Open Watcom FORTRAN 77

Programmer’s Guide

Version 2.0

Uien Watcom

Notice of Copyright

Copyright 00 2002-2023 the Open Watcom Contributors. Portions Copyright O 1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit https://github.com/open-watcom/open-watcom-v2 .

Portions of this manual are reprinted with permission from Tenberry Software, Inc.

Preface

The Open Watcom FORTRAN 77 Programmer’ s Guide includes the following major components:

» DOS Programming Guide

» The DOS/4GW DOS Extender

» Windows 3.x Programming Guide

» Windows NT Programming Guide

» OS/2 Programming Guide

* Novell NLM Programming Guide

» Mixed Language Programming

» Common Problems

Acknowledgements

This book was produced with the Open Watcom GML electronic publishing system, a software tool
developed by WATCOM. In this system, writers use an ASCII text editor to create source files containing
text annotated with tags. These tags label the structural elements of the document, such as chapters,
sections, paragraphs, and lists. The Open Watcom GML software, which runs on avariety of operating
systems, interprets the tags to format the text into a form such as you see here. Writers can produce output
for avariety of printers, including laser printers, using separately specified layout directives for such things
as font selection, column width and height, number of columns, etc. The result istype-set quality copy
containing integrated text and graphics.

Many users have provided valuable feedback on earlier versions of the Open Watcom FORTRAN 77
compilers and related tools. Their comments were greatly appreciated. If you find problemsin the
documentation or have some good suggestions, we would like to hear from you.

July, 1997.

Trademarks Used in this Manual
DOS/4G and DOS/16M are trademarks of Tenberry Software, Inc.
0S/2 isatrademark of International Business Machines Corp. IBM Developer’s Toolkit, Presentation
Manager, and OS/2 are trademarks of International Business Machines Corp. IBM isaregistered
trademark of International Business Machines Corp.

Intel and Pentium are registered trademarks of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. WindowsNT isa
trademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.

Phar Lap, 286|DOS-Extender and 386|DOS-Extender are trademarks of Phar Lap Software, Inc.
UNIX isaregistered trademark of The Open Group.

WATCOM isatrademark of Sybase, Inc. and its subsidiaries.

Table of Contents

1 Open Watcom FORTRAN 77 Application Development

DOS Programming GUITEcccoueerueerieniriinesieisesie e

2 Creating 16-bit DOS APPlICALIONSccceereeeirieirinereeriereeseeeseeeees
2.1 The Sample APPlICAION ...cccveeeeriresese e
2.2 Building and Running the Sample DOS Application
2.3 Debugging the Sample DOS Applicationccceceveveevecvcennenn,

3 Creating 32-bit Phar Lap 386|DOS-Extender Applications
3.1 The Sample APPlICALTIONoceeiririreeere e

3.2 Building and Running the Sample 386|DOS-Extender AppliCationccccoeeevevenenenennenseneeienens

3.3 Debugging the Sample 386|DOS-Extender Application

4 Creating 32-bit DOS/AGW APPlICALIONScccvveereiiririeeneenieesie e
4.1 The Sample APPliCaLIONccccvveveeerece e
4.2 Building and Running the Sample DOS/4GW Application
4.3 Debugging the Sample DOS/AGW Applicationccccvvevennene.

5 32-bit Extended DOS Application Developmentccccceeeercerienienne.
30 111 oo [FTex o) o [PPSR

5.2 How can | write directly to video memory using a DOS extender?ccoveeveienenenenesenseneeenens

5.3 How do | issue interruptsin a DOS/AGW application?

5.4 How do | get information about free memory in the 32-bit environment?cccocovvveineinecnene,

The DOS/AGW DOS EXIENAEYcovveeirieirieerieesienesie sttt seeneneas
6 The Tenberry Software DOS/4GW DOS Extendercccccovceevvveennene

7 Linear EXECULADIESc.eeeeiiieiiieecee ettt et
7.1 The Linear Executable FOrmatcccoeevveveeeciee i
7.1.1 The Stub Programcceeeereeneieneeneeseesieeseesiesesienens
T.2MEMONY USE ..ot

8 Configuring DOS/AGW ...t e e
8.1 The DOSAG Environment Variablecccocooevviineiineinencneenn,
8.2 Changing the Switch Mode Settingccccveevierievevesese e
8.3 Fine Control of Memory USAgecccvevveeveviie v

8.3.1 Specifying a Range of Extended Memoryc.ccoceeevveneene
8.3.2UsiNg EXraMemOryccccceeerierererenienie e
8.4 Setting RUNLIME OPLIONScvevereeeirieeereeeiriee et
8.5 Controlling Address Line 20ccceveereerieenieerieeseeseeseseeeees

GV MM e e et re e sae e nre e e s
9.1 VMM Default Parametersococveererenenenensenesesese s
9.2 Changing the DEfauUltscccccooveiveiesiese e

9.2.1 The WVMC FlE ..ocuiieeeessees et

10 Interrupt 21H FUNCLIONScooiiiieiiireeenicre e

10.1 Functions 25H and 35H: Interrupt Handling in Protected Mode

o 01 01Ol

©

10
10

13
13
13
14

17
17
17
18
19

21

23

25
25
25
26

29
29
30
31
31
32
33

35
35
36
36

37
40

Table of Contents

10.1.1 32-Bit GAES ...ueueeteeeneresieieienesie ettt sttt b bbbtk e bbb bbbt b b 40

10.1.2 Chaining 16-bit and 32-bit HANAIErSccoiiiiie e 41

10.1.3 Getting the Address of the Interrupt Handler ..o 41

11 Interrupt 31TH DPMI FUNCLIONSoviuiiiiiiiiiitiesieeeiee ettt bttt e 43
11.1 Using Interrupt 31H FUNCLION CallSo.ooviiiiieii e e 43
11.2 INt31H FUNCHON CallS ...t 44
11.2.1 Local Descriptor Table (LDT) Management SENVICESc.ccccveeveresesieseseseseeseeseeseeseeeesenns 44

11.2.2 DOS Memory ManagemENt SEIVICEScccivieiiirierierieieeieeieeessessesestestessessesteseesessesssssssessessenns 49

11 2.3 INEEITUDL SEIVICES ...ttt sttt sttt ettt b et ebe bbbt e b se e e e b e e e e et e se et e aeebesaesaesrennas 51

11.2.4 TranSlalion SEIVICEScceiveiiiieriiesiiies ettt ettt bt b et b n s 53

L1125 DPMI VEISION ..ottt bbbt b ket b et b et 60

11.2.6 MemOory ManageMeNt SEIVICEScccirieirieirieesieesie sttt st st s et bbbt be e 61

11.2.7 PagE LOCKING SEIVICESeoviiiuiieiirieieriei sttt ettt bbb 62

11.2.8 Demand Paging Performance TUNING SEIVICEScucviiririnirieenieesee e 63

11.2.9 PhysiCal AdAreSS MaPPINGccoveerieirieerieresiesesie sttt s sttt st ettt et b e 64
11.2.10 Virtual Interrupt Stat€ FUNCLIONScceveeieieeeecceese ettt 65
11.2.11 Vendor SPeCifiC EXIENSIONSccccciiiierierieseeieee ettt st sttt s sa e eneenenneens 67
11.2.12 COPIOCESSON SEALUS ...uveviureereeiiieesteessttesteessessbesssessseesbessseessesssesssessstessseesssessseesssesssessnsesnsessns 67

L2 UBIHTIES .tttk £ b b E b bR ee bbbt bbb et e e b e bt st e e b bt e bt 69
12,1 DOSAGWV ...ttt ettt bbbt b ket £ £ b b e e £ b b et e b b e Rt E e b b e e se b b et st e bt e bt et ebe s 70
L2.2 PMINFO .ttt bbbttt b et e bbb et bbbt bbbt sttt ne s 71
L2.B3PRIVATXIM ottt sttt sttt sttt s b e e bR e e b et et s e b b et e bt eRe e s e et et et seebebene e es 73
D Y\ PSR 74

G o - [P 77
13,1 KENEl EITON MESSAZESeocveiveiieiiiieieseeeeieeeeetestesaestestestesaestestesaeseesseseessessesesseasessessesaestessesenssensnnes 77
13.2 DOS/AG EFTOIS ..vviierieieieesesseiesesesiese et st be et se st st s b st se b b s e se b eb et se b b et e s bbbt ee b b n e s s n s 80

14 DOS/AGW Commonly ASKEd QUESLIONScc.eiueiereeieieieeeieeese sttt st see st st se e e neese e saesbesaas 85
14.1 Accessto TeChNIiCal SUPPOITc.coeiiriiieie sttt ettt st st e et e e 85
14.2 Differences Within the DOS/AG ProdUCt LiNEcociiiiiieiiiine et s 86
TA.3 ATUIESSING ..ottt sttt ettt b e s bt s b e b e b st b e st e b e e e b e e e b e seeb e seeb e s e ekt ne ekt e e e bt b e Rt e b e e e b e e b e e 89
14.4 Interrupt and EXCeption HaNAIiNG ..o e 20
14.5 MemMOry ManNaQEMENEccoiireiiieresriere e e s r e r e r e r e e re e n e saeesneenesreennesreenne s 92
14.6 DOS, BIOS, aNd MOUSE SEIVICEScveuiirrreeierereereiesesesresese s nsse s senessesessesssssessssesens 93
Y AT (1= Y= 0o Y S 93
14.8 DEDUGGING .veveiveireitiiteitesiesieseeseeeesesessestessesseatesteseessessessessessesesseasessessessestestessessansessessessnsesessessessessens 96
14.9 COMPALIDITITY ..ottt et ettt b bbbt b b e et e b e se e e e e e e e ene s 99
Windows 3.X Programming GUITEceieiriiirieinieeeteseete sttt sttt b et b e b e eb e et e b seene e ene e 101
15 Creating 16-bit Windows 3.X APPIICALIONScc.cirieirieirieirierese e 103
15.1 The Sample GUI APPHICALTIONc.oiueuirieeirieirieirier et bt 103
15.2 Building and Running the GUI APPlICALIONc.cocviiiirirercrcecee s enens 104
15.3 Debugging the GUI APPLICELIONccveieeeecieeeeeee sttt s respesrennens 104

16 Porting Non-GUI Applicationsto 16-bit WINAOWS 3.X ..c.vvceecieeiiriiciese et 107
16.1 Console Devicein aWindowed ENVIFONMENT ..o 107
16.2 The Sample NON-GUI APPLICELIONcouiieiiiieieeiee ettt s ene 108

Vi

Table of Contents

16.3 Building and Running the Non-GUI APPliCaLIONccoiiiriiinir e 108
16.4 Debugging the NON-GUI APPlICAITIONccoiiiiriiie et s 109
16.5 Default Windowing Library FUNCLIONSceoiirieireiieiereieneecsieesie et 110

17 Creating 32-bit Windows 3.X APPIICALIONScc.ciriiirieirieirieresie et 113
17.1 The Sample GUI APPHICALTION ..ottt ettt 113
17.2 Building and Running the GUI APPlICALIONcoceieiireeresecee st enens 114
17.3 Debugging the GUI APPLICEHIONocueieececeeeeeees sttt ne e s resresrennens 115

18 Porting Non-GUI Applications to 32-bit WIiNAOWS 3.X ...cueeueeiriiirinerie st 117
18.1 Console Devicein aWindowed ENVIFONMENT ..o 117
18.2 The Sample NON-GUI APPLICELIONcouiieiieiereeieee ettt ene 118
18.3 Building and Running the Non-GUI APPliCaLIONcireirieireireresieese s 118
18.4 Debugging the NON-GUI APPHICALTIONcocciiieiiieirieesiereee et 120
18.5 Default Windowing Library FUNCLIONSccoooiiriiiniienieerieereeesiees sttt s 121

19 The Open Watcom 32-bit WIindows 3.X EXTENAENcccvvviirieieriereceeseeese e s 123
ST o] 1 £ ST S TSP SR 123
19.2 IMPIeMENLELiON OVEIVIEWccueiiieieiieitieseseeie e e e e e e e s e re e aesresbesbeseestestesae e essesaenseseesessessentensees 124
1O.3 SYSLEIM SITUCLUIE .. .veiueeeiiie ettt ettt ettt st sttt e e b e st e e s be e s e be e sheeenbeesbeeenbeenneeenbeesaeennree e 125
19.4 SYSLEM OVEIVIEW ...eeeiiiiieieite sttt ettt b etttk st e bkt e bbbt s e b b et st bt e e sb b b es 126
19.5 Stepsto Obtaining a 32-bit APPIICALIONooviieeieeeeieeee e 127

20 Windows 3.x 32-bit Programming OVEIVIEWcc.ccereiriiririenenieneeieseeeesseseseese s essee s ssesssessesessenes 129
28I VA N N B USRS 129
20.2 ENVIFONMENT INOLESoeueeeieeieieeesiestesesees e stesee e seeseeseesaeses e esessessessessesseseesseseseessensensensssessessessensessees 130
20.3 Floating-point EMUIBEIONccieieieieeseeeeieeeesesese et see st e e s se e se e e e e eses e eseesessesssssessessessens 130
20.4 MUILIPIE INSLANCES ...ocvveeeceeceeeiese sttt et ae e ae et aesae st e eese e tetesae e eneeneeneeseesenseenenreneees 130
pZLO RSN o T 01 (=gl =T 11 oo 131
20.5.1 When To Convert INCOMING POINTESceoiuiiieie ettt 132

20.5.2 When To Convert Outgoing POINLENScooiiiereieeiereeeeiere et e eae 132
20.5.2.1 SendMessage and SendDIgItEMMESSAgEccververeeeeirierenerere et eneas 133

20.5.3 GIobalAIIOC @A LOCAIAITOCoueeeeeeiieetereeiee ettt 134

20.5.4 Callback FUNCLION POINLEFSciiiieieie ettt sre e s sre e s 134
20.5.4.1 WINAOW SUB-ClESSING ...coveerveieierieierieierieie sttt sbe bbb seebe e et e sbeneas 136

20.6 CalliNg 16-Dit DLLSciiuiiitiieiiisesiet ettt ettt st st 137

B I A LT U o 1 o] T 138

21 Windows 32-Bit Dynamic LinK LIDIari€Sccccciiiiiiiiiiiseie sttt st s 139
21.1 Introduction t0 32-Bit DLLSccooiiiireireee ettt e 139
21.2 A SAMPIE 32-DIT DLL ...eviiiiiceeeecte ettt et bbbttt 140
21.3 Calling Functionsin a 32-bit DLL from a16-bit Application ..o 141
21.4 Cdling Functionsin a 32-bit DLL from a32-bit AppliCationccccoeeeveinennenneneeeseee e 143
21.5 A Sample 32-bit DLL USING @ SIFUCLUIEc.oiuieiriiiriiirteeeiesesieseeie s 144
21.6 Creating and Debugging Dynamic Link LiDraries ... 147
21.6.1 Building the APPIICALIONScc.eiriiiriiieienieiereete ettt st s be s be s b saene s 148

21.6.2 Installing the Examples under WINAOWScccevvvireiineneseseeiesee e s seeneas 148

21.6.3 RUNNING the EXBMPIESocerieiiecieie ettt sttt sr e et s e e ne e e eneenenneens 149

21.6.4 Debugging @32-DIt DLL ..oocvciiirieeiseeeeree et 149

21.8.5 SUMMEIY ...ttt bbb s b ket e b bt e b bRt s e e b bt e et bt e st b s 150

22 Interfacing Visual Basic and Open Watcom FORTRAN 77 DLLS ..o 151

vii

Table of Contents

22.1 Introduction to Visual BaSiC 8N0 DLLSccociriiiriirieereeses e 151
22.2 A WOTKING EXBMPIE ...ttt h st ae b b s a e be s besee st e e b e e e e e e e e e e enesnesneabens 152
22.3 Sample Visual BaSiC DLL PrOgramScccoeoeirieerietereeiesieieseeseseeseseeesseessesessesessesesseseeseseeseseesesnas 154
22.3.1 Source Code for VBDLL32.DLL ..ot st 154

22.3.2 Source Code fOr COVERLB.DLL ..cc.coeeeeeeeeeee ettt 155

22.4 Compiling and Linking the EXBMPIESccciiiirrirninceneee ettt 156

23 WINSB6 Library SUDPIOGIaMSccccviviirieiieieeieieeeeeteses e steste s et te e seeste e sae e enae e e e eseesesseenessessesnessenes 159
ATTOCATTBSLE ...tttk b et b et s e bbbt st e bt p b e 160
ATOCHUGEATIBSLE ..ottt sttt e e st e et esteenteeteenteereensesneennas 161

CAIILD bbb bbbkt £ b bR E bbbt e e 162
DEFINEDLLENLIY .ttt ettt sb e b et s b et s e e se e et e e e e e neeneeneebenaeee 164
DEfINBUSEIPIOCLEeoeiieieeeieee ettt a e bbb se et bese e e et e e e e eneesenneens 166
FPEEATIBSLE ..ottt sttt ettt ettt s b bt e b s e et e b e Rt s e et e st se e et e s e e e eeenas 168
FrEEHUGEATTBSLOoecviieeiieieieeieree ettt b e bbb bbb nn s 169
FreelndireCtFUNCLIONHEANAIEceeeeeeecee et en 170
GetINdireCtFUNCLIONHBNAIEooeiiee e 172

LC T 1 oo TSSO 174
INVOKEINDIFECEFUNCLION ...ttt 176
MBPATIBSTOFIAL ...t b bbb ettt b e s bt sb e b e 178

PASS WORD_AS POINTER ..ottt s 179
REIEBSEPTOCLE ...ttt bt bt et b et s e e se et et et e st e be e aeebeebesbesaesbe st es 180

24 32-bit Extended Windows Application DeVEIOPMENLcccoeirieiiriiniiresee et 181
24.1 Can you call 16-bit code from a32-bit COUE?ooiiiiie e 181
24.2 How do | add my WiNQOWS FESOUICES?c.erueuirieuerieerieesseestesestesesseseeseseesessssessesessesessenessensssensenes 181
24.3 What size of function pointers passed t0 WINAOWS?c..ccvcveeeieeerene e e seeseesesee e eessesneens 182
24.4 Why are 32-bit callback rOUINES FAR? ... s 182
24.5Why usethe 16 APl FUNCHIONS?ocociiiieccse ettt ettt se e e resresrenne 182

25 Special WIindowsS APL FUNCLIONSoouiiiiiiiie sttt st e e sbe s 183
Windows NT Programiming GUITEcereirieiriiiniieeeseeie sttt sttt b e b e e eb e st se b seeneseene e 187
26 Windows NT Programming OVEIVIEWccereuerieierieierieiesieesieesie st sessesessesessesesseseesesessessesessssessenesseneas 189
26.1 Windows NT Character-mode VErsuS GUI ... 189

27 Creating Windows NT Character-mode APPliCaLIONSc.cccceciiiiiiisie e e e st see e 191
27.1 The Sample Character-mode APPlICALIONco.eoieieieieieeeeeere e s 191
27.2 Building and Running the Character-mode ApPPliCaLIONc.ooiieririiereeer e 192
27.3 Debugging the Character-mode APPliCaLIONcccooriiiriie e 192

28 Windows NT Multi-threaded APPIICALIONSccoiriiirieireereee bbb s 195
28.1 Programming CONSIAEIELIONSc.crveuerieuirieiirieestee ettt sttt et st be e b bbbt 195
28.2 Creating THIEAASc.oovouiieiriei ettt bbbttt 195
28.2.1 Creating aNEW THI Acccceeieiie ettt s e e e neenenne e 195

28.2.2 Terminating the Current TArEAAcccceeveiie i e 196

28.2.3 Getting the Current Thread [dentifier ..o 196

28.3 A Multi-threaded EXAMPIEcooiiiiie ettt et be b nne 196

29 Windows NT Dynamic LinK LIDFaITESccciiiiiiiiiieie ettt s 199

Table of Contents

29.1 Creating Dynamic LinK LIDIariESccooiiiiiiiiieereeeeer et 199
29.2 Creating a Sample DYNamiC LinK LIDIary ..ot s 200
29.3Using DynamiC LinK LiDIariesc.ccoieiiiiiiieiiieseereeie ettt st 202
29.4 The Dynamic Link Library DB ATEAcccoereuirieirieirieerieesieesiees et 203
29.5 Dynamic Link Library Initialization/Termination ..o 204
OS/2 ProgrammMing GUITEcccevuesieiiereesieeeseeeeesesestesteseestes e seeseessessessesssssssssssesessesssssessesssssessensessensensessensssens 207
30 Creating 16-bit OS/2 1.X APPlICALIONSccveiuiiiiriirie ettt ene s 209
30.1 The SAmMPIE APPLICALIONc..iieiiiieeeeee ettt ettt sbesbesbesbe st sbeseen 209
30.2 Building and Running the Sample OS/2 1.X APPliCaLIONcccoeiiiiiiiiee e 210
30.3 Debugging the Sample OS/2 1.X APPHICALIONccoiuiiiiirieriee e 210

31 Creating 32-bit OS/2 APPIICALIONSocveuiieiiieiirieirerie et 213
31.1The SAMPIE APPIICALION ..ottt et et sttt st sttt be s 213
31.2 Building and Running the Sample OS/2 ApPliCatioNcccoeveereeererecerere e 214
31.3 Debugging the Sample OS/2 APPIICALIONcceivicieieieeieeee e sreees 214

32 0S/2 2.x Multi-threaded APPlICALIONSccoiiiiiieie e e b e s 217
32.1 Programming CONSIAEIELIONSccuerueruiruirieriereeriesieseeseeeesee e siesse s e sesbesbeseesbesbeseeseebeneeseesenseneeneanens 217
32.2 Creating THIBAOSco.eiiiiieeite ettt b e b bbb e e e e e et et et e seeaeeaeebesbesaesbe b es 217
32.2.1 Creating aNEW THIEBAoooiiiireeieeee et et 217

32.2.2 Terminating the CUrrent TAr€adccooiveireinee et 218

32.2.3 Getting the Current Thread [dentifier ... 218

32.3 A Multi-threaded EXAMPIE ..ottt st st 218
32.4 THIrEAH LIMITS ..veieireriiisierere sttt r et e r et ner e ren e 220

33 0S/2 2.X DYNamiC LiNk LIBrariEsccociiiiiiiie ettt sttt st neeneens 221
33.1 Creating DynamiC LiNK LIDIari©scccccceeiiiieiicesecese ettt st sne s 221
33.2 Creating a Sample DYNamiC LinK LIDIaryooooeooreieeieeeeerere e s 222
33.3UsiNg DYNamicC LinK LIDFEITESccoiiiiiiiiieieeie ettt st 223
33.4 The Dynamic Link LiDrary DEIABATEAcccereuirieeirieirieirieesieesi sttt 224
33.5 Dynamic Link Library Initialization/Terminationc..cccoeerinriineineeeeseese e 225

34 Programming for OS/2 Presentation MaNagES ..ot seens 227
34.1 Porting Existing FORTRAN 77 APPlICALIONSccecviiresiesieiereeseeeeeee s stese s e e s ssesse e seeesnennes 227
G I N T 1 o = 227

34.2 Calling Presentation Manager APl FUNCLIONSccooiiieiiiercieeceees et 228
Novell NLM Programiming GUITEcoccoueeeiieeeereee sttt seese s e e b b saesbesbe e seesbesbesee e enseeeneeneas 233
35 Creating NetWare 386 NLM APPIICALIONSocoiiiiiiiierereete ettt s eb e s seene e 235
Mixed Language PrOgramMiMINgc.cccoeeoeeeeerereseseseseesseseessesseseeseesssessessessessesssssessesssssessensessessesssssssessessessessens 237
36 Inter-Language calls: C and FORTRAN ..ottt st sttt e s e nesrenns 239
36.1 Symbol Naming CONVENLIONccceiieieiieeieseete s see e se e sae e e s e e e s teesaesteensesreensesreeneesneennas 239
36.2 Argument Passing CONVENTIONciiiirierierieieeieieeeeiese s stesiesee s e seeseeseee e ssessessessesbesaeseessessessens 240
36.3 Memory Model CompatibDIlityooiiiiieeee e 240

Table of Contents

36.4 LinKiNg CONSIAEIBLIONSeiviiteierieeeieeeeeteei sttt see st st e e e e e e se e e et e e eaeebesbesaesbesbesbeseesbesbeseens 241
36.5 Integer Type COMPALTDIITYcoeiiiiiiie et e ene 241
36.6 How do | passintegers from C to a FORTRAN fUNCLION?ccooeiiieiiiiineeseeeeeee e 241
36.7 How do | passintegers from FORTRAN t0 @ C fUNCliON?ccoceiiienirennenneneeereee e 242
36.8 How do | pass astring from aC function to FORTRAN? ..o 243
36.9 How do | pass astring from FORTRAN t0 @ C fUNCliON?ccoeiiieninenneseree e 244
36.10 How do | access a FORTRAN common block from within C? ..o 245
36.11 How do | call aC function that accepts a variable number of arguments?cccccecevevecicveceenene. 246
COMIMON PrOBIBMS ... e et r et b et bt R e st b se bt neebenr b e nrene e 247
37 Commonly Asked QUESLIONS BN ANSWEL'Sccuiuiririireererieteseete sttt se et sr et sb et sb et bese b e ebeseebeseeresnesesnas 249
37.1 Determining my current PatCh TEVELcoiiiiie e 249
37.2 Converting to Open WELCOM F77oiiiiieieeie ettt st sttt ene e 250
37.3 What you should Know adout OptimiZaLTONcceveirieinieieneese s 251
37.4 Reading a stream of binary datafrom afile ... 251
37.5 Redefining math error handling with Open WatCom F77ccoiveievenieniesesereeseeeees e sne e 252
37.6 The compiler cannot find My iNCIUAE TIIESccuevicieiieccee s 258
37.7 The linker reports a"stack segment NOt fOUND™ EITONoviiiiiii e 258
37.8 Resolving an "Undefined Reference” lINKEr €TOrcoooeririenineie e 258
37.9 Why local variable values are not maintained between subprogram callsccoooeeeieininicnicnene, 259
37.10 What "Stack OVEIfIOW!" MEANSccooiiiiiiie e s ae b nne 259
37.11 What are the probable causes of a General Protection Fault in 32-bit applications? 260
37.12 Which floating-point compiler option should | use for my application?cccoeeveiereereccniene 261
37.13 How more than 20 files at atime can be opened ... 262
37.14 How sourcefiles can be seen in the debugger ... 263
37.15 The difference between the "d1" and "d2" compiler OptioNSccccceveveecerienieviese s 265
37.16 The difference between the "debug" and "d2" compiler Optionscccceveveveiiciececcecereee e, 265

List of Figures

Figure 1. BasiC MEMONY LAYOULcoiiiiiiiiitiiie sttt sttt s b b e st b se e se e e et e e e e e seeae e st ebesbesaesbesbeseeseennan 27
Figure 2. Physical Memory/Linear AQArESS SPACEccerueriereerieieerere ettt sttt se e se e e e sbesaesaesne s 28
FigUre 3. ACCESS RIGNES/ TYPE ..ottt b e b e bt e bt e bt e et b et e b et b et ebeneeb e se b e seebeseene e 47
Figure 4. Extended ACCESS RIGNES/ TYPE ..ottt sttt bbbt sb e 48
FIGUIE 5. WINSBE SITUCLUIE ..ottt sttt sttt sttt sttt b et b etk s b e s b se bt se bt s e e be st e st sb et sb e e et et et e neebenea 125
Figure 6. 32-Dit APPlICALTION SIIUCIUIEcoviiiiiiciect ettt ee 126

Xi

Xii

1 Open Watcom FORTRAN 77 Application
Development

This document contains guides to application development for several environments including 16-bit DOS,
32-bit extended DOS, Windows 3.x, 32-bit extended Windows 3.x, Windows NT/2000/XP, Win9x, OS/2,
and Novell NLMs. It also describes mixed language (C, FORTRAN) application development. It
concludes with a chapter on some general questions and the answers to them.

This document covers the following topics:
* DOS Programming Guide

Creating 16-bit DOS Applications

Creating 32-bit Phar Lap 386|DOS-Extender Applications
Creating 32-bit DOS/AGW Applications

32-hit Extended DOS Application Development

* The DOS/4GW DOS Extender

The Tenberry Software DOS/4AGW DOS Extender
Linear Executables

Configuring DOS/4GW

VMM

Interrupt 21H Functions

Interrupt 31H DPMI Functions

Utilities

Error Messages

DOS/4GW Commonly Asked Questions

» Windows 3.x Programming Guide

Creating 16-bit Windows 3.x Applications

Porting Non-GUI Applicationsto 16-bit Windows 3.x
Creating 32-bit Windows 3.x Applications

Porting Non-GUI Applicationsto 32-bit Windows 3.x
The Open Watcom 32-bit Windows Extender
Windows 3.x 32-bit Programming Overview
Windows 32-Bit Dynamic Link Libraries

Interfacing Visual Basic and Open Watcom FORTRAN 77 DLLs
WIN386 Library Subprograms

32-bit Extended Windows Application Devel opment
Special Windows APl Functions

» Windows NT Programming Guide

Open Watcom FORTRAN 77 Application Development

Chapter 1

Windows NT Programming Overview
Creating Windows NT GUI Applications
Porting Non-GUI Applicationsto Windows NT GUI
Windows NT Multi-threaded Applications
Windows NT Dynamic Link Libraries
» OS/2 Programming Guide

Creating 16-bit OS/2 1.x Applications
Creating 32-bit OS/2 Applications

0S/2 Multi-threaded Applications

OS/2 Dynamic Link Libraries

Programming for OS/2 Presentation Manager
* Novell NLM Programming Guide

Creating NetWare 386 NLM Applications
» Mixed Language Programming
Inter-Language calls: C and FORTRAN

* Common Problems

Commonly Asked Questions and Answers

2 Open Watcom FORTRAN 77 Application Development

DOS Programming Guide

DOS Programming Guide

2 Creating 16-bit DOS Applications

This chapter describes how to compile and link 16-bit DOS applications simply and quickly.

We will illustrate the steps to creating 16-bit DOS applications by taking a small sample application and
showing you how to compile, link, run and debug it.

2.1 The Sample Application

To demonstrate the creation of 16-bit DOS applications using command-line oriented tools, we introduce a
simple sample program. For our example, we are going to use the "sieve" program.

* This program conputes the prinme nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

I MPLI CI' T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORME' (A, 15, A/15)")
DO | = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO | = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRIMES + 1
DOK =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Prinmes between 1 and ', UPBOUND,
1 ' are: ', PRIMES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Seve of

Eratosthenes algorithm to accomplish thistask. We will take you through the steps necessary to produce
this result.

2.2 Building and Running the Sample DOS Application

To compile and link our example program which is stored in thefile si eve. f or, enter the following
command:

Cw | -1 =dos sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Building and Running the Sample DOS Application 5

DOS Programming Guide

Cwil -1=dos sieve.for
Open Watcom F77/16 Conpile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
wfc sieve.for
Open WAt com FORTRAN 77/ 16 Optim zing Conpil er
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-watcomv2 for details.
sieve.for: 21 statenments, 311 bytes, 6 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al Rights Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. conl open-wat conl open-watcomv2 for details.

| oadi ng object files

searching libraries

creating a DOS executabl e

Provided that no errors were encountered during the compile or link phases, the "sieve" program may now
be run.

Cssi eve
The Nunber of Prines between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are

si eve. obj (theresult of compiling si eve. f or) and si eve. exe (theresult of linking si eve. obj
with the appropriate Open Watcom FORTRAN 77 libraries). Itis si eve. exe that isrun by DOS when
you enter the "sieve" command.

2.3 Debugging the Sample DOS Application

6

L et us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisaso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL command, thisisfairly straightforward. WFL recognizes the Open Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Open Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

Cw |l -1 =dos -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Debugging the Sample DOS Application

Creating 16-bit DOS Applications

Cwil -1=dos -d2 sieve.for
Open Watcom F77/16 Conpile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
wfc sieve.for -d2
Open WAt com FORTRAN 77/ 16 Optim zing Conpil er
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-watcomv2 for details.
sieve.for: 21 statements, 392 bytes, 6 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al Rights Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. conl open-wat conl open-watcomv2 for details.

| oadi ng object files

searching libraries

creating a DOS executabl e

The"d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL will make sure that this debugging information isincluded in the executable
filethat is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. Y ou can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship
between the object code and the original source language code.

To request the Open Watcom Debugger to assist in debugging the application, the following command may
be issued.

Cwd si eve

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Open Watcom Debugger User’s Guide.

Debugging the Sample DOS Application 7

DOS Programming Guide

8 Debugging the Sample DOS Application

3 Creating 32-bit Phar Lap 386/DOS-Extender
Applications

This chapter describes how to compile and link 32-bit Phar Lap 386|DOS-Extender applications simply and
quickly.

We will illustrate the steps to creating 32-bit Phar Lap 386|DOS-Extender applications by taking a small
sample application and showing you how to compile, link, run and debug it.

3.1 The Sample Application

To demonstrate the creation of 32-bit Phar Lap 386|DOS-Extender applications using command-line
oriented tools, we introduce a simple sample program. For our example, we are going to use the "sieve"
program.

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

I MPLI CI' T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORME’ (A, 15, A 15)")
DO I = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO | = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRIMES + 1
DOK =1 + 1, UPBOUND, I
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Prinmes between 1 and ', UPBOUND,
1 ' are: ', PRIMES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Seve of

Eratosthenes algorithm to accomplish thistask. We will take you through the steps necessary to produce
this result.

The Sample Application 9

DOS Programming Guide

3.2 Building and Running the Sample 386/DOS-Extender
Application

To compile and link our example program which is stored in thefile si eve. f or, enter the following
command:

Cwf | 386 -1 =pharl ap sieve.for

The typical messages that appear on the screen are shown in the following illustration.

C>wil 386 -1 =pharl ap sieve.for
Open WAt com F77/32 Conpile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conf open-wat comv2 for details.
wf c386 sieve. for
Open WAt com FORTRAN 77/ 32 Optim zing Conpiler
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. conf open-wat conf open-wat comv2 for details.
sieve.for: 21 statements, 172 bytes, 6 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al Rights Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. conl open-watconl open-watcomv2 for details.

| oadi ng object files

searching libraries

creating a Phar Lap sinple executable

Provided that no errors were encountered during the compile or link phases, the "sieve" program may now
be run.

C>run386 sieve
The Nunber of Prines between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are

si eve. obj (theresult of compiling si eve. f or) and si eve. exp (theresult of linking si eve. obj
with the appropriate Open Watcom FORTRAN 77 libraries). Itis si eve. exp that isrun by DOS when
you enter the "run386 sieve" command.

3.3 Debugging the Sample 386|DOS-Extender Application

L et us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisaso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL 386 command, thisisfairly straightforward. WFL 386 recognizes the Open Watcom
F77 compiler "debug" options and will create the appropriate debug directives for the Open Watcom
Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

10 Debugging the Sample 386|DOS-Extender Application

Creating 32-bit Phar Lap 386/DOS-Extender Applications

Cwfl 386 -1 =pharlap -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Cwil 386 -1 =pharlap -d2 sieve.for
Open Watcom F77/32 Conpile and Link Uility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
wf c386 sieve.for -d2
Open WAt com FORTRAN 77/ 32 Optim zing Conpil er
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
sieve.for: 21 statenments, 237 bytes, 6 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al Rights Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. conl open-wat conl open-watcomv2 for details.

| oadi ng object files

searching libraries

creating a Phar Lap sinple executable

The"d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL386 will make sure that this debugging information isincluded in the
executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. Y ou can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship
between the object code and the original source language code.

To request the Open Watcom Debugger to assist in debugging the application, the following command may
be issued.

Cwd /trap=pls sieve

It would be too ambitious to describe the debugger in thisintroductory chapter so we refer you to the book
entitled Open Watcom Debugger User’s Guide.

Debugging the Sample 386|DOS-Extender Application 11

DOS Programming Guide

12 Debugging the Sample 386/DOS-Extender Application

4 Creating 32-bit DOS/4GW Applications

This chapter describes how to compile and link 32-bit DOS/AGW applications simply and quickly.

We will illustrate the steps to creating 32-bit DOS/4GW applications by taking a small sample application
and showing you how to compile, link, run and debug it.

4.1 The Sample Application

To demonstrate the creation of 32-bit DOS/4GW applications using command-line oriented tools, we
introduce a simple sample program. For our example, we are going to use the "sieve" program.

* This program conputes the prinme nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

I MPLI CI' T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORME' (A, 15, A/15)")
DO | = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO | = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRIMES + 1
DOK =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Prinmes between 1 and ', UPBOUND,
1 ' are: ', PRIMES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Seve of

Eratosthenes algorithm to accomplish thistask. We will take you through the steps necessary to produce
this result.

4.2 Building and Running the Sample DOS/4GW Application

To compile and link our example program which is stored in thefile si eve. f or, enter the following
command:

Cwf | 386 -1 =dos4g sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Building and Running the Sample DOS/AGW Application 13

DOS Programming Guide

Cwil 386 -1 =dos4g sieve.for
Open Watcom F77/32 Conpile and Link Uility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
wf c386 sieve.for
Open WAt com FORTRAN 77/ 32 Optim zing Conpil er
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-watcomv2 for details.
sieve.for: 21 statenments, 172 bytes, 6 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al Rights Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. conl open-wat conl open-watcomv2 for details.

| oadi ng object files

searching libraries

creating a DOS/ 4G executabl e

Provided that no errors were encountered during the compile or link phases, the "sieve" program may now
be run.

Cssi eve
The Nunber of Prines between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are

si eve. obj (theresult of compiling si eve. f or) and si eve. exe (theresult of linking si eve. obj
with the appropriate Open Watcom FORTRAN 77 libraries). Itis si eve. exe that isrun by DOS when
you enter the "sieve" command.

4.3 Debugging the Sample DOS/4GW Application

L et us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisaso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL 386 command, thisisfairly straightforward. WFL 386 recognizes the Open Watcom
F77 compiler "debug" options and will create the appropriate debug directives for the Open Watcom
Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

Cwf | 386 -1 =dos4g -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

14 Debugging the Sample DOS/4GW Application

Creating 32-bit DOS/4GW Applications

Cwil 386 -1=dos4g -d2 sieve.for
Open Watcom F77/32 Conpile and Link Uility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
wf c386 sieve.for -d2
Open WAt com FORTRAN 77/ 32 Optim zing Conpil er
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-watcomv2 for details.
sieve.for: 21 statenments, 237 bytes, 6 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al Rights Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. conl open-wat conl open-watcomv2 for details.

| oadi ng object files

searching libraries

creating a DOS/ 4G executabl e

The"d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL 386 will make sure that this debugging information isincluded in the
executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. Y ou can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship
between the object code and the original source language code.

To request the Open Watcom Debugger to assist in debugging the application, the following command may
be issued.

Cwd /trap=rsi sieve

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Open Watcom Debugger User’s Guide.

Debugging the Sample DOS/4GW Application 15

DOS Programming Guide

16 Debugging the Sample DOS/AGW Application

5 32-bit Extended DOS Application Development

5.1 Introduction

The purpose of this chapter is to anticipate common programming questions for 32-bit extended DOS
application development. Note that these programming solutions may be DOS-extender specific and
therefore may not work for other DOS extenders.

The following topics are discussed in this chapter:
» How can | write directly to video memory using DOS/AGW?
* How do | issue interruptsin a DOS/4GW application?
* How do | get information about free memory with DOS/4AGW?

Please refer to the DOS Protected-Mode | nterface (DPMI) Specification for information on DPMI
services. Inthe past, the DPMI specification could be obtained free of charge by contacting Intel Literature
JP26 at 800-548-4725 or by writing to the address below. We have been advised that the DPMI
specification is no longer available in printed form.

Intel Literature JP26
3065 Bowers Avenue
P.O. Box 58065

Santa Clara, California
U.S.A. 95051-8065

However, the DPMI 1.0 specification can be obtained from the Intel ftp site. Hereisthe URL.

ftp://ftp.intel.com pub/IlAL/software_specs/dpm vl. zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

5.2 How can | write directly to video memory using a DOS
extender?

Many programmers require access to video RAM in order to directly manipul ate data on the screen. Under
DOS, it was standard practice to use afar pointer, with the segment part of the far pointer set to the screen
segment. Under DOS extenders, this practiceis not so standard. Each DOS extender providesits own
method for accessing video memory. The following program demonstrates the method used with
DOS/4AGW.

How can I write directly to video memory using a DOS extender? 17

DOS Programming Guide

* FSCREEN. FOR
* The follow ng program shows how to access screen menory
* from a FORTRAN program under the DOS/ 4GWN DOS ext ender

* Conpile & Link: wfl386 -1=dos4g fscreen
program screen

* Allocatabl e arrays nust be declared by specifying their
* di mensions using colons only (see Open Watcom FORTRAN 77
* Language Reference on the ALLOCATE statenent for details)

character*1 screen(:,:)
i nt eger SCRSI ZE,

paraneter (SCRSIZE = 80*25)
Under DOS/4GWN the first negabyte of physical nenory - the
real nenory - is napped as a shared linear address space
This allows your application to access video RAMusing its
linear address. The DOS segnent: of fset of B800: 0000
corresponds to a |linear address of B8000

* % k% ok

al | ocate(screen(0:1, 0: SCRSI ZE-1), |ocation="B8000 x)

doi =0, SCRSIZE - 1
screen(0,i) ="*’
enddo

end

5.3 How do | issue interrupts in a DOS/4GW application?

The Open Watcom F77 library files contain the FINTR and the FINTRF subroutines which allows the user
to perform interrupt calls within a FORTRAN 77 program. This subroutine is described in the Subprogram
Library section of the Open Watcom FORTRAN 77 User’s Guide.

The following sample program illustrates the use of the FINTR subroutine to set up the register information
required for Interrupt 21h. The register information is loaded into the regs structure. This structure is
defined in the DOS.FI file located in the \WATCOM\SRC\FORTRAN\DOS directory. Assign valuesto
the register elements according to the interrupt call requirements. For example, Interrupt 21h, function 4Eh
needs valid values for the AH, ECX, DS and EDX to set up the registers for the Interrupt 21h call. This
procedure can be used to perform any interrupt calls that are supported in protected mode by DOS/AGW.

DTA. FOR

Thi s program denonstrates the use of the FINIR
function to list the files of the current directory.
Interrupt 21 Functions for FIND FIRST, FIND NEXT
and CET DTA are used.

* Ok ok ok O

*

Conpi l e & Link: set finclude=\watcom src\fortran\dos
* wfl 386 -1 =dos4g dta

*$pragma aux GetDS = "npv ax, ds" val ue [ax]

program dta

inmplicit integer*2 (i-n)
integer*2 res

i nteger*2 Get DS

integer*4 dir, addr

integer*1 dta(:)

character fname*1(12), fname2*12
equi val ence (fnane, fnane2)

18 How do I issue interrupts in a DOS/AGW application?

32-bit Extended DOS Application Development

DTA is declared as a FAR array. Wen referencing an array
el ement, the pointer to the array is a FAR pointer. Wth a
character variable, the result is a pointer to a string
control block (SCB). The run-time library expects the SCB
to contain a near pointer. To get around the problem we
define the DTA as a byte array, then use the CHAR function
to get the character equivalent for printing a fil enane.

E N

*$pragma array dta far
include ’'dos.fi
*

* Listing of current directory

*
call fsystem("dir/w *.*" //char(0))
dir =loc('"*.*"//char(0))

i =0
i i+ 1

10 i =
if(i .eq. 1)then

* Find first file

AH = ' 4F x
ECX = 0
DS = Get DS()
EDX = dir

el se

* Find next file

AH = " 4F x
endi f
call fintr("21'x, regs)
res = AX

if(res .eq. 0)then
* Extract filenanme from DTA

AH = " 2F x
call fintr("21'x, regs)

addr = ISHL(I AND(INT(ES), '0000FFFF x), 16)
addr = | OR(addr, I AND(INT(BX), 'O0000FFFF x))
al l ocate(dta(0:42), |ocation=addr)

fname2 ="'

do j = 30, 41

if(dta(j) .eq. 0) goto 20
fname(j - 29) = char(dta(j))
enddo
20 print *, fname2
deal | ocate(dta)
goto 10
endi f

end

5.4 How do | get information about free memory in the 32-bit
environment?

Under avirtual memory system, programmers are often interested in the amount of physical memory they
can allocate. Information about the amount of free memory that is available is always provided under a
DPMI host, however, the manner in which thisinformation is provided may differ under various
environments. Keep in mind that in a multi-tasking environment, the information returned to your task
from the DPMI host can easily become obsolete if other tasks allocate memory independently of your task.

How do I get information about free memory in the 32-bit environment? 19

DOS Programming Guide

DOS/4GW provides a DPMI interface through interrupt 0x31. This allows you to use DPMI service
0x0500 to get free memory information. The following program illustrates this procedure.

FMEMORY. FOR

Thi s exanpl e shows how to get information about free

menmory using DPM call 0500h under DOS/ 4GW using Open \Watcom
FORTRAN 77. Note that only the first field of the

structure is guaranteed to contain a valid val ue; any

field not returned by DOS/4GWNis set to -1 (OFFFFFFFFh).

I

*

Conpi |l e & Link: set finclude=\watcom src\fortran\dos
* wfl 386 -1 =dos4g fmenory

* Pragma to get the default data segnent
*$pragma aux GetDS = "npv ax, ds" value [ax] nodify exact [ax]

program nenory
inplicit none
include ’"dos.fi’

structure /memn nfo/
nt eger *4 Lar gest Bl ockAvai |
nt eger *4 MaxUnl ockedPage
nt eger *4 Lar gest Lockabl ePage
nt eger *4 Li nAddr Space
nt eger *4 Nunfr eePagesAvai |
nt eger *4 NunPhysi cal PagesFr ee
nt eger *4 Tot al Physi cal Pages
nt eger *4 Freeli nAddr Space
nteger*4 SizeOf PageFi |l e
nt eger *4 Reservedl
nt eger *4 Reserved2

end structure
* Set up the register information for the interrupt call

record /nmem nfo/ Mem nfo
integer interrupt_no
i nteger*2 Get DS

paraneter(interrupt_no="31"x)
DS =FS =G5 =0

EAX = ' 00000500’ x

ES = Get DS()

EDI = | oc(Mem nf o)

call fintr(interrupt_no, regs)
* Report the information returned by the DPM host

Print *) s e e ’

print *,’Largest available block (in bytes): ',
Mem nf o. Lar gest Bl ockAvai |

int *, ' Maxi mum unl ocked page al |l ocation: ',
Memnl nf 0. MaxUnl ockedPage

int *, ' Pages that can be allocated and | ocked: ',
Menl nf o. Lar gest Lockabl ePage

int *,'Total |linear address space including //

al | ocat ed pages:’', Mem nfo. Li nAddr Space

int * ' Nurmber of free pages available: ',
Meml nf o. NunfFr eePagesAvai |

int *, ' Nunmber of physical pages not in use: ',
Merl nf 0. NunPhysi cal PagesFr ee

int * 'Total physical pages nmanaged by host: ',
Menl nf 0. Tot al Physi cal Pages

int *,'Free |linear address space (pages): ',
Memnl nf o. Fr eeLi nAddr Space

int * 'Size of paging/file partition (pages): ',
Menl nf 0. Si zeOf PageFi | e

o o o o o o o
= = = = = = =

20_029 R_Ro__R__ R _RR_R__ R

end

20 How do I get information about free memory in the 32-bit environment?

The DOS/4GW DOS Extender

The DOS/4GW DOS Extender

22

6 The Tenberry Software DOS/4GW DOS Extender

The chaptersin this section describe the 32-bit Tenberry Software DOS4GW DOS Extender which is
provided with the Open Watcom F77 package. DOS4GW is a subset of Tenberry Software’ s DOS4G
product. DOS4GW is customized for use with the Open Watcom F77 package. Key differences are:

* DOS4GW will only execute programs built with a Open Watcom 32-bit compiler such as Open
Watcom F77 and linked with its run-time libraries.

» The DOS4GW virtual memory manager (VMM), included in the package, is restricted to 32MB of
memory.

» DOS/4GW does not provide extra functionality such as TSR capability and VMM performance
tuning enhancements.

If your application has requirements beyond those provided by DOS4GW, you may wish to acquire
DOS/4GW Professiona or DOS/4G from:

Tenberry Software, Inc.
PO Box 20050

Fountain Hills, Arizona
U S.A 85269-0050

VWA http://ww.tenberry. com dos4g/

Email: info@enberry.com
Phone: 1.480.767.8868
Fax: 1.480. 767. 8709

Programs devel oped to use the restricted version of DOS4GW which isincluded in the Open Watcom F77
package can be distributed on aroyalty-free basis, subject to the licensing terms of the product.

The Tenberry Software DOS/4GW DOS Extender 23

The DOS/4GW DOS Extender

24 The Tenberry Software DOS/AGW DOS Extender

/ Linear Executables

To build alinear executable, compile and link it as described in the chapter entitled " Creating 32-bit
DOS/AGW Executables'. The resulting file will not run independently: you can run it under the Open
Watcom Debugger, Tenberry Software Instant-D debugger, or with the standalone "DOSAGW.EXE".

7.1 The Linear Executable Format

DOS4GW works with files that use the Linear Executable (LE) file format. The format represents a
protected-mode program in the context of a 32-bit 386 runtime environment with linear to physical address
trangdlation hardware enabled. It uses aflat address space.

Thisfile format is similar to the Segmented Executable (NE) format used in OS/2 1.x and MS Windows.
Both support Dynamic Linking, Resources, and are geared toward protected-mode programs. Both formats
use tables of "counted ASCII" names, and they use similar relocation formats.

Both formats begin with a DOS style stub program that sophisticated loaders skip. This stub program
executes when the DOS4AGW loader is not present, displaying the message, This program cannot run in
DOS mode.

When the Open Watcom Linker is used to link a DOS4GW application, it automatically replaces the
default stub program with one that calls DOSAGW.

7.1.1 The Stub Program

The stub at the beginning of alinear executable is a real-mode program that you can modify asyou like.
For example, you can:

» make the stub program do a checksum on the "DOSAGW.EXE" file to make sureit’ s the correct
version.

* copy protect your program.
» specify a search path for the "DOSAGW.EXE" file.
« add command line arguments.
The SRC directory contains source code for a sample stub program. "WSTUB.C" isasimple example, a

good base to start from when you construct your own stub. Please note that you will require a 16-bit C
compiler to compile a new stub program. Following isthe codein"WSTUB.C":

The Linear Executable Format 25

The DOS/4GW DOS Extender

#i ncl ude <stdio. h>
#i nclude <stdlib. h>
#i ncl ude <process. h>
#i ncl ude <errno. h>
#i nclude <string. h>

/* Add environnent strings to be searched here */
char *paths_to_check[] = {

" DOS4GPATH",
"PATH'};
char *dos4g_pat h()
{
static char fullpath[80];
int i;
for(i =0
i < sizeof(paths_to _check) / sizeof(paths_to_check[0]);
i++) {
_searchenv("dos4gw. exe", paths_to_check[i], fullpath);
if(fullpath{0]) return(& ullpath)
}
for(i =0
i < sizeof(paths_to_check) / sizeof(paths_to_check[O0]);
i++) {
_searchenv("dos4g.exe", paths_to_check[i], fullpath);
if(fullpath{0]) return(& ullpath)
return("dos4gw. exe");
}
mai n(int argc, char *argv[])
{
char *av[4] ;
auto char cmdl i ne[128] ;
av[0] = dos4g_path(); /* Locate the DOS/ 4G | oader */
av[1] = argv[O0]; /* name of executable to run */
av[2] = getcnd(cndline); /* command |ine */
av[3] = NULL; /* end of list */
#ifdef QU ET
put env("DOSAG=QUI ET"); /* di sabl es DOS/ 4G Copyri ght banner */
#endi f
execvp(av[O0], av);
puts("Stub exec failed:");
puts(av[0]);
puts(strerror(errno));
exit(1); /* indicate error */
}

If you do not have a C compiler, you can create an assembly language version of the above sample stub
program and use it to create your own version of the stub program.

7.2 Memory Use

This section explains how a DOS4GW application uses the memory on a 386-based PC/AT. The basic
memory layout of an AT machine consists of 640KB of DOS memory, 384K B of upper memory, and an
undetermined amount of extended memory. DOS memory and upper memory together compose real
memory, the memory that can be addressed when the processor is running in real mode.

26 Memory Use

Linear Executables

Extended
Memory
1MB —»
Upper
Memory
640KB —»
DOS
Memory
1KB —»

Figure 1. Basic Memory Layout

ROMs and

Hardware
47

DOSand
Real-Mode
Software

Interrupt
Vectors

Under DOS4GW, the first megabyte of physical memory — the real memory — is mapped as a shared
linear address space. This allows your application to use absolute addresses in real memory, to access
video RAM or BIOS ROM, for example. Because the real memory is available to all processes, you are not
guaranteed to be able to allocate a particular areain real memory: another process may have alocated it

already.

Most code and datais placed in apaged linear address space starting at 4AMB. The linear address space
starts at 4MB, the first address in the second page table, to avoid conflicts with VCPI system software.

This split mapping — an executable that is linked to start at 4AMB in the linear address space, with the first
MB in the address space mapped to the first MB of physical memory — is called a split flat model.

Theillustration below shows the layout of physical memory on the left, and the layout of the linear address

space on theright.

Memory Use 27

The DOS/4GW DOS Extender

Process code
4 AMB —» and data
Mapped
as 1-4 MB unmapped
needed VCPI code for VCPI
compatibility
4KB pages
1MB—» A A
DOS and
640 KB Real-Mode
Software
Mapped Mapped into
toal process as
processes needed
4KB—»
1KB P> v v

Figure 2. Physical Memory/Linear Address Space

The 1KB label in the diagram indicates the top of the real-mode interrupt vectors. 4KB marks the end of
the first page.

28 Memory Use

8 Configuring DOS/4GW

This chapter explains various options that can be specified with the DOSAG environment variable
including how to suppress the banner that is displayed by DOS4GW at startup. It also explains how to use
the DOS16M environment variable to select the switch mode setting, if hecessary, and to specify the range
of extended memory in which DOS4GW will operate. DOS4GW is based on Tenberry Software's
DOS/16M 16-bit Protected-Mode support; hence the DOS16M environment variable name remains
unchanged.

8.1 The DOS4G Environment Variable

A number of options can be selected by setting the DOSAG environment variable. The syntax for setting
optionsis:

set DOS4G=optionl, option2, ...
Do not insert a space between DOSAG and the equal sign. A space to the right of the equal sign is optional.
Options:
QUIET Use this option to suppress the DOS4GW banner.

The banner that is displayed by DOS4GW at startup can be suppressed by issuing the
following command:

set DOS4G=qui et
Note: Use of the quiet switch isonly permitted pursuant to the terms and conditions of the
WATCOM Software License Agreement and the additional redistribution rights described
in the Getting Started manual. Under these terms, suppression of the copyright by using
the quiet switch is not permitted for applications which you distribute to others.
VERBOSE Use this option to maximize the information available for postmortem debugging.

Before running your application, issue the following command:

set DOS4G=ver bose
Reproduce the crash and record the output.
NULLP Use this option to trap references to the first sixteen bytes of physical memory.

Before running your application, issue the following command:

set DOS4G=nul | p

To select acombination of options, list them with commas as separators.

The DOS4G Environment Variable 29

The DOS/4GW DOS Extender

Example:
set DOS4G=nul | p, ver bose

8.2 Changing the Switch Mode Setting

In almost all cases, DOS4GW programs can detect the type of machine that is running and automatically
choose an appropriate real- to protected-mode switch technique. For the few cases in which this default
setting does not work we provide the DOS16M DOS environment variable, which overrides the default
setting.

Change the switch mode settings by issuing the following command:

set DOS16Meval ue

Do not insert a space between DOS16M and the equal sign. A spaceto theright of the equal signis
optional.

The table below lists the machines and the settings you would use with them. Many settings have
mnemonics, listed in the column "Alternate Name", that you can use instead of the number. Settings that
you must set with the DOS16M variable have the notation req’d in the first column. Settings you may use
are marked option, and settings that will automatically be set are marked auto.

Alternate
Status | Machine Setting Name Comment
auto | 386/486w/ DPMI |0 None Set automatically if DPMI is active
regd |[NEC 98-series 1 9801 Must be set for NEC 98-series
auto PS/2 2 None Set automatically for PS/2
auto 386/486 3 386, 80386 | Set automatically for 386 or 486
auto | 386 INBOARD | None 386 with Intel Inboard
req’'d |Fujitsu FMR-70 5 None Must be set for Fujitsu FMR-70
auto 386/486 w/ VCPI |11 None Set automatically if VCPI detected
req’d |Hitachi B32 14 None Must be set for Hitachi B32
req’d | OKI if800 15 None Must be set for OK1 if800
option |IBM PS/55 16 None May be needed for some PS/55s

The following procedure shows you how to test the switch mode setting.

1. If you have one of the machines listed below, set the DOS16M environment variable to the
value shown for that machine and specify arange of extended memory. For example, if your
machineisaNEC 98-series, set DOS16M=1 @M 4M See the section entitled "Fine Control
of Memory Usage" on page 31 in this chapter for more information about setting the memory
range.

30 Changing the Switch Mode Setting

Configuring DOS/4GW

Machine Setting
NEC 98-series 1
Fujitsu FMR-60,-70 5
Hitachi B32 14
OKI1 if800 15

Before running DOS4GW applications, check the switch mode setting by following this
procedure:

2. Run PMINFO and note the switch setting reported on the last line of the display. (PMINFO,
which reports on the protected-mode resources available to your programs, is described in more
detail in the chapter entitled "Utilities" on page 69)

If PMINFO runs, the setting is usable on your machine.
3. If you changed the switch setting, add the new setting to your AUTOEXEC.BAT file.

Note: PMINFO will run successfully on 286 machines. If your DOS/4GW application does not run, and
PMINFO does, check the CPU type reported on the first line of the display.

Y ou are authorized (and encouraged) to distribute PMINFO to your customers. Y ou may also include a
copy of this section in your documentation.

8.3 Fine Control of Memory Usage

In addition to setting the switch mode as described above, the DOS16M environment variable enables you
to specify which portion of extended memory DOS4GW will use. The variable aso allows you to instruct
DOS4GW to search for extramemory and useit if it is present.

8.3.1 Specifying a Range of Extended Memory

Normally, you don’t need to specify arange of memory with the DOS16M variable. Y ou must use the
variable, however, in the following cases:

* You are running on a Fujitsu FMR-series, NEC 98-series, OKI| if800-series or Hitachi B-series
machine.

* You have older programs that use extended memory but don’t follow one of the standard disciplines.
* You want to shell out of DOS4GW to use another program that requires extended memory.
If none of these conditions applies to you, you can skip this section.

The general syntax is:

set DOS16M= [switch_node] [@tart_address [- end_address]] [:size]

In the syntax shown above, st art _addr ess, end_addr ess and si ze represent numbers, expressed
in decimal or in hexadecimal (hex requiresa Ox prefix). The number may end with aK to indicate an

Fine Control of Memory Usage 31

The DOS/4GW DOS Extender

address or sizein kilobytes, or an M to indicate megabytes. If no suffix is given, the address or sizeis
assumed to bein kilobytes. If both asize and arange are specified, the more restrictive interpretation is
used.

The most flexible strategy is to specify only asize. However, if you are running with other software that
does not follow a convention for indicating its use of extended memory, and these other programs start
before DOS/4GW, you will need to calculate the range of memory used by the other programs and specify a
range for DOS4GW programs to use.

DOS4GW ignores specifications (or parts of specifications) that conflict with other information about
extended memory use. Below are some examples of memory usage control:

set DOS16M= 1 @2m-4m Mode 1, for NEC 98-series machines, and use extended memory
between 2.0 and 4.0MB.

set DOS16M=:1M Use the last full megabyte of extended memory, or as much as
available limited to IMB.

set DOS16M= @2m Use any extended memory available above 2MB.

set DOS16M= @0 - 5m Use any available extended memory from 0.0 (really 1.0) to
5.0MB.

set DOS16M=:0 Use no extended memory.

As adefault condition DOS/4GW applications take all extended memory that is not otherwise in use.
Multiple DOS4AGW programs that execute simultaneously will share the reserved range of extended
memory. Any non-DOS4GW programs started while DOS4GW programs are executing will find that
extended memory above the start of the DOS4GW range is unavailable, so they may not be able to run.
Thisisvery safe. Therewill be aconflict only if the other program does not check the BIOS configuration
call (Interrupt 15H function 88H, get extended memory size).

To create a private pool of extended memory for your DOS4GW application, use the PRIVATXM
program, described in the chapter entitled "Utilities" on page 69.

The default memory allocation strategy isto use extended memory if available, and overflow into DOS
(low) memory.

InaVCPI or DPMI environment, the st art _addr ess and end_addr ess arguments are not
meaningful. DOS4GW memory under these protocols is not allocated according to specific addresses
because VCPI and DPMI automatically prevent address conflicts between extended memory programs.

Y ou can specify a si ze for memory managed by VCPI or DPMI, but DOS/4GW will not necessarily
allocate this memory from the highest available extended memory address, as it does for memory managed
under other protocols.

8.3.2 Using Extra Memory

Some machines contain extra non-extended, non-conventional memory just below 16MB. When
DOS4GW runs on a Compaq 386, it automatically uses this memory because the memory is allocated
according to a certain protocol, which DOS4GW follows. Other machines have no protocol for allocating
this memory. To use the extramemory that may exist on these machines, set DOS16M with the + option.

set DOS16M=+

32 Fine Control of Memory Usage

Configuring DOS/4GW

Setting the + option causes DOS/4GW to search for memory in the range from FA0000 to FFFFFF and
determine whether the memory is usable. DOS4GW does this by writing into the extra memory and
reading what it has written. In some cases, this memory is mapped for DOS or BIOS usage, or for other
system uses. If DOS4GW finds extra memory that is mapped this way, and is not marked read-only, it will
write into that memory. Thiswill cause a crash, but won't have any other effect on your system.

8.4 Setting Runtime Options

The DOS16M environment variable sets certain runtime options for all DOS/4GW programs running on the
same system.

To set the environment variable, the syntax is:

set DOS16M=[switch_npde_setting] “options.

Note: Some command line editing TSRs, such as CED, use the caret (") asadelimiter. If you want to set
DOS16M using the syntax above while one of these TSRsis resident, modify the TSR to use a different
delimiter.

These are the options:

0x01 check A20 line -- This option forces DOS4GW to wait until the A20 line is enabled before
switching to protected mode. When DOS4GW switchesto real mode, this option suspends
your program’s execution until the A20 lineis disabled, unless an XM S manager (such as
HIMEM.SYS) isactive. If an XMS manager is running, your program’s execution is
suspended until the A20 lineis restored to the state it had when the CPU was last in real
mode. Specify thisoption if you have a machine that runs DOS4GW but is not truly
AT-compatible. For moreinformation on the A20 line, see the section entitled
"Controlling Address Line 20" on page 34.

0x02 prevent initialization of VCPI -- By default, DOS4GW searches for a VCPI server and, if
oneispresent, forcesit on. Thisoption isuseful if your application does not use EMS
explicitly, is not aresident program, and may be used with 386-based EM S simulator
software.

0x04 directly pass down keyboard status calls -- When this option is set, status requests are
passed down immediately and unconditionally. When disabled, pass-downs are limited so
the 8042 auxiliary processor does not become overloaded by keyboard polling loops.

0x10 restore only changed interrupts -- Normally, when a DOS4GW program terminates, all
interrupts are restored to the values they had at the time of program startup. When you use
this option, only the interrupts changed by the DOS/4GW program are restored.

0x20 set new memory to 00 -- When DOS/4GW allocates a new segment or increases the size of a
segment, the memory is zeroed. This can help you find bugs having to do with
uninitialized memory. You can also useit to provide a consistent working environment
regardless of what programs were run earlier. This option only affects segment allocations
or expansions that are made through the DOS4GW kernel (with DOS function 48H or
4AH). This option does not affect memory allocated with a compiler’s nal | oc function.

0x40 set new memory to FF -- When DOS4GW all ocates a new segment or increases the size of
a segment, the memory is set to OxFF bytes. Thisishelpful in making reproducible cases

Setting Runtime Options 33

The DOS/4GW DOS Extender

of bugs caused by using uninitialized memory. This option only affects segment
allocations or expansions that are made through the DOS4GW kernel (with DOS function
48H or 4AH). This option does not affect memory allocated with a compiler’s mal | oc
function.

0x80 new selector rotation -- When DOS4GW all ocates a new selector, it usually looks for the
first available (unused) selector in numerical order starting with the highest selector used
when the program was loaded. When this option is set, the new selector search begins after
the last selector that was allocated. This causes new selectors to rotate through the range.
Use this option to find references to stale selectors, i.e., segments that have been cancelled
or freed.

8.5 Controlling Address Line 20

This section explains how DOS4GW uses address line 20 (A20) and describes the related DOS16M
environment variable settings. It isunlikely that you will need to use these settings.

Because the 8086 and 8088 chips have 20-bit address spaces, their highest addressable memory location is
one byte below 1IMB. If you specify an address at 1IMB or over, which would require a twenty-first bit to
set, the address wraps back to zero. Some parts of DOS depend on this wrap, so on the 286 and 386, the
twenty-first address bit isdisabled. To address extended memory, DOS4GW enabl es the twenty-first
address bit (the A20 line). The A20 line must be enabled for the CPU to run in protected mode, but it may
be either enabled or disabled in real mode.

By default, when DOS/4GW returnsto real mode, it disablesthe A20 line. Some software depends on the
line being enabled. DOS4GW recognizes the most common software in this class, the XM S managers
(such asHIMEM.SY S), and enables the A20 line when it returns to real mode if an XM S manager is
present. For other software that requires the A20 line to be enabled, use the A20 option. The A20 option
makes DOSAGW restore the A20 line to the setting it had when DOS/4GW switched to protected mode.
Set the environment variable as follows:

set DOS16M=A20
To specify more than one option on the command line, separate the options with spaces.

The DOS16M variable aso lets you to specify the length of the delay between a DOS4GW instruction to
change the status of the A20 line and the next DOS4GW operation. By default, thisdelay is 1 loop
instruction when DOS4GW is running on a 386 machine. In some cases, you may need to specify alonger
delay for a machine that will run DOS4GW but is not truly AT-compatible. To change the delay, set
DOS16M to the desired number of loop instructions, preceded by a comma:

set DOS16M=, | oops

34 Controlling Address Line 20

9 vmm

The Virtual Memory Manager (VMM) uses a swap file on disk to augment RAM. With VMM you can use
more memory than your machine actually has. When RAM is not sufficient, part of your program is
swapped out to the disk file until it is needed again. The combination of the swap file and available RAM
isthevirtual memory.

Y our program can use VMM if you set the DOS environment variable, DOSAGVM, asfollows. To set the
DOSAGVM environment variable, use the format shown below.

set DOSAGVME= [option[#val ue]] [option[#val ue]]
A "#" is used with options that take values since the DOS command shell will not accept "=".
If you set DOSAGVM equal to 1, the default parameters are used for all options.

Example:
Cset DOS4GVMEL

9.1 VMM Default Parameters

VMM parameters control the options listed below.

MINMEM The minimum amount of RAM managed by VMM. The default is 512K B.

MAXMEM The maximum amount of RAM managed by VMM. The default is 4MB.

SWAPMIN The minimum or initia size of the swap file. If thisoption is not used, the size of the
swap fileis based on VIRTUALSI ZE (see below).

SWAPINC The size by which the swap file grows.

SWAPNAME The swap file name. The default name is"DOSAGVM.SWP'. By default thefileisin

the root directory of the current drive. Specify the complete path nameif you want to
keep the swap file somewhere el se.

DELETESWAP Whether the swap file is deleted when your program exits. By default the fileis not
deleted. Program startup is quicker if the fileis not deleted.

VIRTUALSIZE The size of the virtual memory space. The default is 16MB.

VMM Default Parameters 35

The DOS/4GW DOS Extender

9.2 Changing the Defaults

Y ou can change the defaults in two ways.

1. Specify different parameter values as arguments to the DOSAGVM environment variable, as
shown in the example below.

set DOS4GVM=del et eswap maxnmen#8192

2. Create aconfiguration file with the filetype extension ".VMC", and use that as an argument to
the DOSAGVM environment variable, as shown below.

set DOS4GVMF@NEWIG. VMC

9.2.1 The .VMC File

A " VMC" file contains VMM parameters and settings as shown in the example below. Comments are
permitted. Comments on lines by themselves are preceded by an exclamation point (!). Comments that
follow option settings are preceded by white space. Do not insert blank lines: processing stops at the first
blank line.

!Sample .VMC file
!This file shows the default paraneter val ues

m nmem = 512 At |east 512K bytes of RAMis required.
maxmem = 4096 Uses no nore than 4MB of RAM

virtual size = 16384 Swap file plus allocated nmenory is 16MB

! To delete the swap file automatically when the programexits, add
I del et eswap

! To store the swap file in a directory called SWAPFI LE, add
I'swapnane = c:\swapfil e\ dos4gvm swp

36 Changing the Defaults

10 Interrupt 21H Functions

When you call an Interrupt 21H function under DOS4GW, the 32-hit registers in which you pass values are
trandlated into the appropriate 16-hit registers, since DOS works only with 16 bits. However, you can use
32-bit valuesin your DOS calls. You can allocate blocks of memory larger than 64KB or use an address
with a 32-bit offset, and DOS4GW will tranglate the call appropriately, to use 16-bit registers. When the

Interrupt 21H function returns, the value is widened - placed in a 32-bit register, with the high order bits
zeroed.

DOS4GW uses the following rules to manage registers:

» When you pass a parameter to an Interrupt 21H function that expects a 16-bit quantity in a general
register (for example, AX), pass a 32-bit quantity in the corresponding extended register (for
example, EAX). When a DOS function returns a 16-bit quantity in a general register, expect to
receive it (with high-order zero bits) in the corresponding extended register.

» When an Interrupt 21H function expectsto receive a 16:16 pointer in a segment:general register pair
(for example, ES:BX), supply a 16:32 pointer using the same segment register and the corresponding
extended general register (ES:EBX). DOS4GW will copy data and translate pointers so that DOS
ultimately receives a 16:16 real-mode pointer in the correct registers.

* When DOS returns a 16:16 real-mode pointer, DOS4GW transl ates the segment value into an

appropriate protected-mode selector and generates a 32-bit offset that resultsin a 16:32 pointer to the
same location in the linear address space.

» Many DOS functions return an error code in AX if the function fails. DOS4GW checks the status of

the carry flag, and if it is set, indicating an error, zero-extends the code for EAX. It does not change
any other registers.

« If the valueis passed or returned in an 8-bit register (AL or AH, for example), DOS4GW puts the
value in the appropriate location and |eaves the upper half of the 32-bit register untouched.

Thetable below lists al the Interrupt 21h functions. For each, it shows the registersthat are widened or
narrowed. Footnotes provide additional information about some of the interrupts that require special

handling. Following thetableis a section that provides a detailed explanation of interrupt handling under
DOS4GW.

Interrupt 21H Functions 37

The DOS/4GW DOS Extender

Function

O00H
01H
02H
03H
04H
O5H
06H
Oo7H
08H
09H
OAH
0BH
OCH
ODH
OEH
OFH

10H
11H
12H
13H
14H
15H
16H
17H
19H
1AH
1BH
1CH

21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH

30H
31H
33H
34H
35H
36H

Purpose

Terminate Process

Character Input with Echo
Character Output

Auxiliary Input

Auxiliary Output

Print Character

Direct Console I/O

Unfiltered Character Input Without Echo
Character Input Without Echo
Display String

Buffered Keyboard Input
Check Keyboard Status

Flush Buffer, Read Keyboard
Disk Reset

Select Disk

Open File with FCB

Close File with FCB
Find First File

Find Next File
Delete File
Sequential Read
Sequentia Write
Create File with FCB
Rename File

Get Current Disk

Set DTA Address
Get Default Drive Data
Get Drive Data

Random Read

Random Write

Get File Size

Set Relative Record

Set Interrupt Vector

Create New Program Segment Prefix
Random Block Read

Random Block Write

Parse Filename ESI,
Get Date

Set Date

Get Time

Set Time

Set/Reset Verify Flag

Get DTA Address

Get MS-DOS Version Number
Terminate and Stay Resident
Get/Set Control-C Check Flag
Return Address of INDOS Flag
Get Interrupt Vector

Get Disk Free Space

38 Interrupt 21H Functions

Managed Registers

None
None
None
None
None
None
None
None
None
EDX
EDX
None
EDX
None
None
EDX

EDX
EDX
EDX
EDX
EDX
EDX
EDX
EDX
None
EDX
Returnsin EBX, ECX, and EDX
Returnsin EBX, ECX, and EDX

EDX

EDX

EDX

EDX

EDX

None

EDX, returnsin ECX
EDX, returnsin ECX
EDI, returnsin EAX, ESI and EDI (1.)
Returnsin ECX
None

None

None

None

Returnsin EBX

Returnsin ECX

None

None

Returnsin EBX

Returnsin EBX

Returnsin EAX, EBX, ECX, and EDX

Interrupt 21H Functions

38H
39H
3AH
3BH
3CH
3DH
3EH
3FH

40H
41H
42H
43H
44H

45H
46H
47H
48H
49H
4AH
4BH
4CH
4DH
4EH
4FH

52H
54H
56H
57H
58H
59H
5AH
5BH
5CH
SEH

O00H
01H
02H
O3H
04H
O5H
06H
Oo7H
08H
09H
O0AH
O0BH
OCH
ODH
OEH
OFH

OOH
02H

Get/Set Current Country
Create Directory

Remove Directory
Change Current Directory
Create File with Handle
Open File with Handle
Close File

Read File or Device

Write File or Device

Delete File

Move File Pointer

Get/Set File Attribute

IOCTL

Get Device Information
SetDevice Information

Read Control Datafrom CDD
Write Control Datato CDD

Read Control Datafrom BDD
Write Control Datato BDD
Check Input Status

Check Output Status

Check if Block Device is Removeable
Check if Block Device is Remote
Check if Handle is Remote
Change Sharing Retry Count
Generic I/0 Control for Character Devices
Generic 1/O Control for Block Devices
Get Logical Drive Map

Set Logical Drive Map

Duplicate File Handle

Force Duplicate File Handle

Get Current Directory

Allocate Memory Block

Free Memory Block

Resize Memory Block

L oad and Execute Program (EXEC)
Terminate Process with Return Code
Get Return Code of Child Process
Find First File

Find Next File

Get List of Lists

Get Verify Flag

Rename File

Get/Set Date/Time of File
Get/Set Allocation Strategy

Get Extended Error Information
Create Temporary File

Create New File

Lock/Unlock File Region
Network Machine Name/Printer Setup
Get Machine Name

Set Printer Setup String

EDX, returnsin EBX
EDX
EDX
EDX
EDX, returnsin EAX
EDX, returnsin EAX
None

EBX, ECX, EDX, returnsin EAX (2.)

EBX, ECX, EDX, returnsin EAX (2.)

EDX

Returnsin EDX, EAX
EDX, returnsin ECX
(3)

Returnsin EDX
None

EDX, returnsin EAX
EDX, returnsin EAX
EDX, returnsin EAX
EDX, returnsin EAX
None

None

Returnsin EAX
Returnsin EDX
Returnsin EDX
None

EDX

EDX

None

None

Returnsin EAX
None

ESI

Returnsin EAX
None

None

EBX, EDX (4.)
None

None

EDX

None

(not supported)

None

EDX, EDI

Returnsin ECX, and EDX
Returnsin EAX

Returnsin EAX

EDX, returnsin EAX and EDX
EDX, returnsin EAX

None

EDX
ES|

Interrupt 21H Functions

39

The DOS/4GW DOS Extender

5FH

62H
63H
65H
66H
67H

03H Get Printer Setup String EDI, returnsin ECX
Get/Make Assign List Entry

02H Get Redirection List Entry ESl, EDI, returnsin ECX

03H Redirect Device ESI, EDI

04H Cancel Device Redirection ES|
Get Program Segment Prefix Address Returnsin EBX
Get Lead Byte Table (version 2.25 only) Returnsin ESI
Get Extended Country Information EDI
Get or Set Code Page None
Set Handle Count None

Thislist of functions is excerpted from The MS-DOS Encyclopedia , Copyright () 1988 by Microsoft

Press.

1.

2.

All Rights Reserved.
For Function 29H, DS:ESI and ES:EDI contain pointer values that are not changed by the call.

Y ou can read and write quantities larger than 64KB with Functions 3FH and 40H. DOS4GW
breaks your request into chunks smaller than 64K B, and calls the DOS function once for each
chunk.

You can't transfer more than 64K B using Function 44h, subfunctions 02H, 03H, 04H, or O5H.
DOS4GW does not break larger requests into DOS-sized chunks, as it does for Functions 3FH
and 40H.

When you call Function 4B under DOS4GW, you pass it a data structure that contains 16:32 bit
pointers. DOS4GW trandlates these into 16:16 bit pointers in the structure it passesto DOS.

10.1 Functions 25H and 35H: Interrupt Handling in Protected

Mode

By default, interrupts that occur in protected mode are passed down: the entry inthe IDT pointsto codein
DOS4GW that switches the CPU to real mode and resignals the interrupt. If you install an interrupt

handler using Interrupt 21H, Function 25H, that handler will get control of any interrupts that occur while
the processor is in protected mode. If the interrupt for which you installed the handler isin the autopassup

range,

your handler will also get control of interrupts signalled in real mode.

The autopassup range runs from 08H to 2EH inclusive, but excluding 21H. If theinterrupt isin the
autopassup range, the real-mode vector will be modified when you install the protected-mode handler to
point to code in the DOS4GW kernel. This code switches the processor to protected mode and resignals
the interrupt-where your protected-mode handler will get control.

10.1.1 32-Bit Gates

The DOS/4GW kernel always assigns a 32-bit gate for the interrupt handlersit installs. 1t does not
distinguish between 16-bit and 32-bit handlers for consistency with DPMI.

This 32-hit gate points into the DOS4GW kernel. When DOS4GW handles the interrupt, it switchesto its
own 16-bit stack, and from there it calls the interrupt handler (yours or the default). Thistrandationis

40 Functions 25H and 35H: Interrupt Handling in Protected Mode

Interrupt 21H Functions

transparent to the handler, with one exception: since the current stack is not the one on which the interrupt
occurred, the handler cannot look up the stack for the address at which the interrupt occurred.

10.1.2 Chaining 16-bit and 32-bit Handlers

If your program hooks an interrupt, write anormal service routine that either handles the interrupt and
IRETs or chainsto the previous handler. As part of handling the interrupt, your handler can PUSHF/CALL
to the previous handler. The handler must IRET (or IRETD) or chain.

For each protected-mode interrupt, DOS4GW maintains separate chains of 16-bit and 32-bit handlers. If
your 16-bit handler chains, the previous handler is a 16-bit program. If your 32-bit handler chains, the
previous handler is a 32-hit program.

If a 16-bit program hooks a given interrupt before any 32-bit programs hook it, the 16-bit chain is executed
first. If al the 16-bit handlers unhook later and a new 16-bit program hooks the interrupt while 32-bit
handlers are still outstanding, the 32-bit handlers will be executed first.

If the first program to hook an interrupt is 32-bit, the 32-bit chain is executed first.

10.1.3 Getting the Address of the Interrupt Handler

When you signal Interrupt 21H, Function 35, it always returns a non-null address even if no other program
of your bitness (i.e., 16-hit or 32-bit) has hooked the interrupt. The address points to adummy handler that
looks to you as though it does an IRET to end the chain. This means that you can’t find an unused interrupt
by looking for aNULL pointer. Since this technique is most frequently used by programs that are looking
for an unclaimed real-mode interrupt on which to install a TSR, it shouldn’t cause you problems.

Functions 25H and 35H: Interrupt Handling in Protected Mode 41

The DOS/4GW DOS Extender

42 Functions 25H and 35H: Interrupt Handling in Protected Mode

11 Interrupt 31H DPMI Functions

When a DOS4GW application runs under aDPMI host, such as Windows 3.1 in enhanced mode, an OS/2

virtual DOS machine, 386Max (with DEBUG=DPMIXCOPY), or QEMM/QDPMI (with EXTCHKOFF),

the DPMI host provides the DPMI services, not DOS4AGW. The DPMI host also provides virtual memory,
if any. Performance (speed and memory use) under different DPMI hosts varies greatly due to the quality

of the DPMI implementation.

DPMI services are accessed using Interrupt 31H.

The following describes the services provided by DOS4GW and DOS/AGW Professional in the absence of

aDPMI host. DOS/4GW supports many of the common DPMI system services. Not all of the services
described below are supported by other DPMI hosts.

Some of the information in this chapter was obtained from the the DOS Protected-M ode | nterface (DPMI)

specification. It isno longer in print; however the DPMI 1.0 specification can be obtained from the Intel
ftp site. Hereisthe URL.

ftp://ftp.intel.com pub/|AL/software_specs/dpm vl. zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

11.1 Using Interrupt 31H Function Calls

Interrupt 31H DPMI function calls can be used only by protected-mode programs.
The general ground rules for Interrupt 31H calls are as follows:

« All Interrupt 31H calls modify the AX register. Unsupported or unsuccessful callsreturn an error
codein AX. Other registers are saved unless they contain specified return values.

* All Interrupt 31H calls modify flags: Unsupported or unsuccessful calls return with the carry flag
set. Successful calls clear the carry flag. Only memory management and interrupt flag management
calls modify the interrupt flag.

» Memory management calls can enable interrupts.

* All calls are reentrant.

The flag and register information for each call islisted in the following descriptions of supported Interrupt
31H function calls.

Using Interrupt 31H Function Calls 43

The DOS/4GW DOS Extender

11.2 Int31H Function Calls

The Interrupt 31H subfunction calls supported by DOS4GW are listed below by category:
* Local Descriptor Table (LDT) management services
* DOS memory management services
* Interrupt services
* Translation services
* DPMI version
* Memory management services
* Page locking services
» Demand paging performance tuning services
* Physical address mapping
* Virtual interrupt state functions
* Vendor specific extensions
» Coprocessor status

Only the most commonly used Interrupt 31H function calls are supported in this version.

11.2.1 Local Descriptor Table (LDT) Management Services

Function 0000H This function allocates a specified number of descriptors from the LDT and returns the
base selector. Pass the following information:

AX = 0000H
CX =number of descriptorsto be allocated

If the call succeeds, the carry flag is clear and the base selector isreturned in AX. If the
cal fails, the carry flag is set.

An alocated descriptor is set to the present data type, with a base and limit of zero. The
privilege level of an allocated descriptor is set to match the code segment privilege level of
the application. To find out the privilege level of adescriptor, usethe | ar instruction.
Allocated descriptors must be filled in by the application. If more than one descriptor is
allocated, the returned selector is the first of a contiguous array. Use Function 0003H to
get the increment for the next selector in the array.

Function 0001H This function frees the descriptor specified. Pass the following information:

44 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0001H
BX =the selector to free

Use the selector returned with function 0000h when the descriptor was allocated. To free
an array of descriptors, call thisfunction for each descriptor. Use Function 0003H to find
out the increment for each descriptor in the array.

If the call succeeds, the carry flagis clear; if it fails, the carry flag is set.

Y ou can use this function to free the descriptors all ocated for the program’sinitial CS, DS,
and SS segments, but you should not free other segments that were not allocated with
Function 0000H or Function 000DH.

Function 0002H This function converts a real-mode segment to a descriptor that a protected-mode
program can address. Pass the following information:

AX =0002H
BX = real-mode segment address

If the call succeeds, it clears the carry flag and returns the selector mapped to the real-mode
segment in AX. If the call fails, the carry flag is set.

If you call this function more than once with the same real-mode segment address, you get
the same selector value each time. The descriptor limit is set to 64KB.

The purpose of this function is to give protected-mode programs easy access to commonly
used real-mode segments. However, because you cannot modify or free descriptors created
by this function, it should be used infrequently. Do not use this function to get descriptors
for private data areas.

To examine real-mode addresses using the same selector, first allocate a descriptor, and
then use Function 0007H to change the linear base address.

Function 0003H This function returns the increment value for the next selector. Use this function to get
the value you add to the base address of an allocated array of descriptorsto get the next
selector address. Pass the following information:

AX =0003H

This call always succeeds. Theincrement valueisreturned in AX. Thisvalueisawaysa
power of two, but no other assumptions can be made.

Function 0006H This function gets the linear base address of a selector. Pass the following information:

AX = 0006H
BX = selector

If the call succeeds, the carry flagis clear and CX:DX contains the 32-bit linear base
address of the segment. If the call fails, it setsthe carry flag.

If the selector you specify in BX isinvalid, the call fails.

Function 0007H This function changes the base address of a specified selector. Only descriptors allocated
through Function 0000H should be modified. Pass the following information:

Int31H Function Calls 45

The DOS/4GW DOS Extender

46

AX = 0007H

BX = selector

CX:DX =thenew 32-bit linear base addressfor the segment

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set.

If the selector you specify in BX isinvalid, the call fails.

Function 0008H This function sets the upper limit of a specified segment. Use this function to modify

descriptors allocated with Function 0000H only. Pass the following information:;
AX = 0008H

BX = selector

CX:DX = 32-bit segment limit

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set.

The cdll failsif the specified selector isinvalid, or if the specified limit cannot be set.

Segment limits greater than 1MB must be page-aligned. This means that limits greater than
1IMB must have the low 12 bits set.

To get the limit of a segment, use the 32-bit form of | sl for segment limits greater than
64K B.

Function 0009H This function sets the descriptor access rights. Use this function to modify descriptors

allocated with Function 0000H only. To examine the access rights of a descriptor, use the
| ar instruction. Pass the following information:

AX = 0009H

BX = selector

CL = Accessrights/type byte

CH = 386 extended accessrights/type byte

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag isset. If the
selector you specify in BX isinvalid, the call fails. The call also failsif the access
rights/type byte does not match the format and meet the requirements shown in the figures
below.

Int31H Function Calls

Interrupt 31H DPMI Functions

The access rights/type byte passed in CL has the format shown in the figure below.

P DPL

1 C/D E/C WIR

1

A

v

0 => Absent, 1=> Present

Figure 3. Access Rights/Type

\
Must equal caller's CPL

0 => Data, 1=> Code

v
Must be 1

i

0 => Not accessed
1=> Accessed

Data: 0 => Read, 1=> R/W
v Code: Must be 1 (readable)

Data: 0=> Exp-up, 1=> Exp-dn
v Code: Must be 0 (non-conform)

Int31H Function Calls

47

The DOS/4GW DOS Extender

The extended access rights/type byte passed in CH has the following format.

G B/D 0 Avl Reserved
7 6 5 4 3 2 1 0
Ignored
v
CanbeOorl
v
Must be 0
v
0 => Default 16-bit., 1=> Default 32-bit
v

0 => Byte Granular, 1=> Page Granular

Figure 4. Extended Access Rights/Type

Function 000AH This function creates an alias to a code segment. This function creates a data descriptor
that has the same base and limit as the specified code segment descriptor. Passthe
following information:

AX = 000AH
BX = code segment selector

If the call succeeds, the carry flagis clear and the new data selector isreturned in AX. If
the call fails, the carry flag isset. Thecall failsif the selector passed in BX isnot avalid
code segment.

To deallocate an dias to a code segment, use Function 0001H.
After the dliasis created, it does not change if the code segment descriptor changes. For
example, if the base or limit of the code segment change later, the alias descriptor stays the

same.

Function 000BH This function copies the descriptor table entry for a specified descriptor. The copy is
written into an 8-byte buffer. Pass the following information:

AX = 000BH

BX = selector
ES.EDI = apointer to the 8-byte buffer for the descriptor copy

48 Int31H Function Calls

Interrupt 31H DPMI Functions

If the call succeeds, the carry flagis clear and ES:EDI contains a pointer to the buffer that
contains a copy of the descriptor. If the call fails, the carry flag isset. Thecall failsif the
selector passed in BX isinvalid or unallocated.

Function 000CH This function copies an 8-byte buffer into the LDT for a specified descriptor. The
descriptor must first have been allocated with Function 0000H. Pass the following
information:

AX = 000CH
BX = selector
ES.EDI = apointer to the 8-byte buffer containing the descriptor

If the call succeeds, the carry flag is clear; if it fails, the carry flag isset. The cal failsif
the descriptor passed in BX isinvalid.

The type byte, byte 5, has the same format and requirements as the access rights/type byte
passed to Function 0009H in CL. Theformat is shown in the first figure presented with the
description of Function 0009H.

The extended type byte, byte 6, has the same format and requirements as the extended
access rights/type byte passed to Function 0009H in CH, except that the limit field can have
any value, and the low order bits marked reserved are used to set the upper 4 bits of the
descriptor limit. The format is shown in the second figure presented with the description of
Function O009H.

Function 000DH This function allocates a specific LDT descriptor. Pass the following information:

AX = 000DH
BX = selector

If the call succeeds, the carry flag is clear and the specified descriptor is allocated. If the
call fails, the carry flag is set.

The call failsif the specified selector isalready in use, or if itisnot avalid LDT descriptor.
The first 10h (16 decimal) descriptors are reserved for this function, and should not be used
by the host. Some of these descriptors may bein use, however, if another client application
isaready loaded.

To free the descriptor, use Function 0001H.

11.2.2 DOS Memory Management Services
Function 0100H This function allocates memory from the DOS free memory pool. This function returns
both the real-mode segment and one or more descriptors that can be used by

protected-mode applications. Pass the following information:

AX =0100H
BX =the number of paragraphs (16-byte blocks) requested

If the call succeeds, the carry flagisclear. AX containstheinitial real-mode segment of
the allocated block and DX contains the base selector for the allocated block.

Int31H Function Calls 49

The DOS/4GW DOS Extender

50

If the call fails, the carry flag isset. AX containsthe DOS error code. If memory is
damaged, code O7H is returned. If thereis not enough memory to satisfy the request, code
08H isreturned. BX contains the number of paragraphsin the largest available block of
DOS memory.

If you request a block larger than 64K B, contiguous descriptors are allocated. Use
Function 0003H to find the value of the increment to the next descriptor. The limit of the
first descriptor is set to the entire block. Subsequent descriptors have alimit of 64KB,
except for the final descriptor, which hasalimit of bl ocksi ze MOD 64KB.

Y ou cannot modify or deallocate descriptors allocated with this function. Function 101H
deallocates the descriptors automatically.

Function 0101H Thisfunction frees a DOS memory block allocated with function 0100H. Passthe

following information:

AX = 0101H
DX = selector of the block to be freed

If the call succeeds, the carry flag isclear.
If the call fails, the carry flag is set and the DOS error code isreturned in AX. If the
incorrect segment was specified, code 09H isreturned. If memory control blocks are

damaged, code O7H is returned.

All descriptors allocated for the specified memory block are deallocated automatically and
cannot be accessed correctly after the block is freed.

Function 0102H This function resizes a DOS memory block allocated with function 0100H. Passthe

following information;

AX =0102H
BX =the number of paragraphs (16-byte blocks) in theresized block
DX = selector of block toresize

If the call succeeds, the carry flag is clear.

If the call fails, the carry flag is set, the maximum number of paragraphs availableis
returned in BX, and the DOS error code isreturned in AX. If memory code blocks are
damaged, code O7H isreturned. If thereisn’'t enough memory to increase the size as
requested, code O8H is returned. If the incorrect segment is specified, code 09h is returned.

Because of the difficulty of finding additional contiguous memory or descriptors, this
function is not often used to increase the size of amemory block. Increasing the size of a
memory block might well fail because other DOS all ocations have used contiguous space.
If the next descriptor in the LDT is not free, allocation also fails when the size of ablock
grows over the 64KB boundary.

If you shrink the size of amemory block, you may also free some descriptors allocated to
the block. Theinitial selector remains unchanged, however; only the limits of subsequent
selectors will change.

Int31H Function Calls

Interrupt 31H DPMI Functions

11.2.3 Interrupt Services

Function 0200H This function gets the value of the current task’ s real-mode interrupt vector for the
specified interrupt. Pass the following information:

AX =0200H
BL =interrupt number

This call always succeeds. All 100H (256 decimal) interrupt vectors are supported by the
host. When the call returns, the carry flag is clear, and the segnent : of f set of the
real-mode interrupt handler is returned in CX:DX.

Because the address returned in CX is a segment, and not a selector, you cannot put it into a
protected-mode segment register. If you do, a general protection fault may occur.

Function 0201H This function sets the value of the current task’ s real-mode interrupt vector for the
specified interrupt. Pass the following information:

AX =0201H
BL =interrupt number
CX:DX = segment:offset of the real-mode interrupt handler

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

The address passed in CX:DX should be areal-mode segnent : of f set, suchas
function 0200H returns. For this reason, the interrupt handler must reside in DOS
addressable memory. Y ou can use Function 0100H to allocate DOS memory. Thisversion
does not support the real-mode callback address function.

If you are hooking a hardware interrupt, you have to lock all segmentsinvolved. These
segments include the segment in which the interrupt handler runs, and any segment it may
touch at interrupt time.

Function 0202H This function gets the processor exception handler vector. This function returns the
CS:EIP of the current protected-mode exception handler for the specified exception
number. Pass the following information:

AX =0202H
BL = exception/fault number (00h - 1Fh)

If the call succeeds, the carry flagisclear and the sel ect or : of f set of the
protected-mode exception handler isreturned in CX:EDX. If it fails, the carry flag is set.

The value returned in CX isavalid protected-mode selector, not a real-mode segment.
Function 0203H This function sets the processor exception handler vector. This function allows
protected-mode applications to intercept processor exceptions that are not handled by the

DPMI environment. Programs may wish to handle exceptions such as "not present segment
faults" which would otherwise generate afatal error. Pass the following information:

Int31H Function Calls 51

The DOS/4GW DOS Extender

AX =0203H
BL = exception/fault number (00h - 1Fh)
CX:EDX = selector:offset of the exception handler

If the call succeeds, the carry flagisclear. If it fails, the carry flag is set.

The address passed in CX must be avalid protected-mode selector, such as Function 204H
returns, and not a real-mode segment. A 32-bit implementation must supply a 32-bit offset
inthe EDX register. If the handler chainsto the next handler, it must use a 32-bit interrupt
stack frame to do so.

The handler should return using afar return instruction. The original SS:ESP, CS:EIP and
flags on the stack, including the interrupt flag, will be restored.

All fault stack frames have an error code. However the error code is only valid for
exceptions 08h, 0OAh, 0Bh, 0Ch, 0Dh, and OEh.

The handler must preserve and restore al registers.

The exception handler will be called on alocked stack with interrupts disabled. The
origina SS, ESP, CS, and EIP will be pushed on the exception handler stack frame.

The handler must either return from the call by executing afar return or jump to the next
handler in the chain (which will execute afar return or chain to the next handler).

The procedure can modify any of the values on the stack pertaining to the exception before
returning. This can be used, for example, to jump to a procedure by modifying the CS:EIP
on the stack. Note that the procedure must not modify the far return address on the stack —
it must return to the original caller. The caller will then restore the flags, CS.EIP and
SS:ESP from the stack frame.

If the DPMI client does not handle an exception, or jumps to the default exception handler,
the host will reflect the exception as an interrupt for exceptions 0, 1, 2, 3,4, 5and 7.
Exceptions 6 and 8 - 1Fh will be treated as fatal errors and the client will be terminated.
Exception handlers will only be called for exceptions that occur in protected mode.

Function 0204H Thisfunction getsthe CS:EIP sel ect or : of f set of the current protected-mode
interrupt handler for a specified interrupt number. Pass the following information:

AX = 0204H
BL =interrupt number

This call always succeeds. All 100H (256 decimal) interrupt vectors are supported by the
host. When the call returns, the carry flag is clear and CX:EDX contains the
protected-mode sel ect or : of f set of the exception handler.

A 32-hit offset isreturned in the EDX register.

Function 0205H This function sets the address of the specified protected-mode interrupt vector. Passthe
following information:

52 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0205H
BL =interrupt number
CX:EDX = selector:offset of the exception handler

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.
The address passed in CX must be avalid protected-mode selector, such as Function 204H
returns, and not a real-mode segment. A 32-bit implementation must supply a 32-bit offset

inthe EDX register. If the handler chainsto the next handler, it must use a 32-bit interrupt
stack frame to do so.

11.2.4 Translation Services

These services are provided so that protected-mode programs can call real-mode software that DPMI does
not support directly. The protected-mode program must set up a data structure with the appropriate register
values. This"real-mode call structure” is shown below.

Int31H Function Calls 53

The DOS/4GW DOS Extender

54

Offset Register
OO0H EDI
04H ESI

08H EBP
OCH Reserved by system
10H EBX
14H EDX
18H ECX
1CH EAX
20H Flags
22H ES

24H DS

26H FS

28H GS
2AH IP

2CH CS

2EH SP

30H SS

After the call or interrupt is complete, all real-mode registers and flags except SS, SP, CS, and IP will be
copied back to the real-mode call structure so that the caller can examine the real-mode return values.

The values in the segment registers should be real-mode segments, not protected-mode selectors.

The translation services will provide a real-mode stack if the SS:SP fields are zero. However, the stack
provided isrelatively small. If the real-mode procedure/interrupt routine uses more than 30 words of stack
space then you should provide your own real-mode stack.

Function 0300H This function simulates areal-mode interrupt. This function simulates an interrupt in real

mode. It will invoke the CS:IP specified by the real-mode interrupt vector and the handler
must return by executingan i r et . Passthe following information:

Int31H Function Calls

Interrupt 31H DPMI Functions

AX =0300H

BL =interrupt number

BH =flags Bit 0 = 1 resets the interrupt controller and A20 line. Other flags are
reserved and must be 0.

CX =number of wordsto copy from protected-mode stack to real-mode stack

ES.EDI =the selector:offset of real-mode call structure

If the call fails, the carry flag is set.

If the call succeeds, the carry flagis clear and ES.EDI containsthe sel ect or : of f set
of the modified real-mode call structure.

The CS:IPin the real-mode call structure isignored by this service. The appropriate
interrupt handler will be called based on the value passed in BL.

The flags specified in the real-mode call structure will be pushed on the real-mode stack
i ret frame. Theinterrupt handler will be called with the interrupt and trace flags clear.

It isup to the caller to remove any parameters that were pushed on the protected-mode
stack.

Theflag to reset the interrupt controller and the A20 lineisignored by DPMI
implementations that run in Virtual 8086 mode. It causes DPMI implementations that
return to real mode to set the interrupt controller and A20 address line hardware to its
normal real-mode state.

Function 0301H (DOS/4GW Professional only) This function calls a real-mode procedure with a FAR
return frame. The called procedure must execute a FAR return when it completes. Passthe
following information;

AX =0301H
BH =flags Bit 0 = 1 resets the interrupt controller and A20 line. Other flags reserved
and must be 0.

CX = Number of wordsto copy from protected-modeto real-mode stack
ES.EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flag is clear and ES:EDI containsthe sel ect or: of f set
of modified real-mode call structure.

If the call fails, the carry flag is set.
Notes:

1. TheCSIPin thereal-mode call structure specifies the address of the real-mode
procedure to call.

2. Therea-mode procedure must execute a FAR return when it has completed.

3. If the SS:SPfidlds are zero then areal-mode stack will be provided by the DPMI
host. Otherwise, the real-mode SS:SP will be set to the specified values before
the procedure is called.

4. When theInt 31h returns, the real-mode call structure will contain the val ues that
were returned by the real-mode procedure.

Int31H Function Calls 55

The DOS/4GW DOS Extender

5. Itisup tothecaler to remove any parameters that were pushed on the
protected-mode stack.

6. Theflag to reset the interrupt controller and A20 lineisignored by DPMI
implementations that run in Virtual 8086 mode. It causes DPMI
implementations that return to real mode to set the interrupt controller and A20
address line hardware to its normal real-mode state.

Function 0302H (DOS/4GW Professional only) This function calls a real-mode procedure withan i r et
frame. The called procedure must execute an i r et when it completes. Pass the following
information:

AX =0302H

BH =flags Bit 0 = 1 resets the interrupt controller and A20 line. Other flags reserved
and must be 0.

CX =Number of wordsto copy from protected-mode to real-mode stack

ES:EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flagis clear and ES.EDI containsthe sel ect or : of f set
of modified real-mode call structure.

If the call fails, the carry flag is set.
Notes:

1. TheCS:IPin thereal-mode call structure specifies the address of the real-mode
procedure to call.

2. Therea-mode procedure must executean i r et when it has completed.

3. If the SS:SPfields are zero then areal-mode stack will be provided by the DPMI
host. Otherwise, the real-mode SS:SP will be set to the specified values before
the procedure is called.

4. When the Int 31h returns, the real-mode call structure will contain the values that
were returned by the real-mode procedure.

5. Theflags specified in the real-mode call structure will be pushed the real-mode
stack i r et frame. The procedure will be called with the interrupt and trace
flags clear.

6. Itisuptothecaller to remove any parameters that were pushed on the
protected-mode stack.

7. Theflag to reset the interrupt controller and A20 lineisignored by DPMI
implementations that run in Virtual 8086 mode. It causes DPMI
implementations that return to real mode to set the interrupt controller and A20
address line hardware to its normal real-mode state.

Function 0303H (DOS/4GW Professional only) This function allocates a real-mode callback address. This

service is used to obtain a unique real-mode SEG:OFFSET that will transfer control from
real mode to a protected-mode procedure.

56 Int31H Function Calls

Interrupt 31H DPMI Functions

At timesit is necessary to hook areal-mode interrupt or device callback in a
protected-mode driver. For example, many mouse drivers call an address whenever the
mouse ismoved. Software running in protected mode can use a real-mode callback to
intercept the mouse driver calls. Pass the following information:

AX =0303H
DS.ESI = selector:offset of procedureto call
ES.EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flagis clear and CX:DX containsthe segmnent : of f set of
real-mode callback address.

If the call fails, the carry flag is set.
Callback Procedure Parameters

Interrupts disabled

DS.ESI = selector:offset of real-mode SS:SP
ES.EDI = selector:offset of real-mode call structure
SS.ESP = Locked protected-mode API stack

All other registers undefined

Return from Callback Procedure

Execute an IRET to return
ES.EDI = selector:offset of real-mode call structure
to restore (see note)

Notes:

1. Sincetherea-mode call structureis static, you must be careful when writing
code that may be reentered. The simplest method of avoiding reentrancy isto
leave interrupts disabled throughout the entire call. However, if the amount of
code executed by the callback is large then you will need to copy the real-mode
call structure into another buffer. Y ou can then return with ES.EDI pointing to
the buffer you copied the data to — it does not have to point to the original real
mode call structure.

2. Thecalled procedureis responsible for modifying the real-mode CS:IP before
returning. If the real-mode CS:IP isleft unchanged then the real-mode callback
will be executed immediately and your procedure will be called again. Normally
you will want to pop areturn address off of the real-mode stack and placeitin
the real-mode CS:IP. The example code in the next section demonstrates
chaining to another interrupt handler and simulating areal-mode i r et .

3. Toreturn valuesto the real-mode caller, you must modify the real-mode call
structure.

4. Remember that all segment valuesin the real-mode call structure will contain
real-mode segments, not selectors. If you need to examine data pointed to by a
real-mode seg:offset pointer, you should not use the segment to selector service
to create a new selector. Instead, allocate a descriptor during initialization and
change the descriptor’ s base to 16 times the real-mode segment’ svalue. Thisis

Int31H Function Calls 57

The DOS/4GW DOS Extender

important since selectors allocated though the segment to selector service can
never be freed.

5. DPMI hosts should provide a minimum of 16 callback addresses per task.

The following code is a sample of areal-mode interrupt hook. It hooksthe DOS Int 21h
and returns an error for the delete file function (AH=41h). Other calls are passed through
to DOS. Thisexampleis somewhat silly but it demonstrates the techniques used to hook a
real mode interrupt. Note that since DOS calls are reflected from protected mode to real

mode, the following code will intercept all DOS calls from both real mode and protected
mode.

58 Int31H Function Calls

Interrupt 31H DPMI Functions

ckkkkkkk ok koKk
’

; This proc
; Seg: O fse
; and sets
; back addr
s kkkkkkkkk ok
Initializat
; Create a
nmov
nmv
int
jc
nmov

khkkhkhkhkhhkhhkhhhhhhhhhhhhhhhhhhkhhhhhkhhhhkhkhkxx

edure gets the current Int 21h real - nnde

t, allocates a real -npde cal |l back address
the real -node Int 21h vector to the call-
ess.

IR EE R EEEEEEEEEEEEEEEEEEESEEEEEEESEEEEEESEESESEE]

i on_Code
code segnent alias to save data in

ax, 000Ah
bx, cs
31h
ERROR

ds, ax

ASSUMES DS, TEXT

; Get curre

nmv
nmov
int
jc
nmv
nmov

; Allocate

mov
pus

pop
nmov
int
jc

; Hook rea

nov
nov
int
jc

*kkkkkkkkk*k

; This is t
; an "acces
; nmode to d
; through t

; ENTRY:

; DS: Sl

; ES: DI

; Interr

;o EXIT:
; ES: DI

Kk kkkkkkkk

nt Int 21h real - node SEG OFFSET

ax, 0200h

bl, 21h

31h

ERROR

[Orig_Real _Seqg], cx
[Orig_Real _Ofset], dx

a real -node cal | back

ax, 0303h
h ds
bx, cs
ds, bx
si, OFFSET My_Int_21 Hook
es
di, OFFSET My_Real _Mode_Cal | _Struc
31h
ERROR
-nmode int 21h with the call back address
ax, 0201h
bl, 21h
31h
ERROR

khkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkhkhkkhkhkhkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkk**x*%x

he actual Int 21h hook code. It will return
s denied" error for all calls nade in real
elete a file. Oher calls will be passed

o DCs.

-> Real - npde SS: SP

-> Real -node call structure

upts di sabl ed

-> Real -node call structure

khkhkhkhkhkhhkhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhkhkhx

My/_I nt _21 Hook

cnp
j ne
; This is a
;iret on't

; carry fla
; an access

es:[di . Real Mode_AH], 41h
Chai n_To_DCs

delete file call (AH=41h). Simulate an

he real -node stack, set the real-npde

g, and set the real-nmbde AX to 5 to indicate
deni ed error

Int31H Function Calls

59

The DOS/4GW DOS Extender

cld

| odsw ; Get real-node ret IP
nov es:[di . Real Mode_I P], ax

| odsw ; Get real-node ret CS
nov es: [di . Real Mode_CS], ax

| odsw ; Get real -node flags
or ax, 1 ; Set carry flag

nov es: [di . Real Mode_Fl ags], ax

add es:[di . Real Mode_SP], 6

nov es:[di . Real Mode_AX], 5

jnp My_Hook_Exi t

Chain to original Int 21h vector by replacing the
; real-node CS:IP with the original Seg: O fset.

Chai n_To_DOCs:
nmov ax, cs:[Oig_Real _Seq]
nov es: [di . Real Mode_CS], ax
nmov ax, cs:[Orig_Real _Ofset]
nov es:[di . Real Mode_I P], ax
My_Hook_Exi t:

iret

Function 0304H (DOS/4GW Professional only) This function frees a real-mode callback address that was

allocated through the allocate real-mode callback address service. Pass the following
information:

AX = 0304H
CX:DX = Real-mode callback addressto free

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.
Notes:

1. Rea-mode callbacks are alimited resource. Y our code should free any break
point that it is no longer using.

11.2.5 DPMI Version

60

Function 0400H This function returns the version of DPMI services supported. Note that thisis not

necessarily the version of any operating system that supports DPMI. It should be used by
programs to determine what calls are legal in the current environment. Pass the following
information:

AX = 0400H
The information returned is;

AH =Major version

AL =Minor version

BX =Flags Bit 0=1if running under an 80386 DPMI implementation. Bit1 =1 if
processor is returned to real mode for reflected interrupts (as opposed to
Virtual 8086 mode). Bit 2 = 1if virtual memory is supported. Bit 3is
reserved and undefined. All other bits are zero and reserved for later use.

CL = Processor type

Int31H Function Calls

Interrupt 31H DPMI Functions

02 = 80286

03 = 80386

04 = 80486

05 = Pentium
DH = Current value of virtual master PIC baseinterrupt
DL = Current value of virtual dave PIC baseinterrupt
Carry flag clear (call cannot fail)

11.2.6 Memory Management Services

Function 0500H This function gets information about free memory. Pass the following information:

AX = 0500H
ES.EDI =the selector:offset of a 30H byte buffer.

If the call fails, the carry flag is set.

If the call succeeds, the carry flag is clear and ES:EDI containsthe sel ect or: of f set
of abuffer with the structure shown in the figure below.

Offset Description

O0H Largest available block, in bytes

04H Maximum unlocked page allocation

08H Largest block of memory (in pages) that could
be allocated and then locked

OCH Total linear address space size, in pages, including
already allocated pages

10H Total number of free pages and pages currently
unlocked and available for paging out

14H Number of physical pagesnot in use

18H Total number of physical pages managed by host

1CH Free linear address space, in pages

20H Size of paging/file partition, in pages

24H - Reserved

2FH

Only thefirst field of the structure is guaranteed to contain avalid value. Any field that is
not returned by DOS4GW is set to -1 (OFFFFFFFFH).

Int31H Function Calls 61

The DOS/4GW DOS Extender

Function 0501H This function allocates and commits linear memory. Pass the following information:

AX =0501H
BX:CX = size of memory to allocate, in bytes.

If the call succeeds, the carry flagis clear, BX:CX contains the linear address of the
allocated memory, and SI:DI contains the memory block handle used to free or resize the
block. If thecall fails, the carry flag is set.

No selectors are allocated for the memory block. The caller must allocate and initialize
selectors needed to access the memory.

If VMM is present, the memory is allocated as unlocked, page granular blocks. Because of
the page granularity, memory should be allocated in multiples of 4KB.

Function 0502H This function frees ablock of memory allocated through function 0501H. Passthe

following information:

AX = 0502H
SI:DI = handlereturned with function 0501H when memory was allocated

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set. Y ou must also
free any selectors allocated to point to the freed memory block.

Function 0503H This function resizes a block of memory allocated through the 0501H function. If you

resize a block of linear memory, it may have anew linear address and anew handle. Pass
the following information:

AX =0503H
BX:CX = new size of memory block, in bytes
SI:DI = handlereturned with function 0501H when memory was allocated

If the call succeeds, the carry flagis clear, BX:CX contains the new linear address of the
memory block, and Sl:DI contains the new handle of the memory block. If the call fails,
the carry flag is set.

If either the linear address or the handle has changed, update the selectors that point to the
memory block. Use the new handle instead of the old one.

Y ou cannot resize amemory block to zero bytes.

11.2.7 Page Locking Services

62

These services are only useful under DPMI implementations that support virtual memory. Although
memory ranges are specified in bytes, the actual unit of memory that will be locked will be one or more
pages. Pagelocks are maintained as a count. When the count is decremented to zero, the page is unlocked
and can be swapped to disk. This meansthat if aregion of memory islocked three times then it must be
unlocked three times before the pages will be unlocked.

Int31H Function Calls

Interrupt 31H DPMI Functions

Function 0600H This function locks a specified linear address range. Pass the following information:

AX = 0600H
BX:CX = starting linear address of memory to lock
SI:DI =size of region to lock (in bytes)

If the call fails, the carry flag is set and none of the memory will be locked.

If the call succeeds, the carry flagisclear. If the specified region overlaps part of a page at
the beginning or end of aregion, the page(s) will be locked.

Function 0601H This function unlocks a specified linear address range that was previously locked using
the "lock linear region” function (0600h). Pass the following information:

AX =0601H
BX:CX = starting linear addr ess of memory to unlock
SI:DI =size of region to unlock (in bytes)

If the call fails, the carry flag is set and none of the memory will be unlocked. An error
will be returned if the memory was not previously locked or if the specified regionis
invalid.

If the call succeeds, the carry flagis clear. If the specified region overlaps part of a page at
the beginning or end of aregion, the page(s) will be unlocked. Even if the call succeeds,
the memory will remain locked if the lock count is not decremented to zero.

Function 0604H This function gets the page size for Virtual Memory (VM) only. Thisfunction returnsthe
size of asingle memory pagein bytes. Pass the following information:

AX = 0604H
If the call succeeds, the carry flagis clear and BX:CX = Page size in bytes.

If the call fails, the carry flag is set.

11.2.8 Demand Paging Performance Tuning Services

Some applications will discard memory objects or will not access objects for long periods of time. These
services can be used to improve the performance of demand paging.

Although these functions are only relevant for DPMI implementations that support virtual memory, other
implementations will ignore these functions (it will always return carry clear). Therefore your code can
aways call these functions regardless of the environment it is running under.

Since both of these functions are simply advisory functions, the operating system may choose to ignore
them. Inany case, your code should function properly even if the functionsfail.

Function 0702H (DOS/4GW Professional only) This function marks a page as a demand paging candidate.
This function is used to inform the operating system that arange of pages should be placed
at the head of the page out candidate list. Thiswill force these pages to be swapped to disk
ahead of other pages even if the memory has been accessed recently. However, all memory
contents will be preserved.

Int31H Function Calls 63

The DOS/4GW DOS Extender

Thisisuseful, for example, if aprogram knows that a given piece of datawill not be
accessed for along period of time. That dataisideal for swapping to disk since the
physical memory it now occupies can be used for other purposes. Pass the following
information:
AX =0702H
BX:CX = Starting linear address of pagesto mark
SI:DI = Number of bytesto mark as paging candidates
If the call succeeds, the carry flagis clear; if it fails, the carry flag is set.
Notes:
1. Thisfunction does not force the pages to be swapped to disk immediately.
2. Partial pageswill not be discarded.

Function 0703H (DOS/4GW Professional only) This function discards page contents. This function
discards the entire contents of agiven linear memory range. It isused after amemory
object that occupied a given piece of memory has been discarded.

The contents of the region will be undefined the next time the memory is accessed. All
values previoudly stored in this memory will belost. Pass the following information:

AX =0703H

BX:CX = Starting linear address of pagesto discard

SI:DI = Number of bytesto discard

If the call succeeds, the carry flagis clear; if it fails, the carry flag is set.

Notes:

1. Partial pageswill not be discarded.

11.2.9 Physical Address Mapping

Memory mapped devices such as network adapters and displays sometimes have memory mapped at
physical addresses that lie outside of the normal 1Mb of memory that is addressable in real mode. Under
many implementations of DPMI, all addresses are linear addresses since they use the paging mechanism of
the 80386. This service can be used by device drivers to convert a physical addressinto alinear address.
The linear address can then be used to access the device memory.

Function 0800H This function is used for Physical Address Mapping.
Some implementations of DPMI may not support this call because it could be used to
circumvent system protection. This call should only be used by programs that absolutely

require direct access to a memory mapped device.

Pass the following information:

64 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0800H
BX:CX = Physical address of memory
SI:DI = Size of region to map in bytes

If the call succeeds, the carry flag is clear and BX:CX = Linear Address that can be used to
access the physical memory.

If the call fails, the carry flag is set.
Notes:

1. Under DPMI implementations that do not use the 80386 paging mechanism, the
call will always succeed and the address returned will be equal to the physical
address parameter passed into this function.

2. ltisuptothecaler to build an appropriate selector to access the memory.

3. Do not use this service to access memory that is mapped in the first megabyte of
address space (the real-mode addressable region).

Function 0801H Thisfunction is used to free Physical Address Mapping. Pass the following information:

AX =0801H
BX:CX = Linear addressreturned by Function 0800H.

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.
Notes:

1. Theclient should call thisfunction when it is finished using a device previously
mapped to linear addresses with the Physical Address Mapping function
(Function 0800H).

11.2.10 Virtual Interrupt State Functions

Under many implementations of DPMI, the interrupt flag in protected mode will always be set (interrupts
enabled). Thisisbecause the program is running under a protected operating system that cannot allow
programs to disable physical hardware interrupts. However, the operating system will maintain a"virtual"
interrupt state for protected-mode programs. When the program executes a CL | instruction, the program’s
virtual interrupt state will be disabled, and the program will not receive any hardware interrupts until it
executes an ST to reenable interrupts (or calls service 0901h).

When a protected-mode program executes a PUSHF instruction, the real processor flags will be pushed
onto the stack. Thus, examining the flags pushed on the stack is not sufficient to determine the state of the
program’ svirtual interrupt flag. These services enable programsto get and modify the state of their virtual
interrupt flag.

The following sample code enters an interrupt critical section and then restores the virtua interrupt state to
it's previous state.

Int31H Function Calls 65

The DOS/4GW DOS Extender

; Disable interrupts and get previous interrupt state

nov ax, 0900h
int 31h

. At this point AX = 0900h or 0901h

; Restore previous state (assunes AX unchanged)

i nt 31h
Function 0900H This function gets and disables Virtual Interrupt State. This function will disable the
virtual interrupt flag and return the previous state of the virtual interrupt flag. Passthe
following information:

AX =0900H

After the call, the carry flag is clear (this function always succeeds) and virtual interrupts
are disabled.

AL = 0if virtua interrupts were previously disabled.
AL = 1if virtua interrupts were previously enabled.

Notes:

1. AH will not be changed by this procedure. Therefore, to restore the previous
state, simply execute an Int 31h.

Function 0901H This function gets and enables the Virtual Interrupt State. This function will enable the
virtual interrupt flag and return the previous state of the virtual interrupt flag. Passthe
following information:

AX = 0901H

After the call, the carry flag is clear (this function always succeeds) and virtual interrupts
are enabled.

AL = 0if virtua interrupts were previously disabled.
AL = 1if virtua interrupts were previously enabled.

Notes:

1. AH will not be changed by this procedure. Therefore, to restore the previous
state, simply execute an Int 31h.

Function 0902H Thisfunction getsthe Virtual Interrupt State. This function will return the current state of
the virtual interrupt flag. Pass the following information:

66 Int31H Function Calls

Interrupt 31H DPMI Functions

AX =0902H
After the call, the carry flag is clear (this function always succeeds).
AL = 0if virtual interrupts are disabled.
AL = 1if virtua interrupts are enabled.
11.2.11 Vendor Specific Extensions
Some DOS extenders provide extensions to the standard set of DPMI calls. Thiscall isused to obtain an
address which must be called to use the extensions. The caller points DS:ESI to a null terminated string
that specifies the vendor name or some other unique identifier to obtain the specific extension entry point.

Function OAQOH This function gets Tenberry Software’s APl Entry Point. Pass the following information:

AX = 0AO0H
DS.ESI = Pointer to null terminated string " RATIONAL DOS/4G"

If the call succeeds, the carry flag is clear and ES:EDI = Extended APl entry point. DS,
FS, GS, EAX, EBX, ECX, EDX, ESI, and EBP may be modified.

If the call fails, the carry flag is set.
Notes:
1. Executeafar cal to call the API entry point.
2. All extended API parameters are specified by the vendor.

3. Thestring comparison used to return the API entry point is case sensitive.

11.2.12 Coprocessor Status
Function OEOOH This function gets the coprocessor status. Pass the following information:
AX = OEOOH
If the call succeeds, the carry flagis clear and AX contains the coprocessor status.
Bit Significance

0 MPv (MP bit in the virtual MSW/CRO).
0 = Numeric coprocessor is disabled for this client.
1 = Numeric coprocessor is disabled for this client.
1 EMv (EM bit in the virtual M SW/CRO).
0 = Client is not emulating coprocessor instructions.
1 = Client is emulating coprocessor instructions.
2 MPr (MP bit from the actual M SW/CRO).
0 = Numeric coprocessor is not present.
1 = Numeric coprocessor is present.

Int31H Function Calls 67

The DOS/4GW DOS Extender

8-15

EMr (EM bit from the actual M SW/CRO).

0 = Host is not emulating coprocessor instructions.
1 =Host is emulating coprocessor instructions.
Coprocessor type.

O0H = no coprocessor.

02H = 80287
03H = 80387
04H = 80486 with numeric coprocessor
05H = Pentium
Not applicable.

If the call fails, the carry flag is set.

Notes:

1

If thereal EM (EMT) bit is set, the host is supplying or is capable of supplying
floating-point emulation.

If the MPv bit is not set, the host may not need to save the coprocessor state for
this virtual machine to improve system performance.

The MPr bit setting should be consistent with the setting of the coprocessor type
information. Ignore MPr bit information if it isin conflict with the coprocessor
type information.

If the virtual EM (EMV) hit is set, the host delivers all coprocessor exceptions to
the client, and the client is performing its own floating-point emulation (wether
or not a coprocessor is present or the host also has a floating-point emulator). In
other words, if the EMv bit is set, the host sets the EM bit in the real CRO while
the virtual machine is active, and reflects coprocessor not present faults (int 7) to
the virtual machine.

A client can determine the CPU type with int 31H Function 0400H, but a client
should not draw any conclusions about the presence or absence of a coprocessor
based on the CPU type alone.

Function OEO1H This function sets coprocessor emulation. Pass the following information:

AX = 0EO1H
BX = coprocessor bits

Bit Significance

0 New value of MPv bit for client’s virtual CRO.
0 = Disable numeric coprocessor for this client.
1 = Enable numeric coprocessor for thisclient.

1 New value of EMv bit for client’s virtual CRO.
0 = client will not supply coprocessor emulation.
1 = client will supply coprocessor emulation.

2-15 Not applicable.

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

68 Int31H Function Calls

12 utilities

This chapter describes the Tenberry Software DOS/4GW utility programs provided with the Open Watcom
F77 package. Each program is described using the following format:

Purpose: Thisisabrief statement of what the utility program does. More specific information is provided
under "Notes".

Syntax: This shows the syntax of the program. The fixed portion of each commandisin a
typewriter font, whilevariable partsof the command areinitalics. Optional parts are
enclosed in [brackets].

Notes: These are explanatory remarks noting major features and possible pitfalls. We explain anything
special that you might need to know about the program.

See Also: Thisisacross-reference to any information that is related to the program.

Example: You'll find one or more sample uses of the utility program with an explanation of what the
program is doing.

Some of the utilities are DOS4GW-based, protected-mode programs. To determine which programsrunin

protected mode and which in real, run the program. If you see the DOS4GW banner, the program runsin
protected mode.

Utilities 69

The DOS/4GW DOS Extender

12.1 DOS4GW

Purpose: Loads and executes linear executables.
Syntax: linear_executable
Notes: The stub program at the beginning of the linear executable invokes this program, which loads the

linear executable and starts up the DOS extender. The stub program must be able to find
DOSAGW: make sureit isin the path.

70 DOS4GW

Utilities

12.2 PMINFO

Purpose:

Syntax:

Notes:

Example:

Measures the performance of protected/real-mode switching and extended memory.
PM NFO. EXE

We encourage you to distribute this program to your users.

The time-based measurements made by PMINFO may vary slightly from run to run.

The following example shows the output of the PMINFO program on a 386 AT-compatible
machine.

C>pni nfo
Prot ect ed Mbde and Extended Menory Performance Measurement -- 5.00
Copyright (c) Tenberry Software, Inc. 1987 - 1993

DCS nmenory Ext ended nenory CPU performance equivalent to 67.0 MHz 80486

736 8012 K bytes configured (according to BlIOS).

640 15360 K bytes physically present (SETUP).

651 7887 K bytes avail able for DOS/ 16M prograns.
22.0 (3.0) 18.9 (4.0) MB/ sec word transfer rate (wait states).
42.9 (3.0) 37.0 (4.0) MB/ sec 32-bit transfer rate (wait states).

Overal |l cpu and nenory performance (non-floating point) for typical
DCS prograns is 10.36 & 1.04 tinmes an 8MHz | BM PC/ AT.

Protected/ Real switch rate = 36156/sec (27 usec/sw tch, 15 up + 11 down),
DCS/ 16M switch node 11 (VCPI).

The top information line shows that the CPU performanceis equivalent to a 67.0 MHz 80486.
Below are the configuration and timings for both the DOS memory and extended memory. If the
computer is not equipped with extended memory, or none is available for DOS4GW, the
extended memory measurements may be omitted ("--").

Theline "according to BIOS' shows the information provided by the BIOS (interrupts 12h and
15h function 88h). Theline"SETUP", if displayed, is the configuration obtained directly from
the CMOS RAM as set by the computer’s setup program. It is displayed only if the numbers are
different from those in the BIOS line. They will be different for computers where the BIOS has
reserved memory for itself or if another program has allocated some memory and is intercepting
the BIOS configuration requests to report less memory available than is physically configured.
The"DOS/16M memory range”, if displayed, shows the low and high addresses available to
DOS4GW in extended memory.

Below the configuration information isinformation on the memory speed (transfer rate).
PMINFO tries to determine the memory architecture. Some architectures will perform well
under some circumstances and poorly under others; PMINFO will show both the best and worst
cases. The architectures detected are cache, interleaved, page-mode (or static column), and
direct. Measurements are made using 32-bit accesses and reported as the number of megabytes
per second that can be transferred. The number of wait states is reported in parentheses. The
wait states can be a fractional number, like 0.5, if thereis await state on writes but not on reads.
Memory bandwidth (i.e., how fast the CPU can access memory) accounts for 60% to 70% of the
performance for typical programs (that are not heavily dependent on floating-point math).

PMINFO 71

The DOS/4GW DOS Extender

72 PMINFO

A performance metric developed by Tenberry Software is displayed, showing the expected
throughput for the computer relative to a standard 8SMHz IBM PC/AT (disk accesses and floating
point are excluded). Finally, the speed with which the computer can switch between real and
protected mode is displayed, both as the maximum number of round-trip switches that can occur

per second, and the time for a single round-trip switch, broken out into the real-to-protected (up)
and protected-to-real (down) components.

Utilities

12.3 PRIVATXM

Purpose:

Syntax:

Notes:

Example:

Creates a private pool of memory for DOS/4GW programs.
PRI VATXM [- r]
This program may be distributed to your users.

Without PRIVATXM, a DOS4GW program that starts up while another DOS4GW program is
active uses the pool of memory built by the first program. The new program cannot change the
parameters of this memory pool, so setting DOS16M to increase the size of the pool has no
effect. To specify that the two programs use different pools of memory, use PRIVATXM.

PRIVATXM marks the active DOS4GW programs as private, preventing subsequent DOS4GW
programs from using the same memory pool. The first DOS4GW program to start after
PRIVATXM sets up anew pool of memory for itself and any subsequent DOS4GW programs.
To release the memory used by the private programs, use the PRIVATXM -r option.

PRIVATXM isa TSR that requires less than 500 bytes of memory. It isnot supported under
DPMI.

The following example creates a 512K B memory pool that is shared by two DOS4GW TSRs.
Subsequent DOS4GW programs use a different memory pool.

C>set DOS16M=:512 Specifies the size of the memory pool.

C>TSR1 Sets up the memory pool at startup.

C>TSR2 This TSR shares the pool built by TSR1.

C>PRIVATXM Makes subsequent DOSAGW programs use a new memory pool.

C>set DOS16M= Specifies an unlimited size for the new pool.

C>PROGRAM3 This program uses the new memory pool.

C>PRIVATXM -R Releases the 512K B memory pool used by the TSRs. (If the TSRs
shut down, their memory is not released unless PRIVATXM is
released.)

PRIVATXM 73

The DOS/4GW DOS Extender

12.4 RMINFO

Purpose: Supplies configuration information and the basis for real/protected-mode switching in your

RMINFO starts up DOS4GW, but stops your machine just short of switching from real mode to
protected mode and displays configuration information about your computer. The information
shown by RMINFO can help determine why DOS4GW applications won't run on a particular

machine.
Syntax: RM NFO. EXE
Notes: Thisprogram may be distributed to your users.

machine. Run RMINFO if PMINFO does not run to completion.
Example:

74 RMINFO

The following example shows the output of the RMINFO program on an 386 AT-compatible
machine.

Crnminfo
DOS/ 16M Real Mbde | nfornation Program 5. 00
Copyright (C) Tenberry Software, Inc. 1987 - 1993
Machi ne and Environnent:
Processor: i 386, coprocessor present
Machi ne type: 10 (AT-conpati bl e)
A20 now enabl ed
A20 switch rigor: di sabl ed
DPM host found
Swi t chi ng Functi ons:
To PM swi tch: DPM
To RM switch: DPM
Nomi nal switch node: 0
Switch control flags: 0000
Menmory Interfaces:
DPM may provi de: 16384K returnabl e
Conti guous DOS nenory: 463K

Theinformation provided by RMINFO includes:
Machine and Environment:
Processor: processor type, coprocessor present/not present

Machine type:

Utilities

A20 now: Current state of Addressline 20.

(NEC 9801)
(PS/2-compatible)
(AT-compatible)
(FM R)

(AT&T 6300+)
(AT-compatible)
(C&T 230 chipset)
(AT-compatible)
(AT-compatible)
(Acer)

(Zenith)

(Hitachi)
(Okidata)

(PS/55)

A20 switch rigor: Whether DOSAGW rigorously controls enabling and disabling of Addressline

20 when switching modes.

PSfeatureflag

XMS host found Whether your system has any software using extended memory under the XM S
discipline.

VCPI host found Whether your system has any software using extended memory under the
VCPI discipline.

page table 0 at: x000h

DPMI host found

DOS/16M resident with private/public memory

Switching Functions:

A20 switching:

To PM switch: reset catch:
pre-PM prep:
post-PM-switch:

To RM switch:

pre-RM prep:
reset method:
post-reset:

reset uncatch:

Nominal switch mode: X

Switch control flags: xxxxh

RMINFO 75

The DOS/4GW DOS Extender

76 RMINFO

Memory I nterfaces:

(VCPI remapping in effect)

DPMI may provide: xxxxxK returnable
VCPI may provide: xxxxxK returnable
Top-down

Other16M

Forced

Contiguous DOS memory:

13 Error Messages

The following lists DOS/4G error messages, with descriptions of the circumstances in which the error is
most likely to occur, and suggestions for remedying the problem. Some error messages pertaining to
features — like DLLs— that are not supported in DOS/4GW will not arise with that product. Inthe
following descriptions, references to DOS/AG, DOSAG, or DOSAG.EXE may be replaced by DOS/AGW,
DOSAGW, or DOSAGW.EXE should the error message arise when using DOS4GW.

13.1 Kernel Error Messages

This section describes error messages from the DOS/16M kernel embedded in DOS/AG. Kernel error
messages may occur because of severe resource shortages, corruption of DOSAGW.EXE, corruption of
memory, operating system incompatibilities, or internal errorsin DOS/AGW. All of these messages are
quite rare.

0.

3.

4.

5.

6

involuntary switch to real mode

The computer was in protected mode but switched to real mode without going through DOS/16M. This
error most often occurs because of an unrecoverable stack segment exception (stack overflow), but can
also occur if the Global Descriptor Table or Interrupt Descriptor Tableis corrupted. Increase the stack
size, recompile your program with stack overflow checking, or look into ways that the descriptor tables
may have been overwritten.

. hot enough extended memory

. hot a DOS/16M executable <filename>

DOSAG.EXE, or abound DOS/4G application, has probably been corrupted in some way. Rebuild or
recopy thefile.

no DOS memory for transparent segment
cannot make transparent segment

too many transparent segments

. hot enough memory to load program

There is not enough memory to load DOS/4G. Make more memory available and try again.

. ho relocation segment

. cannot open file <filename>

The DOS/16M loader cannot load DOS/4G, probably because DOS has run out of file units. Set a
larger FILES= entry in CONFIG.SY S, reboot, and try again.

Kernel Error Messages 77

The DOS/4GW DOS Extender

9. cannot allocate tstack

There is not enough memory to load DOS/4G. Make more memory available and try again.
10. cannot allocate memory for GDT

Thereis not enough memory to load DOS/4G. Make more memory available and try again.
11. no passup stack selectors -- GDT too small

This error indicates an internal error in DOS/4G or an incompatibility with other software.
12. no control program selectors-- GDT too small

This error indicates an internal error in DOS/4G or an incompatibility with other software.
13. cannot allocate transfer buffer

There is not enough memory to load DOS/4G. Make more memory available and try again.
14. premature EOF

DOSAG.EXE, or abound DOS/4G application, has probably been corrupted in some way. Rebuild or
recopy thefile.

15. protected mode available only with 386 or 486
DOS/4G requires an 80386 (or later) CPU. It cannot run on an 80286 or earlier CPU.

16. cannot run under OS/2

17. system software does not follow VCPI or DPMI specifications
Some memory resident program has put your 386 or 486 CPU into Virtual 8086 mode. Thisisdoneto
provide special memory services to DOS programs, such as EM S simulation (EM S interface without
EMS hardware) or high memory. Inthismode, it is not possible to switch into protected mode unless
the resident software follows a standard that DOS/16M supports (DPMI, VCPI, and XMS are the most
common). Contact the vendor of your memory management software.

18. you must specify an extended memory range (SET DOS16M=)
On some Japanese machines that are not IBM AT-compatible, and have no protocol for managing
extended memory, you must set the DOS16M environment variable to specify the range of available
extended memory.

19. computer must be AT- or PS/2- compatible

20. unsupported DOS16M switchmode choice

21. requiresDOS 3.0 or later

22. cannot free memory

This error probably indicates that memory was corrupted during execution of your program.

78 Kernel Error Messages

Error Messages

23. no memory for VCPI page table

There is not enough memory to load DOS/4G. Make more memory available and try again.
24. VVCPI page table addressincorrect

Thisisaninterna error.
25. cannot initialize VCPI

This error indicates an incompatibility with other software. DOS/16M has detected that VCPI is
present, but VCPI returns an error when DOS/16M triesto initialize the interface.

26. 8042 timeout

27. extended memory is configured but it cannot be allocated

28. memory error, avail loop
This error probably indicates that memory was corrupted during execution of your program. Using an
invalid or stale alias selector may cause this error. Incorrect manipulation of segment descriptors may
also cause it.

29. memory error, out of range

This error probably indicates that memory was corrupted during execution of your program. Writing
through an invalid or stale alias selector may cause this error.

30. program must be built -AUTO for DPMI

31. protected mode already in use in this DPMI virtual machine

32. DPMI host error (possibly insufficient memory)

33. DPMI host error (need 64K XMS)

34. DPMI host error (cannot lock stack)
Any of these errors (32, 33, 34) probably indicate insufficient memory under DPMI. Under Windows,
you might try making more physical memory available by eliminating or reducing any RAM drives or
disk caches. You might also try editing DEFAULT.PIF so that at least 64KB of XMS memory is
available to non-Windows programs. Under OS/2, you want to increase the DPMI_MEMORY_LIMIT
in the DOS box settings.

35. General Protection Fault

This message probably indicates an internal error in DOS/4G. Faults generated by your program should
cause error 2001 instead.

36. The DOS16M.386 virtual device driver was never loaded

37. Unableto reserve selectors for DOS16M.386 Windows driver

Kernel Error Messages 79

The DOS/4GW DOS Extender

38. Cannot use extended memory: HIMEM.SYS not version 2

This error indicates an incompatibility with an old version of HIMEM.SY S.
39. An obsolete version of DOS16M.386 was |oaded
40. not enough available extended memory (XMIN)

This message probably indicates an incompatibility with your memory manager or its configuration.
Try configuring the memory manager to provide more extended memory, or change memory managers.

13.2 DOS/4G Errors

1000 " can’t hook interrupts’

A DPMI host has prevented DOS/4G from loading. Please contact Tenberry Technical Support.
1001 " error in interrupt chain"

DOS/AG internal error. Please contact Tenberry Technical Support.
1003 " can't lock extender kernel in memory"

DOS/4G couldn’t lock the kernel in physical memory, probably because of a memory shortage.
1004 " syntax is DOSAG <executable.xxx>"

Y ou must specify a program name.
1005 " not enough memory for dispatcher data"

There is not enough memory for DOS/4G to manage user-installed interrupt handlers properly. Free
some memory for the DOS/4G application.

1007 " can’t find file <program> to load"
DOS/4G could not open the specified program. Probably the filedidn't exist. 1t is possible that
DOS ran out of file handles, or that a network or similar utility has prohibited read access to the
program. Make sure that the file name was spelled correctly.

1008 " can’t load executable format for file <filename> [<error code>]"

DOS/4G did not recognize the specified file as avalid executable file. DOS/4G can load linear
executables (LE and LX) and EXPs (BW). The error codeisfor Tenberry Software’ s use.

1009 " program <filename> is not bound"

This message does not occur in DOS/AG, only DOS/AGW Professional; the latter requires that the
DOS extender be bound to the program file. The error signals an attempt to load

1010 " can’t initialize loader <loader> [<error code>]"

80 DOS/4G Errors

Error Messages

DOS/4G could not initialize the named loader, probably because of aresource shortage. Try making
more memory available. If that doesn’'t work, please contact Tenberry Technical Support. The error
codeisfor Tenberry Software’ use.

1011 " VMM initialization error [<error code>]"
DOS/4G could not initialize the Virtual Memory Manager, probably because of aresource shortage.
Try making more memory available. If that doesn’'t work, please contact Tenberry Technical
Support. The error codeisfor Tenberry Software’ use.

1012 " <filename> isnot a WATCOM program”

This message does not occur in DOS/AG, only DOS/AGW and DOS/AGW Professional. Those
extenders only support WATCOM 32-bit compilers.

1013 "int 31h initialization error"

DOS/4G was unable to initialize the code that handles Interrupt 31h, probably because of an internal
error. Please call Tenberry Technical Support.

1100 " assertion \" <statement>\" failed (<file>:<line>)"

DOS/4G internal error. Please contact Tenberry Technical Support.
1200 " invalid EXP executable format"

DOS/AG tried to load an EXP, but couldn’t. The executable file is probably corrupted.
1201 " program must be built -AUTO for DPMI"

Under DPMI, DOS/4G can only load EXPs that have been linked with the GLU -AUTO or -DPMI
switch.

1202 " can't allocate memory for GDT"

Thereis not enough memory available for DOS/4G to build a Global Descriptor Table. Make more
memory available.

1203 " premature EOF"
DOS/4G tried to load an EXP but couldn’t. Thefileis probably corrupted.
1204 " not enough memory to load program"

Thereis not enough memory available for DOS/AG to load your program. Make more memory
available.

1301 "invalid linear executable format"

DOS/4G cannot recognize the program file as a LINEXE format. Make sure that you specified the
correct file name.

1304 " file 1/O seek error™

DOS/4G Errors 81

The DOS/4GW DOS Extender

DOS/4G was unable to seek to afile location that should exist. This usually indicates truncated
program files or problems with the storage device from which your program loads. Run CHKDSK
or asimilar utility to begin determining possible causes.

1305 " filel/Oread error"
DOS/4G was unable to read afile location that should contain program data. This usually indicates
truncated program files or problems with the storage device from which your program loads. Run
CHKDSK or asimilar utility to begin determining possible causes.

1307 " not enough memory”

Asit attempted to load your program, DOS/4G ran out of memory. Make more memory available,
or enable VMM.

1308 " can’t load requested program"

1309 " can’t load requested program"

1311 " can’t load requested program"

1312 " can’t load requested program"
DOS/4AG cannot load your program for some reason. Contact Tenberry Technical Support.

1313 " can't resolve external references”
DOS/4G was unable to resolve all referencesto DLLs for the requested program, or the program
contained unsupported fixup types. Use EXEHDR or asimilar LINEXE dump utility to see what
references your program makes and what special fixup records might be present.

1314 " not enough lockable memory"
Asit attempted to load your program, DOS/4G encountered arefusal to lock avirtual memory
region. Some memory must be locked in order to handle demand-load page faults. Make more
physical memory available.

1315 " can’t load requested program"

1316 " can’t load requested program"
DOS/4G cannot load your program for some reason. Contact Tenberry Technical Support.

1317 " program has no stack"

DOS/AG reports this error when you try to run a program with no stack. Rebuild your program,
building in a stack.

2000 " deinitializing twice"
DOS/4G internal error. Please contact Tenberry Technical Support.

2001 " exception <exception_number> (<exception_description>) at <selector:offset>"

82 DOS/4G Errors

Error Messages

Y our program has generated an exception. For information about interpreting this message, see the
file COMMON.DOC.

2002 " transfer stack overflow at <selector: offset>"

Y our program has overflowed the DOS/AG transfer stack. For information about interpreting this
message, see the file COMMON.DOC.

2300" can’t find <DLL>.<ordinal> - referenced from <module>"

DOS/4G could not find the ordinal listed in the specified DLL, or it could not find the DLL at al.
Correct or remove the reference, and make sure that DOS/4G can find the DLL.

DOS/AG looks for DLLsin the following directories:

* The directory specified by the Libpath32 configuration option (which defaults to the directory
of the main application file).

* The directory or directories specified by the LIBPATH32 environment variable.
* Directories specified in the PATH.
2301 " can’t find <DLL>.<name> - referenced from <module>"

DOS/4G could not find the entry point named in the specified module. Correct or remove the
reference, and make sure that DOS/4G can find the DLL.

2302 " DLL modules not supported"

This DOS/4GW Professional error message arises when an application references or tries to
explicitly load aDLL. DOS/4GW Professional does not support DLLSs.

2303 " internal LINEXE object limit reached"
DOS/AG currently handles a maximum of 128 LINEXE objects, including all .DLL and .EXE files.
Most .EXE or .DLL filesuse only three or four objects. If possible, reduce the number of objects, or
contact Tenberry Technical Support.

2500 " can’t connect to extender kernel"
DOS/4G internal error. Please contact Tenberry Technical Support.

2503 " not enough disk space for swapping - <count> byes required"

VMM was unableto create a swap file of the required size. Increase the amount of disk space
available.

2504 " can’t create swap file \<filename>\
VMM was unable to create the swap file. This could be because the swap fileis specified for a

nonexistent drive or on adrivethat is read-only. Set the SWAPNAME parameter to change the
location of the swap file.

DOS/4G Errors 83

The DOS/4GW DOS Extender

2505 " not enough memory for <table>"

VMM was unable to get sufficient extended memory for internal tables. Make more memory
available. If <table> is page buffer, make more DOS memory available.

2506 " not enough physical memory (minmem)"

Thereisless physical memory available than the amount specified by the MINMEM parameter.
Make more memory available.

2511 " swap out error [<error code>]"
Unknown disk error. The error codeisfor Tenberry Software’ use.

2512 " swapin error [<error code>]"
Unknown disk error. The error codeisfor Tenberry Software’ use.

2514 " can’t open tracefile"
VMM could not open the VMM.TRC file in the current directory for writing. If the directory
already hasaVMM.TRC file, deleteit. If not, there may not be enough memory on the drive for the
trace file, or DOS may not have any more file handles.

2520 " can’t hook int 31h"
DOS/AG internal error. Please contact Tenberry Technical Support.

2523 " page fault on non-present mapped page"

Y our program references memory that has been mapped to a nonexistent physical device, using
DPMI function 508h. Make sure the device is present, or remove the reference.

2524 " page fault on uncommitted page"
Y our program references memory reserved with acall to DPMI function

504h, but never committed (using a DPMI 507h or 508h call). Commit the memory before you reference
it.

3301 " unhandled EMPTYFWD, GATE16, or unknown relocation”
3302 " unhandled ALIAS16 reference to unaliased object"
3304 " unhandled or unknown relocation”
If your program was built for another platform that supports the LINEXE format, it may contain a

construct that DOS/4G does not currently support, such asacall gate. This message may also occur
if your program has a problem mixing 16- and 32-hit code. A linker error is another likely cause.

84 DOS/4G Errors

14 DOS/4GW Commonly Asked Questions

The following information has been provided by Tenberry Software, Inc. for their DOS/4AGW and
DOS/4AGW Professional product. The content of this chapter has been edited by Open Watcom. In most
cases, the information is applicable to both products.
This chapter covers the following topics:

» Access to technical support

« Differences within the DOS/4G product line

» Addressing

* Interrupt and exception handling

» Memory management

* DOS, BIOS, and mouse services

* Virtual memory

* Debugging

» Compatibility

14.1 Access to Technical Support

la. How to reach technical support.

Here are the various ways you may contact Tenberry Software for technical support.

WA http://ww.tenberry. com dos4g/
Emai |l : 4gwhel p@enberry. com

Phone: 1.480.767. 8868

Fax: 1. 480. 767. 8709

Mai | : Tenberry Software, Inc.

PO Box 20050
Fountain Hills, Arizona
U S. A 85269-0050
PLEASE GIVE YOUR SERIAL NUMBER WHEN YOU CONTACT TENBERRY.

Access to Technical Support 85

The DOS/4GW DOS Extender

1b. When to contact Open Watcom, when to contact Tenberry.
Since DOS/AGW Professional is intended to be completely compatible with DOS/4GW, you may wish
to ascertain whether your program works properly under DOS/4GW before contacting Tenberry
Software for technical support. (Thisislikely to be the second question we ask you, after your serial
number.)
If your program fails under both DOS/4GW and DOS/4GW Professional, and you suspect your own
code or a problem compiling or linking, you may wish to contact Open Watcom first. Tenberry
Software support personnel are not able to help you with most programming questions, or questions
about using the Open Watcom tools.

If your program only fails with DOS/AGW Professional, you have probably found a bug in DOS/AGW
Professional, so please contact us right away.

1c. Telephone support.
Tenberry Software’ s hours for telephone support are 9am-6pm EST. Please note that telephone support
isfreefor thefirst 30 daysonly. A one-year contract for continuing telephone support on DOS/AGW
Professional is US$500 per developer, including an update subscription for one year, to customersin the
United States and Canada; for overseas customers, the price is $600. Site licenses may be negotiated.
Thereis no time limit on free support by fax, mail, or electronic means.

1d. References.
The DOS/4GW documentation from Open Watcom is the primary reference for DOS/AGW Professional
aswell. Another useful reference isthe DPMI specification. In the past, the DPMI specification could
be obtained free of charge by contacting Intel Literature. We have been advised that the DPMI

specification is no longer available in printed form.

However, the DPMI 1.0 specification can be obtained at:

http://ww. del ori e. conm dj gpp/ doc/ dpmi /

OnlineHTML aswell as a downloadable archive are provided.

14.2 Differences Within the DOS/4G Product Line

2a. DOS/AGW Professional versus DOS/AGW
DOS/4GW Professional was designed to be a higher-performance version of DOS/AGW suitable for
commercia applications. Hereisasummary of the advantages of DOS/4GW Professional with respect
to DOS/AGW:
« Extender binds to the application program file
* Extender startup time has been reduced

* Support for Open Watcom floating-point emulator has been optimized

* Virtual memory manager performance has been greatly improved

86 Differences Within the DOS/4G Product Line

DOS/4GW Commonly Asked Questions

» Under VMM, programs are demand |loaded

* Virtual address spaceis4 GB instead of 32 MB

 Extender memory requirements have been reduced by more than 50K

» Extender disk space requirements have been reduced by 40K

 Can omit virtual memory manager to save 50K more disk space

* Support for INT 31h functions 301h-304h and 702h-703h
DOS/4AGW Professional is intended to be fully compatible with programs written for DOS/4AGW 1.9 and
up. Theonly functional differenceis that the extender is bound to your program instead of residingin a
separate file. Not only does this help reduce startup time, but it eliminates version-control problems
when someone has both DOS/4GW and DOS/AGW Professional applications present on one machine.

2b. DOS/AGW Professional versus DOS/A4G.

DOS/4GW Professional is not intended to provide any other new DOS extender functionality. Tenberry
Software’ stop-of-the-line 32-bit extender, DOS/4G, is not sold on aretail basis but is of special interest
to devel opers who require more flexibility (such as OEMs). DOS/AG offers these additional features
beyond DOS4GW and DOS/4AGW Professional:

» Compl ete documentation

* DLL support

* TSR support

* Support for INT 31h functions 301h-306h, 504h-50Ah, 702h-703h

» A Clanguage API that offers more control over interrupt handling and program loading, as well
as making it easier to use the extender

» An optiona (more protected) nonzero-based flat memory model
» Remappable error messages

 More configuration options

» The D32 debugger, GLU linker, and other tools

* Support for other compilers besides Open Watcom

* A higher level of technical support

» Custom work is available (e.g., support for additional executable formats, operating system API
emulations, mixed 16-bit and 32-bit code)

Please contact Tenberry Software if you have questions about other products (present or future) in the
DOS/4G line.

Differences Within the DOS/4G Product Line 87

The DOS/4GW DOS Extender

2c. DPMI functions supported by DOS/AGW.

Note that when a DOS/4GW application runs under a DPMI host, such as Windows 3.1 in enhanced
mode, an OS/2 virtual DOS machine, 386Max (with DEBUG=DPMIXCOPY), or QDPMI (with
EXTCHKOFF), the DPMI host provides the DPMI services, not DOS/AGW. The DPMI host also
provides virtual memory, if any. Performance (speed and memory use) under different DPMI hosts
varies greatly due to the quality of the DPMI implementation.

These are the services provided by DOS/AGW and DOS/AGW Professional in the absence of aDPMI

host.

0000 Allocate LDT Descriptors

0001 Free LDT Descriptor

0002 Map Real-Mode Segment to Descriptor

0003 Get Selector Increment Value

0006 Get Segment Base Address

0007 Set Segment Base Address

0008 Set Segment Limit

0009 Set Descriptor Access Rights

000A Create Alias Descriptor

000B Get Descriptor

000C Set Descriptor

000D Allocate Specific LDT Descriptor

0100 Allocate DOS Memory Block

0101 Free DOS Memory Block

0102 Resize DOS Memory Block

0200 Get Real-Mode Interrupt Vector

0201 Set Real-Mode Interrupt Vector

0202 Get Processor Exception Handler

0203 Set Processor Exception Handler

0204 Get Protected-Mode I nterrupt Vector

0205 Set Protected-Mode Interrupt Vector

0300 Simulate Real-Mode I nterrupt

0301 Call Real-Mode Procedure with Far Return Frame (DOS/AGW Professional only)
0302 Call Real-Mode Procedure with IRET Frame (DOS/4AGW Professional only)
0303 Allocate Real-Mode Callback Address (DOS/4GW Professional only)
0304 Free Real-Mode Callback Address (DOS/4GW Professional only)
0400 Get DPMI Version

0500 Get Free Memory Information

0501 Allocate Memory Block

0502 Free Memory Block

0503 Resize Memory Block

0600 Lock Linear Region

0601 Unlock Linear Region

0604 Get Page Size (VM only)

0702 Mark Page as Demand Paging Candidate (DOS/4GW Professional only)

88 Differences Within the DOS/4G Product Line

DOS/4GW Commonly Asked Questions

0703 Discard Page Contents (DOS/4GW Professional only)
0800 Physical Address Mapping

0801 Free Physical Address Mapping

0900 Get and Disable Virtua Interrupt State

0901 Get and Enable Virtua Interrupt State

0902 Get Virtua Interrupt State

0A00 Get Tenberry Software API Entry Point

OEQO Get Coprocessor Status

OEO1 Set Coprocessor Emulation

14.3 Addressing

3a. Converting between pointers and linear addresses.

3b.

3c.

3d.

Because DOS/AGW uses a zero-based flat memory model, converting between pointers and linear
addressesistrivial. A pointer value is always relative to the current segment (the value in CS for a code
pointer, or in DS or SSfor a data pointer). The segment bases for the default DS, SS, and CS are all
zero. Hence a near pointer is exactly the same thing asalinear address. anull pointer pointsto linear
address 0, and a pointer with value 0x10000 points to linear address 0x10000.

Converting between code and data pointers.

Because DS and CS have the same base address, they are natural aliases for each other. To create adata
alias for a code pointer, merely create a data pointer and set it equal to the code pointer. I1t's not
necessary for you to create your own alias descriptor. Similarly, to create a code alias for a data pointer,
merely create a code pointer and set it equal to the data pointer.

Converting between pointers and low memory addresses.

Linear addresses under 1 MB map directly to physical memory. Hence the real-mode interrupt vector
tableis at address O, the BIOS data segment is at address 0x400, the monochrome video memory is at
address 0xB0000, and the color video memory is at address 0xB8000. To read and write any of these,
you can just use a pointer set to the proper address. Y ou don't need to create afar pointer, using some
magic segment value.

Converting between linear and physical addresses.

Linear addresses at or above 1 MB do not map directly to physical memory, so you can not in general
read or write extended memory directly, nor can you tell how a particular block of extended memory
has been used.

DOS/4GW supports the DPMI call INT 31h/800h, which maps physical addressesto linear addresses.
In other words, if you have a peripheral device in your machine that has memory at a physical address
of 256 MB, you can issue this call to create alinear address that points to that physical memory. The

linear address is the same thing as a near pointer to the memory and can be manipulated as such.

Thereisno way in a DPMI environment to determine the physical address corresponding to a given
linear address. Thisis part of the design of DPMI. Y ou must design your application accordingly.

Addressing 89

The DOS/4GW DOS Extender

3e. Null pointer checking.

DOS/4AGW will trap references to the first sixteen bytes of physical memory if you set the environment
variable DOSAG=NULLP. Thisis currently the only null-pointer check facility provided by
DOS/AGW.

Asof release 1.95, DOS/AGW traps both reads and writes. Prior to this, it only trapped writes.
Y ou may experience problems if you set DOSAG=NULLP and use some versions of the Open Watcom

Debugger with a1.95 or later extender. These problems have been corrected in later versions of the
Open Watcom Debugger.

14.4 Interrupt and Exception Handling

90

4a. Handling asynchronous interrupts.

Under DOS/AGW, thereis a convenient way to handle asynchronous interrupts and an efficient way to
handle them.

Because your CPU may be in either protected mode (when 32-bit code is executing) or real mode (a
DOS or BIOS call) when a hardware interrupt comes in, you have to be prepared to handle interruptsin
either mode. Otherwise, you may missinterrupts.

Y ou can handle both real-mode and protected-mode interrupts with asingle handler, if 1) the interrupt
isin the auto-passup range, 8 to 2Eh; and 2) you install a handler with INT 21h/25h or _dos_setvect();
3) you do not install a handler for the same interrupt using any other mechanism. DOS/4GW will route
both protected-mode interrupts and real-mode interrupts to your protected-mode handler. Thisisthe
convenient way.

The efficient way isto install separate real-mode and protected-mode handlers for your interrupt, so
your CPU won’'t need to do unnecessary mode switches. Writing a real-mode handler is tricky; al you
can reasonably expect to do is save datain abuffer and IRET. Y our protected-mode code can
periodically check the buffer and process any queued data. (Remember, protected-mode code can
access data and execute code in low memory, but real-mode code can't access data or execute code in
extended memory.)

For performance, it doesn’t matter how you install the real-mode handler, but we recommend the DPMI
function INT 31h/201h for portahility.

It does matter how you install the protected-mode handler. You can’t install it directly into the IDT,
because a DPMI provider must distinguish between interrupts and exceptions and maintain separate
handler chains. Installing with INT 31h/205h is the recommended way to install your protected-mode
handler for both performance and portability.

If you install a protected-mode handler with INT 21h/25h, both interrupts and exceptions will be
funneled to your handler, to mimic DOS. Since DPMI exception handlers and interrupt handlers are
called with different stack frames, DOS/4GW executes a layer of code to cover these differences up; the
same layer is used to support the DOS/4G API (not part of DOS/AGW). Thislayer isthe reason that
hooking with INT 21h/25h is less efficient than hooking with INT 31h/205h.

Interrupt and Exception Handling

DOS/4GW Commonly Asked Questions

4b.

4c.

4d.

4e.

Handling asynchronousinterruptsin the second I RQ range.

Because the second IRQ range (nhormally INTs 70h-77h) is outside the DOS/4GW auto-passup range
(8-2Eh, excluding 21h) you may not handle these interrupts with a single handler, as described above
(the "convenient" method). Y ou must install separate real-mode and protected-mode handlers (the
"efficient" method).

DOS/4G does allow you to specify additional passup interrupts, however.
Asynchronousinterrupt handlers and DPMI.

The DPMI specification requires that all code and data referenced by a hardware interrupt handler
MUST be locked at interrupt time. A DPMI virtual memory manager can use the DOS file system to
swap pages of memory to and from the disk; because DOS is not reentrant, a DPMI host is not required
to be able to handle page faults during asynchronous interrupts. Use INT 31h/600h (Lock Linear
Region) to lock an address range in memory.

If you fail to lock al of your code and data, your program may run under DOS/4GW, but fail under the
DOS/4GW Virtual Memory Manager or under another DPMI host such as Windows or OS/2.

Y ou should also lock the code and data of a mouse callback function.

Open Watcom signal() function and Ctrl-Break.

In earlier versions of the Open Watcom C/C++ library, there was a bug that caused signal (SIGBREAK)
not to work. Calling signal(SIGBREAK) did not actualy install an interrupt handler for Ctrl-Break
(INT 1Bh), so Ctrl-Break would terminate the application rather than invoking the signal handler.

With these earlier versions of the library, you could work around this problem by hooking INT 1Bh
directly. With release 10.0, this problem has been fixed.

Moretips on writing hardware interrupt handlers.
* [t'smore like handling interrupts in real mode than not.

The same problems arise when writing hardware interrupt handlers for protected mode as arise for real
mode. We assume you know how to write real-mode handlers; if our suggestions don’t seem clear,
you might want to brush up on real-mode interrupt programming.

» Minimize the amount of time spent in your interrupt handlers.

When your interrupt handlers are called, interrupts are disabled. This means that no other system tasks
can be performed until you enable interrupts (an STI instruction) or until your handler returns. In
general, it'sagood ideato handle interrupts as quickly as possible.

» Minimize the amount of time spent in the DOS extender by installing separate real-mode and
protected-mode handlers.

If you use a passup interrupt handler, so that interrupts received in real mode areresignalled in
protected mode by the extender, your application has to switch from real mode to protected mode to
real mode once per interrupt. Mode switching is atime-consuming process, and interrupts are disabled
during amode switch. Therefore, if you' re concerned about performance, you should install separate
handlers for real-mode and protected-maode interrupts, eliminating the mode switch.

Interrupt and Exception Handling 91

The DOS/4GW DOS Extender

* If you can’t just set aflag and return, enable interrupts (STI).

Handlers that do more than just set aflag or store datain a buffer should re-enable interrupts as soon as
it'ssafeto do so. In other words, save your registers on the stack, establish your addressing
conventions, switch stacksif you're going to — and then enable interrupts (ST1), to give priority to
other hardware interrupts.

« If you enable interrupts (ST1), you should disable interrupts (CL1).

Because some DPMI hosts virtualize the interrupt flag, if you do an STI in your handler, you should be
sure to do a CLI before you return. (CLI, then switch back to the original stack if you switched away,
then restore registers, then IRET.) If you don’t do this, the IRET will not necessarily restore the
previous interrupt flag state, and your program may crash. Thisis adifference from real-mode
programming, and it tends to show up as a problem when you try running your program in a Windows
or OS/2 DOS box for the first time (but not before).

» Add areentrancy check.

If your handler doesn’t complete its work by the time the next interrupt is signalled, then interrupts can
quickly nest to the point of overflowing the transfer stack. Thisisadesign flaw in your program, not
in the DOS extender; areal-mode DOS program can have exactly the same behavior. If you can
conceive of a situation where your interrupt handler can be called again before the first instance
returns, you need to code in areentrancy check of some sort (before you switch stacks and enable
interrupts (STI1), obvioudly).

Remember that interrupts can take different amounts of time to execute on different machines; the CPU
manufacturer, CPU speed, speed of memory accesses, and CMOS settings (e.g. "system BIOS
shadowing") can al affect performance in subtle ways. We recommend you program defensively and
always check for unexpected reentry, to avoid transfer stack overflows.

« Switch to your own stack.
Interrupt handlers are called on a stack that typically has only a small amount of stack available (512
bytes or less). If you need to use more stack than this, you have to switch to your own stack on entry

into the handler, and switch back before returning.

If you want to use C run-time library functions, which are compiled for flat memory model (SS== DS,
and the base of CS == the base of DS), you need to switch back to astack in the flat data segment first.

Note that switching stacks by itself won't prevent transfer stack overflows of the kind described above.

14.5 Memory Management

92

5a. Using the realloc() function.
In versions of Open Watcom C/C++ prior to 9.5b, there was a bug in the library implementation of

realloc() under DOS/AGW and DOS/AGW Professional. This bug was corrected by Open Watcom in
the 9.5b release.

Memory Management

DOS/4GW Commonly Asked Questions

5b.

Using all of physical memory.

DOS/4AGW Professional is currently limited to 64 MB of physical memory. We do not expect to be able
to fix this problem for at least six months. If you need more than 64 MB of memory, you must use
virtual memory.

14.6 DOS, BIOS, and Mouse Services

6a.

6b.

6c.

6d.

Speeding up file I/O.

The best way to speed up DOSfile I/0 in DOS/AGW isto write large blocks (up to 65535 bytes, or the
largest number that will fit in a 16-bit int) at atime from a buffer in low memory. In this case,
DOS/AGW has to copy the least amount of data and make the fewest number of DOS callsin order to
process the 1/0 request.

Low memory is allocated through INT 31h/0100h, Allocate DOS Memory Block. You can convert the
real-mode segment address returned by INT 31h/0100h to a pointer (suitable for passing to setvbuf()) by
shifting it left four bits.

Spawning.

It is possible to spawn one DOS/4GW application from another. However, two copies of the DOS
extender will be loaded into memory. DOS/4G supports loading of multiple programs atop asingle
extender, aswell asDLLs.

Mouse callbacks.

DOS/4GW Professional now supportsthe INT 31h interface for managing real-mode callbacks.
However, you don't need to bother with them for their single most important application: mouse
callback functions. Just register your protected-mode mouse callback function as you would in real
mode, by issuing INT 33h/0Ch with the event mask in CX and the function addressin ES:EDX, and
your function will work as expected.

Because a mouse callback function is called asynchronously, the same locking requirement exists for a
mouse callback function as for a hardware interrupt handler. See (4c) above.

VESA support.
While DOS/AGW automatically handles most INT 10h functions so that you can you can issue them

from protected mode, it does not translate the INT 10h VESA extensions. The workaround is to use
INT 31h/300h (Simulate Real-Mode I nterrupt).

14.7 Virtual Memory

7a. Testing for the presence of VMM.

INT 31h/400h returns avalue (BX, bit 2) that tells if virtual memory is available. Under a DPMI host
such as Windows 3.1, thiswill be the host’s virtual memory manager, not DOS/AGW'’s.

Virtual Memory 93

The DOS/4GW DOS Extender

7D.

7c.

7d.

Te.

f.

79.

Y ou can test for the presence of a DOS/4G-family DOS extender with INT 31h/0OA00h, with a pointer
to the null-terminated string "RATIONAL DOS/4G" in DSESI. If the function returns with carry clear,
aDOS/4AG-family extender is running.

Reserving memory for a spawned application.

If you spawn one DOS/4GW application from another, you should set the DELETESWAP
configuration option (i.e., SET DOSAGV M=deleteswap) so that the two applications don't try to use the
same swap file. Y ou should also set the MAXMEM option low enough so that the parent application
doesn’t take all available physical memory; memory that’s been reserved by the parent application is
not available to the child application.

I nstability under VMM.

A program that hooks hardware interrupts, and works fine without VMM but crashes sporadically with
it, probably needsto lock the code and datafor its hardware interrupt handlers down in memory.
DOS/4GW does not support page faults during hardware interrupts, because DOS services may hot be
available at that time. See (4c¢) and (6c) above.

Memory can be locked down with INT 31h/600h (Lock Linear Region).
Running out of memory with a huge virtual address space.

Because DOS/AGW hasto create page tables to describe your virtual address space, we recommend that
you set your VIRTUALSIZE parameter just large enough to accommodate your program. If you set
your VIRTUALSIZE to 4 GB, the physical memory occupied by the page tables will be 4 MB, and that
memory will not be available to DOS/AGW.

Reducing the size of the swap file.

DOS/4GW will normally create a swap file equal to your VIRTUALSIZE setting, for efficiency.
However, if you set the SWAPMIN parameter to asize (in KB), DOS/AGW will start with aswap file
of that size, and will grow the swap file when it hasto. The SWAPINC value (default 64 KB) controls
theincremental size by which the swap file will grow.

Deleting the swap file.

The DELETESWAP option has two effects. telling DOS/4GW to delete the swap file when it exits, and
causing DOS/AGW to provide a unique swap file name if an explicit SWAPNAME setting was not
given.

DELETESWAP isrequired if one DOS/AGW application isto spawn another; see (7b) above.
I mproving demand-load performance of large static arrays.

DOS/AGW demand-loading feature normally cuts the load time of alarge program drastically.
However, if your program has large amounts of global, zero-initialized data (storage class BSS), the
Open Watcom startup code will explicitly zero it (version 9.5a or earlier). Because the zeroing
operation touches every page of the data, the benefits of demand-loading are lost.

Demand loading can be made fast again by taking advantage of the fact that DOS/4AGW automatically
zeroes pages of BSS data asthey are loaded. 'Y ou can make this change yourself by inserting afew
linesinto the startup routine, assembling it (MASM 6.0 will work), and listing the modified object
module first when you link your program.

94 Virtual Memory

DOS/4GW Commonly Asked Questions

Here are the changesfor \ wat com src\ st art up\ 386\ cst art 3r. asm(startup module from
the C/C++ 9.5 compiler, library using register calling conventions). 'Y ou can modify the workaround
easily for other Open Watcom compilers:

; cstart3r.asm circa line 332
end of _BSS segnent (start of STACK)

nmv ecx, of f set DGROUP: _end

; start of _BSS segnent
nmv edi, of fset DGROUP: _edat a
------------------------ ; RSl OPTI M ZATI ON
nmv eax, edi ; mininmize _BSS initialization |oop
or eax, OFFFh ; conpute address of first page after
inc eax ; start of _BSS
cnp eax, ecx ; if _BSS extends onto that page
j ae al |l zero ; then we can rely on the | oader
nmov ecx, eax ; zeroi ng the remaini ng pages
------------------------ ; END RSI OPTI M ZATI ON
sub ecx, edi ; calc # of bytes in _BSS segnent
nov dl, cl ; save bottom 2 bits of count in edx
shr ecx, 2 ; calc # of dwords
sub eax, eax ; zero the _BSS segnent
rep st osd I
nmov cl,dl ; get bottom 2 bits of count
and cl,3 ;
rep st osb

Note that the 9.5b and later versions of the Open Watcom C library aready contain this enhancement.

7h. How should |

configure VM for best performance?

Here are some recommendations for setting up the DOS/AGW virtual memory manager.

VIRTUALSIZE Set to no more than twice the total amount of memory (virtual and otherwise) your

MINMEM

MAXMEM

SWAPMIN

SWAPINC

program requires. If your program has 16 MB of code and data, set to 32 MB. (There
isonly asmall penalty for setting this value larger than you will need, but your program
won't run if you set it too low.) See (7d) above.

Set to the minimum hardware requirement for running your application. (If you require
a2 MB machine, set to 2048).

Set to the maximum amount of memory you want your application to use. |f you don’t
spawn any other applications, set thislarge (e.g., 32000) to make sure you can use all
available physical memory. If you do spawn, see (7b) above.

Don't use thisif you want the best possible VM performance. The trade-off is that
DOS/AGW will create a swap file as big asyour VIRTUALSIZE.

Don't use thisif you want the best possible VM performance.

DELETESWAP DOS/AGW’'s VM will start up dlightly slower if it has to create the swap file afresh

each time. However, unless your swap fileisvery large, DELETESWAPisa
reasonable choice; it may be required if you spawn another DOS/4GW program at the
sametime. See (7b) above.

Virtual Memory 95

The DOS/4GW DOS Extender

14.8 Debugging

8a. Attempting to debug a bound application.

8b.

8c.

Y ou can’'t debug a bound application. The 4AGWBIND utility (included with DOS/AGW Professional)
will allow you to take apart a bound application so that you can debug it:

4GBl ND - U <boundapp. exe> <your app. exe>
Debugging with an old version of the Open Watcom debugger .
DOS/4GW supports versions 8.5 and up of the Open Watcom C, C++ and FORTRAN compilers.
However, in order to debug your unbound application with a Open Watcom debugger, you must have
version 9.5a or later of the debugger.
If you have an older version of the debugger, we strongly recommend that you contact Open Watcom to
upgrade your compiler and tools. The only way to debug a DOS/AGW Professional application with an
old version of the debugger is to rename 4AGWPRO.EXE to DOSAGW.EXE and make sure that it's
either in the current directory or the first DOSAGW.EXE on the DOS PATH.

Tenberry will not provide technical support for this configuration; it's up to you to keep track of which
DOS extender is which.

Meaning of " unexpected interrupt” message/error 2001.

Inversion 1.95 of DOS/4GW, we revised the "unexpected interrupt" message to make it easier to
understand.

For example, the message:

Unexpected interrupt OE (code 0) at 168:10421034

is now printed:

error (2001): exception OEh (page fault) at 168:10421034
followed by aregister dump, as before.

This message indicates that the processor detected some form of programming error and signaled an
exception, which DOS/AGW trapped and reported. Exceptions which can be trapped include:

00h di vide by zero

01h debug exception OR null pointer used
03h br eakpoi nt

04h overfl ow

05h bounds

06h i nval i d opcode

07h device not avail abl e
08h doubl e fault

09h overrun

0Ah invalid TSS

0Bh segnent not present

0Ch stack fault

0Dh general protection fault
OEh page fault

96 Debugging

DOS/4GW Commonly Asked Questions

When you receive this message, thisis the recommended course of action:
1. Record al of the information from the register dump.
2. Determine the circumstances under which your program fails.

3. Consult your debugger manual, or an Intel 386, 486 or Pentium Programmer’ s Reference
Manual, to determine the circumstances under which the processor will generate the reported
exception.

4. Get the program to fail under your debugger, which should stop the program as soon as the
exception occurs.

5. Determine from the exception context why the processor generated an exception in this
particular instance.

8d. Meaning of " transfer stack overflow" message/error 2002.

In version 1.95 of DOS/4GW, we added more information to the "transfer stack overflow" message.
The message (which is now followed by aregister dump) is printed:

error (2002): transfer stack overflow
on interrupt <number> at <address>

This message means DOS/AGW detected an overflow on itsinterrupt handling stack. It usually
indicates either arecursive fault, or a hardware interrupt handler that can’t keep up with the rate at
which interrupts are occurring. The best way to understand the problem is to use the VERBOSE option
in DOS/4GW to dump the interrupt history on the transfer stack; see (8e) below.

8e. Making the most of a DOS/4AGW register dump.

If you can’t understand your problem by running it under a debugger, the DOS/AGW register dumpis
your best debugging tool. To maximize the information available for postmortem debugging, set the
environment variable DOSAG to VERBOSE, then reproduce the crash and record the output.

Here' satypical register dump with VERBOSE turned on, with annotations.
1 DOS/4GWerror (2001): exception OEh (page fault)

at 170: 0042C1B2
2 TSF32: prev_tsf32 6708

3 SS 178 DS 178 ES 178 FS 0 GS 20
EAX 1F000000 EBX 0 ECX 43201C EDX E
ESI E ED 0 EBP 431410 ESP 4313FC
CS: 1P 170:0042C1B2 | D OE COD 0 FLG 10246

4 CS= 170, USE32, page granular, limt FFFFFFFF, base 0, acc CF9B
SS= 178, USE32, page granular, |limt FFFFFFFF, base 0, acc CF93
DS= 178, USE32, page granular, |imt FFFFFFFF, base 0, acc CF93
ES= 178, USE32, page granular, |imt FFFFFFFF, base 0, acc CF93
FS= 0, USE16, byte granular, limt 0, base 15, acc O
GS= 20, USE16, byte granular, limt FFFF, base 6AA0, acc 93

5 CR0: PG1 ET:1 TS0 EMO M0 PE 1 CR2: 1F000000 CR3: 9067

6 Crash address (unrel ocated) = 1:000001B2

7 Opcode stream 8A 18 31 D2 88 DA EB OE 50 68 39 00 43 00 E8 1D

St ack:

8 0178: 004313FC 000E 0000 0000 0000 C2D5 0042 C0O57 0042 0170 0000 0000 0000
0178: 00431414 0450 0043 0452 0043 0000 0000 1430 0043 CBEF 0042 011C 0000
0178: 0043142C C568 0042 0000 0000 0000 0000 0000 0000 F248 0042 F5F8 0042
0178: 00431444 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0178: 0043145C 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0178: 00431474 0000 0000 0000 0000 0000 0000 0000 0000 OOOO 0000 0000 0000

9 Last 4 ints: 21 @170:42CF48/21 @ 170: 42CF48/ 21 @ 170: 42CF48/ E @ 170: 42C1B2/

Debugging 97

The DOS/4GW DOS Extender

The error message includes a synopsis of the problem. In this case, the processor signaled a
page fault exception while executing at address 170:0042C1B2.

The prev_tsf32 field is not usually of interest.

These are the register values at the time of the exception. The interrupt number and error
code (pushed on the stack by the processor for certain exceptions) are also printed.

The descriptors referenced by each segment register are described for your convenience.
USE32 segmentsin general belong to your program; USE16 segments generally belong to
the DOS extender. Here, CS pointsto your program’s code segment, and SS, DS, and ES
point to your data segment. FSisNULL and GS pointsto a DOS extender segment.

The control register information is not of any general interest, except on a page fault, when
CR2 contains the address value that caused the fault. Since EAX in this case contains the
same value, an attempt to dereference EAX could have caused this particular fault.

If the crash address (unrelocated) appears, it tells you where the crash occurred relative to
your program’s link map. Y ou can therefore tell where a crash occurred even if you can't
reproduce the crash in a debugger.

The opcode stream, if it appears, shows the next 16 bytes from the code segment at the point
of the exception. If you disassemble these instructions, you can tell what instructions caused

the crash, even without using adebugger. In thiscase, 8A 18 istheinstruction nov
bl , [eax] .

72 words from the top of the stack, at the point of the exception, may be listed next. You
may be able to recognize function calls or data from your program on the stack.

The four interrupts least to most recently handled by DOS/4GW in protected mode are listed
next. Inthisexample, the last interrupt issued before the page fault occurred was an INT 21h
(DOS call) at address 170:42CF48. Sometimes, thisinformation provides helpful context.

Here' s an abridged register dump from a stack overflow.

DOs/ 4GW error (2002):

transfer stack overfl ow
on interrupt 70h at 170: 0042C002

TSF32: prev_tsf32 48C8

SS C8 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1D1Dl1 EBP B1B1B1Bl1 ESP 4884
1 CS:IP 170:0042C002 ID 70 COD 0 FLG 2
2 Previous TSF:
TSF32: prev_tsf32 498C
SS C8 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1Di1Dl1 EBP B1B1B1Bl1 ESP 4960
3 CS:IP 170:0042C002 1D 70 COD 0 FLG 2
Previ ous TSF:
TSF32: prev_tsf32 67E4
SS 178 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1D1Dl1 EBP B1B1B1B1 ESP 42FFEOQ
CS:IP 170:0042C039 ID 70 COD 0 FLG 202

LES

1

98 Debugging

Opcode stream CF 66 B8 62 25 66 8C CB 66 8E DB BA 00 CO 42 00
Last 4 ints:

70 @170:42C002/ 70 @ 170: 42C002/ 70 @ 170: 42C002/ 70 @ 170: 42C002/

We overflowed the transfer stack while trying to process an interrupt 70h at 170:0042C002.

DOS/4GW Commonly Asked Questions

2. Theentireinterrupt history from the transfer stack is printed next. The prev_tsf32 numbers
increase as we progress from most recent to least recent interrupt. All of these interrupts are
gtill pending, which is why we ran out of stack space.

3. Beforewe overflowed the stack, we got the same interrupt at the same address. For a
recursive interrupt situation, thisistypical.

4. The oldest frame on the transfer stack shows the recursion was touched off at aslightly
different address. Looking at this address may help you understand the recursion.

5. The opcode stream and last four interrupt information comes from the newest transfer stack
frame, not the oldest.

14.9 Compatibility

9a. Running DOS/4GW applications from inside Lotus 1-2-3.

%.

In order to run DOS/AGW applications while "shelled out" from Lotus 1-2-3, you must use the
PRIVATXM program included with your Open Watcom compiler. Otherwise, 1-2-3 will take all of the
memory on your machine and prevent DOS/4GW from using it.

Before starting 1-2-3, you must set the DOS16M environment variable to limit Lotus' memory use (see
your Open Watcom manual). After shelling out, you must run PRIVATXM, then clear the DOS16M
environment variable before running your application.

EMM386.EXE provided with DOS 6.0.

We know of at least three serious bugs in the EMM386.EXE distributed with MS-DOS 6.0, one
involving mis-counting the amount of available memory, one involving mapping too little of the High
Memory Area (HMA) into its page tables, and one involving alocation of EMS memory. Version 1.95
of DOS/4GW contains workarounds for some of these problems.

If you are having problems with DOS/4GW and you are using an EMM386.EXE dated 3-10-93 at
6:00:00, or later, you may wish to try the following workarounds, in sequence, until the problem goes

away.
* Configure EMM 386 with both the NOEM S and NOV CPI options.

* Convert the DEVICEHIGH statements in your CONFIG.SY S to DEVICE statements, and
remove the LH (Load High) commands from your AUTOEXEC.BAT.

* Run in aWindows DOS box.

* Replace EMM 386 with another memory manager, such as QEMM-386, 386Max, or an older
version of EMM 386.

* Run with HIMEM.SY S done.

Y ou may also wish to contact Microsoft Corporation to inquire about the availability of afix.

Compatibility 99

The DOS/4GW DOS Extender

9c. Spawning under OS2 2.1.

We know of abug in OS/2 2.1 that prevents one DOS/4GW application from spawning another over
and over again. The actual number of repeated spawns that are possible under OS/2 varies from
machine to machine, but is generally about 30.

This bug also affects programs running under other DOS extenders, and we have not yet found a
workaround, other than linking your two programs together as a single program.

9d. " DPMI host error: cannot lock stack” .

This error message almost always indicates insufficient memory, rather than areal incompatibility. 1f
you see it under an OS/2 DOS box, you probably need to edit your DOS Session settings and make
DPMI_MEMORY _LIMIT larger.

9e. Bugin Novell TCPIP driver.

Some versions of a program from Novell called TCPIP.EXE, areal-mode program, will cause the high
words of EAX and EDX to be altered during a hardware interrupt. This bug breaks protected-mode
software (and other real-mode software that uses the 80386 registers). Novell has released a newer
version of TCPIP that fixes the problem; contact Novell to obtain the fix.

of. Bugsin Windows NT.
Theinitia release of Windows NT includes a DPMI host, DOSX.EXE, with several serious bugs, some
of which apparently cannot be worked around. We cannot warranty operation of DOS/AGW under
Windows NT at thistime, but we are continuing to exercise our best efforts to work around these
problems.

Y ou may wish to contact Microsoft Corporation to inquire about the availability of anew version of
DOSX.EXE.

100 Compatibility

Windows 3.x Programming Guide

Windows 3.x Programming Guide

102

15 Creating 16-bit Windows 3.x Applications

This chapter describes how to compile and link 16-bit Windows 3.x applications ssmply and quickly. In
this chapter, we look at applications written to exploit the Windows 3.x Application Programming Interface
(API).

We will illustrate the steps to creating 16-bit Windows 3.x applications by taking a small sample
application and showing you how to compile, link, run and debug it.

15.1 The Sample GUI Application

To demonstrate the creation of 16-bit Windows 3.x applications, we introduce a simple sample program.
For our example, we are going to use the "sieve" program.

*$i ncl ude wi napi . fi
*$nor ef erence

| NTEGER*2 FUNCTI ON FW NVAI N(hl nstance, hPrevl nstance,

& | pszCndLi ne, nCrdShow)

*$r ef erence

I MPLI CI' T NONE

I NTEGER*2 hl nstance, hPrevlnstance, nCndShow

| NTEGER*4 | pszCndLi ne

i ncl ude 'w ndows. fi’

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
I NTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
CHARACTER* 60 BUFFER
PARAMETER (FORME' (A, 15,A,15)")
DO | = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRI MES = 0
DO | = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRI MES = PRI MES + 1
DO K =1 + 1, UPBOUND, I
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
WRI TE(BUFFER, FORM) ' The Nunber of Prines between 1 and ’
& UPBOUND, ' are: ', PRIMES
CALL MessageBox(0, BUFFER,
& ' Si eve of Eratosthenes’c,
& MB_OK . OR MB_TASKMODAL)
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Seve of

Eratosthenes algorithm to accomplish thistask. We will take you through the steps necessary to produce
this result.

The Sample GUI Application 103

Windows 3.x Programming Guide

15.2 Building and Running the GUI Application

To compile and link our example program which is stored in thefile si eve. f or, enter the following
command:

Cwl -1 =wi ndows -wi n sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Cw | -1 =wi ndows -w n sieve.for
Open Watcom F77/16 Conpile and Link Uility
Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al Ri ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
wfc sieve.for -win
Open WAt com FORTRAN 77/ 16 Optim zing Conpil er
Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conlf open-watcomv2 for details.
sieve.for: 4305 statenents, 356 bytes, 1524 extensions, 0 warnings, O errors

Open Wt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al R ghts Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. conf open-wat conf open-wat comv2 for details.

| oadi ng object files

searching libraries

creating a Wndows 16-bit executable

If you examine the current directory, you will find that two files have been created. These are
si eve. obj (theresult of compiling si eve. f or) and si eve. exe (theresult of linking si eve. obj
with the appropriate Open Watcom FORTRAN 77 libraries).

The resultant 16-bit Windows 3.x application SI EVE. EXE can now be run under Windows 3.x.

15.3 Debugging the GUI Application

Let us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisaso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL command, thisisfairly straightforward. WFL recognizes the Open Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Open Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

Cwl -1 =wi ndows -win -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

104 Debugging the GUI Application

Creating 16-bit Windows 3.x Applications

Cwil -1 =wi ndows -win -d2 sieve.for
Open Watcom F77/16 Conpile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
wfc sieve.for -win -d2
Open WAt com FORTRAN 77/ 16 Optim zing Conpil er
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-watcomv2 for details.
sieve.for: 4305 statenents, 467 bytes, 1524 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al Rights Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. conl open-wat conl open-watcomv2 for details.

| oadi ng object files

searching libraries

creating a Wndows 16-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL will make sure that this debugging information isincluded in the executable
filethat is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. Y ou can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship
between the object code and the original source language code.

To request the Open Watcom Debugger to assist in debugging the application, select the Open Watcom
Debugger icon. It would be too ambitious to describe the debugger in thisintroductory chapter so we refer
you to the book entitled Open Watcom Debugger User’s Guide.

There are more extensive examples of Windows applications written in FORTRAN 77 in the
\ WVATCOM SAMPLES\ FORTRAN\ W Ndirectory. The example programsare ELLI PSE. FOR and
FWCOPY. FOR.

Debugging the GUI Application 105

Windows 3.x Programming Guide

106 Debugging the GUI Application

16 Porting Non-GUI Applications to 16-bit
Windows 3.x

Generally, an application that isto run in awindowed environment must be written in such away asto
exploit the Windows Application Programming Interface (API). To take an existing character-based (i.e.,
non-graphical) application that ran under a system such as DOS and adapt it to run under Windows can
require some considerable effort. Thereis a steep learning curve associated with the API function libraries.

This chapter describes how to create a Windows application quickly and simply from an application that
does not use the Windows API. The application will make use of Open Watcom's default windowing
support.

Suppose you have a set of FORTRAN 77 applications that previously ran under a system like DOS and you
now wish to run them under Windows 3.x. To achieve this, you can simply recompile your application
with the appropriate options and link with the appropriate libraries. We provide a default windowing
system that turns your character-mode application into a simple Windows 3.x Graphical User Interface
(GUI) application.

Normally, a Windows 3.x GUI application makes use of user-interface tools such as menus, icons, scroll
bars, etc. However, an application that was not designed as a windowed application (such asaDOS
application) can run as a GUI application. Thisis achieved by our default windowing system. The
following sections describe the default windowing system.

16.1 Console Device in a Windowed Environment

InaFORTRAN 77 application that runs under DOS, unit 5 and unit 6 are connected to the standard input
and standard output devices respectively. It isnot arecommended practice to read directly from the
standard input device or write to the standard output device when running in awindowed environment. For
this reason, a default windowing environment is created for FORTRAN 77 applications that read from unit
5 or write to unit 6. When your application is started, awindow is created in which output to unit 6 is
displayed and input from unit 5 is requested.

In addition to the standard 1/0O device, it is also possible to perform 1/O to the console by explicitly opening
afilewhose nameis"CON". When this occurs, another window is created and displayed. Thiswindow is
different from the one created for standard input and standard output. 1n fact, every time you open the
console device a different window is created. This provides a simple multi-windowing system for multiple
streams of data to and from the console device.

Console Device in a Windowed Environment 107

Windows 3.x Programming Guide

16.2 The Sample Non-GUI Application

To demonstrate the creation of 16-bit Windows 3.x applications, we introduce a simple sample program.
For our example, we are going to use the "sieve" program.

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes al gorithm

I MPLI CI T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER* 11 FORM
PARAMETER (FORME' (A, 15, A/ 15)")
DO I = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO I = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRIMES + 1
DOK =1 + 1|, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Prinmes between 1 and ', UPBOUND,
1 ' are: ', PRIMES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Seve of

Eratosthenes algorithm to accomplish thistask. We will take you through the steps necessary to produce
this result.

16.3 Building and Running the Non-GUI Application
Very little effort is required to port an existing FORTRAN 77 application to Windows 3.x.
Y ou must compile and link thefile si eve. f or specifying the "bw" option.
Cwil -1 =wi ndows -bw -wi n sieve.for

The typical messages that appear on the screen are shown in the following illustration.

108 Building and Running the Non-GUI Application

Porting Non-GUI Applications to 16-bit Windows 3.x

Cwil -1 =wi ndows -bw -win sieve.for
Open Watcom F77/16 Conpile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
wfc sieve.for -bw-win
Open WAt com FORTRAN 77/ 16 Optim zing Conpil er
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-watcomv2 for details.
sieve.for: 21 statenments, 311 bytes, 6 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al Rights Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. conl open-wat conl open-watcomv2 for details.

| oadi ng object files

searching libraries

creating a Wndows 16-bit executable

If you examine the current directory, you will find that two files have been created. These are
si eve. obj (theresult of compiling si eve. f or) and si eve. exe (theresult of linking si eve. obj
with the appropriate Open Watcom FORTRAN 77 libraries).

The resultant 16-bit Windows 3.x application SI EVE. EXE can now be run under Windows 3.x asa
Windows GUI application.

16.4 Debugging the Non-GUI Application

Let us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisaso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL command, thisisfairly straightforward. WFL recognizes the Open Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Open Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

Cwl -1 =wi ndows -bw -win -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Debugging the Non-GUI Application 109

Windows 3.x Programming Guide

Cwil -1 =wi ndows -bw -win -d2 sieve.for
Open Watcom F77/16 Conpile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
wfc sieve.for -bw-win -d2
Open WAt com FORTRAN 77/ 16 Optim zing Conpil er
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-watcomv2 for details.
sieve.for: 21 statements, 392 bytes, 6 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al Rights Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. conl open-wat conl open-watcomv2 for details.

| oadi ng object files

searching libraries

creating a Wndows 16-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL will make sure that this debugging information isincluded in the executable
filethat is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. Y ou can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship
between the object code and the original source language code.

To request the Open Watcom Debugger to assist in debugging the application, select the Open Watcom
Debugger icon. It would be too ambitious to describe the debugger in thisintroductory chapter so we refer
you to the book entitled Open Watcom Debugger User’s Guide.

16.5 Default Windowing Library Functions

110

A few library functions have been written to enable some simple customization of the default windowing
system’s behaviour. The following functions are supplied:

dwfDeleteOnClose

i nteger function dwfDel eteOnd ose(unit)
i nteger unit

This function tells the console window that it should close itself when thefileis closed. You must
passto it the unit number associated with the opened console.

dwf SetAboutDlg

i nteger function dwfSetAboutDi g(title, text)
character*(*) title
character*(*) text

This function sets the about dialog box of the default windowing system. The "title" pointsto the

string that will replace the current title. If titleis CHAR(O) then the title will not be replaced. The
"text" points to a string which will be placed in the about box. To get multiple lines, embed a new

Default Windowing Library Functions

Porting Non-GUI Applications to 16-bit Windows 3.x

line after each logical lineinthe string. If "text" is CHAR(O), then the current text in the about
box will not be replaced.

dwfSetAppTitle

i nteger function dwfSetAppTitle(title)
character*(*) title

This function sets the main window’ stitle.
dwfSetConTitle
i nteger function dwfSetConTitle(unit, title)
i nteger unit
character*(*) title
This function sets the console window’ s title which corresponds to the unit number passed to it.
dwfShutDown
i nteger function dwf Shut Down()

This function shuts down the default windowing 1/O system. The application will continue to
execute but no windows will be available for output.

awfYield

i nteger function dwfYield()

This function yields control back to the operating system, thereby giving other processes a chance
to run.

These functions are described more fully in the Open Watcom FORTRAN 77 User’s Guide.

Default Windowing Library Functions 111

Windows 3.x Programming Guide

112 Default Windowing Library Functions

17 Creating 32-bit Windows 3.x Applications

This chapter describes how to compile and link 32-bit Windows 3.x applications smply and quickly. In
this chapter, we look at applications written to exploit the Windows 3.x Application Programming Interface
(API).

We will illustrate the steps to creating 32-bit Windows 3.x applications by taking a small sample
application and showing you how to compile, link, run and debug it.

17.1 The Sample GUI Application

To demonstrate the creation of 32-bit Windows 3.x applications, we introduce a simple sample program.
For our example, we are going to use the "sieve" program.

*$i ncl ude wi napi . fi
*$nor ef erence

| NTEGER*2 FUNCTI ON FW NVAI N(hl nstance, hPrevl nstance,

& | pszCndLi ne, nCrdShow)

*$r ef erence

I MPLI CI' T NONE

I NTEGER*2 hl nstance, hPrevlnstance, nCndShow

| NTEGER*4 | pszCndLi ne

i ncl ude 'w ndows. fi’

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
I NTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
CHARACTER* 60 BUFFER
PARAMETER (FORME' (A, 15,A,15)")
DO | = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRI MES = 0
DO | = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRI MES = PRI MES + 1
DO K =1 + 1, UPBOUND, I
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
WRI TE(BUFFER, FORM) ' The Nunber of Prines between 1 and ’
& UPBOUND, ' are: ', PRIMES
CALL MessageBox(0, BUFFER,
& ' Si eve of Eratosthenes’c,
& MB_OK . OR MB_TASKMODAL)
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Seve of

Eratosthenes algorithm to accomplish thistask. We will take you through the steps necessary to produce
this result.

The Sample GUI Application 113

Windows 3.x Programming Guide

17.2 Building and Running the GUI Application

To compile and link our example program which is stored in thefile si eve. f or, enter the following
command:

Cwil 386 -1 =wi n386 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Cw 386 -1 =wi n386 sieve.for
Open Watcom F77/32 Conpile and Link Uility
Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al Ri ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
wfc386 sieve. for
Open WAt com FORTRAN 77/ 32 Optim zing Conpil er
Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conlf open-watcomv2 for details.
sieve.for: 4390 statenents, 207 bytes, 1585 extensions, O warnings, O errors

Open Wt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al R ghts Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. conf open-wat conf open-wat comv2 for details.

| oadi ng object files

searching libraries

creating a Wndows 32-bit executable

If you examine the current directory, you will find that two files have been created. These are

si eve. obj (theresult of compiling si eve. f or) and si eve. r ex (theresult of linking si eve. obj
with the appropriate Open Watcom FORTRAN 77 libraries). The".rex" file must now be combined with
Open Watcom’ s 32-bit Windows supervisor W N386. EXT using the Open Watcom Bind utility.

WABI ND. EXE combines your 32-hit application code and data (".rex" file) with the 32-bit Windows
supervisor. The process involves the following steps:

1. VBl NDcopies W N386. EXT into the current directory.

2. \\BI ND. EXE optionally runs the resource compiler on the 32-bit Windows supervisor so that the
32-hit executable can have access to the applications resources.

3. VBI ND. EXE concatenates W N386. EXT and the ".rex" file, and creates a".exe" file with the
same name as the ".rex" file.

The following describes the syntax of the V\BI ND command.

WBIND file_spec[-d] [-n] [-q] [-s supervisor] [-R rc_options]

The square brackets [] denote items which are optional.

114 Building and Running the GUI Application

Creating 32-bit Windows 3.x Applications

WBIND is the name of the Open Watcom Bind utility.

file_spec is the name of the 32-bit Windows EXE to bind.

-d requests that a 32-bit DLL be built.

-n indicates that the resource compiler is NOT to be invoked.

-q requests that WBIND runin quiet mode (no informational messages are
displayed).

-S supervisor specifies the path and name of the Windows supervisor to be bound with the

application. If not specified, a search of the pathslisted in the PATH
environment variable is performed. If this search is not successful and the
WATCOM environment variable is defined, the 9MATCOWA Bl NWdirectory is
searched.

-Rrc_options all options after -R are passed to the resource compiler.

To bind our example program, the following command may be issued:

C>wbi nd sieve -n

If the"s" option is specified, it must identify the location of the W N386. EXT file or the WB86DLL. EXT
file (if you are buildingaDLL).

Example:
Cwhi nd sieve -n -s c:\wat com bi nwh wi n386. ext

If the"s" option is not specified, then the WATCOM environment variable must be defined or the "BINW"
directory must be listed in your PATH environment variable.

Example:
C>set wat convc: \ wat com
or
C>pat h c:\wat com bi nw; c:\dos; c:\ wi ndows

The resultant 32-bit Windows 3.x application SI EVE. EXE can now be run under Windows 3.x.

17.3 Debugging the GUI Application

L et us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisaso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL 386 command, thisisfairly straightforward. WFL 386 recognizes the Open Watcom
F77 compiler "debug" options and will create the appropriate debug directives for the Open Watcom
Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

Debugging the GUI Application 115

Windows 3.x Programming Guide

Cwl 386 -1 =win386 -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Cwil 386 -1=win386 -d2 sieve.for
Open Watcom F77/32 Conpile and Link Uility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
wf c386 sieve.for -d2
Open WAt com FORTRAN 77/ 32 Optim zing Conpil er
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
sieve.for: 4390 statenents, 293 bytes, 1585 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al Rights Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. conl open-wat conl open-watcomv2 for details.

| oadi ng object files

searching libraries

creating a Wndows 32-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL386 will make sure that this debugging information isincluded in the

executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. Y ou can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship

between the object code and the original source language code.

Once again, the ".rex" file must be combined with Open Watcom’ s 32-bit Windows supervisor

W N386. EXT using the Open Watcom Bind utility. This step is described in the previous section.

To request the Open Watcom Debugger to assist in debugging the application, select the Open Watcom
Debugger icon. It would be too ambitious to describe the debugger in thisintroductory chapter so we refer

you to the book entitled Open Watcom Debugger User’s Guide.

There are more extensive examples of Windows applications written in FORTRAN 77 in the

\ WATCOM SAMPLES\ FORTRAN\ W N directory. The example programsare ELLI PSE. FOR and

FWCOPY. FOR.

116 Debugging the GUI Application

18 Porting Non-GUI Applications to 32-bit
Windows 3.x

Generally, an application that isto run in awindowed environment must be written in such away asto
exploit the Windows Application Programming Interface (API). To take an existing character-based (i.e.,
non-graphical) application that ran under a system such as DOS and adapt it to run under Windows can
require some considerable effort. Thereis a steep learning curve associated with the API function libraries.

This chapter describes how to create a Windows application quickly and simply from an application that
does not use the Windows API. The application will make use of Open Watcom's default windowing
support.

Suppose you have a set of FORTRAN 77 applications that previously ran under a system like DOS and you
now wish to run them under Windows 3.x. To achieve this, you can simply recompile your application
with the appropriate options and link with the appropriate libraries. We provide a default windowing
system that turns your character-mode application into a simple Windows 3.x Graphical User Interface
(GUI) application.

Normally, a Windows 3.x GUI application makes use of user-interface tools such as menus, icons, scroll
bars, etc. However, an application that was not designed as a windowed application (such asaDOS
application) can run as a GUI application. Thisis achieved by our default windowing system. The
following sections describe the default windowing system.

18.1 Console Device in a Windowed Environment

InaFORTRAN 77 application that runs under DOS, unit 5 and unit 6 are connected to the standard input
and standard output devices respectively. It isnot arecommended practice to read directly from the
standard input device or write to the standard output device when running in awindowed environment. For
this reason, a default windowing environment is created for FORTRAN 77 applications that read from unit
5 or write to unit 6. When your application is started, awindow is created in which output to unit 6 is
displayed and input from unit 5 is requested.

In addition to the standard 1/0O device, it is also possible to perform 1/O to the console by explicitly opening
afilewhose nameis"CON". When this occurs, another window is created and displayed. Thiswindow is
different from the one created for standard input and standard output. 1n fact, every time you open the
console device a different window is created. This provides a simple multi-windowing system for multiple
streams of data to and from the console device.

Console Device in a Windowed Environment 117

Windows 3.x Programming Guide

18.2 The Sample Non-GUI Application

To demonstrate the creation of 32-bit Windows 3.x applications, we introduce a simple sample program.
For our example, we are going to use the "sieve" program.

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes al gorithm

I MPLI CI T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER* 11 FORM
PARAMETER (FORME' (A, 15, A/ 15)")
DO I = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO I = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRIMES + 1
DOK =1 + 1|, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Prinmes between 1 and ', UPBOUND,
1 ' are: ', PRIMES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Seve of

Eratosthenes algorithm to accomplish thistask. We will take you through the steps necessary to produce
this result.

18.3 Building and Running the Non-GUI Application
Very little effort is required to port an existing FORTRAN 77 application to Windows 3.x.

Y ou must compile and link thefile si eve. f or specifying the "bw" option.

Cw | 386 -1 =wi n386 -bw si eve. for

The typical messages that appear on the screen are shown in the following illustration.

118 Building and Running the Non-GUI Application

Porting Non-GUI Applications to 32-bit Windows 3.x

C>wfl 386 -1 =wi n386 sieve.for
Open Watcom F77/32 Conpile and Link Uility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
wf c386 sieve.for -bw
Open WAt com FORTRAN 77/ 32 Optim zing Conpil er
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-watcomv2 for details.
sieve.for: 21 statenments, 172 bytes, 6 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al Rights Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. conl open-wat conl open-watcomv2 for details.

| oadi ng object files

searching libraries

creating a Wndows 32-bit executable

If you examine the current directory, you will find that two files have been created. These are

si eve. obj (theresult of compiling si eve. f or) and si eve. r ex (theresult of linking si eve. obj
with the appropriate Open Watcom FORTRAN 77 libraries). The".rex" file must now be combined with
Open Watcom's 32-bit Windows supervisor W N386. EXT using the Open Watcom Bind utility.

WVABI ND. EXE combines your 32-bit application code and data (".rex" file) with the 32-bit Windows
supervisor. The process involves the following steps:

1. VBl NDcopies W N386. EXT into the current directory.

2. \\BI ND. EXE optionally runs the resource compiler on the 32-bit Windows supervisor so that the
32-hit executable can have access to the applications resources.

3. VBI ND. EXE concatenates W N386. EXT and the ".rex" file, and creates a".exe" file with the
same name as the ".rex" file.

The following describes the syntax of the V\BI ND command.

WBIND file_spec[-d] [-n] [-q] [-s supervisor] [-R rc_options]

The square brackets [] denote items which are optional.

WBIND is the name of the Open Watcom Bind utility.

file_spec is the name of the 32-bit Windows EXE to bind.

-d requests that a 32-bit DLL be built.

-n indicates that the resource compiler is NOT to be invoked.

-q requests that WBIND runin quiet mode (no informational messages are
displayed).

-S supervisor specifies the path and name of the Windows supervisor to be bound with the

application. If not specified, a search of the pathslisted in the PATH

Building and Running the Non-GUI Application 119

Windows 3.x Programming Guide

environment variableis performed. If this search is not successful and the
WATCOM environment variable is defined, the 9MATCOWA Bl NWdirectory is
searched.

-Rrc_options all options after -R are passed to the resource compiler.

To bind our example program, the following command may be issued:

C>wbi nd sieve -n

If the"s" option is specified, it must identify the location of the W N386. EXT file or the WB86DLL. EXT
file (if you are building aDLL).

Example:
C>wbhi nd sieve -n -s c:\watcom bi nwA wi n386. ext

If the"s" option is not specified, then the WATCOM environment variable must be defined or the "BINW"
directory must be listed in your PATH environment variable.

Example:
C>set wat comec: \ wat com
or
C>pat h c:\wat com bi nw; c:\dos; c:\wi ndows

The resultant 32-bit Windows 3.x application SI EVE. EXE can now be run under Windows 3.x asa
Windows GUI application.

18.4 Debugging the Non-GUI Application

L et us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisaso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL 386 command, thisisfairly straightforward. WFL 386 recognizes the Open Watcom
F77 compiler "debug" options and will create the appropriate debug directives for the Open Watcom
Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

Cwl 386 -1 =wi n386 -bw -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

120 Debugging the Non-GUI Application

Porting Non-GUI Applications to 32-bit Windows 3.x

C>wil 386 -1=wi n386 -d2 sieve.for
Open Watcom F77/32 Conpile and Link Uility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
wf c386 sieve.for -bw -d2
Open WAt com FORTRAN 77/ 32 Optim zing Conpil er
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-watcomv2 for details.
sieve.for: 21 statenments, 237 bytes, 6 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al Rights Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. conl open-wat conl open-watcomv2 for details.

| oadi ng object files

searching libraries

creating a Wndows 32-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL 386 will make sure that this debugging information isincluded in the
executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. Y ou can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship
between the object code and the original source language code.

Once again, the ".rex" file must be combined with Open Watcom’ s 32-bit Windows supervisor
W N386. EXT using the Open Watcom Bind utility. This step is described in the previous section.

To request the Open Watcom Debugger to assist in debugging the application, select the Open Watcom

Debugger icon. It would be too ambitious to describe the debugger in thisintroductory chapter so we refer
you to the book entitled Open Watcom Debugger User’s Guide.

18.5 Default Windowing Library Functions

A few library functions have been written to enable some simple customization of the default windowing
system’s behaviour. The following functions are supplied:

dwfDeleteOnClose

i nteger function dwfDel eteOnd ose(unit)
i nteger unit

This function tells the console window that it should close itself when the fileisclosed. You must
passto it the unit number associated with the opened console.

dwfSetAboutDlg
i nteger function dwfSetAboutDi g(title, text)

character*(*) title
character*(*) text

Default Windowing Library Functions 121

Windows 3.x Programming Guide

This function sets the about dialog box of the default windowing system. The "title" pointsto the
string that will replace the current title. If titleis CHAR(O) then the title will not be replaced. The
"text" points to a string which will be placed in the about box. To get multiple lines, embed a new
line after each logical linein the string. If "text" is CHAR(O), then the current text in the about
box will not be replaced.

dwfSetAppTitle

i nteger function dwfSetAppTitle(title)
character*(*) title

This function sets the main window’ stitle.
dwfSetConTitle
i nteger function dwfSetConTitle(unit, title)
i nteger unit
character*(*) title
This function sets the console window’ s title which corresponds to the unit number passed to it.
dwfShutDown
i nteger function dwf Shut Down()

This function shuts down the default windowing 1/O system. The application will continue to
execute but no windows will be available for output.

dwfYield

i nteger function dwfYield()

This function yields control back to the operating system, thereby giving other processes a chance
to run.

These functions are described more fully in the Open Watcom FORTRAN 77 User’s Guide.

122 Default Windowing Library Functions

19 The Open Watcom 32-bit Windows 3.x Extender

Open Watcom FORTRAN 77 contains the necessary tools and libraries to create 32-bit applications for
Windows 3.x. Using Open Watcom FORTRAN 77 gives the programmer the benefits of a 32-bit flat
memory model and access to the full Windows API (along with the usual FORTRAN 77 and C library
functions).

The general model of the environment is asfollows: The 32-bit flat memory model programis linked
against a special 32-bit Windows library. Thislibrary contains the necessary information to invoke special
16-hit functions, which lie in the supervisor (W N386. EXT) . The 32-bit program is then bound (using
WBI ND. EXE) with the supervisor to create a Windows executable. At the same time as the 32-hit
program is being bound, the resource compiler is run on the supervisor, and all the resources for the
application are placed there. When the application is started, the supervisor obtains the 32-bit memory,
relocates the 32-bit application into the memory, and invokes the 32-bit application.

All Windows functions are invoked from the supervisor, and all callback routines lie within the supervisor.
The local heap resides within the supervisor aswell.

If you are starting from a 16-hit Windows application, most of the code will not change when you port it to
the 32-bit Windows environment. However, because of the nature of the Windows API and itsimplicit
dependencies on a 16-hit environment, some source changes are necessary. These source changes are
minimal, and are backwards compatible with the 16-bit environment.

19.1 Pointers

Throughout this document, there will be referencesto both near and far, and 16-bit and 32-bit pointers.
Since this can rapidly become confusing, some initial explanations will be given here.

A far pointer is apointer that is composed of both a selector and an offset. A selector determines a specific
region of memory, and the offset is relative to the start of thisregion. A near pointer isa pointer that has
an offset only, the selector is automatically assumed by the CPU.

The problem with far pointersis the selector overhead. Using afar pointer is much more expensive than
using anear pointer. Thisisthe advantage of the 32-bit flat memory model - all pointers within the
program are near, and yet you can address up to 4 gigabytes of memory.

A 16-hit near pointer occupies 2 bytes of memory (i.e., the offset is 16 bitslong). This pointer can
reference up to 64K of data.

A 16-hit far pointer occupies 4 bytes of memory. Thereisa 16-bit selector and a 16-bit offset. This
pointer can reference up to 64K of data.

A 32-bit near pointer occupies 4 bytes of memory (i.e., the offset is 32 bitslong). This pointer can
reference up to 4 gigabytes of data.

A 32-hit far pointer occupies 6 bytes of memory. Thereisa 16-bit selector and a 32-bit offset. This
pointer can reference up to 4 gigabytes of data.

Pointers 123

Windows 3.x Programming Guide

Windows, in general, uses 16-hit far pointersto pass information around. These 16-bit far pointers can also
be used by a 32-bit Windows application. The conversion from a 16-hit pointer to a 32-bit pointer will
occur automatically when you map a dynamically allocatable array to the memory pointed to by the 16-bit
pointer using the LOCATION= specifier of the ALLOCATE statement. Y ou must also declare the
alocatable array as far using the array pragma. The syntax for the array pragmais:

$*pragma array ARRAY_NAME far

where ARRAY_NAME isthe array name.

19.2 Implementation Overview

This section provides an overview of the issues that require consideration when creating a 32-bit Windows
application for a 16-bit Windows environment.

First, al modules have to be recompiled for the 32-bit flat memory model with a compiler capable of
generating 32-bit instructions.

Pointers to data passed to Windows are al far pointers. We will be passing pointersto datain our 32-bit
flat address space, and these pointers are near pointers. Aswell, notice that these 32-hit near pointers are
the same size as astheir 16-bit far pointer counterparts (4 bytes). Thisis good, since all data structures
containing pointers will remain the same size.

Windows cannot be called from 32-bit code on a 32-bit stack. This means that in order to call the API
functions, it is hecessary to write a set of cover functions that will accept the parameters, switch into a
16-bit environment, and then call Windows. There is another issue, though. Windows only understands
16-bit pointers, so before calling Windows, all pointers being passed to Windows must be converted to
16-hit far pointers.

It turns out that Windows can also call back to your application. Windows can only call 16-bit code,
though, so thereis aneed for a bridge from the 16-bit side to the 32-bit side. It is hecessary to allocate
16-bit call back routines that can be passed to Windows. These call back routines will then switch into the
32-bit environment and call whatever 32-bit function is required. The 32-bit call back has to be declared as
afar function, since it is necessary to issue afar call to enter it from the 16-bit side. If it isafar function,
then the compiler will generate the appropriate code for it to return from the far call.

Once Windows calls you back, it can hand you 16-bit far pointersin along (4 byte) parameter. This
pointer can only be used in the 32-bit environment if it is a 32-bit far pointer, not a 16-bit far pointer. The
conversionissimple: the 16-bit offset is extended to a 32-bit offset (the high word is zeroed out). Any far
pointer that Windows hands to you must be converted in thisway. This conversion is performed
automatically when adynamically allocatable array is mapped to a 16-bit far pointer using the LOCATION
specifier of the Open Watcom FORTRAN 77 ALLOCATE statement and the array pragma. The syntax for
the array pragmais:

$*pragma array ARRAY_NAME far

where ARRAY_NAME isthe array name.

124 Implementation Overview

The Open Watcom 32-bit Windows 3.x Extender

Example:

subroutine DLLSUB(arg_list)

structure /argtypes/
i nt eger
i nt eger
i nteger
i nt eger

wil
w2
w3

sum

end structure

record /argtypes/ args(:)
*$pragnma array args far

integer*4 arg |ist

al l ocate(args(1),

| ocation=arg_list)

In the preceding example, ar g_| i st isa16-bit far pointer to a structure with the elements described by
thear gt ypes structure. The alocatable array ar gs isdescribed as far using the array pragma.

Sometimes, a Windows application wantsto call aprocedureinaDLL. The procedure addressis a 16-bit
far pointer. Itisnot possible to issue an indirect call to this address from the 32-bit environment, so some
sort of interface is needed. Thisinterface would switch into the 16-bit environment, and then call the 16-bit

function.

These issues, along with other minor items, are handled by Open Watcom FORTRAN 77, and are discussed
in more technical detail in later sections.

19.3 System Structure

32-bit
FORTRAN 77
Library

32-hit
Application

32-16

Trandation
(DOS Calls Only)

Callback

Windows
Supervisor

Callback
API/DOS Call

32-16

Trandation

Windows
3.X

32-hit
Windows
AP

Figure 5. WIN386 Structure

System Structure 125

Windows 3.x Programming Guide

Global
Stack Code Data Heap

Figure 6. 32-bit Application Sructure

19.4 System Overview

« W N386. EXT isthe key component of a 32-bit Windows application. It isa 16-bit Windows
application which contains:

* All application resources.
* A 16-bit local heap.
* A 16-hit stack.
*WB86DLL. EXT issimilar to W N386. EXT, only it providesaDLL interface.

W N386. EXT isbound to your 32-bit application to create a 32-bit application that will run under
Windows 3.x. W N386. EXT provides the following functionality:

* supervisor to bring the 32-bit application into memory and start it running.

« "glue" functions to connect to Windows for both API and DOS functionality. Thisinterfaceis
designed to transparently set up the calling functions' pointers and parametersto their 16-bit
counterparts.

* "glue-back" functions to allow Windowsto call back 32-bit routines.

» specia code to allow debugging of 32-bit applications.

* A number of fileswith file extension . f i arelocated in the \ WATCOM SRC\ FORTRAN\ W N
directory. Thefile W NAPI . FI describes the calling convention of each Windows API function.
Other files define Windows constants and data structures.

* W N386. LI B contains all the necessary library functions to connect to the 32-bit supervisor
W N386. EXT. All Windows API calls and Open Watcom FORTRAN 77 library DOS calls are

found here.

* The standard FORTRAN 77 and C library functions, specially modified to run in the 32-bit
environment, are located in the \ WATCOM LI B386\ W Ndirectory.

* \BI ND. EXE merges your 32-bit executable and the appropriate Supervisor into a single executable.

126 System Overview

The Open Watcom 32-bit Windows 3.x Extender

19.5 Steps to Obtaining a 32-bit Application

Thefollowing is an overview of the procedure for creating a 32-bit Windows Application:

1. If you are starting with a 16-bit Windows application, you must adapt your source code to the
32-bit environment.

Y ou must compile the application using a 32-bit compiler.

Y ou must link the application with the 32-bit libraries.

Y ou must bind the 32-bit application with the 32-bit supervisor.

Y ou can then run and/or debug the application.

gk own

Steps to Obtaining a 32-bit Application 127

Windows 3.x Programming Guide

128 Steps to Obtaining a 32-bit Application

20 Windows 3.x 32-bit Programming Overview

This chapter includes the following topics:
* WINAPI.FI and WINDOWS.FI
* Environment Notes
* Floating-point Emulation
» Multiple Instances
* Pointer Handling
» When To Convert Incoming Pointers
» When To Convert Outgoing Pointers
* SendMessage and SendDlgltemMessage
* GlobaAlloc and LocalAlloc
» Callback Function Pointers
* Window Sub-classing
* Calling 16-bit DLLs

» 16 Functions

20.1 WINAPIL.FI

When devel oping programs, make sure W NAPI . FI isincluded at the start of al source files and the
necessary include files (particularly W NDOWS. FI) are included in each function or subroutine.

It is especially important to get the correct function and argument typing information for Windows API
functions. Due to the default typing rules of FORTRAN, many Windows API functions have a default
result type of REAL when they may in fact return an INTEGER or INTEGER* 2 result. By including the
appropriate include files, you ensure that this never happens. For example, the function Cr eat eDi al og
isdescribed in W NDLG. FI . asafunction returning an INTEGER* 2 resullt.

WINAPLFI 129

Windows 3.x Programming Guide

Example:
external CreateD al og
i nteger*2 CreateD al og

Failure to specify the correct type of afunction will result in code that |ooks correct but does not execute
correctly. Similarly, you should make sure that all symbolic constants are properly defined by including
the appropriate include files. For example, the constant DEFAULT_QUALI TY isdescribed in

W NFONT. FI asan INTEGER constant whose valueis 0.

Example:
i nteger DEFAULT_QUALITY
paraneter (DEFAULT_QUALITY = 0)

Without thisinformation, DEFAULT_QUALI TY would be assumed to be a REAL variable and would not
have any assigned value.

The"EXPLICIT" compiler option is useful in thisregard. It requiresthat all symbols be explicitly typed.

20.2 Environment Notes

* The 32-bit Windows Supervisor uses the first 256 bytes of the 32-hit application’s stack to save state
information. If thisis corrupted, your application will abnormally terminate.

* The 32-bit Windows Supervisor provides resources for up to 512 callback routines. Note that this
restriction is only on the maximum number of active callbacks.

20.3 Floating-point Emulation

Thefile WEMU387. 386 isincluded to support floating-point emulation for 32-bit applications running
under Windows. Thisfileisinstalled inthe [386Enh] section of your SYSTEM | NI file. By using the
floating-point emulator, your application can be compiled with the "fpi87" option to useinline
floating-point instructions, and it will run on a machine without a numeric coprocessor.

Only one of WEMU387. 386 and WDEBUG. 386 may beinstalled in your [386Enh] section.
VWEMU387. 386 may be distributed with your application.

20.4 Multiple Instances

130

Since the 32-bit application resides in aflat memory space, it iSNOT possible to share code with other
instances. This means that you must register new window classes with callbacksinto the new instance’s
code space. A simple way of accomplishing thisis asfollows:

integer*2 function FWNVMAIN(hlnstance
hPrevl nst ance
| pszCndLi ne
nCndShow)

Ro Ro Ro

i nt eger*2 hl nstance

i nteger*2 hPrevl nstance
i nt eger *2 nCndShow

i nteger*4 | pszCndLi ne

Multiple Instances

Windows 3.x 32-bit Programming Overview

include 'w n386.fi’

include "wi ncreat.fi’
include "w ncurs.fi’
i ncl ude 'wi ndefn.fi’
i nclude ’windisp.fi’
i nclude ’'winnsg.fi’

i ncl ude ' wi nnsgs. fi’
i nclude 'w ndtool . fi’
include "winutil.fi’

ext ernal WhdProc

i nteger*2 hwWhd
record / M@ nsg
record /WNDCLASS/ wndcl ass
character*14 cl ass

wndcl ass. styl e = CS_HREDRAW . or. CS_VREDRAW

wndcl ass. | pf nwhdProc = | oc(WhdProc)

wndcl ass. cbd sExtra 0

wndcl ass. cowidExtra = 0

wndcl ass. hl nstance = hl nstance

wndcl ass. hl con = NULL_HANDLE

wndcl ass. hCursor = LoadCursor(NULL_HANDLE, |DC_ARROW)
wndcl ass. hbr Background = Get St ockObj ect (WHI TE_BRUSH)
wndcl ass. | pszMenuNanme = NULL

wite(class, '('"'Ellipses’’',i5.5,a)’) hlnstance, char(0)
wndcl ass. | pszd assName = Loc(class)

call Registerd ass(wndcl ass)

hWwhd = Creat eW ndow(cl ass,
" Appl i cation’c,
W5_OVERLAPPEDW NDOW
CW _USEDEFAULT,
0,
CW _USEDEFAULT,
0,
NULL_HANDLE,
NULL_HANDLE,
hl nst ance,
NULL)

R0 R0 Ro Ro Ro Ro Ro Ro Ro Ro

The variable class contains a unique name based on the instance of the application.

20.5 Pointer Handling

Windows 3.x is a 16-bit operating system. Function pointers that Windows deals with are 16-bit far
pointers, and any data you communicate to Windows with are 16-bit far pointers. 16-bit far pointers
occupy 4 bytes of data, and are capable of addressing up to 64K. For data objects larger than 64K, huge
pointers are used (a sequence of far pointers that map out consecutive 64K segments for the data object).
16-hit far pointers are expensive to use due to the overhead of selector |oads (each time you use the pointer,
a segment register must have avalue put init). 16-bit huge pointers are even more expensive: not only is
there the overhead of selector loads, but arun-time call is necessary to perform any pointer arithmetic.

In a 32-bit flat memory model, such as that of the Open Watcom F77 for Windows environment, all
pointers are 32-bit near pointers (occupying 4 bytes of data aswell). However, these pointers may access
objects of up to 4 gigabytesin size, and there is no selector load overhead.

For a 32-bit environment to communicate with Windows 3.x, there are some considerations. All pointers

sent to Windows must be converted from 32-bit near pointersto 16-bit far pointers. These conversions are
handled by the Supervisor.

Pointer Handling 131

Windows 3.x Programming Guide

It isimportant to remember that all API functions which accept pointers (with the exception of functions
that accept function pointers) accept 32-bit near pointers in this 32-bit model. If you attempt to pass a
32-bit far pointer, the conversion will not take place correctly.

16-bit far pointers to data may be passed into the API functions, and the Supervisor will not do any
conversion.

Incoming pointers must be converted from 16-bit far pointersto 32-bit far pointers. Thisconversionisa
trivial one: the offset portion of the 16-bit far pointer is extended to 32-bits. The pointer conversion will
occur automatically when you map a dynamically allocatable array to the memory pointed to by the 16-bit
pointer using the LOCATION= specifier of the ALLOCATE statement. Y ou must also declare the array as
far using the array pragma. The syntax for the array pragmais:

$*pragma array ARRAY_NAME far

where ARRAY_NAME isthe array name. Pointers from Windows are by their nature far (that is, the datais
pointed to by its own selector), and must be used as far in the 32-bit environment. Of course, conversions
areonly required if you actually need to reference the pointer.

Function pointers (i.e., pointers to callback routines) used by Windows are not converted from 32-bit to
16-bit. Rather, a 16-bit thunking layer that transfers control from the 16-bit environment to the 32-bit
environment must be used. This thunking layer is provided by the Supervisor.

20.5.1 When To Convert Incoming Pointers

Whenever you wish to use a pointer passed to you by Windows, you must map a dynamically allocatable
array to the memory pointed to by the pointer using the LOCATION specifier of the ALLOCATE
statement. Y ou must also declare the array as far using the array pragma. The pointer conversion will
occur automatically.

Some places where pointer conversion may be required are:

* LocalLock
* GlobalLock
« the IParam in awindow callback routine (if it is a pointer)

20.5.2 When To Convert Outgoing Pointers

Typically, thereis no need to do any kind of conversions on your pointers when passing them to Windows.
The Supervisor handles all 32-bit to 16-bit translations for you, in the case of the regular Windows API
functions. However, if you are passing a 32-bit pointer to some other 16-bit application in the Windows
environment, then pointer conversions must by done. There are two types of "outgoing” pointers. data
pointers and function pointers.

Function pointers (to callback routines) must have a thunking layer provided, using the GetProc16 function
(thisisexplained in detail in alater section).

Data pointers can be translated from 32-hit to 16-hit using the AllocAlias16 and AllocHugeAlias16

functions. These functions create 16-bit far pointers that have the same linear address as the 32-bit near
pointer that was converted.

132 Pointer Handling

Windows 3.x 32-bit Programming Overview

It isimportant to remember that when passing a pointer to a data structure in this fashion, any pointersin
the data structure must also be converted.

The Supervisor will convert any pointers that it knows about; but there are some complications created by
the fact that Windows allows you to pass pointersin functions that are prototyped to take along integer.

The Windows API functions SendM essage and SendDI gl temMessage rely on other fields determining the
nature of the long data item that they accept; thisis discussed in detail in the next section.

20.5.2.1 SendMessage and SendDlgltemMessage

SendM essage and SendDI gl temM essage have special cover functions that determine when the 32-bit
integer isreally apointer and needs to be converted. These cover functions are used automatically, unless
the macro NOCOVERSENDS is defined before including W NAPI . FI asin the following example.

*$def i ne NOCOVERSENDS
*$i ncl ude winapi.fi

SendMessage and SendDIgltemMessage will do pointer conversions automatically using AllocAlias16 and
FreeAliasl6 (unless NOCOVERSENDS is defined) for the following message types:

» combo boxes (CB_ messages)

* edit controls (EM__ messages)

* list boxes (LB_ messages)

* certain windows messages (WM _ messages);

The messages that are intercepted by the cover functions for SendMessage and SendDIgltemMessage are:

CB_ADDSTRI NG CB_ DR CB_FI NDSTRI NG
CB_FI NDSTRI NGEXACT CB_GETLBTEXT CB_I NSERTSTRI NG
CB_SELECTSTRI NG

EM GETLI NE EM GETRECT EM_REPLACESEL
EM SETRECT EM_SETRECTNP EM _SETTABSTOPS
LB_ADDSTRI NG LB_DI R LB_FI NDSTRI NG
LB_FI NDSTRI NGEXACT LB_CETI TEMRECT LB _CGETSELI TEM5
LB_GETTEXT LB_I NSERTSTRI NG LB_SELECTSTRI NG

LB_SETTABSTOPS

VWM _MDI CREATE VWM _NCCALCSI ZE

Note that for SendMessage and SendDIgltemM essage, some of the messages may NOT require pointer
conversion:

* CB_ADDSTRING, CB_FINDSTRING, CB_FINDSTRINGEXACT, CB_INSERTSTRING will not
need a conversion if the combo box was created as owner-draw style without CBS HASSTRINGS
style.

* LB_ADDSTRING, LB_FINDSTRING, LB_FINDSTRINGEXACT, LB_INSERTSTRING will not
need a conversion if the list box was created as owner-draw style without LBS HASSTRINGS style.

The macro NOCOVERSENDS should be defined in modules where messages like these are being sent.

With these messages, the IParam data item does not contain a pointer, and the automatic pointer conversion
would beincorrect. By doing

Pointer Handling 133

Windows 3.x Programming Guide

*$def i ne NOCOVERSENDS
*$i ncl ude winapi.fi

modules that send messages like the above will not have the pointer conversion performed.

20.5.3 GlobalAlloc and LocalAlloc

The functions Global Alloc and Local Alloc are the typical way of allocating memory in the 16-bit Windows
environment. In the 32-bit environment, there is no need to use these functions. The only time
GlobalAlloc is needed is when allocating shared memory, i.e, GMEM_DDESHARE.

The ALLOCATE and DEALLOCATE statements can be used to alocate memory from your 32-bit near
heap. By allocating memory in this way, you may creste data objects as large as the enhanced mode
Windows memory manager will permit.

20.5.4 Callback Function Pointers

To access a callback function, an instance of it must be created using MakeProcl nstance. This creates a
"thunk" (a special piece of code) that automatically puts the application’s data segment into the AX
register, and then calls the specified callback function.

In Windows 3.x, it is not possible to do a MakeProcl nstance directly on a 32-bit callback routine, since
Windows 3.x does not understand 32-bit applications. Therefore, it is necessary to use a 16-bit callback
routine that passes control to the 32-bit callback routine. This 16-bit callback routine is automatically
created by the Supervisor when using any of the standard Windows API functions that accept a callback
routine.

The 16-bit callback routine for a 32-hit application isa special layer that transfers the parameters from a
16-hit stack to the 32-hit stack, and then passes control to 32-hit code. These 16-hit callback routines are
found in the Supervisor. The function GetProc16 provides pointers to these 16-bit callback routines.

However, it is not often necessary to use the GetProc16 function to obtain a 16-bit/32-bit callback interface
function.

In the general case, one would have to write code as follows:
i nteger*4 pCh, fpProc

pCb = GetProcl6(A Function, GETPROC cal | backtype)
f pProc = MakeProclnstance(pCh, hlnstance)

* do stuff
call Do_it(..., fpProc, ...)
* do nmore stuff

call FreeProclnstance(fpProc)
call Rel easeProc16(pCbh)

It is not necessary to use this general code in the case of the regular Windows API functions. The
following functions will automatically allocate the correct 16-bit/32-bit callback interface functions:

134 Pointer Handling

Windows 3.x 32-bit Programming Overview

* ChooseColor

» ChooseFont

* CreateDialog

* CreateDialoglndirect

* CreateDial ogl ndirectParam
* CreateDialogParam

* DialogBox

* DialogBoxIndirect

* DialogBoxIndirectParam

* DialogBoxParam

* EnumChildwWindows

* EnumFonts

* EnumMetaFile

» EnumObjects

* EnumProps

* EnumTaskWindows

* EnumWindows

* Escape (SETABORTPROC option)
* FindText
 GetOpenFileName

* GetSaveFileName

* GlobalNotify

* GrayString

e LineDDA

* PrintDlg

* RegisterClass

* ReplaceText

* SetClassLong (GCL_WNDPROC option)
* SetResourceHandler

* SetTimer

 SetWindowL ong (GWL_WNDPROC option)
* SetWindowsHook

Aswell, the following functions are covered to provide support for automatic creation of 16-bit callback
routines:

* FreeProclnstance
» MakeProclnstance
» UnhookWindowsHook

If you need to get a callback that is not used by one of the above functions, then you must code the general
case. Typically, thisisrequired when aDLL needs acallback routine. In modules where thisis necessary,
you define the macro NOAUTOPROCS before you include W NAPI . FI asin the following example.

*$def i ne NOAUTOPROCS
*$i ncl ude wi napi . fi

Be careful of the following when using NOAUTOPROCS.

1. Thecall to MakeProcl nstance and FreeProcl nstance for the callback function occursin a
module with NOAUTOPROCS defined.

2. No Windows API functions (listed above) are used in the module with NOAUTOPROCS
defined. If they are, you must code the general case to use them.

Pointer Handling 135

Windows 3.x Programming Guide

Note that NOAUTOPROCS isin effect on a module-to-module basis only.

RegisterClass automatically does a GetProc16 for the callback function, unless the macro NOCOVERRC is
specified beforeincluding W NAPI . FI asin the following example.

*$def i ne NOCOVERRC
*$i ncl ude wi napi . fi

20.5.4.1 Window Sub-classing

Sub-classing a Windows control in the 32-bit environment is straightforward. In fact, the code isidentical
to the code used in the 16-bit environment. A simple exampleis:

*$i ncl ude w napi . fi
*$pragma aux (call back) Subd assProc parn(val ue, value, value, value)

integer*4 function Subd assProc(hwWwd, nsg, wp, Ip)
i nteger*2 hwhd

i nteger*2 nsg

integer*2 wp

integer*4 I p

include 'w ndows. fi’

common f pd dProc
i nteger*4 fpd dProc

! code for sub-classing here
Subd assProc = Cal | WndowProc(fpd dProc, hwhd, nsg, wp, Ip)
end

program Subd assDenp
i nteger*2 hControl
common f pd dProc

i nteger*4 fpd dProc
integer*4 fp;

include 'w ndows. fi’

i nteger*4 SubC assProc
external SubC assProc

i nteger*4 Programn nstance
external Program nstance

I assune hControl gets created in here

f pd dProc = Get WndowiLong(hControl, GA_WNDPRCC)
fp = MakeProcl nstance(SubC assProc, Progranl nstance)
call Set WndowLong(hControl, GAL_WNDPRCC, fp)

I set it back
call Set WndowLong(hControl, GAL_WNDPROC, fpd dProc)
call FreeProclnstance(fp)

end
Note that SetWindowL ong is covered to recognize GWL_WNDPROC and automatically creates a 16-bit
callback for the 32-hit callback. When replacing the callback routine with the original 16-bit routine, the

covered version of SetWindowL ong recognizes that the function is not a 32-bit callback, and so passes the
pointer right through to Windows unchanged.

136 Pointer Handling

Windows 3.x 32-bit Programming Overview

20.6 Calling 16-bit DLLs

A 16-hit functionin aDLL can be called using the _Call16 function. The first argument to _Call16 isthe
address of the 16-bit function. This addressis usually obtained by calling GetProcAddress with the name
of the desired function. The second argument to _Call16 is a string identifying the types of the parameters
to be passed to the 16-bit function.

Character Parameter Type

call a’cdecl’ function as opposed to a’pascal’ function (if specified, it must be listed first)
unsigned BY TE

16-bit WORD

32-bit DWORD

double precision floating-point

32-hit flat pointer (converted to 16:16 far pointer)

T "o s oo

The 16-bit function must use either the PASCAL or CDECL calling convention. PASCAL calling
convention isthe default. If the function uses the CDECL calling convention, then you must specify the
letter "c" asthefirst character of the argument type string.

Pointer types will automatically be converted from 32-bit near pointersto 16-bit far pointers before the
functionisinvoked. Note that this pointer isonly valid over the period of the call; after control returns to
the 32-hit application, the 16-bit pointer created by the Supervisor is no longer valid.

Thereturn value from _Call16 isa DWORD.

*$i ncl ude W napi . fi

integer*2 function FWnMi n(hlnstance,
hPrevl nst ance,
| pszCndLi ne,
nCndShow)

R0 Ro Ro

i nteger*2 hlnstance

i nteger*2 hPrevlnstance
i nteger*4 | pszCndLi ne

i nt eger*2 nCndShow

i ncl ude ' wi ndows. fi’

integer*2 hDrv, hwid
integer*4 | pfn, cb

hDrv = LoadLi brary('your.dll’'c)
if(hDrv .1t. 32)then
return
end if
| pfn = Get ProcAddress(hDrv, ’'ExtDeviceMde’ c)
if(Ipfn .eq. 0)then
return
end if
I Invoke the function.
cb = _Call16(|pfn, 'wwdppddw c,
hwhd, hDrv, NULL,
" POSTSCRI PT PRI NTER c,
" LPTY c,
NULL, NULL, 0)

R0 Ro Ro Ro

Calling 16-bit DLLs 137

Windows 3.x Programming Guide

20.7 16 Functions

Every Windows API function that accepts a pointer has a corresponding 16 function. The _16 version of
the function will not convert any of the pointers that it accepts; it will assume that al pointers are 16-bit far
pointers already. This applies to both data and function pointers.

138 16 Functions

21 Windows 32-Bit Dynamic Link Libraries

21.1 Introduction to 32-Bit DLLs

Open Watcom FORTRAN 77 allows the creation of 32-bit Dynamic Link Libraries (DLL). In fact, 32-bit
DLLsare simpler to write than 16-bit DLLs. A 16-bit DLL runs on the caller’ s stack, and thus DS I= SS.
This creates difficulties in the small and medium memory models because near pointersto local variables
are different from near pointers to global variables. The 32-bit DLL runs on its own stack, in the usual flat
memory space, which eliminates these concerns.

There isaspecia version of the supervisor, WB86DLL. EXT that performsasimilar job to W N386. EXT.
However, the 32-bit DLL supervisor is a 16-bit Windows DLL, rather than a 16-bit Windows application.
On thefirst use of the 32-bit DLL, the DLL supervisor loads the 32-bit DLL and invokes the 32-hit
initialization routine (the DLL’s FW nMai n routine). The initialization routine declares all entry points
(viaDef i neDLLENt r y) and performs any other necessary initialization. Anindex number in the range 1
to 128 isused to identify all external 32-bit DLL routines. Defi neDLLEnt ry isused to assign an index
number to each routine, as well asto identify the arguments.

The DLL supervisor contains a general entry point for Windows applications to cal into called

W n386Li bEnt ry. It also contains 128 specific entry points called DLL1 to DLL128 which correspond
to the entry points established via Def i neDLLENt ry (thefirst argument to Def i neDLLEnt ry isan
index number in the range 1 to 128). All applications call into the 32-bit DLL viathese entry points. They
build the necessary stack frame and switch to the 32-bit DLL’s data space.

If you call viaW n386Li bEnt ry then you passthe DLL entry point number or index (1 to 128) asthe
last argument. W n386Li bEnt r y usesthisindex number to call the appropriate 32-bit DLL routine.
From a pseudo-code point of view, the 16-bit supervisor might look like the following:

DLL1:: set index=1
i nvoke 32bit DLLi ndirect

DLL2:: set index=2
i nvoke 32bi t DLLi ndi rect

DLL128:: set index=128
i nvoke 32bi t DLLi ndi rect

W n386Li bEntry: :
set index fromindex_argunent
i nvoke 32bit DLLi ndi rect

32bi t DLLi ndi rect:
set up stack frame
switch to 32-bit data space
call indirect registration_list[index]

Introduction to 32-Bit DLLs 139

Windows 3.x Programming Guide

When you are creating a 32-bit DLL, keep in mind that the entry points you define may be invoked by a
16-bit application as well as a 32-bit application. Itisfor thisreason that all far pointers passed to a 32-bit
DLL are 16-bit far pointers. Hence, whenever a pointer is passed as an argument to a 32-bit DLL entry
point and you wish to access the data it points to, you must convert the pointer appropriately. To do this,
you must map adynamically allocatable array to the memory pointed to by the 16-bit far pointer.

21.2 A Sample 32-bit DLL

Let us begin our discussion of DLLs by showing the code for asimple DLL. The source code for these
examplesis provided in the \ WATCOM SAMPLES\ FORTRAN\ W N\ DLL directory. We describe how to
compile and link the examplesin the section entitled " Creating and Debugging Dynamic Link Libraries' on

page 147.
*$i ncl ude wi napi . fi
* W NDLLV. FOR

* Setup: set finclude=\WATCOM src\fortran\w n

* Conpile and Link: wfl386 windllv -explicit -d2 -bd -1 =w n386

* Bind: wbind windllv -d -n
*$pragma aux (dll_function) Add3

integer function Add3(wl, w2, w3)
integer*4 wl, w2, w3

i ncl ude ’wi ndows. fi’

character*128 str

wite(str, ’(16hDLL 1 argunents:, 3i10, a)’) wl, w2,
& char (0)
cal |l MessageBox(NULL, str, ’'DLL Function 1'c, MB_OK)
Add3 = wl + w2 + w3

end

*$pragma aux (dll_function) Add2

integer function Add2(wl, w2)
integer*4 wl, w2

i ncl ude ’wi ndows. fi’
character*128 str
wite(str, ’(16hDLL 2 argunents:, 2i10, a)’) wl, W2,
call MessageBox(NULL, str, 'DLL Function 2'c, MB OK)
Add2 = wl + w2
end
integer*2 function FWnMi n(hlnstance,
hPrevl nst ance,

| pszCndLi ne,
nCndShow)

Ro Qo Ro

i nteger*2 hlnstance

i nteger*2 hPrevl nstance
i nteger*4 | pszCndLi ne

i nt eger*2 nCndShow

include 'wi ndows. fi’

external Add3, Add2
integer rc

140 A Sample 32-bit DLL

w3,

char (0)

Windows 32-Bit Dynamic Link Libraries

call BreakPoi nt
rc = DefineDLLEntry(1, Add3, DLL_DWORD, DLL_DWORD, DLL_DWORD,

& DLL_ENDLI ST)
if(rc .ne. 0)then
FWnMain = 0
return
end if
rc = DefineDLLEntry(2, Add2, DLL_DWORD, DLL_DWORD,
& DLL_ENDLI ST)
if(rc .ne. 0)then
FWnMain = 0
return
end if
call MessageBox(NULL, '32-bit DLL started’ c,
& "WNDLLV ¢, MB_OK)

FWnMain =1

end

There are two entry points defined, Add3 (index number 1) and Add2 (index number 2). Add3 hasthree
INTEGER* 4 arguments and Add2 hastwo INTEGER*4 arguments. The argument lists are described by
calling Def i neDLLENt ry. All arguments are passed by value. Aspreviously mentioned, all pointers
passed to 32-bit DLLs are 16-hit far pointers. Since, by default, FORTRAN 77 passes arguments by
reference (a pointer to the datais passed instead of the actua data), alevel of complexity isintroduced
since some pointer conversions must take place when accessing the data pointed to by a 16-bit far pointer in
a 32-bit environment. We will deal with this problem in afollowing example. First, let us deal with
passing arguments by value to 32-bit DLLs from 16 and 32-bit Windows applications.

Note that each entry name must be giventhe dl | _f unct i on attribute using an auxiliary pragma. This
aliasnameis defined in the file W NAPI . FI .

FW nMai n returns zero to notify Windows that the DLL initialization failed, and returns a one if
initialization succeeds.

FW nMai n accepts the same arguments as the FW nMai n procedure of aregular Windows program,
however, only two argumentsare used. hl nst ance isthe DLL handleand | pszCndLi ne isthe
command line passed to the DLL.

21.3 Calling Functions in a 32-bit DLL from a 16-bit
Application

The following is a 16-bit Windows program that demonstrates how to call the two routines defined in our
DLL example.

*$i ncl ude wi napi . fi

* GEN16V. FOR

* Setup: set finclude=\WATCOM src\fortran\w n
* Conpile and Link: wfl genl6v -explicit -d2 -w ndows -I|=w ndows
* -"op desc '16-bit DLL Test'"

*$pragma aux (dl132_call) indirect_1 \

par m(val ue*4, val ue*4, val ue*4)
*$pragma aux (dl132_call) indirect_2 \

par m(val ue*4, val ue*4)

Calling Functions in a 32-bit DLL from a 16-bit Application 141

Windows 3.x Programming Guide

integer*2 function FWnMin(hlnstance,
hPrevl nst ance,
| pszCndLi ne,
nCndShow)

Ro Ro Ro

i nteger*2 hlnstance

i nt eger*2 hPrevl nstance
i nteger*4 | pszCndLi ne

i nt eger *2 nCndShow

i ncl ude ' wi ndows. fi’

integer*2 hlib

integer*4 indirect_1, indirect_2
integer*4 dll_1, dll_2, cb
character*128 str

hl'ib = LoadLibrary("windllv.dll’'c)
if(hlib .1t. 32) then
call MessageBox(NULL, 'Can’’'t |oad WNDLLV c,
)

& ' CGenléV c, MB_ K
st op
endi f
dll_1 = GetProcAddress(hlib, "DLL1' c)
dll_2 = GetProcAddress(hlib, 'DLL2'c)

cb = indirect_1(111, 22222, 3333, dil_1)
wite(str, '(15hDLL 1 returned , i10, a)’) cb, char(0)
call MessageBox(NULL, str, 'Genl6V Test 1'c, MB X))

cb = indirect_2(4444, 55, dll_2)
wite(str, '(15hDLL 2 returned , i10, a)’) cb, char(0)
call MessageBox(NULL, str, ’'Genl6V Test 2'c, MB X)

FWnMain = 0

end

The addresses of the routines DLL1 and DLL2 in the 32-bit DLL are obtained and stored in the variables
dl I _l1anddl | _2. Sincethe FORTRAN 77 language does not support indirect function calls, we need a
mechanism to call these functionsindirectly. We do this using the two indirect functions called
indirect _1andindirect 2. Thesetwo functionsaregiventhe dl | 32_cal | attribute using an
auxiliary pragmawhich is defined in the file W NAPI . FI . Note that the last argument of the callsto

i ndirect _1orindirect_2 istheactua address of the DLL routine.

What you should realizeisthat the i ndi rect _1 andi ndi rect _2 functionsdo not really exist. The
code that is generated for statements like the following is really an indirect call to the function whose
addressis represented in the last argument.

indirect_1(111, 22222, 3333, dll_1)

cb
cb i ndirect_2(4444, 55, dll_2)

Thisisaresult of usingthe dl | 32_cal | auxiliary pragma attribute to describe both i ndi rect _1 and

i ndi rect _2. You can verify this by disassembling the object file that is generated when this codeis
compiled.

142 Calling Functions in a 32-bit DLL from a 16-bit Application

Windows 32-Bit Dynamic Link Libraries

21.4 Calling Functions in a 32-bit DLL from a 32-bit
Application

The following is a 32-bit Windows program that demonstrates how to call the two routines defined in our
32-bit DLL example. Sincethisisa32-bit Windows program, we will usethe _Cal | 16 function to call
functionsin our 32-bit DLL. Note that we get to the 32-bit DLL functions by going indirectly through the
16-bit supervisor that forms the "front end" for our 32-bit DLL.

*$i ncl ude w napi . fi

* GEN32V. FOR

* Setup: set finclude=\WATCOM src\fortran\w n
* Conpile and Link: w386 gen32v -explicit -d2 -1=w n386
* Bind: wbi nd gen32v -n -D "32-bit DLL Test"

integer*2 function FWnMi n(hlnstance,
hPrevl nst ance,
| pszCndLi ne,
nCrrdShow)

Ro Ro Ro

i nteger*2 hlnstance

i nteger*2 hPrevl nstance
i nteger*4 | pszCndLi ne

i nteger*2 nCnmdShow

include 'w ndows. fi’

integer*2 hlib
integer*4 dil_1, dil_2, cb
character*128 str

hlib = LoadLibrary("windllv.dll’c)
if(hlib .1t. 32) then
call MessageBox(NULL, 'Can’’'t |oad WNDLLV c,
)

& 'Gen32V c, MB_K
st op
endi f
dll _1 = GetProcAddress(hlib, "DLL1 c)
dl | _2 = GetProcAddress(hlib, 'DLL2'c)

cb = _Call16(dll_1, 'ddd' c, 111, 22222, 3333)
wite(str, '(15hDLL 1 returned , i10, a)’) cb, char(0)
cal | MessageBox(NULL, str, ’'Gen32V Test 1'c, MB.X)

cb = Call16(dlIl_2, 'dd c, 4444, 55)
wite(str, '(15hDLL 2 returned , i10, a)’) cbh, char(0)
cal | MessageBox(NULL, str, ’'Gen32V Test 2'c, MB.XK)
FWnMain = 0
end
Note that the first argument of acall to _Cal | 16 isthe DLL function address returned by

Get Pr ocAddr ess and must be a 32-bit argument. The second argument of acallto _Cal | 16 isa
string describing the types of arguments that will be passed to the DLL function.

Calling Functions in a 32-bit DLL from a 32-bit Application 143

Windows 3.x Programming Guide

21.5 A Sample 32-bit DLL Using a Structure

As previously mentioned, passing pointers from a 16 or 32-hit Windows application to a 32-bit DLL poses
aproblem since all pointers are passed as 16-bit far pointers. The pointer must be converted from a 16-bit
far pointer to a 32-bit far pointer. Thisis achieved by mapping adynamically allocatable array to each
argument that is passed by reference using the LOCATI ON specifier of the ALLOCATE statement.
Furthermore, you must specify the f ar attribute for each such array using the ar r ay pragma. Sincethis
is cumbersome if you wish to pass many arguments, it is recommended that a single argument be passed
that is actually a pointer to a structure that contains the actual arguments. Furthermore, since each call to a
DLL routine is made indirectly through one of W n386Li bEnt ry or DLL1 through DLL128, you
should also return any values in the same structure since the return value from any of these functionsis only
32-bitswide.

The following example is a 32-bit DLL that receives its arguments and returns values using a structure.
The source code for these examples is provided in the \ WATCOM SAMPLES\ FORTRAN\ W N\ DLL
directory. We describe how to compile and link the examplesin the section entitled " Creating and
Debugging Dynamic Link Libraries' on page 147.

*$i ncl ude W napi . fi

* WNDLL. FOR

* Setup: set finclude=\\WATCOM src\fortran\w n
* Conpile and Link: wfl386 windll -explicit -d2 -bd -1=w n386
* Bind: wbind windll -d -n

*$pragma aux (dll _function) Add3

subroutine Add3(arg_list)
integer*4 arg_list
structure /argtypes/

i nt eger wl
i nt eger w2
i nt eger w3
i nt eger sum

end structure
record /argtypes/ args(:)
*$pragma array args far

i ncl ude ' wi ndows. fi’
character*128 str

al l ocate(args(1l), location=arg_list)

wite(str, '(16hDLL 1 argunents:, 3i10, a)’) args(1l).wl,
args(1).w2,
args(1).ws,
char (0)
call MessageBox(NULL, str, 'DLL Function 1'c, MB K)
args(1).sum= args(1).wl + args(1).w2 + args(1).w3
deal | ocate(args)

R0 Ro Ro

end

144 A Sample 32-bit DLL Using a Structure

Windows 32-Bit Dynamic Link Libraries

*$pragma aux (dll _function) Add2

subroutine Add2(arg_list)
integer*4 arg_list
structure /argtypes/

r eal wl
real w2
r eal sum

end structure
record /argtypes/ args(:)
*$pragma array args far

include 'w ndows. fi’
character*128 str

al l ocate(args(1l), location=arg_list)

wite(str, '(16hDLL 2 argunents:, 2f10.2, a)’) args(l).wl,
& args(1).w2,
& char (0)
call MessageBox(NULL, str, 'DLL Function 2'c, MB_OK)
args(1).sum= args(1).wl + args(1).w2

deal | ocate(args)

end

integer*2 function FW nMin(hlnstance
hPrevl nst ance
| pszCndLi ne
nCndShow)

Qo Ro Ro

i nteger*2 hlnstance

i nt eger*2 hPrevl nstance
i nteger*4 | pszCndLi ne

i nt eger *2 nCndShow

i ncl ude ' wi ndows. fi’

external Add3, Add2
integer rc

cal |l BreakPoi nt
rc = DefineDLLEntry(1, Add3, DLL_PTR, DLL_ENDLI ST)
if(rc .ne. 0)then

FWnMain = 0

return
end if
rc = DefineDLLEntry(2, Add2, DLL_PTR DLL_ENDLI ST)
if(rc .ne. 0)then

FWnMain = 0

return
end if
call MessageBox(NULL, '32-bit DLL started'c
& "WNDLL'c, MB_OK)

FWnMain =1

end

The following example is a 16-bit Windows application that passes arguments to a 32-bit DLL using a
structure.

*$i ncl ude w napi . f

* GEN16. FOR

* Setup: set finclude=\WATCOM src\fortran\w n

* Conpile and Link: wfl genl6 -explicit -d2 -w ndows -|=w ndows
* -"op desc '16-bit DLL Test'"

*$pragma aux (dl132_call) indirect_1 parm(reference, value*4)
*$pragma aux (dl132_call) indirect_2 parn(reference, value*4)

A Sample 32-bit DLL Using a Structure 145

Windows 3.x Programming Guide

nteger*2 functi on FW nMi n(hl nstance
hPrevl nst ance
| pszCndLi ne
nCndShow)

Ro Ro Ro

nt eger*2 hl nstance

nt eger *2 hPrevl nst ance
nt eger*4 | pszCndLi ne
nt eger *2 nCndShow

ncl ude ' w ndows. fi’

nteger*2 hlib
nteger*4 dil_1, dll_2
character*128 str

structure /args_1/

i nt eger wil
i nt eger w2
i nt eger w3
i nt eger sum

end structure

structure /args_2/

r eal wl
real w2
r eal sum

end structure

record /args_1/ args_1/111, 22222, 3333, 0/
record /args_2/ args_2/714.3, 35.7, 0.0/

hlib = LoadLibrary("windll.dll"'c)
if(hlib .lt. 32) then
call MessageBox(NULL, 'Can’’t |oad WNDLL' c

& "Genlé’'c, MB_XK)
st op
endi f
1 = GetProcAddress(hlib, "DLL1l' c)
_2 = GetProcAddress(hlib, "DLL2'c)

call indirect_1(args_1, dll_1)

wite(str, '(15hDLL 1 returned , i10, a)’') args_1.sum
& char (0)
call MessageBox(NULL, str, 'Genl6 Test 1'c, MB_(K)

call indirect_2(args_2, dll_2)

wite(str, '(15hDLL 2 returned , f10.2, a)’') args_2.sum

& char (0)

call MessageBox(NULL, str, 'Genl6 Test 2'c, MB_ OK)

FWnMain = 0

end
The following example is a 32-bit Windows application that passes arguments to a 32-bit DLL using a
structure.

*$i ncl ude w napi . f

* GEN32. FOR

* Setup: set finclude=\WATCOM src\fortran\w n
* Conpile and Link: wfl386 gen32 -explicit -d2 -1=w n386
* Bind: wbi nd gen32 -n -D "32-bit DLL Test"

146 A Sample 32-bit DLL Using a Structure

Windows 32-Bit Dynamic Link Libraries

integer*2 function FW nMin(hlnstance
hPrevl nst ance
| pszCndLi ne
nCndShow)

Ro Ro Ro

i nteger*2 hlnstance

i nt eger*2 hPrevl nstance
i nteger*4 | pszCndLi ne

i nt eger *2 nCndShow

i ncl ude ' wi ndows. fi’
integer*2 hlib

integer*4 dll_1, dll_2, cb
character*128 str

structure /args_1/

i nt eger wil
i nt eger w2
i nt eger w3
i nt eger sum

end structure

structure /args_2/

r eal wl
real w2
r eal sum

end structure

record /args_1/ args_1/111, 22222, 3333, 0/
record /args_2/ args_2/714.3, 35.7, 0.0/

hlib = LoadLibrary("windll.dll"'c)
if(hlib .lt. 32) then
call MessageBox(NULL, 'Can’’t |oad WNDLL' c

& "Gen32'c, MB.X)
st op
endi f
1 = GetProcAddress(hlib, "DLL1l' c)
_2 = GetProcAddress(hlib, "DLL2'c)

cb = _Call16(dll_1, "p'c, loc(args_1))

wite(str, '(15hDLL 1 returned , i10, a)’') args_1.sum
& char (0)
call MessageBox(NULL, str, 'Gen32 Test 1'c, MB (K)

cb = _Calll1l6(dIl_2, "p'c, loc(args_2))

wite(str, '(15hDLL 2 returned , f10.2, a)’') args_2.sum
& char (0)
call MessageBox(NULL, str, 'Gen32 Test 2'c, MB OK)
FWnMain = 0

end

21.6 Creating and Debugging Dynamic Link Libraries

In the following sections, we will take you through the steps of compiling, linking, and debugging 32-bit
Dynamic Link Libraries (DLLS).

We will use example programs that are provided in source-code form in the Open Watcom F77 package.

Thefiles described in this chapter are located in the directory
\ WATCOM SAMPLES\ FORTRAN\ W N\ DLL. Thefollowing files are provided:

Creating and Debugging Dynamic Link Libraries 147

Windows 3.x Programming Guide

WINDLLV.FOR is the source code for asimple 32-bit DLL containing two library routines that

use integer arguments to pass information.

GEN16V.FOR is the source code for a generic 16-bit Windows application that calls functions
inthe "WINDLLV" 32-bit Windows DLL.

GEN32V.FOR is the source code for a generic 32-bit Windows application that calls functions
inthe "WINDLLV" 32-bit Windows DLL.

WINDLL.FOR is the source code for asimple 32-hit DLL containing two library routines that
use structures to pass information.

GEN16.FOR is the source code for a generic 16-bit Windows application that calls functions
inthe "WINDLL" 32-bit Windows DLL.

GEN32.FOR is the source code for a generic 32-bit Windows application that calls functions
inthe "WINDLL" 32-bit Windows DLL.

MAKEFILE isamakefile for compiling and linking the programs described above.

21.6.1 Building the Applications

To create the DLLs and test applications, we will use the WATCOM Open Watcom Make utility and the
supplied makefile.

Example:

Cwrake -f makefile

21.6.2 Installing the Examples under Windows

Start up Microsoft Windows 3.x if you have not already done so. Add the GEN16V. EXE and
GEN32V. EXE filesto one of your Window groups using the Microsoft Program Manager.

1

2.

Select the "New..." entry from the "File" menu of the Microsoft Windows Program Manager.
Select "Program Item" from the "New Program Object" window and press the "OK" button.

Enter "16-bit DLL Test" as a description for the GEN16V program. Enter the full path to the
GEN16V program as a command line.

Example:
Descri pti on: 16-bit DLL Test
Command Li ne: c:\work\dl I'\genl6v. exe

Enter "32-bit DLL Test" as a description for the GEN32V program. Enter the full path to the
GEN32V program as a command line.

148 Creating and Debugging Dynamic Link Libraries

Windows 32-Bit Dynamic Link Libraries

Example:
Descri pti on: 32-bit DLL Test
Command Li ne: c:\work\dlI\gen32v. exe

Use asimilar procedureto install the GEN16. EXE and GEN32. EXE programs.

21.6.3 Running the Examples

Start the 16-bit application by double clicking onitsicon. A number of message boxes are presented. Y ou
may wish to compare the output in each message box with the source code of the program to determine if
the correct results are being obtained. Click on the "OK" button as each of them are displayed.

Similarly, start the 32-bit application by double-clicking on itsicon and observe the results.

21.6.4 Debugging a 32-bit DLL

The Open Watcom Debugger can be used to debug aDLL. To debug a 32-bit DLL, a"breakpoint"
instruction must be inserted into the source code for the DLL at the "FWinMain" entry point. Thisisdone
using the "pragma’ compiler directive. We have already added the breakpoint to the source code for the
32-bit DLL.

integer*2 function FWnMin(hlnstance,
hPrevl nst ance,
| pszCndLi ne,
nCrrdShow)

Ro Ro Ro

i nteger*2 hlnstance

i nteger*2 hPrevl nstance
i nteger*4 | pszCndLi ne

i nteger*2 nCmdShow

include 'w ndows. fi’

external Add3, Add2
integer rc

call BreakPoi nt
rc = DefineDLLEntry(1, Add3, DLL_DWORD, DLL_DWORD, DLL_DWORD,
& DLL_ENDLI ST)
if(rc .ne. 0)then
FWnMain = 0
return
end if

The pragmafor "BreakPoint" is defined in the "WINAPI.FI" file.

Start up Microsoft Windows 3.x if you have not already done so. Start the debugger by double-clicking on
the Open Watcom Debugger icon. At the prompt, enter the path specification for the application. When
the debugger has successfully loaded GEN32v, start execution of the program. When the breakpoint is
encountered in the 32-bit DLL, the debugger is re-entered. The debugger will automatically skip past the
breakpoint.

From this point on, you can symbolically debug the 32-bit DLL. Y ou might, for example, set breakpoints
at the start of each DLL routine to debug each of them asthey are called.

Creating and Debugging Dynamic Link Libraries 149

Windows 3.x Programming Guide

21.6.5 Summary

Note that the "FWinMain" entry point is only called once, at the start of any application requesting it. After
this, the "FWinMain" entry point is no longer called. You may haveto restart Windows to debug this
section of code a second or third time.

150 Creating and Debugging Dynamic Link Libraries

22 Interfacing Visual Basic and Open Watcom
FORTRAN 77 DLLs

22.1 Introduction to Visual Basic and DLLs

This chapter describes how to interface Microsoft Visual Basic 3.0 applications and 32-bit Dynamic Link
Libraries (DLLs) created by Open Watcom FORTRAN 77. It describes how to write functions for a 32-hit
DLL, how to compile and link them, and how to call these functions from Visual Basic. One of the
proposed techniques involves the use of a set of cover functionsin a 16-bit DLL so, indirectly, this chapter
aso describesinterfacing to 16-bit DLLs.

It is possible to invoke the W n386Li bEnt r y function (Open Watcom’ s 32-bit function entry point,
described below) directly from Visual Basic. However, this technique limits the arguments that can be
passed to a 32-bit DLL. The procedure and problems are explained below.

To work around the problem, a 16-bit DLL can be created, that covers the 32-bit DLL. Within the 16-bit
DLL, wewill place cover functionsthat will call the corresponding 32-hit function in the 32-bit DLL. We
illustrate the creation of the 16-bit DLL using the 16-bit C compiler in Open Watcom C/C++.

Before we begin our example, there are some important technical issues to consider.

The discussion in this chapter assumes that you, the developer, have aworking knowledge of Visual Basic,
including how to bring up the general declarations screen, how to create command buttons, and how to
associate code with command buttons. Y ou must use Visual Basic 3.0 or later. Visual Basic Version 2.x
will not work because of adeficiency in this product regarding the calling of functionsin DLLs.

For the purposes of the following discussion, you should have installed the 32-bit version of Open Watcom
FORTRAN 77, aswell asversion 3.0 or later of Visual Basic. If you also have the 16-bit Open Watcom C
compiler, you can use thisto create a 16-bit DLL containing the 16-bit cover functions. Ensure that the
PATH amd FINCL UDE environment variables are defined to include at least the directories indicated.
We have assumed that Open Watcom FORTRAN 77 isinstaled in the c: \ wat comdirectory, and Visual
Basicisinthec: \ vb directory:

set pat h=c:\wat com bi nw; c:\vb; c:\dos; c:\ wi ndows
set finclude=c:\watcomsrc\fortran\w n

Open Watcom's 32-bit DLL supervisor contains ageneral entry point for Windows applicationsto call into
called W n386Li bEnt ry. It aso contains 128 specific entry points called DLL1 to DLL128 which
correspond to the entry points established via Def i neDLLENt r y (the first argument to

Def i neDLLENt ry isan index number in therange 1 to 128). All applications call into the 32-bit DLL
viathese entry points. They build the necessary stack frame and switch to the 32-bit DLL’ s data space.

If you call viaW n386Li bEnt ry then you passthe DLL entry point number or index (1 to 128) asthe
last argument. W n386Li bEnt ry usesthisindex number to call the appropriate 32-bit DLL routine.

In many languages and programs (such as C and Microsoft Excel), function calls are very flexible. In other
words, afunction can be called with different argument types each time. Thisis generally necessary for

Introduction to Visual Basic and DLLs 151

Windows 3.x Programming Guide

calling W n386Li bEnt ry ina32-bit extended DLL function. The reason is that this function takes the
same arguments as the function being called, as well as the index number of the called function. After the
32-bit flat model has been set up, W n386Li bEnt r y then callsthisfunction. InVisua Basic, once a
function is declared as having certain arguments, it cannot be redeclared. For example, suppose we have a
declaration as follows:

Example:
Decl are Functi on Wn386Li bEntry Lib "c:\path\vbdl132.dlI"
=> (ByVal vl As Long, ByVal v2 As Long, ByVal
=> v3 As Long, ByVal | As Integer) As Long

(Note: the => meansto continue the statement on the same line.) In this example, we could only call a
function in any 32-bit extended DLL with three 32-bit integers as arguments. There are three ways to work
around this deficiency in Visua Basic:

1. UsetheVisua Basic "Alias' attribute to declare W n386Li bEnt r y differently for each DLL
routine. Reference the different DLL routines using these aliases.

2. Usethe specific entry point, one of DLL1 through DLL128, corresponding to the DLL routine
that you want to call. Each entry point can be described to take different arguments. We can
still use the "Alias’ attribute to make the link between the name we use in the Visua Basic
function and the name in the 32-bit extended DLL. Thisisthe method that we will usein the
"Direct Call" technique discussed below. It issimpler to use since it requires one less argument
(you don’t require the index number).

3. Useamethod which involves calling functionsin a 16-bit "cover" DLL writtenin a

flexible-argument language, which then calls the functions in the 32-bit DLL. Thisisthe
"Indirect Call" method discussed below.

22.2 A Working Example

The best way to demonstrate these techniques is through an example. This example consists of a Visual
Basic application with 3 push buttons. The first push button invokes a direct call to a 32-bit DLL which
will display a message window with its arguments, the second push button invokes an indirect call to the
same function through a 16-bit DLL, and the third button exits the Visual Basic application.

To create a Visual Basic application:
(1) Start up anew project folder from the "File" menu.
(2) Select " View Form" from the "Project” window.

(3 Draw three command buttons on the form by selecting command buttons from the "Tool box"
window.

(4) Changethe caption on each button. To do this, highlight the first button. Then, open the
"Properties’ window. Double click on the " Caption window", and change the caption to "Direct call".
Highlight the second button, and change its caption to "Indirect call". Highlight the third, changing
the caption to "EXxit".

Now, your Visual Basic application should have three push buttons, "Direct call", "Indirect call", and
"Exit".

152 A Working Example

Interfacing Visual Basic and Open Watcom FORTRAN 77 DLLs

(5) Doubleclick on the" Direct Call" button.

An edit window will pop up. Enter the following code:

Sub Commandl_dick ()
Dimvarl, var2, var3, worked As Long

varl = 230
var2 = 215
var3 = 32

wor ked = Add3(varl, var2, var3)
Print worked
wor ked = Add2(var2, var3)
Print worked
End Sub

(6) Doubleclick onthe" Indirect Call" button.

Another edit window will pop up. Enter the following code:

Sub Command2_dick ()
Dimvarl, var2, var3, worked As Long

varl = 230
var2 = 215
var3 = 32

wor ked = Functionl(varl, var2, var3)
Print worked
wor ked = Function2(var2, var3)
Print worked
End Sub

(7) Doubleclick onthe" Exit" command button and enter the following code in the pop-up window:
Sub Command3_dick ()

End
End Sub

(8) Select "View Code" from the "Project” window. To interface these Visual Basic functions to the
DLLs, thefollowing code is needed in the

nject: [general] Proc: [declarations]
section of the code. This code assumesthat VBDLL32. DLL and COVERL6. DLL areinthe

c: \ pat h directory. Modify the pathnames appropriately if thisis not the case. (Note: the => means
to continue the statement on the sameline.)

A Working Example 153

Windows 3.x Programming Guide

Decl are Function Functionl Lib "c:\path\coverl16.dlI"
=> (ByVal vl As Long, ByVal v2 As Long, ByVal v3 As Long)
=> As Long

Decl are Function Function2 Lib "c:\path\coverl16.dll"
=> (ByVval v1 As Long, ByVal v2 As Long) As Long

Decl are Function Add3 Lib "c:\path\vbdll32.dlI"

=> Alias "DLL1"

=> (ByVval v1 As Long, ByVal v2 As Long, ByVal v3 As Long)
=> As Long

Decl are Function Add2 Lib "c:\path\vbdl|32.dlI"
=> Alias "DLL2"
=> (ByVval vl1 As Long, ByVal v2 As Long) As Long

Now, when all of the code below is compiled correctly, and the Visua Basic programis run, the "Direct
call" button will call the DLL1 and DLL2 functions directly, aliased as the functions Add3 and Add2
respectively. The "Indirect call" button will call the 16-bit DLL, which will then call the 32-bit DLL, for
both Functi onl and Funct i on2. To runthe Visua Basic program, select "Start" from the "Run"
menu.

22.3 Sample Visual Basic DLL Programs

The sample programs provided below are for a 32-bit DLL, and a 16-bit cover DLL, which will call the two
functions contained in the 32-bit DLL.

22.3.1 Source Code for VBDLL32.DLL

*$i ncl ude w napi . fi

* VBDLL32. FOR

* Setup: set finclude=\WWATCOM src\fortran\w n
* Conpile and Link: wfl386 vbdl|132 -explicit -d2 -bd -1=w n386
* Bind: wbind vbdl 132 -d -n

*$pragma aux (dl | _function) Add3

integer function Add3(wi, w2, w3)
integer wi, w2, w3

i ncl ude ' wi ndows. fi’

character*128 str

wite(str, '(16hDLL 1 argunents:, 3i10, a)’) wl, w2, w3,
& char (0)

call MessageBox(NULL, str, 'F77 VBDLL32'c, MB_(K)

Add3 = wl + w2 + w3

end

154 Sample Visual Basic DLL Programs

Interfacing Visual Basic and Open Watcom FORTRAN 77 DLLs

*$pragma aux (dll _function) Add2

integer function Add2(wi, w2)
integer wil, w2

i ncl ude ' wi ndows. fi’
character*128 str
wite(str, '(16hDLL 2 argunents:, 2i10, a)’

) wi,
call MessageBox(NULL, str, 'F77 VBDLL32'c, MB (K)
Add2 = wl + w2

w2, char(0)

end

integer*2 function FW nMi n(hl nstance,
hPrevl nst ance,
| pszCndLi ne,
nCrrdShow)

Ro Qo Ro

i nteger*2 hlnstance

i nteger*2 hPrevlnstance
i nteger*4 | pszCmiLi ne

i nteger*2 nCndShow

include 'w ndows. fi’

external Add3, Add2
integer rc

rc = DefineDLLEntry(1, Add3, DLL_DWORD, DLL_DWORD, DLL_DWORD,

& DLL_ENDLI ST)
if(rc .ne. 0)then
FWnMain = 0
return
end if
rc = DefineDLLEntry(2, Add2, DLL_DWORD, DLL_DWORD,
& DLL_ENDLI ST)
if(rc .ne. 0)then
FWnMain = 0
return
end if
call MessageBox(NULL, '32-bit DLL started’ c,
& "F77 VBDLL32'c, MB_ K)

FWnMain =1

end

22.3.2 Source code for COVER16.DLL

The functionsin this 16-bit DLL will call the functionsin the 32-bit DLL, VBDLL32. DLL, shown above,
with the appropriate W n386Li bEnt ry call for each function.
/*
* COVERL6. C
*)

#i ncl ude <stdio. h>
#i ncl ude <w ndows. h> /* required for all Wndows applications */

typedef | ong (FAR PASCAL *FPRCC) ();

FPROC DLL_1;
FPROC DLL_2;

Sample Visual Basic DLL Programs 155

Windows 3.x Programming Guide

long FAR PASCAL __export Functionl(|ong varl,
| ong var 2,
long var3)

return((long) DLL_1(varl, var2, var3));

I ong FAR PASCAL _ export Function2(long varl, long var2)

return((long) DLL_2(varl, var2));

#pragma of f (unreferenced);

BOOL FAR PASCAL Li bMai n(HANDLE hl nst ance, WORD wbDat aSegnent ,
WORD wHeapSi ze, LPSTR | pszCndLi ne)

#pragma on (unreferenced);

HANDLE hl i b;

/* Do our DLL initialization */
hlib = LoadLi brary("vbdl132.dl1");
if(hlib <32) {
MessageBox(NULL,
"Make sure your PATH contains VBDLL32.DLL",
" COVER16", MB_OK | MB_| CONEXCLANATI ON);
return(FALSE);
}
DLL_1 (FPROC) Get ProcAddress(hlib, "DLL1");
DLL_2 (FPROC) Get ProcAddress(hlib, "DLL2");
return(TRUE);

22.4 Compiling and Linking the Examples

To create the 32-bit DLL VBDLL32. DLL, type the following at the command line (make sure that
VBDLL32. f or isinyour current directory):

set finclude=c:\watcom src\fortran\w n

w1 386 vbdl 132 -explicit -bd -d2 -1=w n386
wbind vbdl 132 -d -n

To create the 16-bit DLL COVER16. DLL, type the following at the command line (make sure that
COVER16. Careinyour current directory):

wcl coverl16 -nt -bt=wi ndows -bd -zu -d2 -1 =wi ndows_dl |
Notes:
1. Anobjectfileisprovided for COVER16. Cif you do not have access to the 16-bit Open Watcom

C compiler. Inthis case, the DLL can be generated from the object file using the following
command:

wfl cover16. obj -d2 -I=w ndows_dl I

2. The"mc" option selects the compact memory model (small code, big data). The code for 16-bit
DLLs must be compiled with one of the big data models.

3. The"bd" option indicates that a DLL will be created from the object files.

4. The"bt" option selects the "windows" target. This option causesthe C or C++ compiler to
generate Windows prol ogue/epil ogue code sequences which are required for Microsoft Windows

156 Compiling and Linking the Examples

Interfacing Visual Basic and Open Watcom FORTRAN 77 DLLs

applications. It also causes the compiler to use the WINDOWS_INCL UDE environment
variable for header file searches. It aso causes the compiler to define the macro
__ W NDOA5__ and, for the 32-bit C or C++ compiler only, themacro __ W NDONS_386__.

5. The"zu" optionis used when compiling 16-bit code that is to be placed in a Dynamic Link
Library (DLL) since the SSregister points to the stack segment of the calling application upon
entry to the function.

6. The"d2" option isused to disable optimizations and include debugging information in the object
fileand DLL. The techniques for debugging DLLs are described in the chapter entitled
"Windows 32-Bit Dynamic Link Libraries’ on page 139.

Y ou are now ready to run the Visual Basic application.

Compiling and Linking the Examples 157

Windows 3.x Programming Guide

158 Compiling and Linking the Examples

23 WIN386 Library Subprograms

Each special Windows subprogram in the Open Watcom F77 library is described in this chapter. Each
description consists of a number of subsections:

Synopsis. This subsection gives the include files that should be included within a source file that references the
subprogram. It aso shows an appropriate declaration for the function or for a function that could be
substituted for amacro. This declaration is not included in your program; only the include file(s) should be
included.

Description: This subsection is a description of the subprogram.

Returns: This subsection describes the return value (if any) for the subprogram.

See Also: Thisoptional subsection provides alist of related subprograms.

Example: Thisoptional subsection consists of one or more examples of the use of the subprogram. The examples are
often just fragments of code (not complete programs) for illustration purposes.

Classification: This subsection provides an indication of where the subprogram is commonly found. The subprograms
in this section are al classified as "WIN386" (i.e., they pertain to 32-bit Windows programming).

WIN386 Library Subprograms 159

AllocAlias16

Synopsis: c$i ncl ude ' wi napi . fi’
i nteger*4 function AllocAliasl6(ptr)
i nteger*4 ptr

Description: The AllocAlias16 function obtains a 16-bit far pointer equivalent of a 32-bit near pointer. These
pointers are used when passing data pointers to Windows through functions that have INTEGER* 4
arguments, and for any pointers within data structures passed this way.

Returns: The AllocAliasl6 function returns a 16-bit far pointer (as an INTEGER*4) usable by Windows, or
returns O if the alias cannot be all ocated.

See Also: FreeAliasl6

Example: i nteger*4 ncts_16

record / MDI CREATESTRUCT/ nts

ncs.szTitle = AllocAliasl6(loc('"Title' c))

ncs.szC ass = AllocAliasl6(loc('ndichild c))

nts. hOmer = hl nst

NCS. X = NTS. CX CW_USEDEFAULT

NCcsS.y = NnTs.cy CW USEDEFAULT

ncs.style = 0

Send a nessage to an MDl client to create a w ndow.
Since the pointer to the structure is passed in an
argunent that may not be a pointer (depending on the
type of nmessage), there is no inplicit 32 to 16-bit
conversion done so the conversion nust be done by the
pr ogr amrer .

ncs_ 16 = All ocAliasl6(loc(nts)

hwnd = SendMessage(hwndMDI, VWM MDI CREATE, 0, nts_16)
FreeAl i asl16(nts_16)

FreeAli as16(nts.szd ass)

FreeAl i asl16(nts.szTitle)

Classification: WIN386

160 WIN386 Library Subprograms

AllocHugeAlias16

Synopsis:

Description:

Returns:

See Also:

Example:

c$i ncl ude ' wi napi . fi’
i nteger*4 function AllocHugeAliasl6(ptr, size)
i nteger*4 ptr, size

The AllocHugeAlias16 function obtains a 16-bit far pointer to a 32-bit memory object that is size bytes
insize. Thisissimilar to thefunction Al | ocAl i as16, except that Al | ocAl i as16 will only give
16-bit far pointers to 32-bit memory objects of up to 64K in size. To get 16-bit far pointers to 32-bit
memory objects larger than 64K, Al | ocHugeAl i as16 should be used.

The AllocHugeAlias16 function returns a 16-bit far pointer (as an INTEGER* 4) usable by Windows, or
returns O if the alias cannot be all ocated.

Al ocAli asl6, FreeAli asl6, FreeHugeAl i as16

i nteger ierr, SIZE

i nteger*4 alias

par anet er (Sl ZE=300000)
i nteger*1 t np(Sl ZE)

allocate(tmp(SIZE), stat=ierr)
if(ierr .ne. 0)then
alias = All ocHugeAlias16(loc(tnmp), SIZE)

I Wndows calls using the alias ...

call FreeHugeAliasl6(alias, SIZE)
endi f

Classification: WIN386

WIN386 Library Subprograms 161

_Call16

Synopsis: c$i ncl ude ' wi napi . fi’
integer*4 function _Call16(| pFunc, fnt, ...)
i nteger*4 | pFunc
character*(*) fnt

Description: The _Call16 function performs the same function as Get | ndi r ect Funct i onHandl e,
I nvokel ndi rect Funct i onHandl e and Fr eel ndi r ect Funct i onHandl e but is much
easier to use. Thefirst argument IpFunc is the address of the 16-bit function to be called. This address
isusually obtained by calling Get Pr oc Addr ess with the name of the desired function. The second
argument f nt isastring identifying the types of the parameters to be passed to the 16-bit function.

Character Parameter Type

c call a’cdecl’ function as opposed to a’pascal’ function (if specified, it must be listed
first)
unsigned BYTE

16-bit WORD (INTEGER*2)

32-bit DWORD (INTEGER*4, REAL*4)

double precision floating-point (DOUBLE PRECISION, REAL*8)
32-bit flat pointer (converted to 16:16 far pointer) (LOC(x))

T *taso

The 16-bit function must use either the PASCAL or CDECL calling convention. PASCAL calling
convention isthe default. If the function usesthe CDECL calling convention, then you must specify the
letter "c" asthefirst character of the argument type string.

Pointer types will automatically be converted from 32-hit near pointersto 16-bit far pointers before the
function isinvoked. Note that this pointer isonly valid over the period of the call; after control returns
to the 32-bit application, the 16-bit pointer created by the Supervisor isno longer valid.

Returns: The _Call16 function returns a 32-bit DWORD (as an INTEGER* 4) which represents the return value
from the 16-bit function that was called.

See Also: Get | ndi r ect Funct i onHandl e, Fr eel ndi rect Functi onHandl e

Example: c$i ncl ude wi napi . fi

i ncl ude ' wi ndows. fi’
integer*2 hlib
integer*4 dll_1, cb
character*128 str

hlib = LoadLibrary("windllv.dll’ c)
dll 1 = GetProcAddress(hlib, "DLL1 c)

cb = Call16(dil_1, 'ddd'c, 111, 22222, 3333)

Classification: WIN386

162 WIN386 Library Subprograms

_Call16

WIN386 Library Subprograms 163

DefineDLLEntry

Synopsis: c$i ncl ude 'winapi.fi
i nteger*4 function DefineDLLEntry(index, routine, ...)
i nteger*4 index
external routine

Description: The DefineDLLEntry function defines an index number for the 32-bit DLL procedure routine. The
parameter index defines the index number that must be used in order to invoke the 32-bit FAR
procedure routine. The variable argument list defines the types of parameters that will be received by
the 32-bit DLL routine. Valid parameter types are:

DLL_PTR 16-bit far pointer

DLL_DWORD 32-bits

DLL_WORD 16-hits

DLL_CHAR 8-hits

DLL_ENDLIST Marks the end of the variable argument list.

In the above synopsis, "..." in the argument list is not valid FORTRAN 77 syntax; it is used only to
indicate a variable number of arguments.

Note that all pointers are received as 16-bit far pointers. To access the datafrom the 32-bit DLL, a
dynamically alocatable array must be mapped to the memory pointed to by the 16-bit far pointer using
the LOCATI ON specifier of the ALLOCATE statement and assigning the FAR attribute to the array using

the array pragma.
Returns: The DefineDLLEnNtry function returns zero if successful, and a non-zero value otherwise.
Example: c$i ncl ude wi napi . fi

c$pragma aux (dll_function) DLL_1

integer function DLL_1(wi, w2, w3)

integer*4 wl, w2, w3

i ncl ude "wi n386.fi’

include 'wi ndefn.fi’

include "winerror.fi’

character*128 str

wite(str, '(16hDLL 1 argunents:, 3i10, a)’) wi,

& w2, w3, char(0)
call MessageBox(NULL, str,

& "DLL Function 1'c, MB K)
DLL 1 = wl + w2 + W3
end

i nteger*2 function FWNMAI N(hlnstance,
hPr evl nst ance,
| pszCndLi ne,
nCndShow)

i nteger*2 hlnstance, hPrevlnstance, nCndShow

i nteger*4 | pszCndLi ne

include 'w n386.fi’

i ncl ude ' wi ndefn.fi’

include "winerror.fi’

external DLL_1

i nteger rc

rc = DefineDLLEntry(1, DLL_1, DLL_DWORD,

Ro Ro Ro

164 WIN386 Library Subprograms

DefineDLLEntry

Classification: WIN386

DLL_DWORD, DLL_DWORD,

DLL_ENDLI ST)
if(rc .ne. 0)then
FWnMain = 0
return
end if
call MessageBox(NULL,
"32-bit DLL started’ c,
"32-bit DLL'c, MB OK)
FWnMain = 1
end

WIN386 Library Subprograms 165

DefineUserProc16

Synopsis:

Description:

Returns:
See Also;

Example:

*$i ncl ude ' wi napi.fi’
i nteger*4 function DefineUserProcl6(typ, routine, ...)
i nteger*4 typ
external routine

The DefineUserProc16 function defines the arguments accepted by the user defined callback procedure
routine. There may be up to 32 user defined callbacks. The parameter typ indicates which one of
GETPROC_USERDEFI NED _1 through GETPROC_USERDEFI NED_32 isbeing defined (see

Get Proc16). The callback routine must be declared as FAR PASCAL, or as FAR cdecl. The
variable argument list defines the types of parameters that will be received by the user defined callback
procedure routine. Valid parameter types are;

UDP16 PTR 16-bit far pointer

UDP16_DWORD 32-bits

UDP16_WORD 16-bits

UDP16_CHAR 8-bits

UDP16 CDECL callback routine will be declared astype cdecl rather than astype PASCAL.
This keyword may be placed anywhere beforethe UDP16_ENDLI ST
keyword.

UDP16 ENDLIST Marks the end of the variable argument list.

Once the DefineUserProc16 function has been used to declare the user callback routine, then
Get Pr oc16 may be used to get a 16-bit function pointer that may be used by Windows.

In the above synopsis, "..." in the argument list is not valid FORTRAN 77 syntax; it isused only to
indicate a variable number of arguments.

The DefineUserProc16 function returns zero if it succeeds; and non-zero if it fails.

CGet Proc16

166 WIN386 Library Subprograms

DefineUserProc16

c$i ncl ude wi napi . fi
cSpragma aux TestProc parn(val ue)

subroutine TestProc(i)

i nteger i

character*128 str

wite(str, "(2hi=, 110, a)’) i, char(0)
cal | MessageBox(NULL, str, "TEST' c, MB OK)
end

i nteger function DefineTest ()

i nteger*4 cb

external TestProc

cal |l DefineUserProcl6(GETPROC USERDEFI NED 1,

& Test Proc,

& UDP16_DWORD,
& UDP16_ENDLI ST)

cb = GetProcl6(TestProc, GETPROC _USERDEFI NED 1)
I cb may then be used whenever a pointer to the
I callback is required by 16-bit W ndows

end

Classification: WIN386

WIN386 Library Subprograms 167

FreeAlias16

Synopsis: c$i ncl ude ' wi napi . fi’
subroutine FreeAliasl6(fpl6)
i nteger*4 fpl6

Description: FreeAliasl6 frees a 16-hit far pointer alias for a 32-bit near pointer that was allocated with
Al l ocAl'i as16. Thisisimportant to do when thereis no further use for the pointer since there are a
limited number of 16-bit aliases available (due to limited space in the local descriptor table).

Returns:; FreeAliasl6 is a subroutine.
See Also: Al |l ocAli as16

Example: i nteger*4 nts_16
record / MDI CREATESTRUCT/ nts
ncs.szTitle AllocAliasl6(loc('"Title'c))
nts. szd ass AllocAliasl6(loc("nmdichild c))
ncs. hOmer = hl nst
NCS. X = NTS. CcX CW USEDEFAULT
NCS.y = NCS.cCcy CW USEDEFAULT
ncs.style = 0
I Send a nessage to an MDI client to create a w ndow.
I Since the pointer to the structure is passed in an
I argunent that nay not be a pointer (depending on the
|
|
|

type of nmessage), there is no inplicit 32 to 16-bit
conversion done so the conversion nust be done by the
pr ogr amrer .

ncs_16 = AllocAliasl6(loc(ntcs))

hwnd = SendMessage(hwndMDI, VWM MDI CREATE, 0, nts_16)

FreeAl i as16(nts_16)

FreeAl i as16(nts.szd ass)

FreeAl i asl6(nts.szTitle)

Classification: WIN386

168 WIN386 Library Subprograms

FreeHugeAlias16

Synopsis:

Description:

Returns:
See Also;

Example:

c$i ncl ude ' wi napi . fi’
subrouti ne FreeHugeAl i asl6(fpl6, size)
i nteger*4 fpl6, size

FreeHugeAliasl6 frees a 16-bit far pointer alias that was allocated with Al | ocHugeAl i as16. The
size of the original 32-bit memory object must be specified. It isimportant to use

Fr eeHugeAl i as16 when thereisno further use for the pointer, since there are alimited number of
16-bit aliases available (due to limited space in the local descriptor table).

FreeHugeAliasl6 is a subroutine.
Al | ocHugeAl i as16, Al | ocAl i as16, FreeAl i asl6

integer ierr, SIZE
integer*4 alias

par anet er (Sl ZE=300000)
i nteger*1 tnp(SlZE)

allocate(tmp(SIZE), stat=ierr)
if(ierr .ne. 0)then
alias = AllocHugeAlias16(loc(tnmp), SIZE)

I Wndows calls using the alias ...

call FreeHugeAliasl6(alias, SIZE)
endi f

Classification: WIN386

WIN386 Library Subprograms 169

FreelndirectFunctionHandle

Synopsis: c$i ncl ude ' wi napi . fi’

subroutine FreelndirectFuncti onHandl e(handl e)

i nteger*4 handl e

Description: FreelndirectFunctionHandle frees a handle that was obtained using

Get | ndi r ect Funct i onHandl e. Thisisimportant to do when there is no further use for the
pointer since there are alimited number of 16-bit aliases available (due to limited space in the local

descriptor table).

Returns: FreelndirectFunctionHandle is a subroutine.
See Also: _Call 16, Get I ndi rect Functi onHandl e, | nvokel ndi rect Functi on
Example: c$i ncl ude wi napi . fi

i nteger*2 hDrv
integer*4 | pfn

hDrv = LoadLi brary('your.lib' c)

if(hDrv .1t. 32) return

| pfn = Get ProcAddress(hDrv,

& ' Ext Devi ceMbde’ ¢)
if(Ipfn .eq O) return

hi ndir = GetlndirectFuncti onHandl e(
| pfn,
| NDI R_WORD,
| NDI R_WORD,
| NDI R_DWORD,
| NDI R_PTR,

Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro

DI R_
DI R_WORD,
DI R_ENDLI ST)

cb = I nvokel ndirect Functi on(
hl ndi r,
hwnd,
hDr v,
NULL,
" POSTSCRI PT PRI NTER c,
"LPTY1 c,
NULL,
NULL,
0)
call FreelndirectFunctionHandl e(hindir)

Ro Ro Ro Ro Ro Ro Ro Ro Ro

Classification: WIN386

170 WIN386 Library Subprograms

FreelndirectFunctionHandle

WIN386 Library Subprograms 171

GetindirectFunctionHandle

Synopsis: c$i ncl ude ' wi napi . fi’
i nteger*4 function GetlndirectFunctionHandl e(prc, ...)
i nteger*4 prc

Description: The GetlndirectFunctionHandle function gets a handle for a 16-bit procedure that is to be invoked
indirectly. The procedure is assumed to have PASCAL calling convention, unlessthe | NDI R_CDECL
parameter is used, to indicate that Microsoft C calling convention isto be used. The 16-bit far pointer
prcis supplied to GetIndirectFunctionHandle, and alist of the type of each parameter (in the order that
they will be passed to the 16-bit function). The parameter types are;

INDIR_DWORD A INTEGER*4 will be passed.
INDIR_WORD A INTEGER*2 will be passed.
INDIR_CHAR A INTEGER* 1 will be passed.
INDIR_PTR A pointer will be passed. Thisisonly used if pointer conversion from 32-bit

to 16-hit is required, otherwise; INDIR_DWORD is specified.

INDIR_CDECL This option may beincluded anywhere in the list before the
| NDI R_ENDLI ST keyword. When thisis used, the calling convention used
to invoke the 16-bit function will be the Microsoft C calling convention.

INDIR_ENDLIST Marks the end of the parameter list.

In the above synopsis, "..." in the argument list is not valid FORTRAN 77 syntax; it is used only to
indicate a variable number of arguments.

This handle is adata structure that was created using the mal | oc function. To freethe handle, just use
one of the Fr eel ndi r ect Funct i onHandl e or f r ee functions.

You may find it easier to use _Cal | 16 rather than GetlndirectFunctionHandle followed by a call to
I nvokel ndi rect Functi on.

Returns: The GetlndirectFunctionHandle function returns a handle to the indirect function, or NULL if ahandle
could not be allocated. Thishandleis used in conjunction with | nvokel ndi r ect Functi on to call
the 16-bit procedure.

See Also: _Cal I 16, Freel ndi r ect Functi onHandl e, | nvokel ndi rect Functi on

Example: c$i ncl ude wi napi . fi

i nteger*2 hDrv
integer*4 | pfn

hDrv = LoadLi brary(’"your.lib' c)

if(hDrv .It. 32) return

| pfn = Get ProcAddress(hDrv,

& " Ext Devi ceMbde’ ¢)
if(Ipfn .eq 0) return

172 WIN386 Library Subprograms

GetindirectFunctionHandle

hi ndir = GetlndirectFuncti onHandl e(
| pfn,
I NDI R_WORD,
I NDI R_WORD,
| NDI R_DWORD,
I NDI R_PTR,

Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro

cb = I nvokel ndirect Functi on(
hl ndir,
hwnd,
hDr v,
NULL,
" POSTSCRI PT PRI NTER c,
"LPTY1 ¢,
NULL,
NULL,
0)
call FreelndirectFunctionHandl e(hindir)

Ro Ro Ro Ro Ro Ro Ro Ro Ro

Classification: WIN386

WIN386 Library Subprograms 173

GetProc16

Synopsis:

Description:

c$i ncl ude ' wi napi . fi’

i nteger*4 function GetProcl6(fcn, type)

i nteger*4 fcn, type
The GetProc16 function returns a 16-bit far function pointer suitable for use as a Windows callback
function. This callback function will invoke the 32-bit far procedure specified by fcn. The types of
callback functions that may be allocated are:

GETPROC_CALLBACK Thisisthe most common form of callback; suitable as the callback routine
for awindow.

GETPROC_ABORTPROC Thisisthe callback type used for trapping abort requests when printing.

GETPROC_ENUMCHILDWINDOWS This callback is used with the EnuntChi | dW ndows
Windows function.

GETPROC_ENUMFONTS This callback type is used with the Enunfont s Windows function.
GETPROC_ENUMMETAFILE This callback is used with the Enumiviet aFi | e Windows function.
GETPROC_ENUMOBJECTS This callback is used with the Enuntbj ect s Windows function.

GETPROC_ENUMPROPS FIXED_ DS This callback is used with the EnunPr ops Windows
function, when the fixed data segments callback is needed.

GETPROC_ENUMPROPS MOVEABLE_DS This callback is used with the EnunPr ops Windows
function, when the moveable data segments callback is needed.

GETPROC_ENUMTASKWINDOWS This callback is used with the EnunifaskW ndows Windows
function.

GETPROC_ENUMWINDOWS This callback is used with the EnumW ndows Windows function.
GETPROC_GLOBALNOTIFY This callback is used with the G obal Not i f y Windows function.
GETPROC_GRAYSTRING This callback is used with the G- ay St r i ng Windows function.
GETPROC_LINEDDA This callback is used with the Li ne DDA Windows function.

GETPROC_SETRESOURCEHANDLER This callback is used with the Set Resour ceHandl er
Windows function.

GETPROC_SETTIMER This callback is used with the Set Ti mer Windows function.

GETPROC_SETWINDOWSHOOK This callback is used with the Set W ndows Hook Windows
function.

GETPROC_USERDEFINED_x This callback isused in conjunction with Def i neUser Proc16
function to create a callback routine with an arbitrary set of parameters. Up to 32 user
defined callbacks are allowed, they are identified by using
GETPROC_USERDEFINED _1 through GETPROC_USERDEFINED_32. The user
defined callback must be declared asa FAR PASCAL function, or asa FAR cdecl
function.

174 WIN386 Library Subprograms

GetProc16

Returns: The GetProc16 function returns a 16-bit far pointer to a callback procedure. This pointer may then be
fed to any Windows function that requires a pointer to a function within the 32-bit program. Note that
the callback function within the 32-bit program must be declared as FAR.

See Also: Rel easeProc16

Example: c$i ncl ude wi napi . fi

i nteger*4 cbp
i nteger*4 | pProcAbout

| get a 16-bit callback routine to point at
I our About dial ogue procedure, then create
I the dial ogue.
cbp = GetProcl6(About, GETPROC CALLBACK)
| pProcAbout = MakeProcl nstance(cbp, hlnst)
call D al ogBox(hlnst,
& " About Box’ ¢,
hwhd,
| pProcAbout)
call FreeProcl nstance(| pProcAbout)
call Rel easeProc16(chp)

Classification: WIN386

WIN386 Library Subprograms 175

InvokelndirectFunction

Synopsis:

Description:

Returns:
See Also:

Example:

c$i ncl ude ' wi napi . fi’
i nteger*4 function | nvokelndirectFunction(handle, ...)
i nteger*4 handl e

The Invokel ndirectFunction function invokes the 16-bit function pointed to by the specified handle.
The handle must have been previously allocated using the Get | ndi r ect Funct i onHandl e
function. The handleisfollowed by the list of parameters to be passed to the 16-bit function.

If you specified | NDI R_PTR as a parameter when allocating the handle, then a 16-bit pointer is
allocated for a 32-bit pointer that you pass. However, this pointer is freed when the 16-bit function
being invoked returns.

In the above synopsis, “..." in the argument list is not valid FORTRAN 77 syntax; it is used only to
indicate a variable number of arguments.

The Invokel ndirectFunction function returns the value which the 16-bit function returned.

_Cal | 16, Freel ndi rect Functi onHandl e, Get | ndi r ect Funct i onHandl e

c$i ncl ude wi napi . fi

i nteger*2 hDrv
i nteger*4 | pfn

hDrv = LoadLi brary("your.lib c)

if(hDrv .It. 32) return

| pfn = Get ProcAddress(hDrv,

& ' Ext Devi ceMbde’ ¢)
if(I'pfn .eq O) return

hi ndir = GetlndirectFuncti onHandl e(
| pfn,
| NDI R_WORD,
| NDI R_WORD,
| NDI R_DWORD,
| NDI R_PTR,

R0 Ro Ro Ro Ro Ro Ro Ro Ro Ro

D
DI R_\ORD,
DI R_ENDLI ST)

cb = Invokel ndi rect Functi on(
hl ndi r,
hwnd,
hDr v,
NULL,
" POSTSCRI PT PRI NTER c,
"LPT1 c,
NULL,
NULL,
0)
call FreelndirectFunctionHandl e(hindir)

Ro Ro Ro Ro Ro Ro Ro Ro Ro

Classification: WIN386

176 WIN386 Library Subprograms

InvokelndirectFunction

WIN386 Library Subprograms 177

MapAliasToFlat

Synopsis: c$i ncl ude ' wi napi . fi’

i nteger*4 function MapAliasToFlat(alias)

i nteger*4 alias

Description: The MapAliasToFlat function returns a 32-bit near pointer equivalent of a pointer allocated previously
with Al | ocAl i as16 or Al | ocHugeAl i as16. Thisisuseful if you are communicating with a
16-bit application that is returning pointers that you previously gave it.

Returns: The MapAliasToFlat function returns a 32-bit near pointer (as an INTEGER* 4) usable by the 32-bit

application.
See Also: Al l ocAli asl6, Al | ocHugeAl i as16
Example: c$i ncl ude wi napi . fi

i nteger alias
i nteger ptr

alias = AllocAlias16(loc(alias))
alias += 5

ptr = MapAliasToFlat(alias)

if(ptr .eq. loc(alias) + 5)then

cal | MessageBox(NULL, "It Wrked’ c,

el se

call MessageBox(NULL, 'It Failed' c,

end if

Classification: WIN386

178 WIN386 Library Subprograms

PASS_WORD_AS_POINTER

Synopsis: c$i ncl ude ' wi napi . fi’
i nteger*4 function PASS WORD AS PO NTER(dw)
i nteger*4 dw
Description: Some Windows API functions have pointer parameters that do not always take pointers. Sometimes
these parameters are pure data. 1n order to stop the supervisor from trying to convert the datainto a
16-bit far pointer, the PASS WORD_AS POINTER function is used.
Returns: The PASS WORD_AS _POINTER returns a 32-bit "near" pointer, that is really the parameter dw.
Example: c$i ncl ude wi napi . fi

cal | Func(PASS_ WORD AS PO NTER(1))

Classification: WIN386

WIN386 Library Subprograms 179

ReleaseProc16

Synopsis: c$i ncl ude ' wi napi . fi’
subrouti ne Rel easeProcl6(cbp)
i nteger*4 cbhp

Description: ReleaseProcl6 releases the callback function allocated by Get Pr oc16. Sincethe callback routines are
alimited resource, it isimportant to release the routines when they are no longer required.

Returns: ReleaseProcl6 is a subroutine.
See Also: CGet Procl16
Example: c$i ncl ude wi napi . fi

i nteger*4 cbp
i nteger*4 | pProcAbout
| get a 16-bit callback routine to point at
I our About dial ogue procedure, then create
I the dial ogue.
cbp = GetProcl16(About, GETPROC _CALLBACK)
| pProcAbout = MakeProcl nstance(cbp, hlnst)
call Dial ogBox(hlnst, ’AboutBox’c,
& hwid, | pProcAbout)
call FreeProcl nstance(| pProcAbout)
call Rel easeProcl16(chp)

Classification: WIN386

180 WIN386 Library Subprograms

24 32-bit Extended Windows Application
Development

The purpose of this chapter is to anticipate some common questions about 32-bit Windows application
development.

The following topics are discussed in this chapter:

* Can you call 16-bit code from a 32-bit code?

* How do | add my Windows resources?

» What size of function pointers passed to Windows?
» Why are 32-bit callback routines FAR?

* Why usethe _16 API functions?

24.1 Can you call 16-bit code from a 32-bit code?

A 32-bit Windows application can make a call to 16-bit code through the use of the Open Watcom

_Call 16 or I nvokel ndi r ect Funct i on procedures. These functions ensure that the Open Watcom
Windows Supervisor prepares the stack for the 16-bit call and return to the 32-bit code. The 32-bit
application uses LoadLi br ar y function to bring the 16-bit DLL into memory and then calls the 16-hit
procedures. To invoke 16-bit procedures, use Get Pr oc Addr ess to get the 16-bit far pointer to the
function. Usethe Cal | 16 procedureto call the 16-bit function sinceit is simpler to use than the

Get | ndi r ect Funct i onHandl e, | nvokel ndi r ect Functi on, and

Fr eel ndi rect Funct i onHandl e sequence. Anexample of this processis provided under the

_Cal | 16 Windows library function description.

This method can be used to call any 16-bit Dynamic Link Library (DLL) procedure or any 32-bit extended

DLL procedure from within a 32-bit application, including DLLs that are available as products through
Independent Software Vendors (ISVs).

24.2 How do | add my Windows resources?

The VBI ND utility automatically runs the resource compiler to add the resources to the 32-bit Windows
supervisor (since the supervisor isa16-bit Windows application). Note that resource compiler options may
be specified by using the "R" option of V\BI ND.

How do | add my Windows resources? 181

Windows 3.x Programming Guide

24.3 What size of function pointers passed to Windows?

All function pointers passed to Windows must be 16-bit far pointers since no translation is applied to any
function pointers passed to Windows. Trandlation is often not possible, since any functions that Windows
isto call back must be exported, and only 16-bit functions can be exported.

A 16-bit far pointer to afunction is obtained in one of two ways. either Windows givesit to you (via
Get Pr ocAddr , for example), or you obtain a pointer from the supervisor, via Get Pr oc16.

Function pointers obtained from Windows may either be fed into other Windows functions requiring
function pointers, or called indirectly by using _Cal | 16 or by using the

Get | ndi rect Funct i onHandl e, | nvokel ndi r ect Functi on, and

Fr eel ndi r ect Funct i onHandl e sequence.

The function Get Pr oc 16 returns a 16-bit far pointer to a callback function that Windows can use. This
callback function will direct control into the desired 32-bit routine.

24.4 Why are 32-bit callback routines FAR?

The callback routines are declared as FAR so that the compiler will generate afar return from the
procedure. Thisis necessary since the 32-bit callback routineis"far" called from the supervisor.

The callback routineis still "near” in the sense that it lies within the 32-bit flat address space of the
application. Thismeansthat Get Pr oc16 only needs the offset of the 32-bit callback function in order to
set up the 16-bit procedure to call back correctly. Thus, Get Pr oc16 acceptstype PROCPTRwhichisin
fact only 4 byteslong. The compiler will provide the offset only, which is, as already stated, al that is
needed.

24.5 Why use the _16 API functions?

The regular Windows API functions used in Open Watcom F77 automatically convert any pointersto
16-bit far pointers for use by Windows. Sometimes, you may have a set of pointersthat are 16-bit far
pointers aready (e.g., obtained from @ obal Lock), and do not need any conversion. The" 16..." API
functions do not convert pointers, they simply pass them on directly to Windows. See the appendix entitled
"Special Windows API Functions' on page 183 for alist of the" 16..." API functions.

182 Why use the _16 API functions?

25 Special Windows API Functions

On rare occasions, you want to use 16-bit far pointers directly in aWindows function. Since all Windows
functionsin the 32-bit environment are expecting 32-bit near pointers, you cannot simply use the 16-bit far
pointer directly in the function.

The following functions are specia versions of Windows API functions that do NOT convert any of the
pointers from 32-bit to 16-bit. Thereare 16 versions of all Windows API functions that accept data
pointers.

_16AddAtom
_16AddFontResource
_16AdjustWindowRect
_16AdjustWindowRectEx
_16AnimatePalette
_16AnsiLower
_16AnsiLowerBuff
_16AnsiToOem

_16Ansi ToOemBuUff
_16AnsiUpper
_16AnsiUpperBuff
_16BuildCommDCB
_16CallMsgFilter
_16ChangeMenu
_16ClientToScreen
_16ClipCursor
_16CopyMetaFile
_16CopyRect
_16CreateBitmap
_16CreateBitmaplndirect
_16CreateBrushindirect
_16CreateCursor
_16CreateDC
_16CreateDialog
_16CreateDialoglndirect
_16CreateDial oglndirectParam
_16CreateDialogParam
_16CreateDIBitmap
_16CreateEllipticRgnindirect
_16Createfont
_16CreateFontIndirect
_16CreatelC
_16Createlcon
_16CreateMetaFile
_16CreatePal ette
_16CreatePenindirect
_16CreatePolygonRgn
_16CreatePolyPolygonRgn
_16CreateRectRgnindirect

Special Windows API Functions 183

Windows 3.x Programming Guide

_16CreateWindow
_16CreateWindowEx
_16DialogBox
_16DiaogBoxIndirect
_16DialogBoxIndirectParam
_16Dia ogBoxParam
_16DispatchMessage
_16DlIgDirList
_16DIgDirListComboBox
_16DIgDirSelect
_16DIgDirSelectComboBox
_16DPtoLP
_16DrawFocusRect
_16DrawText
_16EndPaint
_16EnumChildwWindows
_16EnumFonts
_16EnumMetaFile
_16EnumObjects
_16EnumProps
_16EnumTaskWindows
_16EnumWindows
_16EqualRect
_16Escape
_16ExtTextOut
_16FillRect
_16FindAtom
_16FindResource
_16FindWindow
_16FrameRect
_16FreeProclnstance
_16GetAtomName
_16GetBitmapBits
_16GetCaretPos
_16GetCharWidth
_16GetClassinfo
_16GetClassName
_16GetClientRect
_16GetClipboardFormatName
_16GetClipBox
_16GetCodelnfo
_16GetCommeError
_16GetCommState
_16GetCursorPos
_16GetDIBits
_16GetDIgltemint
_16GetDIgltemText
_16GetEnvironment
_16GetK eyboardState
_16GetKeyNameT ext
_16GetMenuString
_16GetMetaFile
_16GetM oduleFileName
_16GetModuleHandle

184 Special Windows API Functions

Special Windows API Functions

_16GetObject
_16GetPaletteEntries
_16GetPriorityClipboardFormat
_16GetPrivateProfilelnt
_16GetPrivateProfileString
_16GetProcAddress
_16GetProfilelnt
_16GetProfileString
_16GetProp
_16GetRgnBox
_16GetScrollRange
_16GetSystemDirectory
_16GetSystemPaletteEntries
_16GetTabbedTextExtent
_16GetTempFileName
_16GetTextExtent
_16GetTextFace
_16GetTextMetrics
_16GetUpdateRect
_16GetWindowRect
_16GetWindowsDirectory
_16GetWindowText
_16GlobalAddAtom
_16Global FindAtom
_16Global GetAtomName
_16GlobalNotify
_16GrayString
_16InflateRect
_16IntersectRect
_16InvalidateRect
_l6InvertRect
_16lsDialogMessage
_16lsRectEmpty
_16LineDDA

_16L oadAccelerators
_16L ocadBitmap

_16L oadCursor

_16L oadlcon
_16LoadLibrary
_16LocadMenu

_ 16l oadM enulndirect
_16L oadModule

_16L oadString
_16LPtoDP
_16MakeProclnstance
_16MapDialogRect
_16MessageBox
_160emToAnNsi
_160emToAnsiBuff
_160ffsetRect
_160penComm
_160penFile
_160utputDebugString
_16PlayMetaFileRecord

Special Windows API Functions 185

Windows 3.x Programming Guide

_16Polygon

_16Polyline
_16PolyPolygon
_16PtInRect
_16ReadComm
_16RectInRegion
_16RectVisible
_16RegisterClipboardFormat
_16RegisterWindowM essage
_16RemoveFontResource
_16RemoveProp
_16ScreenToClient
_16ScrolIDC
_16ScrollWindow
_16SetBitmapBits
_16SetCommState
_16SetDIBits
_16SetDIBitsToDevice
_16SetDIgltemText
_16SetEnvironment
_16SetK eyboardState
_16SetPal etteEntries
_16SetProp

_16SetRect
_16SetRectEmpty
_16SetResourceHandler
_16SetSysColors
_16SetTimer
_16SetWindowsHook
_16SetWindowText
_16StretchDIBits
_16TabbedTextOut
_16TextOut

_16ToAscii
_16TrackPopupMenu
_16TrandlateAccelerator
_l16TranslateM DI SysAccel
_16Trand ateMessage
_16UnhookWindowsHook
_16UnionRect
_16UnregisterClass
_l16ValidateRect
_16WinExec

_16WinHelp
_16WriteComm
_16WritePrivateProfileString
_16WriteProfileString
_16 lIread

_ 16 lwrite

186 Special Windows API Functions

Windows NT Programming Guide

Windows NT Programming Guide

188

26 Windows NT Programming Overview

Windows NT supports both non-windowed character-mode applications and windowed Graphical User
Interface (GUI) applications. In addition, Windows NT supports Dynamic Link Libraries and applications
with multiple threads of execution.

We have supplied al the necessary tools for native development on Windows NT. You can also cross
develop for Windows NT using either the DOS-hosted compilers and tools, the Windows 95-hosted
compilers and tools, or the OS/2-hosted compilers and tools. Testing and debugging of your Windows NT
application must be done on Windows NT or Windows 95.

If you are creating a character-mode application, you may also be interested in a special DOS extender
from Phar Lap (TNT) that can run your Windows NT character-mode application under DOS.

26.1 Windows NT Character-mode Versus GUI

Basically, there are two classes of FORTRAN 77 applications that can run in awindowed environment like
Windows NT.

Thefirst are those FORTRAN 77 applications that do not use any of the Win32 API functions; they are
strictly FORTRAN 77 applications that do not rely on the features of a particular operating system.

* This Application must be created as Windows NT Character-mode Application.

The second class of FORTRAN 77 applications are those that actually call Win32 API functions directly.
These are applications that have been tailored for the Win32 operating environment.

» Open Watcom FORTRAN 77 does not provide direct support for these types of applications. While
we do provide include files that map out 16-bit Windows structures and the interface to 16-bit
Windows API calls, we do not provide thisfor Win32 API. The Win32 application developer must
create these as required.

» An alternate solution, for those so-inclined, isto develop the GUI part of the interface in C and call
these functions from FORTRAN code.

A subsequent chapters deal with the creation of different application types for Windows NT target.

Windows NT Character-mode Versus GUI 189

Windows NT Programming Guide

190 Windows NT Character-mode Versus GUI

27 Creating Windows NT Character-mode
Applications

This chapter describes how to compile and link Windows NT Character-mode applications simply and
quickly. Inthis chapter, we look at applications written to exploit the Windows NT Application
Programming Interface (API).

We will illustrate the steps to creating Windows NT Character-mode applications by taking a small sample
application and showing you how to compile, link, run and debug it.

27.1 The Sample Character-mode Application

To demonstrate the creation of Windows NT Character-mode applications, we introduce a simple sample
program. For our example, we are going to use the "sieve" program.

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes al gorithm

I MPLI CI' T NONE
I NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
I NTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
CHARACTER* 60 BUFFER
PARAMETER (FORME’ (A 15, A/ 15)")
DO |l = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0O
DO | = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRI MES = PRIMES + 1
DOK =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Primes between 1 and ', UPBOUND,
1 ' are: ', PRI MES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Seve of

Eratosthenes algorithm to accomplish thistask. We will take you through the steps necessary to produce
this result.

The Sample Character-mode Application 191

Windows NT Programming Guide

27.2 Building and Running the Character-mode Application

To compile and link our example program which is stored in thefile si eve. f or, enter the following
command:

Cwl 386 -1 =nt sieve.for

The typical messages that appear on the screen are shown in the following illustration.

Cw 386 -1=nt sieve.for
Open Watcom F77/32 Conpile and Link Uility
Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al Ri ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
wfc386 sieve. for
Open WAt com FORTRAN 77/ 32 Optim zing Conpil er
Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conlf open-watcomv2 for details.
sieve.for: 4390 statenents, 207 bytes, 1585 extensions, O warnings, O errors

Open Wt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al R ghts Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. conf open-wat conf open-wat comv2 for details.

| oadi ng object files

searching libraries

creating a Wndows NT Character-node executable

If you examine the current directory, you will find that two files have been created. These are
si eve. obj (theresult of compiling si eve. f or) and si eve. exe (theresult of linking si eve. obj
with the appropriate Open Watcom FORTRAN 77 libraries).

The resultant Windows NT Character-mode application SI EVE. EXE can now be run under Windows NT.

27.3 Debugging the Character-mode Application

Let us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisaso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL386 command, thisisfairly straightforward. WFL386 recognizes the Open Watcom
F77 compiler "debug" options and will create the appropriate debug directives for the Open Watcom
Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

Cw 386 -I=nt -d2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

192 Debugging the Character-mode Application

Creating Windows NT Character-mode Applications

Cwil 386 -1=nt -d2 sieve.for
Open Watcom F77/32 Conpile and Link Uility
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
wf c386 sieve.for -d2
Open WAt com FORTRAN 77/ 32 Optim zing Conpil er
Copyright (c) 2002-2023 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-watcomv2 for details.
sieve.for: 4390 statenents, 293 bytes, 1585 extensions, 0 warnings, O errors

Open WAt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al Rights Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. conl open-wat conl open-watcomv2 for details.

| oadi ng object files

searching libraries

creating a Wndows NT Character-node executable

The"d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL386 will make sure that this debugging information isincluded in the
executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. Y ou can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship
between the object code and the original source language code.

To request the Open Watcom Debugger to assist in debugging the application, select the Open Watcom
Debugger icon. It would be too ambitious to describe the debugger in thisintroductory chapter so we refer
you to the book entitled Open Watcom Debugger User’s Guide.

There are more extensive examples of Windows applications written in FORTRAN 77 in the
\ WVATCOM SAMPLES\ FORTRAN\ W Ndirectory. The example programsare ELLI PSE. FOR and
FWCOPY. FOR.

Debugging the Character-mode Application 193

Windows NT Programming Guide

194 Debugging the Character-mode Application

28 Windows NT Multi-threaded Applications

This chapter describes how to create multi-threaded applications. A multi-threaded application is one
whose tasks are divided among several threads of execution. A processisan executing application and the
resourcesit uses. A thread isthe smallest unit of execution within aprocess. Each thread hasits own stack
and a set of machine registers and shares all resources with its parent process. The path of execution of one
thread does not affect that of another; each thread is an independent entity.

Typically, an application has a single thread of execution. In thistype of application, al tasks, once
initiated, are completed before the next task begins. In contrast, tasks in a multi-threaded application can
be performed concurrently since more than one thread is executing at once. For example, each thread may
be designed to perform a separate task.

28.1 Programming Considerations

Since a multi-threaded application consists of many threads of execution, there are a number of issues that
you must consider.

Since threads share the resources of its parent, it may be necessary to serialize access to these resources.

For example, if your application contains more than one thread of execution and each thread uses the

PRI NT statement to display output to the console, it would be necessary for the I/O support routines to
allow only one thread to use the PRI NT facility at any time. That is, once athread issuesa PRI NT request,
the I/O support routines should ensure that no other thread displays information until al information for the
initial thread has been displayed.

28.2 Creating Threads

Each application initially contains asingle thread. The run-time libraries contain two functions that create
and terminate threads of execution. The function begi nt hr ead creates athread of execution and the
function endt hr ead ends athread of execution. The function t hr eadi d can be used to determine the
current thread identifier.

WARNING! [f any thread uses an 1/0O statement or calls an intrinsic function, you must use the
begi nt hr ead function to create the thread. Do not usethe Cr eat eThr ead API function.

28.2.1 Creating a New Thread

The begi nt hr ead function creates anew thread. It isdefined asfollows.

i nteger function beginthread(start_address,
stack_si ze)

i nt eger stack_si ze

end

Creating Threads 195

Windows NT Programming Guide

where description

start_address isthe address of the subroutine that will be called when the newly created thread is
executed. When the thread returns from that subroutine, the thread will be terminated.
Note that a call to the endt hr ead subroutine will also terminate the thread.

stack_size specifies the size of the stack to be allocated by the operating system for the new thread.
The stack size should be a multiple of 4K.

If anew thread is successfully created, the thread identifier of the new thread isreturned. Otherwise, a
value of -1 isreturned.

Theincludefilet hr ead. f i containsthe definition of the begi nt hr ead function.
Another thread related function for Windows NT is _begi nt hr eadex. Seethe Open Watcom C
Library Reference for more information.

28.2.2 Terminating the Current Thread

The endt hr ead subroutine terminates the current thread. It is defined as follows.

subrouti ne endt hread()
end

Theincludefilet hr ead. fi contains the definition of the endt hr ead function.

28.2.3 Getting the Current Thread Identifier

Thet hr eadi d function can be used to determine the current thread identifier. It is defined as follows.

i nteger function threadid()
end

Theincludefilet hr ead. fi containsthe definition of the t hr eadi d function.

28.3 A Multi-threaded Example

Let us create a simple multi-threaded application. The source code for this example can be found in
\ wat com sanpl es\ fortran\w n32.

196 A Multi-threaded Example

Windows NT Multi-threaded Applications

* MIHREAD. FOR

*$pragma
*$pragma
*$pragma
*$pragma
*$pragma

aux
aux
aux
aux
aux

(1) Sleep parn(value)

(1) InitializeCritical Section parnm(reference)
(__stdcall) DeleteCritical Section parn(reference)

(I) EnterCritical Section parm(reference)

(I) LeaveCritical Section parnm(reference)

structure / RTL_CRI TI CAL_SECTI ON/

nt eger *4 Debugl nfo

nt eger *4 LockCount

nt eger *4 Recur si onCount
nt eger *4 Omni ngThr ead
nt eger*4 LockSemaphore
nt eger *4 Reserved

end structure

i nteger NuniThr eads

| ogi cal Hol dThr eads

vol atil e Hol dThreads, NumThreads

record /RTL_CRITI CAL_SECTIOV Critical Section
common NunTThreads, Hol dThreads, Critical Section

i nteger STACK_SI ZE

par anet er (STACK_ S| ZE=8192)
i nt eger NUM_THREADS

par anet er (NUM_THREADS=5)

integer i, threadid, beginthread
external a_thread

print

"("’main thread id ="'',i4)", threadid()

Nunirhreads = 0
Hol dThreads = .true.

! main thread counts as 1
call InitializeCritical Section(Critical Section)
do i = 2, NUM THREADS
if(beginthread(a_thread, STACK SIZE) .eq. -1)then
print '(’'creation of thread ',i4, ' failed)", i
el se
Nunirhr eads = Nunirhreads + 1
end if
end do

Hol dThreads = .fal se.

whi | e(NuniThreads .ne. 0) do
call Sleep(1)

end while

cal |
end

Del eteCritical Section(Critical Section)

subroutine a_thread()

structure / RTL_CRI TI CAL_SECTI ON

nt eger *4 Debugl nfo

nt eger *4 LockCount

nt eger *4 Recur si onCount
nt eger *4 Omni ngThr ead
nt eger*4 LockSemaphore
nt eger *4 Reserved

end structure

i nt eger NuniThr eads

| ogi cal Hol dThr eads

vol ati |l e Hol dThr eads

record /RTL_CRITICAL_SECTIOV Critical Section
comon NunThreads, Hol dThreads, Critical Section

integer threadid

A Multi-threaded Example 197

Windows NT Programming Guide

whi | e(Hol dThreads) do

call Sleep(1)
end while
print "("'H fromthread "', i4)’, threadid()
call EnterCritical Section(Critical Section)
NuniThr eads = NuniThreads - 1
call LeaveCritical Section(Critical Section)
call endthread()
end

Note:

1. Inthesubroutinea_t hread, EnterCritical Sectionand LeaveCritical Section
are called when we modify the variable NunmThr eads. This ensures that the action of
extracting the value of NumThr eads from memory, incrementing the value, and storing the
new result into memory, occurs without interruption. If these functions were not called, it would
be possible for two threads to extract the value of Nunirhr eads from memory before an update
occurred.

Let us assume that thefile nmt hr ead. f or containsthe above example. Before compiling the file, make
sure that the WATCOM environment variableis set to the directory in which you installed Open Watcom
FORTRAN 77. Also, the FINCLUDE environment variable must contain the \ wat com src\ fortran
directory where \WATCOM" is the name of the directory in which you installed Open Watcom
FORTRAN 77.

We can now compile and link the application by issuing the following command.

C:\>wf1386 -bm -I=nt nthread

The "bm" option must be specified since we are creating a multi-threaded application. If your
multi-threaded application contains more than one module, each module must be compiled using the "bm"
switch.

The"I" option specifies the target system for which the applicationisto be linked. The system name nt is
defined in the filew syst em | nk whichislocated in the "BINW" subdirectory of the directory in which
you installed Open Watcom FORTRAN 77.

The multi-threaded application is now ready to be run.

198 A Multi-threaded Example

29 Windows NT Dynamic Link Libraries

A dynamic link library, like a standard library, is alibrary of functions. When an application uses functions
from a standard library, the library functions referenced by the application become part of the executable
module. Thisform of linking is called static linking. When an application uses functions from a dynamic
link library, the library functions referenced by the application are not included in the executable module.
Instead, the executable module contains references to these functions which are resolved when the
application isloaded. Thisform of linking is called dynamic linking.

Let us consider some of the advantages of using dynamic link libraries over standard libraries.

1. Functionsin dynamic link libraries are not linked into your program. Only references to the
functionsin dynamic link libraries are placed in the program module. These references are
called import definitions. Asaresult, the linking timeis reduced and disk spaceis saved. If
many applications reference the same dynamic link library, the saving in disk space can be
significant.

2. Since program modules only reference dynamic link libraries and do not contain the actual
executable code, adynamic link library can be updated without re-linking your application.
When your application is executed, it will use the updated version of the dynamic link library.

3. Dynamic link libraries also allow sharing of code and data between the applications that use
them. If many applications that use the same dynamic link library are executing concurrently,
the sharing of code and data segments improves memory utilization.

29.1 Creating Dynamic Link Libraries

Once you have devel oped the source for alibrary of functions, a number of steps are required to create a
dynamic link library containing those functions.

First, you must compile your source using the "bd" compiler option. This option tells the compiler that the
module you are compiling is part of adynamic link library. Once you have successfully compiled your
source, you must create alinker directive file that describes the attributes of your dynamic link library. The
following lists the most common linker directives required to create adynamic link library.

1. The"SYSTEM" directiveisused to specify that a dynamic link library isto be created.

2. The"EXPORT" directiveis used to to specify which functionsin the dynamic link library areto
be exported.

3. The"OPTION" directiveis used to specify attributes such as the name of the dynamic link
library and how to allocate the automatic data segment when the dynamic link library is
referenced.

4. The"SEGMENT" directiveisused to specify attributes of segments. For example, a segment
may be read-only or read-write.

Once the dynamic link library is created, you must allow access to the dynamic link library to client
applications that wish to useit. Thiscan be done by creating an import library for the dynamic link library

Creating Dynamic Link Libraries 199

Windows NT Programming Guide

or creating alinker directive file that contains "IMPORT" directives for each of the entry pointsin the
dynamic link library.

29.2 Creating a Sample Dynamic Link Library

Let us now create adynamic link library using the following example. The source code for this example
canbefoundin\ wat com sanpl es\fortran\w n\dl|. Unlikeapplications developed in the C or
C++ language, the FORTRAN 77 developer must not provide a Li bMai n entry point. Thisentry pointis
already defined in the Open Watcom FORTRAN 77 run-time libraries. The run-time system’s Li bMai n
provides for the proper initialization of the FORTRAN 77 run-time system and includes hooks to call
developer-written process attach/detach and thread attach/detach routines. These routines are optional but
we show skeleton versionsin the following example so that you can develop your own if required.

* DLLSAWP. FOR

integer function _ _fdll_initialize_()
* Call ed from Li bMain during "DLL PROCESS ATTACH'
* do process initialization

print *, "Hi fromprocess attach’

* returning O indicates failure
_fdll _initialize_ =1
return
end

integer function __fthrd_initialize_()
* Cal l ed from Li bMain during "DLL THREAD ATTACH'

* do thread initialization
print *, "H fromthread attach’

* returning O indicates failure
_fthrd_initialize_ =1
return
end

integer function _ fthrd_termnate_()
* Call ed from Li bMain during "DLL THREAD DETACH'

* do thread cl eanup
print *, "H fromthread detach’

* returning O indicates failure
__fthrd_termnate_ =1
return
end

integer function _ _fdll_termnate_()
* Cal l ed from Li bMain during "DLL PROCESS DETACH'

* do process cl eanup
print *, *H from process detach’

* returning O indicates failure
_fdll _terminate_ =1
return
end

subroutine dll_entry_1()
print *, "H fromdll entry #1’
end

subroutine dll_entry_2()

print *, "H fromdll entry #2’
end

200 Creating a Sample Dynamic Link Library

Windows NT Dynamic Link Libraries

Here are some explanatory notes on this example.

Function

Description

_ FDLL_INITIALIZE_ Thisfunctionis called when the DLL is attaching to the address space of the

current process as a result of the process starting up or as aresult of acall to
LoadLi brary. A DLL can use this opportunity to initialize any instance data.

During initial process startup or after acall to LoadLi br ar y, the operating system scans
thelist of loaded DLLsfor the process. For each DLL that has not already been called with
the DLL_PROCESS ATTACH value, the system callsthe DLL’s Li bMai n entry-point (in
the Open Watcom FORTRAN 77 run-time system). This call is made in the context of the
thread that caused the process address space to change, such as the primary thread of the
process or the thread that called LoadLi brary.

_ FTHRD_INITIALIZE_ Thisfunction is called when the current processis creating a new thread. When

this occurs, the system callsthe Li bMai n entry-point (in the Open Watcom FORTRAN 77
run-time system) of all DLLs currently attached to the process. The call ismadein the
context of the new thread. DLLs can use this opportunity to initialize thread specific data.
A thread callingthe DLL’s Li bMai n with the DLL_PROCESS ATTACH value does not
call Li bMai n withthe DLL_ THREAD ATTACHvaue. Notethat Li bMai n iscaled with
this value only by threads created after the DLL is attached to the process. WhenaDLL is
attached by LoadLi br ar y, existing threads do not call the Li bMai n entry-point of the
newly loaded DLL.

_ FTHRD_TERMINATE_ Thisfunction is called when athread is exiting normally. The DLL usesthis

opportunity to do thread specific termination such as closing files that were opened by the
thread. The operating system callsthe Li bMai n entry-point (in the Open Watcom
FORTRAN 77 run-time system) of all currently loaded DLLswiththisvalue. Thecall is
made in the context of the exiting thread. There are casesin which Li bMai n iscalled for
aterminating thread even if the DLL never attached to the thread. For example, Li bMai n
isnever called with the DLL_THREAD ATTACH value in the context of the thread in either
of these two situations:

* The thread was the initial thread in the process, so the system called Li bMai n with
the DLL_PROCESS_ATTACH value.

» The thread was already running when acall to the LoadLi br ar y function was
made, so the system never called Li bMai n for it.

__FDLL_TERMINATE_ Thisfunction is called when the DLL is detaching from the address space of the

Note:

calling process as aresult of either anormal termination or of acall to Fr eeLi brary.
When aDLL detaches from a process as aresult of process termination or asaresult of a
call to Fr eeLi br ar y, the operating system does not call theDLL’s Li bai n with the
DLL_THREAD DETACH value for the individual threads of the process. The DLL isonly
given DLL_PROCESS_DETACH natification. DLLs can take this opportunity to clean up
all resourcesfor al threads attached and known to the DLL.

These functionsreturn 1 if initialization succeeds or O if initialization fails. Subsequently,
this value will be returned by the run-time system’s Li bMai n function.

If thereturn value is O when Li bMai n is called because the process uses the
LoadLi br ary function, LoadLi brary returnsNULL.

Creating a Sample Dynamic Link Library 201

Windows NT Programming Guide

If thereturn value is O when Li bMai n is called during process initialization, the process
terminates with an error.

DLL_ENTRY_1,DLL_ENTRY_2 These are sample DLL entry points that we will call from our simple
test program.

Some further explanation and an example are provided in alater section.

Assume the above exampleis contained in thefile dl | sanp. f or. We can compile the file using the
following command. Note that we must specify the "bd" compiler option.

C.\>wfc386 -bd dllsanp

Before we can link our example, we must create alinker directive file that describes the attributes and entry
points of our dynamic link library. Thefollowing isalinker directivefile, caled dl | sanp. | nk, that
can be used to create the dynamic link library.

systemnt _dll initinstance terninstance
export DLL_ENTRY_1

export DLL_ENTRY_2

file dllsanp

Notes:
1. The"SYSTEM" directive specifies that we are creating a Windows NT dynamic link library.

2. When adynamic link library uses the Open Watcom FORTRAN 77 run-time libraries, an
automatic data segment is created each time a new process accesses the dynamic link library.
For this reason, initialization code must be executed when a process accesses the dynamic link
library for thefirst time. To achievethis, "INITINSTANCE" must be specified in the
"SYSTEM" directive. Similarly, "TERMINSTANCE" must be specified so that the termination
code is executed when a process has completed its access to the dynamic link library. If the
Open Watcom FORTRAN 77 run-time libraries are not used, these options are not required.

3. The"EXPORT" directive specifies the entry pointsinto the dynamic link library. Notethat in
Open Watcom FORTRAN 77, names of all symbols are uppercased. Regardless of the case used
in source files, linker directives must use uppercased symbol names. The linker is case sensitive
by default, although the "OP NOCASEEXACT" directive may be used to override this.

We can now create our dynamic link library by issuing the following command.

C\>wink @lllsanp

Afilecaled dl | sanp. dl | will be created.

29.3 Using Dynamic Link Libraries

Once we have created a dynamic link library, we must allow other applications to access the functions
available in the dynamic link library. There are two waysto achievethis.

Thefirst method isto create alinker directive file which contains an "IMPORT" directive for al entry

pointsin the dynamic link library. The"IMPORT" directive provides the name of the entry point and the
name of the dynamic link library. When creating an application that references a function in the dynamic

202 Using Dynamic Link Libraries

Windows NT Dynamic Link Libraries

link library, thislinker directive file would be included as part of the linking process that created the
application.

The second method is to use import libraries. Animport library is a standard library that is created from a
dynamic link library by using the Open Watcom Library Manager. It contains object modules that describe
the entry pointsin adynamic link library. The resulting import library can then be specifiedin a
"LIBRARY" directive in the same way one would specify a standard library.

Using an import library is the preferred method of providing references to functions in dynamic link
libraries. When adynamic link library is modified, typically the import library corresponding to the
modified dynamic link library is updated to reflect the changes. Hence, any directive file that specifies the
import library in a"LIBRARY" directive need not be modified. However, if you are using "IMPORT"
directives, you may have to modify the "IMPORT" directives to reflect the changes in the dynamic link
library.

Let us create an import library for our sample dynamic link library we created in the previous section. We
do this by issuing the following command.

C\>wMib dlIsanp +dllsanp.dll
A standard library called dl | sanp. | i b will be created.

Suppose the following sample program, contained in thefile dl | t est . f or, callsthe functions from our
sample dynamic link library.

* DLLTEST. FOR

call dll_entry_1()
call dll_entry_2()
end

We can compile and link our sample application by issuing the following command.
C\>wf 386 -l=nt dlltest dllsanp.lib

If we had created alinker directive file of "IMPORT" directives instead of an import library for the
dynamic link library, the linker directivefile, say dl | i nps. | nk, would be asfollows.

i mport DLL_ENTRY_1 dl | sanmp
i mport DLL_ENTRY_ 2 dl | sanp

To compile and link our sample application, we would issue the foll owing command.

C\>wfl 386 -I=nt dlltest -"@l!linps"

29.4 The Dynamic Link Library Data Area

The Open Watcom FORTRAN 77 32-bit run-time library does not support the general case operation of
DLLsin an execution environment where there is only one instance of the DATA segment (DGROUP) for
that DLL.

There are two cases that can lead to a DL L executing with only one instance of the DGROUP.

1. DLLslinked for 32-bit OS/2 without the MANYAUTODATA option.

The Dynamic Link Library Data Area 203

Windows NT Programming Guide

2. DLLslinked for the Win32 API and executing under Win32s.

In these cases the run-time library startup code detects that there is only one instance of the DGROUP when
a second process attempts to attach to the DLL. At that point, it issues a diagnostic for the user and then
notifies the operating system that the second process cannot attach to the DLL.

Developers who require DL L s to operate when there is only one instance of the DGROUP can suppress the
function which issues the diagnostic and notifies the operating system that the second process cannot attach
tothe DLL.

Doing so requires good behaviour on the part of processes attaching to the DLL. This good behaviour
consists primarily of ensuring that the first process to attach to the DLL is also the last process to detach
from the DLL thereby ensuring that the DATA segment is not rel eased back to the free memory pool.

To suppress the function which issues the diagnostic and notifies the operating system that the second
process cannot attach to the DLL, the developer must provide a replacement entry point with the following
prototype:

int _ disallow single_dgroup(int);

This function should return zero to indicate that the detected single copy of the DATA segment is allowed.

29.5 Dynamic Link Library Initialization/Termination

Each dynamic link library (DLL) has an initialization and termination routine associated with it. The
initialization routine can either be called the first time any process accessesthe DLL ("INITGLOBAL" is
specified at link time) or each time a process accessesthe DLL ("INITINSTANCE" is specified at link
time). Similarly, the termination routine can either be called when all processes have completed their
access of the DLL ("TERMGLOBAL" is specified at link time) or each time a process compl etes its access
of the DLL ("TERMINSTANCE" is specified at link time).

For aDLL that usesthe FORTRAN 77 run-time libraries, initialization and termination of the FORTRAN
77 run-time environment is performed automatically. Itisalso possiblefor aDLL to do its own special
initialization and termination process.

The FORTRAN 77 run-time environment provides a method for calling user-written DLL initialization and
terminationcode. The _ fdl | _initialize_ routineiscaledfor DLL processinitialization. The
__fthrd_initialize_routineiscalled for DLL thread initialization. The _ fthrd_term nate_
routineis called for DLL thread termination. The _ fdl | _terni nate_ routineiscalled for DLL
process termination. Default stub versions of these routines are included in the run-time library. If you
wish to perform additional initialization/termination processing that is specific to your dynamic link library,
you may write your own versions of these routines.

When a process first attaches to the DLL, the FORTRAN 77 run-time environment isinitialized and then
theroutine__fdll _initialize_ iscaled. Whenathread is started, the routine
__fthrd_initialize_iscaled. When athread isterminated, theroutine _ fthrd_term nate_
iscaled. When the main process relinquishesthe DLL, theroutine __fdl | _termi nat e_iscalled and
then the FORTRAN 77 run-time environment is terminated,

Theinitialization and termination routines return an integer. A value of O indicates failure; avalue of 1
indicates success. The following example illustrates sample initialization/termination routines.

204 Dynamic Link Library Initialization/Termination

Windows NT Dynamic Link Libraries

* DLLINIT. FOR

integer function _ fdll _initialize_()
integer _ fthrd_initialize_, _ fthrd_termnate_
integer _ fdll_terminate_, dll _entry

i nt eger WORKI NG_SI ZE

paranmeter (WORKING S| ZE = 16*1024)
integer ierr, WrkingStorage

di mensi on Wor ki ngSt or age(:)

al | ocat e(Wor ki ngSt orage(WORKI NG_SI ZE), stat=ierr)
if(ierr .eq. 0)then

_fdll _initialize_ =1
el se

_fdll _initialize_ =0
endi f
return

entry _ fthrd_initialize_()
__fthrd_initialize_ =1
return

entry _ fthrd_termnate_()
__fthrd_terminate_ =1
return

entry _ fdll_termnate_()
* Note: no run-time calls all owed under OS/2 Warp
deal | ocat e(Wor ki ngSt orage)
__fdll _termnate_ =1
return

entry dll_entry()
I use WorkingStorage
return
end
In the above example, the process initialization routine all ocates storage that the dynamic link library needs,

theroutinedl | _ent ry usesthe storage, and the process termination routine frees the storage allocated in
theinitialization routine.

Dynamic Link Library Initialization/Termination 205

Windows NT Programming Guide

206 Dynamic Link Library Initialization/Termination

0S/2 Programming Guide

0S/2 Programming Guide

208

30 Creating 16-bit 0S/2 1.x Applications

An OS2 application can be one of the following; a fullscreen application, a PM-compatible application, or
a Presentation Manager application. A fullscreen application runsin its own screen group. A
PM-compatible application will runin an OS/2 fullscreen environment or in awindow in the Presentation
Manager screen group but does not take direct advantage of menus, mouse or other features available in the
Presentation Manager. A Presentation Manager application has full access to the complete set of
user-interface tools such as menus, icons, scroll bars, etc.

This chapter deals with the creation of OS/2 fullscreen applications. For information on creating
Presentation Manager applications, refer to the section entitled "Programming for OS/2 Presentation
Manager" on page 227.

We will illustrate the steps to creating 16-bit OS/2 1.x applications by taking a small sample application
and showing you how to compile, link, run and debug it.

30.1 The Sample Application

To demonstrate the creation of 16-bit OS/2 1.x applications using command-line oriented tools, we
introduce a simple sample program. For our example, we are going to use the "sieve" program.

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

I MPLI CI' T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORME' (A, 15, A 15)")
DO | = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO | = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRIMES + 1
DOK =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Prinmes between 1 and ', UPBOUND,
1 ' are: ', PRIMES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Seve of

Eratosthenes algorithm to accomplish thistask. We will take you through the steps necessary to produce
this result.

The Sample Application 209

0S/2 Programming Guide

30.2 Building and Running the Sample 0S/2 1.x Application

To compile and link our example program which is stored in thefile si eve. f or, enter the following
command:

[C\]wfl -l1=0s2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

[C\]wfl -1=0s2 sieve.for
Open Watcom F77/16 Conpile and Link Uility
Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al Ri ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
wfc sieve.for
Open WAt com FORTRAN 77/ 16 Optim zing Conpil er
Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conlf open-watcomv2 for details.
sieve.for: 21 statements, 311 bytes, 6 extensions, 0 warnings, O errors

Open Wt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al R ghts Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. conf open-wat conf open-wat comv2 for details.

| oadi ng object files

searching libraries

creating an OS/2 16-bit executable

Provided that no errors were encountered during the compile or link phases, the "sieve" program may now
be run.

[C\]sieve
The Nunmber of Prines between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are

si eve. obj (theresult of compiling si eve. f or) and si eve. exe (theresult of linking si eve. obj
with the appropriate Open Watcom FORTRAN 77 libraries). Itis si eve. exe that isrun by OS/2 when
you enter the "sieve" command.

30.3 Debugging the Sample 0S/2 1.x Application

L et us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisalso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL command, thisisfairly straightforward. WFL recognizes the Open Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Open Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

[C\]wfl -l1=0s2 -d2 sieve.for

210 Debugging the Sample 0S/2 1.x Application

Creating 16-bit 0S/2 1.x Applications

The typical messages that appear on the screen are shown in the following illustration.

[C\]wfl -l=0s2 -d2 sieve.for
Open Watcom F77/16 Conpile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. com open-wat conl open-watcomv2 for details.
wfc sieve.for -d2
Open WAt com FORTRAN 77/ 16 Optim zing Conpil er
Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
sieve.for: 21 statements, 392 bytes, 6 extensions, 0 warnings, O errors

Open Wt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al R ghts Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. con open-wat conl open-wat comv2 for details.

| oadi ng object files

searching libraries

creating an OS/2 16-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL will make sure that this debugging information isincluded in the executable
filethat is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. Y ou can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship
between the object code and the original source language code.

For OS/2, you should also include the Bl NP\ DLL directory inthe "LIBPATH" directive of the system
configuration file CONFI G. SYS. It contains the Open Watcom Debugger Dynamic Link Libraries
(DLLS).

Example:
| i bpat h=c: \wat com bi np\ dl |

To request the Open Watcom Debugger to assist in debugging the application, the following command may
be issued.

[C\]wd sieve

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Open Watcom Debugger User’s Guide.

Debugging the Sample 0S/2 1.x Application 211

0S/2 Programming Guide

212 Debugging the Sample 0S/2 1.x Application

31 Creating 32-bit 0S/2 Applications

An OS2 application can be one of the following; a fullscreen application, a PM-compatible application, or
a Presentation Manager application. A fullscreen application runsin its own screen group. A
PM-compatible application will runin an OS/2 fullscreen environment or in awindow in the Presentation
Manager screen group but does not take direct advantage of menus, mouse or other features available in the
Presentation Manager. A Presentation Manager application has full access to the complete set of
user-interface tools such as menus, icons, scroll bars, etc.

This chapter deals with the creation of OS/2 fullscreen applications. For information on creating
Presentation Manager applications, refer to the section entitled "Programming for OS/2 Presentation
Manager" on page 227.

We will illustrate the steps to creating 32-bit OS/2 applications by taking a small sample application and
showing you how to compile, link, run and debug it.

31.1 The Sample Application

To demonstrate the creation of 32-bit OS/2 applications using command-line oriented tools, we introduce a
simple sample program. For our example, we are going to use the "sieve" program.

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

I MPLI CI' T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORME' (A, 15, A 15)")
DO | = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO | = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRIMES + 1
DOK =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Prinmes between 1 and ', UPBOUND,
1 ' are: ', PRIMES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It uses the famous Seve of

Eratosthenes algorithm to accomplish thistask. We will take you through the steps necessary to produce
this result.

The Sample Application 213

0S/2 Programming Guide

31.2 Building and Running the Sample 0S/2 Application

To compile and link our example program which is stored in thefile si eve. f or, enter the following
command:

[C\]wfl 386 -1=0s2v2 sieve.for

The typical messages that appear on the screen are shown in the following illustration.

[C\]wfl 386 -1=0s2v2 sieve.for
Open Watcom F77/32 Conpile and Link Uility
Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al Ri ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
wfc386 sieve. for
Open WAt com FORTRAN 77/ 32 Optim zing Conpil er
Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conlf open-watcomv2 for details.
sieve.for: 21 statements, 172 bytes, 6 extensions, 0 warnings, O errors

Open Wt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al R ghts Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. conf open-wat conf open-wat comv2 for details.

| oadi ng object files

searching libraries

creating an OS/2 32-bit executable

Provided that no errors were encountered during the compile or link phases, the "sieve" program may now
be run.

[C\]sieve
The Nunmber of Prines between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are

si eve. obj (theresult of compiling si eve. f or) and si eve. exe (theresult of linking si eve. obj
with the appropriate Open Watcom FORTRAN 77 libraries). Itis si eve. exe that isrun by OS/2 when
you enter the "sieve" command.

31.3 Debugging the Sample 0S/2 Application

L et us assume that you wish to debug your application in order to locate an error in programming. Inthe
previous section, the "sieve" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. Itisalso
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WFL386 command, thisisfairly straightforward. WFL386 recognizes the Open Watcom
F77 compiler "debug" options and will create the appropriate debug directives for the Open Watcom
Linker.

For example, to compile and link the "sieve" program with debugging information, the following command
may be issued.

[C\]wfl 386 -I=0s2v2 -d2 sieve.for

214 Debugging the Sample 0S/2 Application

Creating 32-bit 0S/2 Applications

The typical messages that appear on the screen are shown in the following illustration.

[C\]wfl 386 -1=0s2v2 -d2 sieve.for
Open Watcom F77/32 Conpile and Link Utility
Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1990-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. com open-wat conl open-watcomv2 for details.
wfc386 sieve.for -d2
Open WAt com FORTRAN 77/32 Optim zing Conpil er
Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. Al R ghts Reserved.
Source code is avail abl e under the Sybase Open Watcom Public License.
See https://github. con open-wat conl open-wat comv2 for details.
sieve.for: 21 statements, 237 bytes, 6 extensions, 0 warnings, O errors

Open Wt com Li nker

Copyright (c) 2002-2023 the Open Watcom Contributors. Al Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. Al R ghts Reserved.

Source code is avail abl e under the Sybase Open Watcom Public License.

See https://github. con open-wat conl open-wat comv2 for details.

| oadi ng object files

searching libraries

creating an OS/2 32-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom F77 compiler. WFL386 will make sure that this debugging information isincluded in the
executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option results in fewer
code optimizations by default. Y ou can request more optimization by specifying the appropriate options.
However, you do so at the risk of making it more difficult for yourself to determine the relationship
between the object code and the original source language code.

To request the Open Watcom Debugger to assist in debugging the application, the following command may
be issued.

[C\]wd sieve

It would be too ambitious to describe the debugger in thisintroductory chapter so we refer you to the book
entitled Open Watcom Debugger User’s Guide.

Debugging the Sample 0S/2 Application 215

0S/2 Programming Guide

216 Debugging the Sample 0S/2 Application

32 0S/2 2.x Multi-threaded Applications

This chapter describes how to create multi-threaded applications. A multi-threaded application is one
whose tasks are divided among several threads of execution. A processisan executing application and the
resourcesit uses. A thread isthe smallest unit of execution within aprocess. Each thread hasits own stack
and a set of machine registers and shares all resources with its parent process. The path of execution of one
thread does not affect that of another; each thread is an independent entity.

Typically, an application has a single thread of execution. In thistype of application, al tasks, once
initiated, are completed before the next task begins. In contrast, tasks in a multi-threaded application can
be performed concurrently since more than one thread is executing at once. For example, each thread may
be designed to perform a separate task.

32.1 Programming Considerations

Since a multi-threaded application consists of many threads of execution, there are a number of issues that
you must consider.

Since threads share the resources of its parent, it may be necessary to serialize access to these resources.

For example, if your application contains more than one thread of execution and each thread uses the

PRI NT statement to display output to the console, it would be necessary for the I/O support routines to
allow only one thread to use the PRI NT facility at any time. That is, once athread issuesa PRI NT request,
the I/O support routines should ensure that no other thread displays information until al information for the
initial thread has been displayed.

32.2 Creating Threads

Each application initially contains asingle thread. The run-time libraries contain two functions that create
and terminate threads of execution. The function begi nt hr ead creates athread of execution and the
function endt hr ead ends athread of execution. The function t hr eadi d can be used to determine the
current thread identifier.

WARNING! [f any thread uses an 1/0O statement or calls an intrinsic function, you must use the
begi nt hr ead function to create the thread. Do not use the DosCr eat eThr ead API function.

32.2.1 Creating a New Thread

The begi nt hr ead function creates anew thread. It isdefined asfollows.

i nteger function beginthread(start_address,
stack_si ze)

i nt eger stack_si ze

end

Creating Threads 217

0S/2 Programming Guide

where description

start_address isthe address of the subroutine that will be called when the newly created thread is
executed. When the thread returns from that subroutine, the thread will be terminated.
Note that a call to the endt hr ead subroutine will also terminate the thread.

stack_size specifies the size of the stack to be allocated by the operating system for the new thread.
The stack size should be a multiple of 4K.

If anew thread is successfully created, the thread identifier of the new thread isreturned. Otherwise, a
value of -1 isreturned.

Theincludefilet hr ead. f i containsthe definition of the begi nt hr ead function.

32.2.2 Terminating the Current Thread

The endt hr ead subroutine terminates the current thread. It is defined as follows.

subrouti ne endt hread()
end

Theincludefilet hr ead. fi contains the definition of the endt hr ead function.

32.2.3 Getting the Current Thread Identifier

Thet hr eadi d function can be used to determine the current thread identifier. It is defined as follows.

i nteger function threadid()
end

Theincludefilet hr ead. fi containsthe definition of the t hr eadi d function.

32.3 A Multi-threaded Example

Let us create a simple multi-threaded application. The source code for this example can be found in
\ wat com sanpl es\fortran\os2.

* MTHREAD. FOR
*$pragma aux DosSleep parnm(value) [] caller
i nt eger NuniThr eads
| ogi cal Hol dThr eads
common NunTThr eads, Hol dThr eads
i nteger STACK Sl ZE
par anet er (STACK S| ZE=32768)
i nt eger NUM_THREADS
par anet er (NUM_THREADS=5)

integer i, threadid, beginthread
external a_thread

218 A Multi-threaded Example

0S/2 2.x Multi-threaded Applications

print "(''main thread id ="', i4)’, threadid()
Nunirhreads = 0

Hol dThreads = .true.

! main thread counts as 1

do i = 2, NUM THREADS
if(beginthread(a_thread, STACK SIZE) .eq. -1)then
print '('’creation of thread'’, i4, ''failed)", i
el se
Nunirhr eads = NuniThreads + 1
end if
end do

Hol dThreads = .fal se.

whi | e(NuniThreads .ne. 0)do
call DosSleep(1)

end while

end

subroutine a_thread()
i nt eger NuniThr eads
| ogi cal Hol dThr eads
common NuniThr eads, Hol dThr eads
integer threadid
whi | e(Hol dThreads)do
call DosSleep(1)

end while
call DosEnterCritSec()
print "("'H fromthread "', i4)', threadid()

Nunirhr eads = Nunirhreads - 1
call DosExitCritSec()

cal |l endthread()

end

Note:

1. Inthesubroutinea_t hr ead, DosEnt er Crit Sec and DosExi t Cri t Sec are called when
we modify the variable NuniThr eads. Thisensures that the action of extracting the value of
Numrhr eads from memory, incrementing the value, and storing the new result into memory,
occurs without interruption. If these functions were not called, it would be possible for two
threads to extract the value of Nunmirhr eads from memory before an update occurred.

Let us assume that the file nt hr ead. f or containsthe above example. Before compiling the file, make
sure that the WATCOM environment variableis set to the directory in which you installed Open Watcom
FORTRAN 77. Also, the FINCL UDE environment variable must contain the

\wat coml src\fortran\ os2 directory where " \WATCOM" is the name of the directory in which you
installed Open Watcom FORTRAN 77.

We can now compile and link the application by issuing the following command.

[C\]wfl 386 -bm -1=0s2v2 nt hread
The "bm" option must be specified since we are creating a multi-threaded application. If your
multi-threaded application contains more than one module, each module must be compiled using the "bm"
switch.
The"I" option specifies the target system for which the application is to be linked. The system name

0s2v2 isdefined inthefile w syst em | nk whichislocated in the "BINW" subdirectory of the
directory in which you installed Open Watcom FORTRAN 77.

The multi-threaded application is now ready to be run.

A Multi-threaded Example 219

0S/2 Programming Guide

32.4 Thread Limits

Thereisalimit to the number of threads an application can create under 16-bit OS/2. The default limitis
32. Thislimit can be adjusted by defining the integer function __get maxt hr eads which returns the
new thread limit.

Under 32-bit OS/2, there is no limit to the number of threads an application can create. However, dueto
the way in which multiple threads are supported in the Open Watcom libraries, there isa small performance
penalty once the number of threads exceeds the default limit of 32 (this number includes the initial thread).
If you are creating more than 32 threads and wish to avoid this performance penalty, you can redefine the
threshold value of 32. You can statically initialize the global variable _ MaxThr eads.

Thislimit can be adjusted by defining the integer function __get nmaxt hr eads which returns the new
thread limit. By defining ___get maxt hr eads asfollows, the new threshold value will be set to 48.

i nteger function __ get maxt hreads()
__getnaxthreads = 48
end

Thisversionof __get maxt hr eads will replace the default function that is included in the run-time
library. The default function simply returns the current value of theinternal variable _ MaxThr eads.

Y our version of this function will return anew value for thisvariable. Internaly, the run-time system
executes code similar to the following:

'__I\/axThreads = __ get naxt hreads()

Thus, the default __get maxt hr eads function does not ater thevalueof _ MaxThr eads but your
version will.

220 Thread Limits

33 0S/2 2.x Dynamic Link Libraries

A dynamic link library, like a standard library, is alibrary of functions. When an application uses functions
from a standard library, the library functions referenced by the application become part of the executable
module. Thisform of linking is called static linking. When an application uses functions from a dynamic
link library, the library functions referenced by the application are not included in the executable module.
Instead, the executable module contains references to these functions which are resolved when the
application isloaded. Thisform of linking is called dynamic linking.

Let us consider some of the advantages of using dynamic link libraries over standard libraries.

1. Functionsin dynamic link libraries are not linked into your program. Only references to the
functionsin dynamic link libraries are placed in the program module. These references are
called import definitions. Asaresult, the linking timeis reduced and disk spaceis saved. If
many applications reference the same dynamic link library, the saving in disk space can be
significant.

2. Since program modules only reference dynamic link libraries and do not contain the actual
executable code, adynamic link library can be updated without re-linking your application.
When your application is executed, it will use the updated version of the dynamic link library.

3. Dynamic link libraries also allow sharing of code and data between the applications that use
them. If many applications that use the same dynamic link library are executing concurrently,
the sharing of code and data segments improves memory utilization.

33.1 Creating Dynamic Link Libraries

Once you have devel oped the source for alibrary of functions, a number of steps are required to create a
dynamic link library containing those functions.

First, you must compile your source using the "bd" compiler option. This option tells the compiler that the
module you are compiling is part of adynamic link library. Once you have successfully compiled your
source, you must create alinker directive file that describes the attributes of your dynamic link library. The
following lists the most common linker directives required to create adynamic link library.

1. The"SYSTEM" directiveisused to specify that a dynamic link library isto be created.

2. The"EXPORT" directiveis used to to specify which functionsin the dynamic link library areto
be exported.

3. The"OPTION" directiveis used to specify attributes such as the name of the dynamic link
library and how to allocate the automatic data segment when the dynamic link library is
referenced.

4. The"SEGMENT" directiveisused to specify attributes of segments. For example, a segment
may be read-only or read-write.

Once the dynamic link library is created, you must allow access to the dynamic link library to client
applications that wish to useit. Thiscan be done by creating an import library for the dynamic link library

Creating Dynamic Link Libraries 221

0S/2 Programming Guide

or creating alinker directive file that contains "IMPORT" directives for each of the entry pointsin the
dynamic link library.

33.2 Creating a Sample Dynamic Link Library

Let us now create adynamic link library using the following example. The source code for this example
canbefoundin\ wat com sanpl es\fortran\ os2\dl | . Unlikeapplications developed in the C or
C++ language, the FORTRAN 77 developer must not provide a Li bMai n entry point. Thisentry pointis
already defined in the Open Watcom FORTRAN 77 run-time libraries. The run-time system’s Li bMai n
provides for the proper initialization of the FORTRAN 77 run-time system and includes hooks to call
developer-written process attach/detach and thread attach/detach routines. These routines are optional but
we show skeleton versionsin the following example so that you can develop your own if required.

* DLLSAWP. FOR

integer function _ _fdll_initialize_()
* Call ed from Li bMain during "DLL PROCESS ATTACH'
* do process initialization

print *, "Hi fromprocess attach’

* returning O indicates failure
_fdll _initialize_ =1
return
end

integer function _ _fdll_termnate_()
* Cal l ed from Li bMain during "DLL PROCESS DETACH'

* do process cl eanup
print *, *H from process detach’

* returning O indicates failure
_fdll _terminate_ =1
return
end

subroutine dll_entry_1()
print *, "H fromdll entry #1’
end

subroutine dll_entry_2()
print *, "H fromdll entry #2’
end

Assume the above exampleis contained in thefile dl | sanp. f or. We can compile the file using the
following command. Note that we must specify the "bd" compiler option.

[C\]wWfc386 -bd dllsam

Before we can link our example, we must create alinker directive file that describes the attributes and entry
points of our dynamic link library. Thefollowing isalinker directivefile, caled dl | sanp. | nk, that
can be used to create the dynamic link library.

system os2v2 dll initinstance tern nstance
opti on nanyaut odat a

export DLL_ENTRY_1

export DLL_ENTRY_2

file dllsanp

222 Creating a Sample Dynamic Link Library

0S/2 2.x Dynamic Link Libraries

Notes:
1. The"SYSTEM" directive specifiesthat we are creating a 32-bit OS/2 dynamic link library.

2. The"MANYAUTODATA" option specifies that the automatic data segment is allocated for
every instance of the dynamic link library. This option must be specified only for adynamic link
library that uses the Open Watcom FORTRAN 77 run-time libraries. If the Open Watcom
FORTRAN 77 run-time libraries are not used, this option is not required. Our example does use
the Open Watcom FORTRAN 77 run-time libraries so we must specify the
"MANYAUTODATA" option.

Aswas just mentioned, when adynamic link library uses the Open Watcom FORTRAN 77
run-time libraries, an automatic data segment is created each time a process accesses the
dynamic link library. For thisreason, initialization code must be executed when a process
accesses the dynamic link library for the first time. To achieve this, "INITINSTANCE" must be
specified in the "SY STEM" directive. Similarly, "TERMINSTANCE" must be specified so that
the termination code is executed when a process has completed its access to the dynamic link
library. If the Open Watcom FORTRAN 77 run-time libraries are not used, these options are not
required.

3. The"EXPORT" directive specifies the entry pointsinto the dynamic link library. Notethat in
Open Watcom FORTRAN 77, names of all symbols are uppercased. Regardless of the case used
in source files, linker directives must use uppercased symbol names. The linker is case sensitive
by default, although the "OP NOCASEEXACT" directive may be used to override this.

We can now create our dynamic link library by issuing the following command.
[C\IwWink @lIsam

Afilecaled dl | sanp. dl | will be created.

33.3 Using Dynamic Link Libraries

Once we have created a dynamic link library, we must allow other applications to access the functions
available in the dynamic link library. There are two waysto achievethis.

Thefirst method isto create alinker directive file which contains an "IMPORT" directive for al entry
pointsin the dynamic link library. The"IMPORT" directive provides the name of the entry point and the
name of the dynamic link library. When creating an application that references a function in the dynamic
link library, thislinker directive file would be included as part of the linking process that created the
application.

The second method is to use import libraries. Animport library isastandard library that is created from a
dynamic link library by using the Open Watcom Library Manager. It contains object modules that describe
the entry pointsin adynamic link library. The resulting import library can then be specifiedin a
"LIBRARY" directive in the same way one would specify a standard library.

Using an import library is the preferred method of providing references to functions in dynamic link
libraries. When adynamic link library is modified, typically the import library corresponding to the
modified dynamic link library is updated to reflect the changes. Hence, any directive file that specifies the
import library in a"LIBRARY" directive need not be modified. However, if you are using "IMPORT"

Using Dynamic Link Libraries 223

0S/2 Programming Guide

directives, you may have to modify the "IMPORT" directives to reflect the changes in the dynamic link
library.

Let us create an import library for our sample dynamic link library we created in the previous section. We
do this by issuing the following command.

[C\]Wib dllsanp +dllsanp.dll
A standard library called dl | sanp. | i b will be created.

Suppose the following sample program, contained in thefile dl | t est . f or, callsthe functions from our
sample dynamic link library.

* DLLTEST. FOR

call dll_entry_1()
call dll_entry_2()
end

We can compile and link our sample application by issuing the following command.
[C\]wf] 386 -1=0s2v2 dlltest dllsamp.lib

If we had created alinker directive file of "IMPORT" directives instead of an import library for the
dynamic link library, the linker directivefile, say dl | i nps. | nk, would be asfollows.

i mport DLL_ENTRY_1 dl | sanp
i mport DLL_ENTRY_ 2 dl | sanp

To compile and link our sample application, we would issue the following command.

[C\]wfl 386 -1=0s2v2 dlltest -"@ll|inps"

33.4 The Dynamic Link Library Data Area

The Open Watcom FORTRAN 77 32-bit run-time library does not support the general case operation of
DL Lsin an execution environment where there is only one instance of the DATA segment (DGROUP) for
that DLL.
There are two cases that can lead to a DLL executing with only one instance of the DGROUP.

1. DLLslinked for 32-bit OS/2 without the MANYAUTODATA option.

2. DLLslinked for the Win32 API and executing under Win32s.
In these cases the run-time library startup code detects that there is only one instance of the DGROUP when
a second process attempts to attach to the DLL. At that point, it issues a diagnostic for the user and then
notifies the operating system that the second process cannot attach to the DLL.
Developers who require DLLs to operate when there is only one instance of the DGROUP can suppress the

function which issues the diagnostic and notifies the operating system that the second process cannot attach
tothe DLL.

224 The Dynamic Link Library Data Area

0S/2 2.x Dynamic Link Libraries

Doing so requires good behaviour on the part of processes attaching to the DLL. This good behaviour
consists primarily of ensuring that the first process to attach to the DLL is also the last process to detach
from the DLL thereby ensuring that the DATA segment is not rel eased back to the free memory pool.

To suppress the function which issues the diagnostic and notifies the operating system that the second
process cannot attach to the DLL, the developer must provide a replacement entry point with the following
prototype:

int _ disallow single_dgroup(int);

This function should return zero to indicate that the detected single copy of the DATA segment is allowed.

33.5 Dynamic Link Library Initialization/Termination

Each dynamic link library (DLL) has an initialization and termination routine associated with it. The
initialization routine can either be called the first time any process accessesthe DLL ("INITGLOBAL" is
specified at link time) or each time a process accessesthe DLL ("INITINSTANCE" is specified at link
time). Similarly, the termination routine can either be called when all processes have completed their
access of the DLL ("TERMGLOBAL" is specified at link time) or each time a process compl etes its access
of the DLL ("TERMINSTANCE" is specified at link time).

For aDLL that usesthe FORTRAN 77 run-time libraries, initialization and termination of the FORTRAN
77 run-time environment is performed automatically. Itisalso possiblefor aDLL to do its own special
initialization and termination process.

The FORTRAN 77 run-time environment provides a method for calling user-written DLL initialization and
terminationcode. The _ fdl | _initialize_ routineiscaledfor DLL processinitialization. The
__fdll _term nate_routineiscalled for DLL processtermination. Default stub versions of these
routines are included in the run-time library. 1f you wish to perform additional initialization/termination
processing that is specific to your dynamic link library, you may write your own versions of these routines.

Oncethe FORTRAN 77 run-time environment isinitialized, theroutine __ fdl |l _initialize_is
called. After the FORTRAN 77 run-time environment isterminated, theroutine _ fdl |l _terminate_
iscalled. Thislast point isimportant since it means that you cannot do any run-time calls in the termination
routine.

Theinitialization and termination routines return an integer. A value of O indicates failure; avalue of 1
indicates success. The following example illustrates sample initialization/termination routines.

* DLLINIT. FOR

integer function _ fdll_initialize ()
integer _ fdll_ternminate_, dll_entry

i nt eger WORKI NG_SI ZE

paraneter (WORKING S| ZE = 16*1024)
integer ierr, WorkingStorage

di mensi on Wor ki ngSt or age(:)

al | ocat e(Wor ki ngSt or age(WORKI NG_SI ZE), stat=ierr)
if(ierr .eq. 0)then
_fdll _initialize_ =1
el se
_fdll _initialize_ =0
endi f
return

Dynamic Link Library Initialization/Termination 225

0S/2 Programming Guide

entry _ fdll_termnate_()
* Note: no run-time calls allowed under OS/2 Warp
deal | ocat e(Wor ki ngSt orage)
__fdll _termnate_ =1
return

entry dll_entry()
I use Worki ngStorage
return
end
In the above example, the process initialization routine all ocates storage that the dynamic link library needs,

theroutinedl | _ent ry usesthe storage, and the process termination routine frees the storage allocated in
theinitialization routine.

226 Dynamic Link Library Initialization/Termination

34 Programming for 0S/2 Presentation Manager

Basically, there are two classes of FORTRAN 77 applications that can run in awindowed environment.

Thefirst are those FORTRAN 77 applications that do not use any of the Presentation Manager API
functions; they are strictly FORTRAN 77 applications that do not rely on the features of a particular
operating system.

The second class of FORTRAN 77 applications are those that actually call Presentation Manager AP
functions directly. These are applications that have been tailored for the Presentation Manager operating
environment.

It is assumed that the reader is familiar with the concepts of Presentation Manager programming.

34.1 Porting Existing FORTRAN 77 Applications

Suppose you have a set of FORTRAN 77 applications that previously ran under DOS and you now wish to
run them under OS/2. To achieve this, simply recompile your application and link with the appropriate
libraries. Depending on the method with which you linked your application, it can run in an OS/2
fullscreen environment, a PM-compatible window, or as a Presentation Manager application. An OS/2
fullscreen application runsin its own screen group. A PM-compatible application will run in an OS/2
fullscreen environment or in awindow in the Presentation Manager screen group but does not take direct
advantage of menus, mouse or other features available in the Presentation Manager. A Presentation
Manager application has full access to the complete set of user-interface tools such as menus, icons, scroll
bars, etc. However, porting a console oriented application to Presentation Manager often requires
significant effort and a substantial redesign of the application.

34.1.1 An Example

Very little effort is required to port an existing FORTRAN 77 application to OS/2. Let ustry to run the
following sample program (contained in thefile hel | o. f or).

print *, "Hello world!”’
end

First we must compilethefile hel | o. f or by issuing the following command.

[C\]wfc386 hello

Once we have successfully compiled the file, we can link it by issuing the following command.

[C\]Wink sys os2v2 file hello

It is also possible to compile and link in one step, by issuing the following command.

[C\]wfl 386 -1=0s2v2 hello

Porting Existing FORTRAN 77 Applications 227

0S/2 Programming Guide

Thiswill create a PM-compatible application. If you wish to create afullscreen application, link with the
following command.

[C\]Wink sys os2v2 fullscreen file hello

34.2 Calling Presentation Manager API Functions

Itisalso possible for aFORTRAN 77 application to create its own windowing environment. Thisis
achieved by calling PM API functions directly from your FORTRAN 77 program. The techniques for
developing these applications can be found in the OS/2 Technical Library.

A number of FORTRAN 77 include files (fileswith extension . fi or . f ap) are provided which define
Presentation Manager data structures and constants. They are located in the

\wat com src\ fortran\ os2 directory. Theseinclude files are equivalent to the C header files that
are available with the IBM OS/2 Developer’s Toolkit.

A sample FORTRAN 77 Presentation Manager application is also located in the
\ wat coml sanpl es\ fortran\ os2 directory. Itiscontainedinthefiles f shapes. f or and
fshapes. fi. Thefilefshapes. f or containsthe following.

c$define | NCL_W NFRAMEMGR
c$define | NCL_W NVESSAGEMGR
c$define | NCL_W NW NDONWGR
c$define | NCL_W NTI MER
c$define | NCL_GPI PRI M Tl VES
c$i ncl ude os2.fap

program f shapes

i nt eger style
record / QvSGE qnsg

character*7 wat com
par anet er (wat com=" WATCOM c)

i ncl ude ' fshapes.fi’

AnchorBlock = Wnlnitialize(0)

if(AnchorBlock .eq. 0) stop

hMessageQueue = W nCreat eMsgQueue(AnchorBl ock, 0)
if(hMessageQueue .eq. 0) stop

if(WnRegi sterd ass(AnchorBl ock, watcom MainDriver,

+ CS _SI ZEREDRAW 0) .eq. 0) stop
style = FCF_TI TLEBAR .or. FCF_SYSMENU .or. FCF_S|I ZEBORDER . or.
+ FCF_M NVAX .or. FCF_SHELLPCSITION .or. FCF_TASKLI ST
FranmeHandl e = W nCr eat eSt dW ndow(HWND_DESKTOP, WS_VI Sl BLE,
+ style, watcom
+ char(0), 0, NULL,
+ 0, WnHandle)

if(FrameHandle .eq. 0) stop

whi l e(WnGet Msg(AnchorBl ock, gnsg, NULL, O, 0)) do
call WnDi spat chMsg(Anchor Bl ock, gnsg)

end while

call WnDestroyWndow FrameHandl e)

call W nDestroyMsgQueue(hMessageQueue)

call WnTerm nate(AnchorBl ock)

end

228 Calling Presentation Manager API Functions

Programming for 0S/2 Presentation Manager

function MainDriver(hwnd, nsg, npl, nmp2)

i nteger hwnd
i nteger nsg
integer npl
i nteger nmp2

i nclude 'fshapes.fi’

i nt eger ps
record /RECTL/ rcl

sel ect case (nmsg)
case (WM CREATE)
W nHandl e = hwnd
call WnStartTimer(AnchorBl ock, WnHandl e, 1, 150)
case (WM. TIMER)
call Drawkl |ipse()
Mai nDriver = 0
return
case (WM. SI ZE)
Si zeX = SHORT1FROMWP(np2)
Si zeY = SHORT2FROMVP(np2)
Mai nDriver = 0
return
case (VWL _PAINT)
ps = WnBegi nPai nt (WnHandl e, NULL, NULL_PO NTER)
call WnQueryW ndowRect (WnHandl e, rcl)
call WnFillRect(ps, rcl, CLRWH TE)
call WnEndPaint(ps)
Mai nDriver = 0
return
end sel ect

Mai nDri ver = W nDef W ndowProc(W nHandl e, nsg, nmpl, nmp2)
return

end

subroutine Drawkl | i pse

record /PO NTL/ ptl

i nt eger ps

i nt eger Qdd / 0/
i nt eger par ml

i nt eger par n2

i nclude 'fshapes.fi’

ps = WnGet PS(W nHandl e)
ptl.x = Randon(SizeX)
ptl.y = Randon(SizeY)
call Gpi Mve(ps, ptl)
ptl.x = Randon(SizeX)
ptl.y Randon(SizeY)
par mL Randon{ 32767)
parnm2 = Random(32767)
if(Randon{ 10) .ge. 5) then
execut e NewCol or
call GpiBox(ps, DROFILL, ptl, 0, 0)
execut e NewCol or
call Gpi Box(ps, DRO QUTLINE, ptl, 0, 0)
el se
execut e NewCol or
call GpiBox(ps, DROFILL, ptl, parml, parng)
execut e NewCol or
call GpiBox(ps, DRO QUTLINE, ptl, parml, parn?)
end if

Calling Presentation Manager API Functions 229

0S/2 Programming Guide

Qdd Qdd + 1
Qdd Qdd .and. 1
call WnRel easePS(ps)

remot e bl ock NewCol or

call Gpi SetColor(ps, Randon(15) + 1)
end bl ock

end

i nteger function Randon(high)

i nt eger hi gh

ext er nal ur and

real ur and

i nt eger seed / 75347/

Random = urand(seed) * high

end

Theincludefile f shapes. fi containsthe following.

include 'os2.fi’

i nt eger Si zeX
i nt eger Si zeY
i nt eger FraneHandl e
i nt eger W nHandl e
i nt eger hMessageQueue
i nt eger Anchor Bl ock
common / gl obal s/
+ SizeX,
+ SizeY,
+ FrameHandl e,
+ W nHandl e,
+ hMessageQueue,
+ Anchor Bl ock
ext er nal Random
i nt eger Random
ext ernal Mai nDri ver
i nt eger Mai nDri ver
cSpragma aux (FNWP) Mai nDri ver
Notes:
1. Includefileswith extension . f ap define the calling conventions for each of the OS2 API
functions. These files must be included at the top of each FORTRAN 77 source module.
2. Includefileswith extension . f i define the data structures and constants used by the OS/2 AP
functions. These files must be included in each subprogram that requires them.
3. Each cal-back function (i.e. window procedure) must be defined using the following pragma.
c$pragma aux (FNWP) W ndowPr oc
4. Theincludefile os2. f ap isincluded at the beginning of the sourcefileand 0s2. fi is

included in each subprogram. Also note that a number of macros were defined at the top of the
file. By defining these macros, only those components of the OS/2 API required by the module
will be compiled.

Y ou can compile, link and run this demonstration by issuing the following commands.

230 Calling Presentation Manager API Functions

Programming for 0S/2 Presentation Manager

[C\]set finclude=\watcom src\fortran\os2
[C\]wfl 386 -1=0s2v2_pm fshapes
[C\]fshapes

Calling Presentation Manager API Functions 231

0S/2 Programming Guide

232 Calling Presentation Manager API Functions

Novell NLM Programming Guide

Novell NLM Programming Guide

234

395 Creating NetWare 386 NLM Applications

Open Watcom FORTRAN 77 supports version 4.0 of the Netware 386 API. We include the following
components:

header files Header filesfor the Netware 4.0 API are located in the \ WATCOM NOVH directory.

import libraries
Import libraries for the Netware 4.0 API arelocated in the \ WATCOM NOVI directory.

libraries The FORTRAN 77 libraries for Netware 4.0 islocated in the \ WATCOM LI B386 and
\ WATCOM LI B386\ NETWARE directories.

debug servers Serversfor remote debugging of Netware 4.0 NLMs are located in the \ WATCOM NLM
directory. The same directory also contains the Open Watcom Execution Sampler for
NLMs.

Applications built for version 4.0 will runon 4.1. We do not include support for any API specific to

version 4.1. Netware developers must use the support included with Open Watcom FORTRAN 77 version

10.0 or greater since the version supplied by Novell only works with Open Watcom FORTRAN 77 version

9.5. Netware 4.1 support requires modification to the header files supplied by Novell. Contact Novell for

more information.

The following special notes apply to developing applications for NetWare.

1. Youmust compile your source files with the small memory model option ("ms").

2. You must compile your source files with the stack-based calling convention option ("sc").

3. You must specify

syst em NETWARE

when linking an NLM. Thisisautomatic if you are using WFL 386 and the "-I=NETWARE"
option.

Creating NetWare 386 NLM Applications 235

Novell NLM Programming Guide

236 Creating NetWare 386 NLM Applications

Mixed Language Programming

Mixed Language Programming

238

36 Inter-Language calls: C and FORTRAN

The purpose of this chapter is to anticipate common questions about mixed-language development using
Open Watcom C/C++ and Open Watcom FORTRAN 77.

The following topics are discussed in this chapter:
» Symbol Naming Convention
» Argument Passing Convention
* Memory Model Compatibility
* Integer Type Compatibility
* How do | passintegers from C to a FORTRAN function?
» How do | passintegers from FORTRAN to a C function?
* How do | pass astring from a C function to FORTRAN?
* How do | pass astring from FORTRAN to a C function?
* How do | access a FORTRAN common block from within C?

* How do | call aC function that accepts a variable number of arguments?

36.1 Symbol Naming Convention

The symbol naming convention describes how a symbol in source form is mapped to its object form.
Because of this mapping, the name generated in the object file may differ from its original source form.

Default symbol naming conventions vary between compilers. Open Watcom C/C++ prefixes an underscore
character to the beginning of variable names and appends an underscore to the end of function names
during the compilation process. Open Watcom FORTRAN 77 converts symbols to upper case. Auxiliary
pragmas can be used to resolve this inconsistency.

Pragmas are compiler directives which can provide several capabilities, one of which isto provide
information used for code generation. When calling a FORTRAN subprogram from C, we want to instruct
the compiler NOT to append the underscore at the end of the function name and to convert the name to
upper case. Thisisachieved by using the following C auxiliary pragma:

#pragma aux ftnname """;
The """ character tells the compiler to convert the symbol name "ftnname" to upper case; no underscore

character will be appended. This solves potentia linker problems with "ftnname" since (by C convention)
the linker would attempt to resolve areference to "ftnname_".

Symbol Naming Convention 239

Mixed Language Programming

When calling C functions from FORTRAN, we need to instruct the compiler to add the underscore at the
end of the function name, and to convert the name to lower case. Since the FORTRAN compiler
automatically convertsidentifiers to uppercase, it is necessary to force the compiler to emit an equivalent
lowercase name. Both of these things can be done with the following FORTRAN auxiliary pragma:

*$pragma aux CNAME "! _"
There is another less convenient way to do this as shown in the following:

*$pragma aux CNAME "cnane_"
In the latter example, the case of the name in quotation marksis preserved.

Use of these pragmas resolves the naming differences, however, the issue of argument passing must still be
resolved.

36.2 Argument Passing Convention

In general, C uses call-by-value (passes argument values) while FORTRAN uses call-by-reference (passes
pointersto argument values). Thisimpliesthat to pass arguments to a FORTRAN subprogram we must
pass the addresses of arguments rather than their values. C usesthe"&" character to signify "address of".

Example:
result = ftnname(&arg);

When calling a C function from FORTRAN, the pragma used to correct the naming conventions must also
instruct the compiler that the C function is expecting values, not addresses.

*$pragnma aux CNAME "! " parm (val ue)
The "parm (value)" addition instructs the FORTRAN compiler to pass values, instead of addresses.

Character data (strings) are an exception to the general case when used as arguments. In C, strings are not
thought of as awhole entity, but rather asan "array of characters'. Since strings are not considered scalar
arguments, they are referenced differently in both C and FORTRAN. Thisisdescribed in more detail in a
following section.

36.3 Memory Model Compatibility

Whileit isreally not an issue with the 32-bit compilers (both use the default "flat" memory model), it is
important to know that the default memory model used in Open Watcom FORTRAN 77 applications is the
"large" memory model ("mi") with "medium" and "huge" memory models as options. Since the 16-bit
Open Watcom C/C++ default isthe "small" memory model, you must specify the correct memory model
when compiling your C/C++ code with the 16-bit C or C++ compiler.

240 Memory Model Compatibility

Inter-Language calls: C and FORTRAN

36.4 Linking Considerations

When both C/C++ and FORTRAN object files are combined into an executable program or dynamic link
library, it isimportant that you list aleast one of the FORTRAN object filesfirst in the Open Watcom
Linker (WLINK) "FILES" directive to guarantee the proper search order of the FORTRAN and C run-time
libraries. If you place a C/C++ object file first, you may inadvertently cause the wrong version of run-time
initialization routines to be loaded by the linker.

36.5 Integer Type Compatibility

In general, the number of bytes used to store an integer type is implementation dependent. In FORTRAN,
the default size of an integer typeis always 4 bytes, while in C/C++, the size is architecture dependent. The
size of an "int" is 2 bytes for the 16-bit Open Watcom C/C++ compilers and 4 bytes for the 32-bit
compilerswhile the size of a"long" is 4 bytes regardless of architecture. It is safest to prototype the
function in C, specifying exactly what size integers are being used. The byte sizes are as follows:

1. LONG -4 bytes
2. SHORT - 2 bytes

Since FORTRAN uses a default of 4 bytes, we should specify the "long" keyword in C for integer types.

Example:
long int ftnname(long int *, long int *, long int *);

In this case, "ftnname" takes three "pointersto long ints" as arguments, and returnsalong int". By
specifying that the arguments are pointers, and not values, and by specifying "long int" for the return type,
this prototype has solved the problems of argument passing and integer type compatibility.

36.6 How do | pass integers from C to a FORTRAN function?

The following Open Watcom C/C++ routine passes three integers to a FORTRAN function that returns an
integer value.

/* MXLC.C - This C programcalls a FORTRAN function to

* comput e the max of three nunbers.
*

* Conpile/Link: wel /m mxlc nmix1f.obj /fe=m x1
* wel 386 mi x1lc mix1f.obj /fe=m x1
*/

#i ncl ude <stdio. h>

#pragma aux tmax3 """
long int tmax3(long int *, long int *, long int *);

How do I pass integers from C to a FORTRAN function? 241

Mixed Language Programming

void main()

long int result;
long int i, j, Kk;
i -1;

i 12;

k 5;

result = tmax3(&, &, &);
printf("Maxinmumis %d\n", result);

}
The FORTRAN function:

* M X1F. FOR - This FORTRAN function accepts three integer
* argunents and returns their naxi mum

* Conpile: wic[386] mx1f.for

i nteger function tmax3(arga, argb, argc)
i nteger arga, argb, argc

tmax3 = arga

if (argbh .gt. tmax3) tmax3
if (argc .gt. tmax3) tmax3
end

argb
argc

36.7 How do I pass integers from FORTRAN to a C function?

The following Open Watcom FORTRAN 77 routine passes three integers to a Open Watcom C/C++
function that returns an integer value.

* M X2F. FOR - This FORTRAN programcalls a C function to
* conpute the nax of three numnbers.

*
* Conpil e/Link: wl[386] mix2f mix2c.obj /fe=m x2
*$pragnma aux tnmax3 "!_" parm (val ue)

program mi x2f

integer*4 tmax3
integer*4 result

integer*4 i, j, k

i =-1

j =12

k =5

result = tmax3(i, j, k)
print *, *Maximumis ', result
end

The C function "tmax3" is shown below.

242 How do I pass integers from FORTRAN to a C function?

Inter-Language calls: C and FORTRAN

/* MX2C.C - This C function accepts 3 integer argunents
* and returns their maxi num

* Conmpile: wee /ml m x2c

* wce386 mi x2c

*/

long int tmax3(long int arga,
I ong int argb,
long int argc)

{
l ong int result;
result = arga;
if(argb > result) result = argb;
if(argc > result) result = argc;
return(result);

}

36.8 How do | pass a string from a C function to FORTRAN?

Character strings are referenced differently in C and FORTRAN. The C language terminates its strings
with anull character as an End-Of-String (EOS) marker. In this case, C need not store the length of the
string in memory. FORTRAN, however, does not use any EOS marker; hence it must store each string’s
length in memory.

The structure FORTRAN uses to keep track of character dataiis called a "string descriptor" which consists
of apointer to the character data (2, 4, or 6 bytes, depending on the data model) followed by an unsigned
integer length (2 bytes or 4 bytes, depending on the data model).

system option size of pointer size of length
16-bit /MW 16 bits 16 bits
16-bit /M 32 bits 16 bits
32-bit /M 32 bits 32 bits
32-bit /M 48 bits 32 bits

In order to access character data, FORTRAN needs to have access to the data' s string descriptor. Hence,
FORTRAN expects a pointer to a string descriptor to be passed as an argument for character data.

Passing string arguments between C and FORTRAN isasimple task of describing a struct typein C
containing the two fields described above. The first field must contain the pointer to the character data, and
the second field must contain the length of the string being passed. A pointer to this structure can then be
passed to FORTRAN.

* M X3F. FOR - This FORTRAN programcalls a function witten
* in Cthat passes back a string.

*
* Conpil e/ Link: wfl[386] mi x3f m x3c.obj /fe=m x3
program m x3f

character*80 sendstr
character*80 cstring

How do I pass a string from a C function to FORTRAN? 243

Mixed Language Programming

cstring = sendstr()
print *, cstring(l:lentrin(cstring))
end

The C function "sendstr" is shown below.

/* MX3C.C - This C function passes a string back to its
* calling FORTRAN program

*

* Conpile: weec /m m x3c

* wec386 mi x3c

*/

#i ncl ude <string. h>
#pragm aux sendstr "/";

typedef struct descriptor {
char *addr;
unsi gned | en;

} descriptor;

voi d sendstr(descriptor *ftn_str_desc)

{

ftn_str_desc->addr
ftn_str_desc->len

"This is a Cstring";
strlen(ftn_str_desc->addr);

36.9 How do I pass a string from FORTRAN to a C function?

By default, FORTRAN passes the address of the string descriptor when passing strings. If the C function
knowsit is being passed a string descriptor address, then it is very similar to the above example. If the C
function is expecting normal C-type strings, then a FORTRAN pragma can be used to pass the string
correctly. When the Open Watcom FORTRAN 77 compiler pragmato pass by valueis used for strings,
then just a pointer to the string is passed.

Example:
*$pragnma aux cnanme "!_" parm (val ue)

The following example FORTRAN mainline defines a string, and passes it to a C function that printsit out.

* M X4F. FOR - This FORTRAN programcalls a function witten
* in C and passes it a string.

*

* Conpil e/Link: wfl[386] m x4f m x4c.obj /fe=m x4

*$pragma aux cstr "! " parm (val ue)

pr ogr am mi x4f

character*80 forstring

forstring = "This is a FORTRAN string’//char(0)

call cstr(forstring)
end

244 How do I pass a string from FORTRAN to a C function?

Inter-Language calls: C and FORTRAN

The C function:

/* MX4C.C - This C function prints a string passed from

* FORTRAN.

* Conmpile: wee /ml m x4c
* wce386 mi x4c
*/

#i ncl ude <stdio. h>
void cstr(char *instring)

printf("%\n", instring);

36.10 How do | access a FORTRAN common block from
within C?

The following code demonstrates a technique for accessing a FORTRAN common block in a C routine.
The C routine defines an extern struct to correspond to the FORTRAN common block.

* M X5F. FOR - This program shows how a FORTRAN conmon
* bl ock can be accessed from C.

*

* Conpi | e/ Li nk: wfl[386] mix5f mix5c.obj /fe=nix5

program mi x5f
external put
common/ cbl k/ i, j

call put
print *, i
print *, j]
end

The C function:

/* MX5C.C - This code shows how to access a FORTRAN
* comon bl ock from C.

*

* Conpile: wee /ml m x5¢
* wcc386 mi x5c
*/

#i ncl ude <stdi o. h>

#pragma aux put "/~";
#pragma aux cblk "~";

How do I access a FORTRAN common block from within C? 245

Mixed Language Programming

#i fdef __386__

#define FAR

#el se

#define FAR far

#endi f

extern struct cb {
long int i,j;

} FAR cbl k;

void put(void)

printf("i = 9%d\n", cblk.i);
printf("j = %d\n", cblk.j);
cbl k. i ++;
chbl k. j ++;

}

For the 16-bit C compiler, the common block "chlk" is described as f ar to force aload of the segment
portion of the address. Otherwise, since the object is smaller than 32K (the default datathreshold), itis
assumed to be located in the DGROUP group which is accessed through the SS segment register.

36.11 How do I call a C function that accepts a variable
number of arguments?

246

One capability that C possessesis the ability to define functions that accept variable number of arguments.
Thisfeature is not present, however, in the definition of the FORTRAN 77 language. Asaresult, aspecia
pragmais required to call these kinds of functions.

*$pragma aux printf "! " parm (value) caller []

The "caller" specifies that the caller will pop the arguments from the stack. The "[]" indicates that there are
no arguments passed in registers because the pri nt f function takes a variable number of arguments
passed on the stack. The following example is a FORTRAN function that uses this pragma. It callsthe
printf function to print the value 47 on the screen.

* M X6. FOR - This FORTRAN programcalls the C
* printf function.

* Conpil e/ Link: wfl[386] m x6

*$pragma aux printf "!_" parm (value) caller []
program m x6
character cr/z0d/, nullchar/z00/

call printf("Value is %d.’//cr//nullchar, 47)
end

For more information on the pragmas that are used extensively during inter-language programming, please

refer to the chapter entitled "Pragmas" in both the Open Watcom C/C++ User’s Guide and the Open
Watcom FORTRAN 77 User’s Guide.

How do | call a C function that accepts a variable number of arguments?

Common Problems

Common Problems

248

37 Commonly Asked Questions and Answers

Aswith any sophisticated piece of software, there are topics that are not directly addressed by the
descriptive portions of the manuals. The purpose of this chapter is to anticipate common questions
concerning Open Watcom F77. Itisdifficult to predict what topics will prove to be useful but with that in
mind, we hope that this chapter will help our customers make full use of Open Watcom F77.

A number of example programs are presented throughout. The source text for these files can be found in
the \ WATCOM SAMPLES\ GOODI ES directory.

The purpose of this chapter is to present some of the more commonly asked questions from our users and
the answers to these questions. The following topics are discussed:

* How do | determine my current patch level?

* How do | convert to Open Watcom F77?

» What should | know about optimization?

* How do | read a stream of binary data from afile?

* How do | redefine math error handling with Open Watcom F77?

» Why can’t the compiler find my include files?

» Why does the linker report a"stack segment not found" error?

» How do | resolve an "Undefined Reference” linker error?

» Why aren’t local variable values maintained between subprogram calls?
» What does " Stack Overflow!" mean?

» What are the probable causes of a General Protection Fault in 32-bit applications?
» Which floating-point compiler option should | use for my application?

» How can | open more than 20 files at atime?

* How can | see my source filesin the debugger?

» What is the difference between the "d1" and "d2" compiler options?

» What is the difference between the "debug" and "d2" compiler options?

37.1 Determining my current patch level

In an effort to immediately correct any problems discovered in the originally shipped product, Open
Watcom provides patches as a continued service to its customers. To determine the current patch level of
your Open Watcom software, a TECHINFO utility program has been provided. This program will display
your current environment variables, the patch level of various Open Watcom software programs, and other
pertinent information, such as your AUTOEXEC. BAT and CONFI G. SYSfiles. Thisinformation provesto
be very useful when reporting a problem to the Technical Support team.

To run TECHINFO, you must ensure the Open Watcom environment variable has been set to the directory
where your Open Watcom software has been installed. TECHINFO will pause after each screenful of
information. The output is aso placed in the file TECHI NFO. QUT.

Below is an example of some partial output produced by running the TECHINFO utility:

Determining my current patch level 249

Common Problems

Example:
WATCOM s Techinfo Uility, Version 1.4
Current Time: Thu Oct 27 15:58:34 1994

WATCOM Phone: (519) 884-0702
415 Phillip St. Fax: (519) 747-4971
Waterl oo, Ontario

CANADA N2L 3X2

------------- WATCOM C Environnent Variables -------------
WATCOME<c: \ wat con®

EDPATH=<c: \ wat com eddat >

| NCLUDE=<c: \ wat com\ h; c: \ wat com h\ 0s2>

FI NCLUDE=<c: \wat com src\fortran;c:\watcom src\fortran\w n>

LI BOS2=<c: \wat com | i b286\ 0s2; c: \wat com | i b286>

PATH=<c:\ dos; c: \ wi ndows; c: \ wat coml bi nw>

TMP=<h: \'t enp>

File 'c:\watcom bi nwAwcc386. exe’ has been patched to level '.d
...etc...

In this example, the software has been patched to level "d". In most cases, al tools will share acommon
patch level. However, there are instances where certain tools have been patched to one level while others
are patched to adifferent level. For example, the compiler may be patched to level "d" while the debugger
isonly patched to level "c". Basically, this means that there were no debugger changes in the D-level
patches.

If you run the TECHINFO utility, and determine that you are not at the current patch level, it is
recommended that you update your software. Patches are available on Open Watcom's bulletin board,
Open Watcom’s FTP site and CompuServe. They are available 24 hours aday. Patches are also available
on the current release CD-ROM. Each patch will include a batch file that allows you to apply the patches
to your existing software. Note that patches must be applied in sequential order, as each patch depends on
the previous one.

37.2 Converting to Open Watcom F77

Applications written in ANSI standard FORTRAN 77 code usually only need to be recompiled with the
Open Watcom F77 compiler. In addition to the ANSI standard, many compilers support specific
extensions. If you are porting code from a UNIX platform or other DOS compilers, check Appendix A -
Extensions to Sandard FORTRAN 77 of the Open Watcom FORTRAN 77 Language Reference, to
determine which FORTRAN 77 extensions are supported.

By default, most FORTRAN 77 compilers preserve the values of local variablesin a subprogram between
calls. With Open Watcom F77, local variables are kept on the stack and their values are popped from the

stack when exiting a subprogram. To preserve local variables, use the FORTRAN 77 SAVE statement for
variables that you wish to preserve, or the "save" compiler option to preserve al local variables. Note that
the use of the "save" compiler option causes an overall performance degradation.

Open Watcom F77 uses register-based parameter passing as a default, however, the compiler isflexible
enough to use different calling conventions on a per function basis. Auxiliary pragmas can be used to
specify the calling convention that is to be used to interface with assembler code. This enablesyou to
explicitly state how parameters are to be passed to the assembler code. Thistopic is described in the
"Pragmas’ chapter of the Open Watcom F77 User’s Guide under "Describing Argument Information”. See
also the chapter entitled "Inter-Language calls: C and FORTRAN" on page 239.

250 Converting to Open Watcom F77

Commonly Asked Questions and Answers

37.3 What you should know about optimization

The Open Watcom F77 User’s Guide contains a detailed description for each of the optimization options
supported by the compiler. These options alow you to customize the type of code optimizations that are
performed. For instance, the "OS" option can be used to reduce the size of your code, but this may affect
the execution speed. To ensure that the speed of the code is optimized, possibly at the cost of code size, use
the"OT" option. The "OX" option, intended for the maximum number of optimizations, generates code
that is a combination of "OM" (inline math functions), "OL" (loop), "OT" (time) and the "OR" (instruction
scheduling) optimization options. Note that when you are using the "OM" option to generate inline math
functions no argument validation will be done for the intrinsic math functions such as"sin" or "cos'.
Consider the needs of your application and select the optimization options that best meet your

requirements.

Hint: The definitive reference on compiler design isthe "dragon” book "Compilers - Principles,
Techniques, and Tools", Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, published by
Addison-Wesley, Reading, Massachusetts, 1986. The authors of the "dragon” book advocate a
conservative approach to code generation where optimizations must preserve the semantics of the
original program. The conservative approach is used throughout the Open Watcom F77 compiler to
ensure that programmers can use the compiler without worrying about the semantics of their program
being changed.

There are certain pieces of information which the compiler cannot derive from the source code. The
"*$pragma’ compiler directive is used to provide extrainformation to the compiler. It is necessary to have
a complete understanding of both FORTRAN 77 and the machine architecture (i.e., 80x86) before using the
powerful pragma compiler directives. Seethe "Pragmas" chapter in the Open Watcom F77 User’s Guide
for more details.

Debugging optimized programs is difficult because variables can be assigned to different locations (i.e.,
memory or registers) in different parts of the function. The "d2" compiler option will restrict the amount of
optimization so that variables occupy one location and can be easily displayed. It follows that the "d2"
option is useful for initial development but production programs should be compiled with only the "d1"
option for the best code quality. Before you distribute your application to others, you may wish to use the
Open Watcom Strip Utility (WSTRIP) to remove debugging information from the executable image on disk
thereby reducing disk space requirements.

Hint: The"d2" compiler option will generate symbolic information (for every local variable) and line
number information for the source file. The"d1" compiler option will only generate line number
information for the source file. The use of these options determines what kind of information will be
available for the particular module during the debugging session.

37.4 Reading a stream of binary data from a file

The Open Watcom F77 allows for three types of binary data file formats:

Reading a stream of binary data from a file 251

Common Problems

* Variable length, unformatted sequential access binary records,
* Fixed length, unformatted direct access binary records, and
» Unformatted, sequential, binary data with afixed record type.

Variable length binary records are preceded by afour byte descriptor that indicates the length of the record
in bytes. The end of the binary record is also marked by another descriptor tag specifying the length.
Binary records that are of afixed length are kept in a direct access, unformatted file. Refer to the Open
Watcom F77 User’s Guide section on File Handling for more information on file formats.

Binary datafiles that have no structure or record length information may be read if you open thefileasa
sequential, unformatted file with afixed record type. This allowsyou to read files that contain a stream of
binary data without any inherent record format. If you know the type of datathat is contained in the binary
file, you may then read the binary data directly into variables. The following program provides an example
of reading binary stream data.

* Bl NDATA. FOR - This program denonstrates how to read a
* binary data file that does not have any defined records.

pr ogram bi ndat a

i nteger Bi nArray(20)
i nteger i

open(unit=1, file="bindata.fil’,

+ access='sequential ',
+ forme” unformatted’,
+ recordtype='fixed)

* Read 20 integers fromthe binary data file
doi =1, 20
read(1) BinArray(i)
end do

* Wite the extracted values to standard out put

doi =1, 20

wite(*, *) BinArray(i)
end do
end

37.5 Redefining math error handling with Open Watcom F77

If you wish to customize math error handling for your application, you can create your own math error
handling procedure. The following illustrates the procedures for trapping errors by way of an example.
See the Open Watcom F77 User’s Guide for adescription of the f si gnal subroutine and math library
error handling.

The main program example "MATHDEMO" isa FORTRAN program that contains a floating-point divide

by zero error, afloating-point overflow error, a floating-point underflow error, and an invalid argument to a
math library function.

252 Redefining math error handling with Open Watcom F77

Commonly Asked Questions and Answers

L

program nmat hdeno

MATHDEMO. FOR - This program forns part of a collection of FORTRAN

code that denonstrates how to take over control of
math error handling fromthe run-tine system

Conpi | e: wfl[386] mathdenp cw87 _nmatherr

Not es

(1) We call "cw87" to enable underflow exceptions which are
masked (ignored) by default.

(2) The signal handler nmust be re-installed after each signa
(it can also be re-installed even when there is no signal)

(3) To prevent conpile-tine constant folding in expressions

we add | og(1.0) which is 0. W do this for the sake of
denonstrating exception handling.

inplicit none

doubl e precision x, vy, z

call cw87 I init 80x87 control word
call resetFPE ! install signal handl er
print *,

print *, 'Divide by zero will be attenpted

x = 1.0d0 + DLOG 1.0d0)

y = 0.0d0

z =x/

call chkFPE I check for exception

print *, z

call reset FPE ! install signal handler
print *, '

print *, "Overflow will be attenpted

X = 1.2d300 + DLOE 1.0d0)

y = 1.2d300

zZ =X *y

call chkFPE ! check for exception

print *, z

call resetFPE ! install signal handler
print *,
print *, ’"Underflow will be attenpted

x = 1.14d-300 + DLOZ 1.0dO)

y = 2.24d-308

zZ =X *

call chkFPE I check for exception

print *, z

call reset FPE ! install signal handler

print *, '

print *, "Math error will be attenpted

X =-12.0

I an exception will not be generated since the intrinsic function
I will validate the argunent - if you conpile with -om the "fsqrt"
! 80x87 instruction will be generated in-line and an exception

I will occur

y = SQRT(x)

call chkFPE I check for exception

print *, x, y

end

Redefining math error handling with Open Watcom F77

253

Common Problems

subroutine reset FPE

include 'fsignal.fi’

external fpe_handler

| ogi cal fpe_flag

integer fpe_sig, fpe_fpe

common fpe_flag, fpe_sig, fpe_fpe

fpe_flag = .fal se.
call fsignal (SIGFPE, fpe_handler)
end

*$pragnma aux fpe_handl er parn(val ue)

subroutine fpe_handler(sig, fpe)
i nteger sig, fpe

| ogi cal fpe_flag

integer fpe_sig, fpe_fpe

comon fpe_flag, fpe_sig, fpe_fpe
fpe_flag = .true.

fpe_sig = sig
fpe_fpe = fpe
end
*$pragma aux fwait = "fwait"

subroutine chkFPE

include 'fsignal.fi’

| ogi cal fpe_flag

integer fpe_sig, fpe_fpe

comon fpe_flag, fpe_sig, fpe_fpe

Not es:

(1) An fwait is required to make sure that the |ast
fl oating-point instruction has conpl et ed.

(2) "volatile" is not needed here but would be
needed in main programif it references "fpe_flag"
call fwait()
if(volatile(fpe_flag)) then

print *, ’'*ERROR* exception occurred’,

* % k% %

& fpe_sig, fpe_fpe
if(fpe_fpe .eq. FPE_INVALID)then
print *, 'Invalid

else if(fpe_fpe .eq. FPE_DENORMAL)then
print *, 'Denormalized operand error’

else if(fpe_fpe .eq. FPE_ZERODI VIDE)then
print *, 'Divide by zero error’

else if(fpe_fpe .eq. FPE_OVERFLOW)then
print *, 'Overflow error’

else if(fpe_fpe .eq. FPE_UNDERFLOW)t hen
print *, 'Underflow error’

else if(fpe_fpe .eq. FPE_I NEXACT)then
print *, 'lnexact result (precision)then error’

else if(fpe_fpe .eq. FPE_UNEMJULATED)then
print *, 'Unenulated instruction error’

else if(fpe_fpe .eq. FPE_SQRTNEG)then
print *, 'Square root of a negative nunmber error’

else if(fpe_fpe .eq. FPE_STACKOVERFLOW)t hen
print *, 'NDP stack overflow error’

else if(fpe_fpe .eq. FPE_STACKUNDERFLOW)t hen
print *, 'NDP stack underflow error’

else if(fpe_fpe .eq. FPE_EXPLICI TGEN)then
print *, 'SIGFPE signal raised (software)’

else if(fpe_fpe .eq. FPE_| OVERFLOW)t hen

print *, 'Integer overflow error’
endi f
el se
print *, '*OK* no exception occurred’
endi f
end

The following subroutine illustrates how to enable or disable particular types of floating-point exceptions.

254 Redefining math error handling with Open Watcom F77

Commonly Asked Questions and Answers

subrouti ne cw87

* CWB7. FOR
* This subroutine uses the C Library routine "_control 87"
* to nodify the math coprocessor exception mask.

* Conpile: wc[386] cwd7
include 'fsignal.fi’

character*9 status(0:1)/’ disabled ,’ enabled /
integer fp_cw, fp_nmask, bits, i

Enabl e fl oating-point underflow since default is disabled.

The mask defines which bits we want to change (1 nmeans change,

0 nmeans do not change). The corresponding bit in the control
word (fp_cw) is set to O to enable the exception or 1 to disable
the exception. In this exanple, we change only the underflow
bit and | eave the others unchanged.

* % ok 3k 3k ok

f p_mask = EM _UNDERFLOW ! mask for the bits to set/reset
fp_cw = ' 0000’ x ! new bit settings (O=enabl e/ 1=di sabl e)
fp_cw = _control 87(fp_cw, fp_mask)
* Now get up-to-date setting
fp_cw = _control 87(0, 0)

bits = AND(fp_cw, MCWEM)

print '(a,1x,z4)’, 'Interrupt Exception Mask’', bits
i =0

if(IAND(fp_cw, EMINVALID) .eq. 0) i =1

print *, ' Invalid Operation exception , status(i)
i =0

if(IAND(fp_cw, EM DENORMAL) .eq. 0) i =1

print *, ' Denornualized exception’, status(i)

i =0

if(IAND(fp_cw, EMZERODIVIDE) .eq. 0) i =1
print *, ' Divide-By-Zero exception', status(i)

i =0

if(IAND(fp_cw, EM OVERFLON .eq. 0) i =1

print *, ' Overflow exception’, status(i)

i =0

if(IAND(fp_cw, EM UNDERFLON .eq. 0) i =1

print *, ' Underflow exception', status(i)

i =0

if(1AND(fp_cw, EMPRECISION) .eq. 0) i =1

print *, ' Precision exception', status(i)

end

The following subroutine illustrates how to replace the run-time system’ s math error handler. Source code
similar to this example is provided with the software (look for the file _mat herr. f or).

_MATHERR. FOR : math error handl er

* %k ok ok

Conpi l e: wfc[386] _matherr

*$pragma aux __imath2err "*_" parn(value, reference, reference)
*$pragma aux __amathlerr "*_" parm value, reference)

*$pragma aux __amath2err "*_" parn(value, reference, reference)
*$pragma aux __mathlerr "*_" parm(value, reference)

*$pragma aux __math2err "*_" parn(value, reference, reference)
*$pragma aux __zmath2err "*_" parm(value, reference, reference)
*$pragma aux __gmath2err "*_" parnm(value, reference, reference)

Redefining math error handling with Open Watcom F77 255

Common Problems

integer function __imath2err(err_info, argl, arg2)
integer err_info
integer argl, arg2
i ncl ude ' mat hcode. fi
argl = argl I to avoid unreferenced warning nessage
arg2 = arg2 ! to avoid unreferenced warning nessage
if((err_info.and. MDOVAIN) .ne. 0)then
select(err_info .and. FUNC MASK)
case(FUNC_POW)
print *, "arg2 cannot be <= 0
case(FUNC_MOD)
print *, "arg2 cannot be 0O
end sel ect
end if
__imath2err =0
end

real function __amathlerr(err_info, argl)
integer err_info

real argl
i ncl ude ' mat hcode. fi
argl = argl | to avoid unreferenced warning nessage

if((err_info.and. MDOMAIN) .ne. 0)then
select(err_info .and. FUNC _MASK)
case(FUNC_COTAN)
print *, 'overflow
end sel ect
end if
__amathlerr = 0.0
end

real function __amath2err(err_info, argl, arg2)
integer err_info
real argl, arg2
i ncl ude ' mat hcode. fi
argl = argl ! to avoid unreferenced warning nessage
arg2 = arg2 | to avoid unreferenced warning nessage
if((err_info.and. MDOVAIN) .ne. 0)then

select(err_info .and. FUNC _MASK)

case(FUNC_MOD)

print *, 'arg2 cannot be 0

end sel ect
end if
__amath2err = 0.0
end

doubl e precision function _ _mathlerr(err_info, argl)
integer err_info

doubl e precision argl, _ _math2err
__mathlerr = __math2err(err_info, argl, argl)
end

doubl e precision function __math2err(err_info, argl, arg2)
integer err_info

doubl e precision argl, arg2

i ncl ude ' mat hcode. fi

argl = argl | to avoid unreferenced warning nessage
arg2 = arg2 ! to avoid unreferenced warning nessage

256 Redefining math error handling with Open Watcom F77

Commonly Asked Questions and Answers

if((err_info .and. MDOVAIN) .ne. 0)then
select(err_info .and. FUNC MASK)
case(FUNC_SQRT)
print *, ’argunent cannot be negative’
case(FUNC_ASI N, FUNC_ACCS)
print *, ’"argunent nust be | ess than or equal to one’
case(FUNC_ATAN2)
print *, ’'both argunents nust not be zero’
case(FUNC_POW)
if(argl .eq. 0.0)then
print *, 'a zero base cannot be raised to a ',
& 'negative power’
else | base < 0 and non-integer power
print *, 'a negative base cannot be raised to a ',
& "non-integral power’
endi f
case(FUNC_LOG FUNC_LOGL0)
print *, ’argunent nust not be negative’
end sel ect
else if((err_info .and. MSING) .ne. 0)then
if(((err_info .and. FUNC_MASK) .eq. FUNC LOG) .or.

& ((err_info .and. FUNC_MASK) .eq. FUNC LOGIO))then
print *, "argunent nust not be zero’
endi f

else if((err_info .and. M OVERFLOWN) .ne. 0)then

print *, 'value of argument wll cause overflow condition’
else if((err_info .and. M UNDERFLOW) .ne. 0)then

print *, 'value of argument wll cause underflow ',

& "condition - return zero’
end if

__math2err =0

end

conmpl ex function __zmath2err(err_info, argl, arg2)
integer err_info
conpl ex argl, arg2
i ncl ude ' mat hcode. fi’
argl = argl | to avoid unreferenced warning nessage
arg2 = arg2 ! to avoid unreferenced warning nessage
if((err_info .and. MDOVAIN) .ne. 0)then
select(err_info .and. FUNC MASK)
case(FUNC_POW)
! argl is (0,0)
if(img(arg2) .ne. 0)then
print *, 'a zero base cannot be raised to a',
& ' conpl ex power with non-zero inmaginary part’
el se
print *, 'a zero base cannot be raised to a',
& ' conpl ex power with non-positive real part’
endi f
end sel ect
end if
__zmath2err = (0,0)
end

Redefining math error handling with Open Watcom F77

257

Common Problems

doubl e conpl ex function __qgmath2err(err_info, argl, arg2)
integer err_info
doubl e conpl ex argl, arg2
i ncl ude ' mat hcode. fi’
argl = argl I to avoid unreferenced warning nessage
arg2 = arg2 ! to avoid unreferenced warning nessage
if((err_info.and. MDOVAIN) .ne. 0)then
select(err_info .and. FUNC MASK)
case(FUNC_POW)
! argl is (0,0)
if(img(arg2) .ne. 0)then
print *, 'a zero base cannot be raised to a',
& ' conpl ex power with non-zero inmaginary part’
el se
print *, 'a zero base cannot be raised to a',
& ' conpl ex power with non-positive real part’
endi f
end sel ect
end if
__qgmat h2err = (0,0)
end

37.6 The compiler cannot find my include files

In order to locate your INCLUDE files, the compiler first searches your current directory, then each
directory listed in the FINCL UDE environment variable (in the order that they are specified). If the
compiler reportsthat it is unable to find one of your include files, change the FINCL UDE environment
variable by adding the directory path to your include files. For more information on setting the
environment variable, refer to the "Compiling an Application” chapter of the Open Watcom F77 User’'s
Guide.

37.7 The linker reports a "stack segment not found" error

The linker usually reports the error "1014: stack segment not found" when it is unable to find the run-time
libraries required to link your application. To ensure you are linking with the correct run-time libraries,
check to see that your link command contains the correct "SY STEM" directive. Aswell, the WATCOM
environment variable should be pointing to the directory containing the Open Watcom F77 software. For a
Open Watcom F77 application, if this error isfollowed by the error "1023: no starting address found", it
may indicate that you are attempting to link code that does not have a main program procedure. Ensure that
you include your main program object module with your linker directives.

With FORTRAN 77, "STACK" isareserved word. If you use "STACK" as the name of a common block,
thismay also result in the " Stack Segment Not Found" error. Check the names of your common blocks and
rename them if necessary.

37.8 Resolving an "Undefined Reference"” linker error

The Open Watcom Linker builds an executable file by a process of resolving referencesto functions or data
itemsthat are declared in other sourcefiles. Certain conditions arise that cause the linker to generate an
"Undefined Reference" error message. An "Undefined Reference” error message will be displayed by the
linker when it cannot find a function or data item that was referenced in the program. Verify that you have
included all the required object modulesin the linker command and that you are linking with the correct
libraries.

258 Resolving an "Undefined Reference" linker error

Commonly Asked Questions and Answers

The"SYSTEM" linker directive should be used to indicate the target environment for the executable. This
directive specifies the format of the executable and the libraries for the target environment. Verify that the
WATCOM environment variable is set to the directory that Open Watcom F77 was installed in sinceit is
used to complete the library path in the "SY STEM" directive. Y ou may aso explicitly include alibrary
using the "LIBRARY" linker directive.

If the linker reports an unresolved reference for *_cstart_", thisindicates that the linker could not find the
FORTRAN 77 run-time libraries. In 16-bit applications, the FORTRAN 77 run-time libraries for the
medium memory model (-mm) and the floating-point calls floating-point model (-fpc) would be
flibmlib. In32-hitapplications, the FORTRAN 77 run-time libraries for the flat memory model
wouldbeflib.lib. Verifythat the"LIB" environment variable has been set to point to the correct
WATCOM library directories and that the library corresponds to the memory and floating-point model that
you selected.

37.9 Why local variable values are not maintained between
subprogram calls

By default, the local variables for a subprogram are stored on the stack and are not initialized. When the
subprogram returns, the variables are popped off the stack and their values are lost. If you want to preserve
the value of alocal variable, after the execution of aRETURN or END statement in a subprogram, the
FORTRAN 77 SAVE statement or the "save" compiler option can be used.

Using the FORTRAN 77 SAVE statement in your program allows you to explicitly select which valuesyou
wish to preserve. The SAVE statement ensures that spaceis allocated for alocal variable from static
memory and not the stack. Include a SAVE statement in your FORTRAN 77 code for each local variable
that you wish to preserve.

To automatically preserve all local variables, you can use the "save"' compiler option. This option adds
codeto initialize and allocate space for each local variable in the program. Thisis equivalent to specifying
aSAVE statement. The"save" option makesiit easier to ensure that all the variables are preserved during
program execution, but it increases the size of the code that is generated. Y ou may wish to use this option
during debugging to help diagnose bugs caused by corrupted local values. Usually, it is more efficient to
use SAVE statements rather than the general "save" compiler option. Y ou should selectively use the SAVE
statement for each subprogram variable that you want to preserve until the next call. Thisleadsto smaller
code than the "save" option and avoids the overhead of allocating space and initializing values
unnecessarily.

37.10 What "Stack Overflow!" means

The memory used for local variablesis allocated from the function call stack although the Open Watcom
compilerswill often use registers for local variables. The size of the function call stack islimited at
link-time and it is possible to exceed the amount of stack space during execution.

There are various ways of protecting against stack overflow errors. First, one should minimize the number
of recursive functions used in an application program. This can be done by recoding recursive functions to
use loops.

The user may also optionally force the compiler to use static storage for al local variables (Open Watcom

F77 "save" option). Thiswould eliminate most stack problems for FORTRAN programs. These
techniques will reduce the amount of stack space required but there still may be times where the default

What "Stack Overflow!" means 259

Common Problems

amount of stack space isinsufficient. The Open Watcom Linker (WLINK) allows the user to set the
amount of stack space at link-time through the directive "OPTION STACK=size" where size may be
specified in bytes with an optional "k" suffix for kilobytes (1024 bytes).

Example:
option stack=9k

Note that with the Open Watcom F77 run-time system, the /O routines require 4k of stack space. If your
application requires 5K of stack space, set aside 9K to allow for 4K of 1/O stack spacein addition to the
stack space required by the application.
Debugging a program that reports a stack overflow error can be accomplished with the following sequence.
1. Loadyour application into the debugger
2. Setabreskpointat STKOVERFLOW
3. Runthe application until the breakpoint at _ STKOVERFLOWis triggered

4. Issuethe debugger "show calls' command. Thiswill display a stack traceback giving you the
path of callsthat led up to the stack overflow situation.

The solution to the stack overflow problem at this point depends on the programmer.

37.11 What are the probable causes of a General Protection
Fault in 32-bit applications?

If you are running a 32-hit application using DOS/4GW, a program crash may report an "Unexpected
Interrupt OD" general protection fault error. The Phar Lap DOS extender would report an "Abnormal
Program Termination" general protection fault error. This often indicates that something in your program
has tried to access an invalid memory location. In a Open Watcom F77 application, the most likely causes
of ageneral protection fault are:

* Attempting to access an array out of bounds.

* Running out of stack space.

» Passing incorrect parameter typesto afunction.
To help locate the cause of the protection fault, compile your program with the "debug" and "stack"
options. With these options, code will be added to your application to help identify these problems and
generate run-time error messages when they are encountered. In addition, the "stack” option checks for
stack overflow conditions by including code at the beginning of each subprogram.
If you still encounter general protection faults after compiling with "debug" and "stack", then debug the

program using the debugger. Thiswill help to identify the location of the crash and the state of your
parameters and variables at the time of the crash.

260 What are the probable causes of a General Protection Fault in 32-bit applications?

Commonly Asked Questions and Answers

37.12 Which floating-point compiler option should I use for
my application?

The answer to this question depends on the expected target machines for your application. 1f you know that
a co-processor will be available, use the "fpi87" compiler option to optimize the run-time performance of
the application.

When you are running a FORTRAN 77 application on a machine with or without a co-processor and you
want to favour the use of emulation libraries over code size, use the "fpc" option. The "fpc" option will
also take advantage of an 80x87 co-processor if it isavailable. If your application needs to be flexible
enough to run either with or without a co-processor, the "fpc" option is recommended.

The"fpi" option is the default floating-point option and can be used with or without a co-processor. On
machines that do not have a co-processor, you may notice that programs compiled using "fpc" run faster
than those compiled with "fpi". This occurs because the "fpc" option uses the floating-point libraries
directly whereas the "fpi" option interfaces with an emulator interrupt handler. Although the "fpi" optionis
slower than "fpc" without a co-processor, the code that it generatesis smaller.

When you are running an application that has been compiled with "fpi", the startup code checksto
determine whether a math co-processor is present. If it isnot present, the emulator hook isinstalled at the
INT 7hinterrupt to manage the co-processor requests and convert them to the emulation library calls. Each
time afloating-point operation is requested, the processor issuesan INT 7h.

For 16-bit applications, the interrupt handler overhead accounts for the performance discrepancy between
the "fpc" and "fpi" options.

For 32-bit applications, the manner in which this interrupt is handled depends on the DOS extender.
Depending on the DOS extender, there are two methods of managing floating-point instructions through the
interrupt handler. The DOS extender will either pass the interrupt directly to the INT 7h handler or it will
perform someintermediary steps. Similarly, thereis a delay after the interrupt as control is passed back
through the DOS extender. Passing floating-point handling from the DOS extender to the interrupt handler
results in the performance degradation. This performance degradation may vary across DOS extenders. It
isthe overhead of transferring the call through an interrupt that leads to the speed difference between "fpi"
and "fpc". If you need to run an application on machines without math co-processors, and you want to
ensure that your performance is optimal, build your application using the "fpc" option rather than "fpi".

In a Windows environment, both the "fpi87" and the "fpi" options will use floating-point emulation if a
co-processor is not available. Windows floating-point emulation is provided through Open Watcom's
"WEMU387.386". "WEMU387.386" isroyalty free and may be redistributed with your application. For
machines that do not have a math co-processor, install "WEMU387.386" as a device in the [386Enh]
section of the Windows SY STEM.INI file to handle the floating-point operations. Note that the speed of
code using "WEMU387.386" on machines without a co-processor will be much slower than code compiled
with the "fpc" option that always uses floating-point libraries.

Which floating-point compiler option should | use for my application? 261

Common Problems

37.13 How more than 20 files at a time can be opened

The number of file handles allowed by Open Watcom F77 isinitializedto 20 in st di 0. h, but thiscan be
changed by the application developer. To change the number of file handles allowed with Open Watcom
F77, follow the steps outlined below.

1

3.

Let n represent the number of files the application devel oper wishes to have open. Ensure that
the stdin, stdout, stderr, stdaux, and stdprn files are included in the count.

Change the CONFI G. SYS filetoinclude "files=n" where "n" is the number of file handles
required by the application plus an additional 5 handles for the standard files (this applies to
DOS5.0). The number "n" may vary depending on your operating system and version. If you
are running a network such as Novell’s NetWare, this will also affect the number of available
file handles. In this case, you may have to increase the number specified in the "files=n"
statement.

Add acall to GROAHANDLES in your application.

The following example illustrates the use of GROANHANDLES.

Example:

*

¥ % X X kX X F

FHANDLES. FOR

Thi s FORTRAN program grows the nunber of file handles so
nore than 16 files can be opened. This program
illustrates the interacti on between GROMANDLES and

the DOS 5.0 file system If you are running a network
such as Novell’'s NetWare, this will also affect the
nunmber of available file handles. In the actual trial,

FI LES=40 was specified in CONFI G SYS.

Conpi | e/ Li nk: set finclude=\watcom src\fortran
wf I [386] f handl es

Get proper typing information frominclude file
include 'fsublib.fi’

integer i, j, maxh, maxo
i nteger tnmpfile
i nteger units(7:57)

do i = 25, 40
Count 5 for stdin, stdout, stderr, stdaux,
and stdprn
print 100, 5 + i
maxh = growhandles(5 + i)
print *, ' G owhandl es=", maxh
maxo = 0

262 How more than 20 files at a time can be opened

Commonly Asked Questions and Answers

doj =7, 7 + maxh
print *, 'Attenpting file', |j
units(j) = tnpfile(j)
if(units(j) .eq. 0)goto 10
maxo = maxo + 1

enddo
10 print 101, maxo, maxh
doj =7, 7 + maxo
close(units(j))
enddo
enddo
100 format(’Trying for ',12,’ handles... ', %)
101 format (12, /',12," temp files opened’)
end

i nteger function tnpfile(un)

i nteger un, ios

open(unit=un, status=" SCRATCH , iostat=ios)

if(ios .eq. 0)then
wite(unit=un, fnt="(12)", err=20) un
tnmpfile = un
return

endi f

20 tnpfile = 0
end

37.14 How source files can be seen in the debugger

The selection and use of debugging information isimportant for getting the most out of the Open Watcom
Debugger. If you are not able to see your source code in the Open Watcom Debugger source window,
there are three areas where things may have gone wrong, namely:

1. usingthe correct option for the Open Watcom F77.
2. using the correct directives for the Open Watcom Linker.
3. using the right commands in the Open Watcom Debugger.

The Open Watcom F77 compiler takes FORTRAN 77 source and creates an object file containing the
generated code. By default, no debugging information isincluded in the object file. The compiler will
output debugging information into the object file if you specify a debugging option during the compile.
There are two levels of debugging information that the compiler can generate:

1. Linenumbersand local variables ("d2" option)
2. Line numbers ("d1" option)

The options are used to determine how much debugging information will be visible when you are
debugging a particular module. If you usethe "d2" option, you will be able to see your source file and
display your local variables. The"d1" option will display the source but will not give you accessto loca
variable information.

The Open Watcom Linker (WLINK) isthe tool that puts together a complete program and sets up the
debugging information for all the modules in the executable file. Thereisalinker directive that indicates to

How source files can be seen in the debugger 263

Common Problems

the linker when it should include debugging information from the modules. There are five levels of
debugging information that can be collected during thelink. These are:

global names (DEBUG)

global names, line numbers (DEBUG LINE)
global names, types (DEBUG TY PES)

global names, local variables (DEBUG LOCALYS)
all of the above (DEBUG ALL)

agkrwpNPE

Notice that global names will always be included in any request for debugging information. The debugging
options can be combined

DEBUG LI NE, TYPES

with the above directive resulting in full line number and typing information being available during
debugging. The directives are position dependent so you must precede any object files and libraries with
the debugging directive. For instance, if thefile nyl i nk. | nk contained:

#

invoke with: wink @wylink
#

file main

debug line

file input, output

debug al

file process

then themodules i nput and out put will have global names and source line information available during
debugging. All debugging information in the module pr ocess will be available during debugging.

Hint: A subtle point to debugging information is that all the modules will have global names available
if any debugging directiveis used. Inthe above example, the module mai n will have global name
information even though it does not have a DEBUG directive preceding it.

Itis preferable to have one DEBUG directive before any FILE and LIBRARY directives. Y ou might
wonder if thisincreases the size of the executable file so that it will occupy too much memory during
debugging. The debugging information isloaded "on demand" by the debugger during the debugging
session. A small amount of memory (40k default, selectable with the Open Watcom Debugger "dynamic"
command line option) is used to hold the most recently used module debugging information. In practice,
this approach saves alot of memory because most debugging information is never used. The overhead of
accessing the disk for debugging information is negligible compared to accessing the source file
information. In other words, you can have as much debugging information as you want included in the
executable file without sacrificing memory required by the program. See the section entitled "The DEBUG
Directive" in the Open Watcom Linker User’s Guide for more details.

If the previous steps have been followed, you should be well on your way to debugging your programs with
source line information. There are instances where the Open Watcom Debugger cannot find the
appropriate source file even though it knows al the line numbers. The problem that has surfaced involves
how the source file is associated with the debugging information of the module. The original location of
the source file isincluded in the debugging information for amodule. The name that isincluded in the
debugging information is the original name that was on the Open Watcom F77 command line. If the
original filenameis no longer valid (i.e., you have moved the executable to another directory), the Open
Watcom Debugger must be told where to find the source files. The Open Watcom Debugger " Source Path"

264 How source files can be seen in the debugger

Commonly Asked Questions and Answers

menu item (under "File") can be used to supply new directoriesto search for source files. If your source
files arelocated in two directories, the following paths can be added in the Open Watcom Debugger:

c:\programfortran*.for
c:\programinew fortran*.for

The"*" character indicates where the module name will be inserted while the Open Watcom Debugger is
searching for the source file. See the description of the " Source Path" menu item in the Open Watcom
Debugger User’s Guide for more details.

37.15 The difference between the "d1" and "d2" compiler
options

The reason that there are two levels of debugging information available is that the code optimizer can
perform many more optimizations and still maintain "d1" (line) information. The "d2" option forces the
code optimizer to ensure that any local variable can be displayed at any time in the function.

The"d2" option will always generate code and debugging information so that you can print the value of

any variable during the execution of the function. In order to get the best code possible and still see your
source file while debugging, the "d1" option only generates line number information into the object file.
With line number information, much better code can be generated. The debugging of programs that have
undergone extensive optimization can be difficult, but with the source line information it is much easier.

To summarize, use the "d2" compiler option if you are developing a module and you would like to be able
to display each local variable. The"d1" compiler option will give you line number information and the best
generated code possible. There is absolutely no reason not to specify the "d1" option because the code
quality will be identical to code generated without the "d1" option.

37.16 The difference between the "debug” and "d2" compiler
options

The"d2" (and "d1") compiler options are used to add debugging information to your executable. The "d2"
option makes line numbering, local symbol and typing information available to the debugger whereas "d1"
only provides line number debugging information to the debugger. Thisinformation is used during a
debugging session to examine the state of variables and to provide the source code display.

The "debug" option provides run-time error messages that are independent of the Open Watcom Debugger.
The "debug" option causes the generation of run-time error checking code. This includes subscript and
substring bounds checking as well as code that allows a run-time traceback to be issued when an error
occurs. During the execution of the application, if an error occurs, the code added with the "debug” option
will halt the program and provide an informative error message.

The difference between the "debug” and "d2" compiler options 265

Index

16-bit 123

16-bit DLL 151

16-bit DOS applications 5

16-bit far pointer 123

16-bit near pointer 123

16-bit OS/2 1.x applications 209

16-bit Windows 3.x applications 103

16-bit Windows 3.x non-GUI applications 107
_16xxx functions 183

32-bit 123

32-bit DLL 139, 151

32-bit DOS/AGW applications 13
32-bit far pointer 123

32-bit gates 40

32-bit near pointer 123

32-bit OS/2 applications 213

32-hit Phar Lap 386|DOS-Extender applications 9

32-bit Windows 3.x applications 113
32-hit Windows 3.x non-GUI applications 117
386enh 130

4GWPRO.EXE 96

8042 auxiliary processor 33

A20line 33-34

addressline 20 34

AllocAliasl6 160, 132-133, 161, 168, 178
ALLOCATE 124, 132, 134, 144, 164
AllocHugeAliasl6 161, 132, 161, 169, 178
answers to general problems 249

API special functions 183

application development 1

array 124-125, 132

autopassup range 40

BBS 250

beginthread function 195, 217

binary data 251

binding 32-bit applications 114, 119
binding a32-bit DLL 115, 120

BINP directory 211

BINW directory 115, 120

building 386|DOS-Extender applications 10
building DOS applications 5

building DOS/4GW applications 13
building OS/2 1.x applications 210

building OS/2 applications 214

building Windows 3.x applications 104, 114
building Windows NT applications 192
bulletin board 250

_Cali6 162, 137, 172, 181-182
cdecl 137, 162, 166
class 131
common questions 249
DOS/AGW 85
Compaq 386 memory 32
CompuServe 250
CONFIG.SYS 211
converting to Open Watcom F77 250
common problems 250

267

Index

what you need to know 250 32-bit Windows example 140
cstart 259 creating 147-148
debugging 147
debugging example 149
installing example 148
D 0S22x 221
passing information in a structure 144
running example 149

summary 150
dl 251 Windows NT 199
dl versusd2 265 DLL access
d2 251 0S/22x 223
d2 versus debug 265 Windows NT 202
DEALLOCATE 134 DLL creation
DEBUG option 260 0S22x 221

debug versus d2 265
debugger option
dl 265
d2 265
debugging 251
optimized programs 251
stack overflow 259
techniques 259
debugging 386|DOS-Extender applications 10

Windows NT 199
DLL directory 211
DLL initialization

0S/22.x 225

Windows NT 204
DLL sample

0S/22x 222

Windows NT 200
DLL termination

debugging DOS applications 6 0S22x 225
debugging DOS/4GW applications 14 Windows NT 204

debugging information DLL _CHAR 164

global variables 263 DLL_DWORD 164

line numbering 263 DLL ENDLIST 164
local variables 263 -

DLL_PTR 164
Open Watcom Debugger 264 DLL WORD 164
Open Watcom F77 263 DOS extenders

source file 263 common problems 17
types 263 DOSfile1/O 93

WLINK 263 - o DOS memory management 49
debugging Non-GUI 16-bit Windows 3.x applications DOS Protected-Mode Interface 43
.109 - o DOS/4GW
debugging Non-GUI 32-bit Windows 3.x applications AGWPRO.EXE 96
120 addressline20 34

debugging OS/2 1.x applications 210
debugging OS/2 applications 214

debugging Windows 3.x applications 104, 115
debugging Windows NT applications 192
default type 129

default windowing library functions 110, 121
DefineDLLEnNtry 164

DefineUserProcl6 166, 174

DELETESWAP virtual memory option 35, 94-95 debugging bound applications 96

distribution rights 130 demand-loading 94

DLL differences with DOS/4G 87

16-b?t 151 _ . differences with Professional version 86
16-bit callsinto 32-bit DLLs 141 documentation 86

32-b@t 139,_151 _ DOSfile /O 93
32-bit calsinto 32-bit DLLs 143 DOSX.EXE 100

asynchronous interrupts 90
cannot lock stack 100
chaining handlers 41

code and data addresses 89
common questions 85
contacting Tenberry 86
Ctrl-Break handling 91
debugger version 96

268

Index

DPMI support 88

EMM386.EXE 99

error messages 80

extender messages 77

extramemory 32

int 70h-77h 91

interrupt handler address 41

interrupt handlers 41, 91

kernel error messages 77

linear vs physical addresses 89

locking memory 91

Lotus 1-2-3 99

low memory access 89

memory addressability 93

memory control 31

memory range 31

memory use 26

mouse support 93

NULL pointer references 90

0S/2 bug 100

out of memory 94

pointers vslinear addresses 89

realloc 92

register dump 97

runtime options 33

spawning 93

switch mode setting 30

TCPIP.EXE 100

telephone support 86

transfer stack overflow 97

TSR not supported 23

unexpected interrupt 96

utilities 69

VESA support 93

VM configuration 95

VMM 93

VMM instability 94

VMM restriction 23

Windows NT bug 100
DOS/AGW DOS extender 23
DOS16M

+ option 32

A20 option 34

loops option 34

runtime options 33
DOS16M environment variable 29-34, 73
DOSAG

NULLP option 29, 90

QUIET option 29

VERBOSE option 29, 97
DOSAG environment variable 29
DOSAGPATH environment variable 25
DOSAGVM

DELETESWAP 94-95

MAXMEM 95
MINMEM 95
SWAPINC 94-95
SWAPMIN 94-95
SWAPNAME 94
VIRTUALSIZE 94-95
DOSAGVM environment variable 35-36
DOSAGVM.SWP 35
DOSAGW 70
DOSAGW.EXE 25
DOSX.EXE 100
DPMI 32, 40, 43
allocate DOS memory block 49
allocate memory block 62
allocate real-mode callback address 56
demand paging 63
discard page 64
free DOS memory block 50
free memory block 62
free physical address mapping 65
free real-mode callback address 60
function calls 44
get and disable virtua interrupt state 66
get and enable virtual interrupt state 66
get APl entry point 67
get coprocessor status 67
get DPMI version 60
get exception handler vector 51
get free memory information 61
get page size 63
get protected-mode interrupt vector 52
get real-mode interrupt vector 51
get virtual interrupt state 66
lock linear region 63
mark page 63
physical address mapping 64
resize DOS memory block 50
resize memory block 62
set coprocessor emulation 68
set exception handler vector 51
set protected-mode interrupt vector 52
set real-mode interrupt vector 51
simulate real-mode far call 55
simulate real-mode interrupt 54
simulate real-modeiret call 56
unlock linear region 63
vendor extensions 67
virtual interrupt state 65
DPMI host
386Max 43
0OS/2VDM 43
QEMM QDPMI 43
Windows 3.1 43
DPMI specification 17, 86

269

Index

DPMI_MEMORY_LIMIT WINDOWS_INCLUDE 157
DOS setting 100 error messages
dragon book 251 DOS/4GW 80
dwfDeleteOnClose 110, 121 kernel 77
dwfSetAboutDIlg 110, 121 executable
dwfSetAppTitle 111, 122 linear 25
dwfSetConTitle 111, 122 segmented 25
dwfShutDown 111, 122 executablefile 6, 10, 14, 104, 109, 114, 119, 192, 210,
dwfYield 111, 122 214
DWORD 137 EXPLICIT option 130
dynamic link libraries 211 extended memory 29
0S/22.x 221 extender messages
Windows NT 199 DOS/AGW 77

dynamic link library 139, 151
dynamic link library access
0S/22.x 223
Windows NT 202 F
dynamic link library creation
0S/22x 221
Windows NT 199
dynamic link library initialization

far 123-125, 132, 144, 164, 175, 246

0S/22.x 225 far pointer 123
Windows NT 204 __fdll_initialize_ 204, 225
dynamic link library sample __deI_terml nate 204, 225
0S/22.x 222 files
Windows NT 200 more than 20 262
dynamic link library termination unableto find 258 '
0S/2 2.x 225 FINCLUDE environment variable 151, 198, 219, 258
Windows NT 204 fixed record type 251
dynamic linking 199, 221 floating-point options 261
formatted 251
FORTRAN 77
Extensions 250
E fpc option 261

fpi option 261
fpi87 option 261

free 172
EMM386.EXE 99 free memory 19
endthread subroutine 196, 218 FreeAliasl6 168, 133
EnumcChildWindows 174 FreeHugeAliasl6 169, 169
EnumFonts 174 FreelndirectFunctionHandle 170, 162, 172, 181-182
EnumMetaFile 174 FreeLibrary 201
EnumObjects 174 FreeProclnstance 135
EnumProps 174 fsignal 252
EnumTaskWindows 174 __fthrd_initialize_ 204
EnumWindows 174 __fthrd_terminate_ 204
environment variables FTPsite 250
DOS16M 29-34, 73 Fujitsu FMR-70 switch mode setting 30
DOSAG 29 FWinMain 139

DOSAGPATH 25

DOSAGVM 35-36

FINCLUDE 151, 198, 219, 258

PATH 115, 119-120, 151

WATCOM 115, 120, 198, 219, 258-259

270

Index

GetlndirectFunctionHandle 172, 162, 170, 176,
181-182

GetProcl6 174, 132, 134, 166, 180, 182

GETPROC_ABORTPROC 174

GETPROC _CALLBACK 174

GETPROC_ENUMCHILDWINDOWS 174

GETPROC_ENUMFONTS 174

GETPROC_ENUMMETAFILE 174

GETPROC_ENUMOBJECTS 174

GETPROC_ENUMPROPS FIXED_DS 174

GETPROC_ENUMPROPS MOVEABLE DS 174

GETPROC_ENUMTASKWINDOWS 174

GETPROC_ENUMWINDOWS 174

GETPROC _GLOBALNOTIFY 174

GETPROC_GRAYSTRING 174

GETPROC LINEDDA 174

GETPROC_SETRESOURCEHANDLER 174

GETPROC_SETTIMER 174

GETPROC_SETWINDOWSHOOK 174

GETPROC_USERDEFINED_1 166

GETPROC_USERDEFINED_32 166

GETPROC _USERDEFINED x 174

GetProcAddr 182

GetProcAddress 137, 162, 181

GlobaAlloc 134

GlobalLock 182

GlobalNotify 174

GMEM_DDESHARE 134

GrayString 174

GROWHANDLES 262

GWL_WNDPROC 136

HIMEM.SYS 33
Hitachi B32 switch mode setting 30

!

IBM PS/55 switch mode setting 30
IDT 40

import definitions 199, 221
import library 203, 223
INDIR_CDECL 172
INDIR_CHAR 172
INDIR_DWORD 172
INDIR_ENDLIST 172
INDIR_PTR 172,176
INDIR_WORD 172
initialization
0S/2 2.x dynamic link library 225
Windows NT dynamic link library 204
initializing
variables 259
Instant-D 25
INT 21H 37
INT 31H 43
int 31H function cals 44
inter-language calls 239
interrupt handling 40
interrupt services 51
interrupts
using DOS/4GW 18
InvokelndirectFunction 176, 172, 181-182
Invokel ndirectFunctionHandle 162

kernel error messages 77
keyboard status 33

LDT 44
LE format 25
LibMain 200-202, 222
library 259
library functions

default windowing 110, 121
line number information 251
linear executable 25
LineDDA 174
linker

undefined references 258
LoadLibrary 181, 201
local descriptor table 44
LocaAlloc 134
LOCATION 124, 132, 144, 164

271

Index

LOCATION= 124, 132 near pointer 123
Lotus 1-2-3 99 NEC 98-series switch mode setting 30
NLM
debugging 235
header files 235
M import libraries 235
libraries 235
sampler 235
NLM support
MakeProclnstance 134-135 verson 4.0 235
malloc 172 version 4.1 235
MapAliasToFlat 178 no starting address found 258
meath errors 252 _ NOAUTOPROCS 135-136
MAXMEM virtual memory option 35, 95 NOCOVERSENDS 133
memory management services 61 Novell
memory transfer rate 71 TCPIP.EXE 100
memory wait states 71 NT development 189
message NULLP 29

include files 258
no starting address found 258
stack segment not found 258

unableto find files 258 (o)
undefined references 258
messages
DOS/4AGW 77
MINMEM virtual memory option 35, 95 object file 6, 10, 14, 104, 109, 114, 119, 192, 210, 214
mixed-language programming 239 OKI if800 switch mode setting 30
argument passing 240 Open Watcom F77
common blocks 245 converting to 250
integer type 241 Open Watcom F77 debugging
linking issues 241 d2 265
memory models 240 debug 265
parameter passing 240 Open Watcom F77 options
passing integers 241-242 dl 251, 263
passing strings 243-244 d2 251, 263
symbol names 239 Open Watcom Strip Utility 251
variable number of arguments 246 opening more than 20 files 262
mode switching optimization
basis 74 suggested reading 251
performance 71 what you should know 251
multi-threaded applications 195, 217 0s/2
0Ss/22.x 217 fullscreen application 209, 213
Windows NT 195 PM-compatible application 209, 213
multi-threading issues Presentation Manager application 209, 213
0S/22.x 217 OS2 PM
Windows NT 195 API calls 228
non-GUI applications 227
non-GUI example 227
0S/2 Presentation Manager 227
N
NE format 25
near 123

272

Index

page locking services 62
page tuning services 63
PASCAL 137, 162, 166
PASS WORD_AS POINTER 179
patch level 249
patches 249
PATH environment variable 115, 119-120, 151
performance 72
Phar Lap TNT 189
PMINFO 31,71
pointers

16-bit 123

32-bit 123

far 123

near 123
pragma 251
PRINT 195, 217
private memory pool 73
PRIVATXM 32, 73,99
PROCPTR 182
protected mode 33
PS/2 switch mode setting 30

guestions 249
QUIET 29

real mode 33
ReleaseProc16 180
resource compiler 115, 120
RMINFO 74

SAVE 250, 259

segmented executable 25
SendDlgltemMessage 133
SendMessage 133
sequential 251
SetResourceHandler 174
SetTimer 174
setvbuf 93
SetWindowLong 136
SetWindowsHook 174
sieve 103, 108, 113, 118, 191
sieve program 5, 9, 13, 209, 213
STACK option 260
stack overflow 259
stack segment not found 258
static linking 199, 221
stub program 25, 70
supervisor 114, 119
SWAPINC virtual memory option 35, 94-95
SWAPMIN virtual memory option 35, 94-95
SWAPNAME virtual memory option 35, 94
switch mode setting

Fujitsu FMR-70 30

Hitachi B32 30

IBM PS/55 30

NEC 98-series 30

OK1 if800 30

PS/2 30
switching modes

performance 71
symbolic information 251
system 259
system configuration file 211
SYSTEM.INI 130

TCPIP.EXE 100
TECHINFO 249
technical support
Tenberry Software 85
termination
0S/2 2.x dynamic link library 225
Windows NT dynamic link library 204
thread creation
0S/22x 217
Windows NT 195
thread example
0S/22x 218
Windows NT 196
thread identifier

273

Index

0S/22.x 218
Windows NT 196
thread limits
0S/2 2.x 220
thread termination
0S/22.x 218
Windows NT 196
threadid function 196, 218
threads of execution 195, 217
TNT 189
transfer rate
memory 71
trandation services 53

UDP16_CDECL 166
UDP16_CHAR 166
UDP16_ DWORD 166
UDP16 _ENDLIST 166
UDP16 PTR 166
UDP16 WORD 166
unableto find files 258
undefined references 258
cstart 259

Unexpected Interrupt 260

variables
set to zero 259
VCPI 32
VERBOSE 29
video memory 17
virtual memory manager 35, 93
VIRTUALSIZE virtual memory option 35, 94-95
Visua Basic 151
16-bit DLL 154-155
32-bitDLL 154
building examples 156
example 152
Version 3.0 151
VMC extension 36
VMM 35, 93

274

w

W386DLL.EXT 115,120
WATCOM environment variable 115, 120, 198, 219,
258-259
WBIND 114-115, 119, 181
WBIND.EXE 114, 119
WDEBUG.386 130
WEMU387.386 130
WFL 6-7, 104-105, 109-110, 210-211
WFL386 10-11, 14-15, 115-116, 120-121, 192-193,
214-215

WIN386 library routines 159
WIN386.EXT 114-115, 119-120
Win386LibEntry 151
WINAPI.FI 129, 133
WINDLG.FI 129
windowed applications

default windowing environment 107, 117
Windows

binding 32-bit applications 114, 119
Windows 3.x extender 123

_16xxx functions 182-183

32-bit callback routines 182

calling 16-bit code 181

components 126

creating applications 127

floating-point 130

function pointers 182

multiple instances 130

overview 124

pointer conversion 132

pointer handling 131

pointers 123

programming notes 129

guestions 181

resources 181

special functions 183

structure 125
Windows APl 129
Windows NT 189

character-mode applications 189

GUI applications 189

programming overview 189
Windows NT Character-mode applications 191
Windows supervisor 114, 119
WINDOWS.FI 129
__WINDOWS 386__ 157
__WINDOWS __ 157
WINDOWS _INCLUDE environment variable 157
WINFONT.FI 130

Index

WSTUB.C 25

XMS 33

275

