occupy too much memory during
debugging. The debugging information is loaded "on demand" by the debugger during the debugging
session. A small amount of memory (40k default, selectable with the Open Watcom Debugger "dynamic"
command line option) is used to hold the most recently used module debugging information. In practice,
this approach saves a lot of memory because most debugging information is never used. The overhead of
accessing the disk for debugging information is negligible compared to accessing the source file
information. In other words, you can have as much debugging information as you want included in the
executable file without sacrificing memory required by the program. See the section entitled "The DEBUG
Directive" in the Open Watcom Linker User’s Guide for more details.

If the previous steps have been followed, you should be well on your way to debugging your programs with
source line information. There are instances where the Open Watcom Debugger cannot find the
appropriate source file even though it knows all the line numbers. The problem that has surfaced involves
how the source file is associated with the debugging information of the module. The original location of
the source file is included in the debugging information for a module. The name that is included in the
debugging information is the original name that was on the Open Watcom F77 command line. If the
original filename is no longer valid (i.e., you have moved the executable to another directory), the Open
Watcom Debugger must be told where to find the source files. The Open Watcom Debugger "Source Path"

264 How source files can be seen in the debugger

Commonly Asked Questions and Answers

menu item (under "File") can be used to supply new directories to search for source files. If your source
files are located in two directories, the following paths can be added in the Open Watcom Debugger:

c:\program\fortran*.for
c:\program\new\fortran*.for

The "*" character indicates where the module name will be inserted while the Open Watcom Debugger is
searching for the source file. See the description of the "Source Path" menu item in the Open Watcom
Debugger User’s Guide for more details.

37.15 The difference between the "d1" and "d2" compiler
options

The reason that there are two levels of debugging information available is that the code optimizer can
perform many more optimizations and still maintain "d1" (line) information. The "d2" option forces the
code optimizer to ensure that any local variable can be displayed at any time in the function.

The "d2" option will always generate code and debugging information so that you can print the value of
any variable during the execution of the function. In order to get the best code possible and still see your
source file while debugging, the "d1" option only generates line number information into the object file.
With line number information, much better code can be generated. The debugging of programs that have
undergone extensive optimization can be difficult, but with the source line information it is much easier.
To summarize, use the "d2" compiler option if you are developing a module and you would like to be able
to display each local variable. The "d1" compiler option will give you line number information and the best
generated code possible. There is absolutely no reason not to specify the "d1" option because the code
quality will be identical to code generated without the "d1" option.

37.16 The difference between the "debug" and "d2" compiler
options

The "d2" (and "d1") compiler options are used to add debugging information to your executable. The "d2"
option makes line numbering, local symbol and typing information available to the debugger whereas "d1"
only provides line number debugging information to the debugger. This information is used during a
debugging session to examine the state of variables and to provide the source code display.

The "debug" option provides run-time error messages that are independent of the Open Watcom Debugger.
The "debug" option causes the generation of run-time error checking code. This includes subscript and
substring bounds checking as well as code that allows a run-time traceback to be issued when an error
occurs. During the execution of the application, if an error occurs, the code added with the "debug" option
will halt the program and provide an informative error message.

The difference between the "debug" and "d2" compiler options 265

Index

1 A

16-bit 123 A20 line 33-34
16-bit DLL 151 address line 20 34
16-bit DOS applications 5 AllocAlias16 160, 132-133, 161, 168, 178
16-bit far pointer 123 ALLOCATE 124, 132, 134, 144, 164
16-bit near pointer 123 AllocHugeAlias16 161, 132, 161, 169, 178
16-bit OS/2 1.x applications 209 answers to general problems 249
16-bit Windows 3.x applications 103 API special functions 183
16-bit Windows 3.x non-GUI applications 107 application development 1
_16xxx functions 183 array 124-125, 132

autopassup range 40

3
B

32-bit 123
32-bit DLL 139, 151 BBS 250
32-bit DOS/4GW applications 13 beginthread function 195, 217
32-bit far pointer 123 binary data 251
32-bit gates 40 binding 32-bit applications 114, 119
32-bit near pointer 123 binding a 32-bit DLL 115, 120
32-bit OS/2 applications 213 BINP directory 211
32-bit Phar Lap 386|DOS-Extender applications 9 BINW directory 115, 120
32-bit Windows 3.x applications 113 building 386|DOS-Extender applications 10
32-bit Windows 3.x non-GUI applications 117 building DOS applications 5
386enh 130 building DOS/4GW applications 13

building OS/2 1.x applications 210
building OS/2 applications 214
building Windows 3.x applications 104, 114
building Windows NT applications 1924
bulletin board 250

4GWPRO.EXE 96

C

8
_Call16 162, 137, 172, 181-182
cdecl 137, 162, 166
class 131

8042 auxiliary processor 33 common questions 249
DOS/4GW 85

Compaq 386 memory 32
CompuServe 250
CONFIG.SYS 211
converting to Open Watcom F77 250

common problems 250

267

Index

what you need to know 250 32-bit Windows example 140
cstart 259 creating 147-148

debugging 147
debugging example 149
installing example 148
OS/2 2.x 221D
passing information in a structure 144
running example 149
summary 150

d1 251 Windows NT 199
d1 versus d2 265 DLL access
d2 251 OS/2 2.x 223
d2 versus debug 265 Windows NT 202
DEALLOCATE 134 DLL creation
DEBUG option 260 OS/2 2.x 221
debug versus d2 265 Windows NT 199
debugger option DLL directory 211

d1 265 DLL initialization
d2 265 OS/2 2.x 225

debugging 251 Windows NT 204
optimized programs 251 DLL sample
stack overflow 259 OS/2 2.x 222
techniques 259 Windows NT 200

debugging 386|DOS-Extender applications 10 DLL termination
debugging DOS applications 6 OS/2 2.x 225
debugging DOS/4GW applications 14 Windows NT 204
debugging information DLL_CHAR 164

global variables 263 DLL_DWORD 164
line numbering 263 DLL_ENDLIST 164
local variables 263 DLL_PTR 164
Open Watcom Debugger 264 DLL_WORD 164
Open Watcom F77 263 DOS extenders
source file 263 common problems 17
types 263 DOS file I/O 93
WLINK 263 DOS memory management 49

debugging Non-GUI 16-bit Windows 3.x applications DOS Protected-Mode Interface 43
109 DOS/4GW

debugging Non-GUI 32-bit Windows 3.x applications 4GWPRO.EXE 96
120 address line 20 34

debugging OS/2 1.x applications 210 asynchronous interrupts 90
debugging OS/2 applications 214 cannot lock stack 100
debugging Windows 3.x applications 104, 115 chaining handlers 41
debugging Windows NT applications 192 code and data addresses 89
default type 129 common questions 85
default windowing library functions 110, 121 contacting Tenberry 86
DefineDLLEntry 164 Ctrl-Break handling 91
DefineUserProc16 166, 174 debugger version 96
DELETESWAP virtual memory option 35, 94-95 debugging bound applications 96
distribution rights 130 demand-loading 94
DLL differences with DOS/4G 87

16-bit 151 differences with Professional version 86
16-bit calls into 32-bit DLLs 141 documentation 86
32-bit 139, 151 DOS file I/O 93
32-bit calls into 32-bit DLLs 143 DOSX.EXE 100

268

Index

DPMI support 88 MAXMEM 95
EMM386.EXE 99 MINMEM 95
error messages 80 SWAPINC 94-95
extender messages 77 SWAPMIN 94-95
extra memory 32 SWAPNAME 94
int 70h-77h 91 VIRTUALSIZE 94-95
interrupt handler address 41 DOS4GVM environment variable 35-36
interrupt handlers 41, 91 DOS4GVM.SWP 35
kernel error messages 77 DOS4GW 70
linear vs physical addresses 89 DOS4GW.EXE 25
locking memory 91 DOSX.EXE 100
Lotus 1-2-3 99 DPMI 32, 40, 43
low memory access 89 allocate DOS memory block 49
memory addressability 93 allocate memory block 62
memory control 31 allocate real-mode callback address 56
memory range 31 demand paging 63
memory use 26 discard page 64
mouse support 93 free DOS memory block 50
NULL pointer references 90 free memory block 62
OS/2 bug 100 free physical address mapping 65
out of memory 94 free real-mode callback address 60
pointers vs linear addresses 89 function calls 44
realloc 92 get and disable virtual interrupt state 66
register dump 97 get and enable virtual interrupt state 66
runtime options 33 get API entry point 67
spawning 93 get coprocessor status 67
switch mode setting 30 get DPMI version 60
TCPIP.EXE 100 get exception handler vector 51
telephone support 86 get free memory information 61
transfer stack overflow 97 get page size 63
TSR not supported 23 get protected-mode interrupt vector 52
unexpected interrupt 96 get real-mode interrupt vector 51
utilities 69 get virtual interrupt state 66
VESA support 93 lock linear region 63
VM configuration 95 mark page 63
VMM 93 physical address mapping 64
VMM instability 94 resize DOS memory block 50
VMM restriction 23 resize memory block 62
Windows NT bug 100 set coprocessor emulation 68

DOS/4GW DOS extender 23 set exception handler vector 51
DOS16M set protected-mode interrupt vector 52

+ option 32 set real-mode interrupt vector 51
A20 option 34 simulate real-mode far call 55
loops option 34 simulate real-mode interrupt 54
runtime options 33 simulate real-mode iret call 56

DOS16M environment variable 29-34, 73 unlock linear region 63
DOS4G vendor extensions 67

NULLP option 29, 90 virtual interrupt state 65
QUIET option 29 DPMI host
VERBOSE option 29, 97 386Max 43

DOS4G environment variable 29 OS/2 VDM 43
DOS4GPATH environment variable 25 QEMM QDPMI 43
DOS4GVM Windows 3.1 43

DELETESWAP 94-95 DPMI specification 17, 86

269

Index

DPMI_MEMORY_LIMIT WINDOWS_INCLUDE 157
DOS setting 100 error messages

dragon book 251 DOS/4GW 80
dwfDeleteOnClose 110, 121 kernel 77
dwfSetAboutDlg 110, 121 executable
dwfSetAppTitle 111, 122 linear 25
dwfSetConTitle 111, 122 segmented 25
dwfShutDown 111, 122 executable file 6, 10, 14, 104, 109, 114, 119, 192, 210,
dwfYield 111, 122 214
DWORD 137 EXPLICIT option 130
dynamic link libraries 211 extended memory 29

OS/2 2.x 221 extender messages
Windows NT 199 DOS/4GW 77

dynamic link library 139, 151
dynamic link library access

OS/2 2.x 223
Windows NT 202 F

dynamic link library creation
OS/2 2.x 221
Windows NT 199

far 123-125, 132, 144, 164, 175, 246dynamic link library initialization
far pointer 123OS/2 2.x 225
__fdll_initialize_ 204, 225Windows NT 204
__fdll_terminate_ 204, 225dynamic link library sample
filesOS/2 2.x 222

more than 20 262Windows NT 200
unable to find 258dynamic link library termination

FINCLUDE environment variable 151, 198, 219, 258OS/2 2.x 225
fixed record type 251Windows NT 204
floating-point options 261dynamic linking 199, 221
formatted 251
FORTRAN 77

Extensions 250
fpc option 261E
fpi option 261
fpi87 option 261
free 172

EMM386.EXE 99 free memory 19
endthread subroutine 196, 218 FreeAlias16 168, 133
EnumChildWindows 174 FreeHugeAlias16 169, 169
EnumFonts 174 FreeIndirectFunctionHandle 170, 162, 172, 181-182
EnumMetaFile 174 FreeLibrary 201
EnumObjects 174 FreeProcInstance 135
EnumProps 174 fsignal 252
EnumTaskWindows 174 __fthrd_initialize_ 204
EnumWindows 174 __fthrd_terminate_ 204
environment variables FTP site 250

DOS16M 29-34, 73 Fujitsu FMR-70 switch mode setting 30
DOS4G 29 FWinMain 139
DOS4GPATH 25
DOS4GVM 35-36
FINCLUDE 151, 198, 219, 258
PATH 115, 119-120, 151
WATCOM 115, 120, 198, 219, 258-259

270

Index

import definitions 199, 221
import library 203, 223

G INDIR_CDECL 172
INDIR_CHAR 172
INDIR_DWORD 172
INDIR_ENDLIST 172GetIndirectFunctionHandle 172, 162, 170, 176,
INDIR_PTR 172, 176181-182
INDIR_WORD 172GetProc16 174, 132, 134, 166, 180, 182
initializationGETPROC_ABORTPROC 174

OS/2 2.x dynamic link library 225GETPROC_CALLBACK 174
Windows NT dynamic link library 204GETPROC_ENUMCHILDWINDOWS 174

initializingGETPROC_ENUMFONTS 174
variables 259GETPROC_ENUMMETAFILE 174

Instant-D 25GETPROC_ENUMOBJECTS 174
INT 21H 37GETPROC_ENUMPROPS_FIXED_DS 174
INT 31H 43GETPROC_ENUMPROPS_MOVEABLE_DS 174
int 31H function calls 44GETPROC_ENUMTASKWINDOWS 174
inter-language calls 239GETPROC_ENUMWINDOWS 174
interrupt handling 40GETPROC_GLOBALNOTIFY 174
interrupt services 51GETPROC_GRAYSTRING 174
interruptsGETPROC_LINEDDA 174

using DOS/4GW 18GETPROC_SETRESOURCEHANDLER 174
InvokeIndirectFunction 176, 172, 181-182GETPROC_SETTIMER 174
InvokeIndirectFunctionHandle 162GETPROC_SETWINDOWSHOOK 174

GETPROC_USERDEFINED_1 166
GETPROC_USERDEFINED_32 166
GETPROC_USERDEFINED_x 174

KGetProcAddr 182
GetProcAddress 137, 162, 181
GlobalAlloc 134
GlobalLock 182 kernel error messages 77
GlobalNotify 174 keyboard status 33
GMEM_DDESHARE 134
GrayString 174
GROWHANDLES 262
GWL_WNDPROC 136 L

H LDT 44
LE format 25
LibMain 200-202, 222
library 259

HIMEM.SYS 33 library functions
Hitachi B32 switch mode setting 30 default windowing 110, 121

line number information 251
linear executable 25
LineDDA 174

I linker
undefined references 258

LoadLibrary 181, 201
local descriptor table 44IBM PS/55 switch mode setting 30
LocalAlloc 134IDT 40
LOCATION 124, 132, 144, 164

271

Index

LOCATION= 124, 132 near pointer 123
Lotus 1-2-3 99 NEC 98-series switch mode setting 30

NLM
debugging 235
header files 235
import libraries 235M
libraries 235
sampler 235

NLM support
MakeProcInstance 134-135 version 4.0 235
malloc 172 version 4.1 235
MapAliasToFlat 178 no starting address found 258
math errors 252 NOAUTOPROCS 135-136
MAXMEM virtual memory option 35, 95 NOCOVERSENDS 133
memory management services 61 Novell
memory transfer rate 71 TCPIP.EXE 100
memory wait states 71 NT development 189
message NULLP 29

include files 258
no starting address found 258
stack segment not found 258
unable to find files 258 O
undefined references 258

messages
DOS/4GW 77

MINMEM virtual memory option 35, 95 object file 6, 10, 14, 104, 109, 114, 119, 192, 210, 214
mixed-language programming 239 OKI if800 switch mode setting 30

argument passing 240 Open Watcom F77
common blocks 245 converting to 250
integer type 241 Open Watcom F77 debugging
linking issues 241 d2 265
memory models 240 debug 265
parameter passing 240 Open Watcom F77 options
passing integers 241-242 d1 251, 263
passing strings 243-244 d2 251, 263
symbol names 239 Open Watcom Strip Utility 251
variable number of arguments 246 opening more than 20 files 262

mode switching optimization
basis 74 suggested reading 251
performance 71 what you should know 251

multi-threaded applications 195, 217 OS/2
OS/2 2.x 217 fullscreen application 209, 213
Windows NT 195 PM-compatible application 209, 213

multi-threading issues Presentation Manager application 209, 213
OS/2 2.x 217 OS/2 PM
Windows NT 195 API calls 228

non-GUI applications 227
non-GUI example 227

OS/2 Presentation Manager 227
N

NE format 25
near 123

272

Index

segmented executable 25
SendDlgItemMessage 133

P SendMessage 133
sequential 251
SetResourceHandler 174
SetTimer 174page locking services 62
setvbuf 93page tuning services 63
SetWindowLong 136PASCAL 137, 162, 166
SetWindowsHook 174PASS_WORD_AS_POINTER 179
sieve 103, 108, 113, 118, 191patch level 249
sieve program 5, 9, 13, 209, 213patches 249
STACK option 260PATH environment variable 115, 119-120, 151
stack overflow 259performance 72
stack segment not found 258Phar Lap TNT 189
static linking 199, 221PMINFO 31, 71
stub program 25, 70pointers
supervisor 114, 11916-bit 123
SWAPINC virtual memory option 35, 94-9532-bit 123
SWAPMIN virtual memory option 35, 94-95far 123
SWAPNAME virtual memory option 35, 94near 123
switch mode settingpragma 251

Fujitsu FMR-70 30PRINT 195, 217
Hitachi B32 30private memory pool 73
IBM PS/55 30PRIVATXM 32, 73, 99
NEC 98-series 30PROCPTR 182
OKI if800 30protected mode 33
PS/2 30PS/2 switch mode setting 30

switching modes
performance 71

symbolic information 251
system 259Q
system configuration file 211
SYSTEM.INI 130

questions 249
QUIET 29

T

R
TCPIP.EXE 100
TECHINFO 249
technical support

Tenberry Software 85real mode 33
terminationReleaseProc16 180

OS/2 2.x dynamic link library 225resource compiler 115, 120
Windows NT dynamic link library 204RMINFO 74

thread creation
OS/2 2.x 217
Windows NT 195

thread exampleS
OS/2 2.x 218
Windows NT 196

thread identifier
SAVE 250, 259

273

Index

OS/2 2.x 218
Windows NT 196

Wthread limits
OS/2 2.x 220

thread termination
OS/2 2.x 218 W386DLL.EXT 115, 120
Windows NT 196 WATCOM environment variable 115, 120, 198, 219,

threadid function 196, 218 258-259
threads of execution 195, 217 WBIND 114-115, 119, 181
TNT 189 WBIND.EXE 114, 119
transfer rate WDEBUG.386 130

memory 71 WEMU387.386 130
translation services 53 WFL 6-7, 104-105, 109-110, 210-211

WFL386 10-11, 14-15, 115-116, 120-121, 192-193,
214-215

WIN386 library routines 159
U WIN386.EXT 114-115, 119-120

Win386LibEntry 151
WINAPI.FI 129, 133
WINDLG.FI 129UDP16_CDECL 166
windowed applicationsUDP16_CHAR 166

default windowing environment 107, 117UDP16_DWORD 166
WindowsUDP16_ENDLIST 166

binding 32-bit applications 114, 119UDP16_PTR 166
Windows 3.x extender 123UDP16_WORD 166

_16xxx functions 182-183unable to find files 258
32-bit callback routines 182undefined references 258
calling 16-bit code 181_cstart_ 259
components 126Unexpected Interrupt 260
creating applications 127
floating-point 130
function pointers 182
multiple instances 130V
overview 124
pointer conversion 132
pointer handling 131
pointers 123variables
programming notes 129set to zero 259
questions 181VCPI 32
resources 181VERBOSE 29
special functions 183video memory 17
structure 125virtual memory manager 35, 93

Windows API 129VIRTUALSIZE virtual memory option 35, 94-95
Windows NT 189Visual Basic 151

character-mode applications 18916-bit DLL 154-155
GUI applications 18932-bit DLL 154
programming overview 189building examples 156

Windows NT Character-mode applications 191example 152
Windows supervisor 114, 119Version 3.0 151
WINDOWS.FI 129VMC extension 36
__WINDOWS_386__ 157VMM 35, 93
__WINDOWS__ 157
WINDOWS_INCLUDE environment variable 157
WINFONT.FI 130

274

Index

WSTUB.C 25

X

XMS 33

275

