
Open Watcom FORTRAN 77

Language Reference

Version 2.0

Notice of Copyright
Copyright  2002-2023 the Open Watcom Contributors. Portions Copyright  1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit https://github.com/open-watcom/open-watcom-v2 .

ii

Preface
Open Watcom FORTRAN 77 is an implementation of the American National Standard programming
language FORTRAN, ANSI X3.9-1978, commonly referred to as FORTRAN 77. The language level
supported by Open Watcom FORTRAN 77 compilers includes the full language definition as well as
significant extensions to the language. Open Watcom FORTRAN 77 compilers are based upon some well
known FORTRAN language compilers, namely the University of Waterloo’s WATFOR and WATFIV-S
compilers (implementations for the International Business Machines 370 series) and the WATFOR-11
compiler (an implementation for the Digital Equipment PDP11).

This manual describes the language level supported by Open Watcom FORTRAN 77 including extensions
to the standard language. Shaded areas in the book denote a Open Watcom FORTRAN 77 language
extension. Occasionally, where an entire section or chapter deals with a language extension, the text may
not be shaded. Users should note that extensions which are supported by this compiler may not be
supported by other compilers. We leave the choice to use a particular extension to the discretion of the
programmer.

An accompanying manual, the User’s Guide, contains system specific topics such as how to run the
software on your system, file system support, compiler options, etc.

Acknowledgements
This book was produced with the Open Watcom GML electronic publishing system, a software tool
developed by WATCOM. In this system, writers use an ASCII text editor to create source files containing
text annotated with tags. These tags label the structural elements of the document, such as chapters,
sections, paragraphs, and lists. The Open Watcom GML software, which runs on a variety of operating
systems, interprets the tags to format the text into a form such as you see here. Writers can produce output
for a variety of printers, including laser printers, using separately specified layout directives for such things
as font selection, column width and height, number of columns, etc. The result is type-set quality copy
containing integrated text and graphics.

Much of the information contained in this document was taken from the ANSI publication "American
National Standard Programming Language FORTRAN, ANSI X3.9-1978". We recommend that anyone
who is interested in the definitive description of FORTRAN 77 obtain a copy of this document. Their
address is: American National Standards Institute, Inc., 1430 Broadway, New York, New York, U.S.A.
10018.

July, 1997.

iii

iv

Table of Contents

Language Reference ... 1

1 FORTRAN Source Program Format ... 3
1.1 Character Set ... 3
1.2 Extended Character Set ... 3
1.3 Source Program Format .. 4

1.3.1 Comment Line .. 4
1.3.2 Debug Line (Extension) ... 4
1.3.3 Initial Line .. 4
1.3.4 Continuation Line ... 4
1.3.5 Significance of the Blank Character ... 5
1.3.6 Significance of Lower Case Characters (Extension) .. 5
1.3.7 Examples .. 5

1.4 Order of FORTRAN Statements and Lines .. 6

2 FORTRAN Statements .. 9
2.1 Classifying Statements .. 9
2.2 FORTRAN Statement Summary ... 11
2.3 ADMIT Statement ... 12
2.4 ALLOCATE Statement ... 13
2.5 Statement Label Assignment (ASSIGN) Statement .. 16
2.6 AT END Statement ... 18
2.7 BACKSPACE Statement .. 19
2.8 BLOCK DATA Statement .. 21
2.9 CALL Statement ... 23
2.10 CASE Statement .. 25
2.11 CHARACTER Statement .. 26

2.11.1 Standard CHARACTER Statement .. 26
2.11.2 Extended CHARACTER Statement: Data Initialization .. 28

2.12 CLOSE Statement ... 29
2.13 COMMON Statement ... 31
2.14 COMPLEX Statement ... 33

2.14.1 Standard COMPLEX Statement ... 33
2.14.2 Extended COMPLEX Statement: Length Specification .. 33
2.14.3 Extended COMPLEX Statement: Data Initialization ... 34

2.15 CONTINUE Statement ... 36
2.16 CYCLE Statement ... 37
2.17 DATA Statement ... 38
2.18 DEALLOCATE Statement ... 42
2.19 DIMENSION Statement ... 44
2.20 DO Statement .. 45

2.20.1 Standard DO Statement .. 45
2.20.2 Extended DO Statement ... 45
2.20.3 Description of DO Statement ... 45

2.21 DOUBLE COMPLEX Statement .. 49
2.21.1 Simple DOUBLE COMPLEX Statement ... 49
2.21.2 DOUBLE COMPLEX Statement: Data Initialization .. 49

2.22 DOUBLE PRECISION Statement .. 51
2.22.1 Standard DOUBLE PRECISION Statement .. 51
2.22.2 Extended DOUBLE PRECISION Statement: Data Initialization .. 51

2.23 DO WHILE Statement .. 53
2.24 ELSE Statement .. 54

v

Table of Contents

2.25 ELSE IF Statement .. 55
2.26 END Statement .. 56
2.27 END AT END Statement .. 57
2.28 END BLOCK Statement ... 58
2.29 END DO Statement ... 59
2.30 ENDFILE Statement ... 60
2.31 END GUESS Statement .. 62
2.32 END IF Statement ... 63
2.33 END LOOP Statement .. 64
2.34 END MAP Statement .. 65
2.35 END SELECT Statement .. 66
2.36 END STRUCTURE Statement ... 67
2.37 END UNION Statement .. 68
2.38 END WHILE Statement .. 69
2.39 ENTRY Statement ... 70
2.40 EQUIVALENCE Statement .. 71
2.41 EXECUTE Statement .. 73
2.42 EXIT Statement ... 74
2.43 EXTERNAL Statement ... 75
2.44 FORMAT Statement ... 76
2.45 FUNCTION Statement .. 77

2.45.1 Standard FUNCTION Statement .. 77
2.45.2 Extended FUNCTION Statement ... 78

2.46 Unconditional GO TO Statement .. 79
2.47 Computed GO TO Statement .. 80
2.48 Assigned GO TO Statement .. 81
2.49 GUESS Statement ... 83
2.50 Arithmetic IF Statement .. 84
2.51 Logical IF Statement ... 85
2.52 Block IF Statement .. 87

2.52.1 Standard Block IF Statement .. 87
2.52.2 Extended Block IF Statement ... 87

2.53 IMPLICIT Statement ... 89
2.53.1 Standard IMPLICIT Statement ... 89
2.53.2 Extended IMPLICIT Statement .. 89
2.53.3 IMPLICIT NONE Statement .. 90
2.53.4 Description of IMPLICIT Statement .. 90

2.54 INCLUDE Statement .. 92
2.55 INQUIRE Statement ... 93

2.55.1 INQUIRE by FILE ... 93
2.55.2 INQUIRE by UNIT .. 93
2.55.3 Inquiry Specifiers ... 94
2.55.4 Definition Status of Specifiers - Inquire by File .. 97
2.55.5 Definition Status of Specifiers - Inquire by Unit ... 98

2.56 INTEGER Statement ... 99
2.56.1 Standard INTEGER Statement ... 99
2.56.2 Extended INTEGER Statement: Length Specification .. 99
2.56.3 Extended INTEGER Statement: Data Initialization ... 100

2.57 INTRINSIC Statement .. 102
2.58 LOGICAL Statement .. 103

2.58.1 Standard LOGICAL Statement .. 103
2.58.2 Extended LOGICAL Statement: Length Specification .. 103

vi

Table of Contents

2.58.3 Extended LOGICAL Statement: Data Initialization .. 104
2.59 LOOP Statement ... 106
2.60 MAP Statement ... 107
2.61 NAMELIST Statement .. 108
2.62 OPEN Statement ... 111
2.63 OTHERWISE Statement ... 115
2.64 PARAMETER Statement .. 116
2.65 PAUSE Statement ... 117
2.66 PRINT Statement .. 118

2.66.1 Standard PRINT Statement .. 118
2.66.2 Extended PRINT Statement ... 118
2.66.3 Description of PRINT Statement .. 118

2.67 PROGRAM Statement .. 121
2.68 QUIT Statement .. 122
2.69 READ Statement ... 123

2.69.1 Standard READ Statement ... 123
2.69.2 Extended READ Statement .. 123
2.69.3 Description of READ Statement .. 123

2.70 REAL Statement ... 127
2.70.1 Standard REAL Statement ... 127
2.70.2 Extended REAL Statement: Length Specification ... 127
2.70.3 Extended REAL Statement: Data Initialization .. 128

2.71 RECORD Statement .. 130
2.72 REMOTE BLOCK Statement ... 131
2.73 RETURN Statement .. 132
2.74 REWIND Statement .. 133
2.75 SAVE Statement ... 135
2.76 SELECT Statement ... 137
2.77 STOP Statement .. 139
2.78 STRUCTURE Statement ... 140
2.79 SUBROUTINE Statement ... 141
2.80 UNION Statement ... 142
2.81 UNTIL Statement .. 143
2.82 VOLATILE Statement .. 144
2.83 Block WHILE Statement .. 145
2.84 WHILE Statement ... 146
2.85 WRITE Statement ... 147

3 Names, Data Types and Constants ... 151
3.1 Symbolic Names ... 151
3.2 Data Types ... 152
3.3 Data Type of a Name .. 152
3.4 Constants ... 153

3.4.1 Integer Constants .. 153
3.4.2 Real Constants .. 153
3.4.3 Double Precision Constant ... 154
3.4.4 Complex Constant .. 154
3.4.5 Double Precision Complex Constant (Extension) .. 154
3.4.6 Logical Constant ... 155
3.4.7 Character Constant ... 155
3.4.8 String Constant (Extension) ... 155
3.4.9 Hollerith Constants (Extension) ... 155

vii

Table of Contents

3.4.10 Hexadecimal Constants (Extension) ... 156
3.4.11 Octal Constants (Extension) ... 156

3.5 Symbolic Constants ... 157

4 Arrays ... 159
4.1 Introduction ... 159
4.2 Properties of Arrays .. 159
4.3 Array Elements .. 160
4.4 Classifying Array Declarators by Dimension Declarator ... 162

4.4.1 Constant Array Declarator .. 162
4.4.2 Adjustable Array Declarator ... 162
4.4.3 Assumed-size Array Declarator ... 162
4.4.4 Allocatable Array Declarator ... 163

4.5 Classifying Array Declarators by Array Name ... 164
4.5.1 Actual Array Declarator ... 164
4.5.2 Dummy Array Declarator ... 164

4.6 Use of Array Names .. 164

5 Character Substrings .. 165
5.1 Introduction ... 165
5.2 Substring Names ... 165
5.3 Extensions ... 166

6 Structures, Unions and Records ... 167
6.1 Structures and Records .. 167
6.2 Arrays of Records ... 168
6.3 Unions ... 169

7 Expressions .. 173
7.1 Arithmetic Expressions ... 173

7.1.1 Arithmetic Operators .. 173
7.1.2 Rules for Forming Standard Arithmetic Expressions ... 174
7.1.3 Arithmetic Constant Expression ... 176
7.1.4 Data Type of Arithmetic Expressions .. 177

7.2 Character Expressions ... 178
7.2.1 Character Operators .. 178
7.2.2 Rules for Forming Character Expressions .. 178
7.2.3 Character Constant Expressions ... 179

7.3 Relational Expressions .. 179
7.3.1 Relational Operators ... 179
7.3.2 Form of a Relational Expression .. 179

7.3.2.1 Arithmetic Relational Expressions .. 180
7.3.2.2 Character Relational Expressions .. 180

7.4 Logical Expressions .. 180
7.4.1 Logical Operators ... 181
7.4.2 Rules for Forming Logical Expressions ... 183
7.4.3 Logical Constant Expressions .. 184

7.5 Evaluating Expressions ... 184
7.6 Constant Expressions .. 185

8 Assignment Statements .. 187
8.1 Introduction ... 187

viii

Table of Contents

8.2 Arithmetic Assignment ... 187
8.3 Logical Assignment ... 188
8.4 Statement Label Assignment ... 188
8.5 Character Assignment ... 189
8.6 Extended Assignment Statement ... 190

9 Program Structure Control Statements .. 193
9.1 Introduction ... 193
9.2 IF - ELSE - END IF .. 193
9.3 ELSE IF ... 194
9.4 DO - END DO ... 196
9.5 DO WHILE - END DO ... 197
9.6 LOOP - END LOOP ... 198
9.7 WHILE - END WHILE ... 199
9.8 WHILE - Executable-statement .. 199
9.9 UNTIL ... 200
9.10 SELECT - END SELECT ... 201
9.11 EXECUTE and REMOTE BLOCK .. 204
9.12 GUESS-ADMIT-END GUESS ... 206
9.13 QUIT ... 208
9.14 EXIT .. 209
9.15 CYCLE .. 210
9.16 AT END .. 211
9.17 Notes on Structured Programming Statements ... 212

10 Input/Output ... 215
10.1 Introduction ... 215
10.2 Reading and Writing ... 215
10.3 Records .. 216

10.3.1 Formatted Record ... 216
10.3.2 Unformatted Record ... 216
10.3.3 Endfile Record .. 216

10.4 Files ... 217
10.4.1 External Files .. 217
10.4.2 Internal Files ... 218

10.5 Units .. 219
10.6 Specifiers ... 221

10.6.1 The Unit Specifier .. 221
10.6.2 Format Specifier ... 221
10.6.3 Record Specifier ... 222
10.6.4 Input/Output Status Specifier ... 222
10.6.5 Error Specifier .. 222
10.6.6 End-of-File Specifier .. 223

10.7 Printing of Formatted Records .. 223

11 Format .. 225
11.1 Introduction ... 225
11.2 The FORMAT Statement .. 225
11.3 FORMAT as a Character Expression .. 225
11.4 Format Specification ... 226
11.5 Repeatable Edit Descriptors .. 227
11.6 Nonrepeatable Edit Descriptors .. 228

ix

Table of Contents

11.7 Editing ... 228
11.7.1 Apostrophe Editing ... 229
11.7.2 H Editing .. 229
11.7.3 Positional Editing: T, TL, TR and X Editing ... 229
11.7.4 Slash Editing ... 230
11.7.5 Colon Editing .. 230
11.7.6 S, SP and SS Editing .. 230
11.7.7 P Editing ... 230
11.7.8 BN and BZ Editing ... 231
11.7.9 $ or \ Editing (Extension) ... 231
11.7.10 Numeric Editing: I, F, E, D and G Edit Descriptors ... 232

11.7.10.1 Integer Editing: Iw and Iw.m Edit Descriptors .. 232
11.7.10.2 Floating-point Editing: F, E, D and G Edit Descriptors .. 233
11.7.10.3 F Editing .. 233
11.7.10.4 E and D Editing .. 234
11.7.10.5 G Editing .. 235
11.7.10.6 Complex Editing .. 236

11.7.11 L Edit Descriptor .. 236
11.7.12 A Edit Descriptor .. 236
11.7.13 Z Editing (Extension) ... 237

11.8 Format-Directed Input/Output .. 238
11.9 List-Directed Formatting ... 238

11.9.1 List-Directed Input ... 239
11.9.2 List-Directed Output ... 240

11.10 Namelist-Directed Formatting (Extension) ... 240
11.10.1 Namelist-Directed Input (Extension) ... 241
11.10.2 Namelist-Directed Output .. 242

12 Functions and Subroutines ... 243
12.1 Introduction ... 243
12.2 Statement Functions .. 243

12.2.1 Referencing a Statement Function .. 244
12.2.2 Statement Function Restrictions ... 245

12.3 Intrinsic Functions ... 246
12.3.1 Specific Names and Generic Names of Intrinsic Functions ... 246
12.3.2 Type Conversion: Conversion to integer .. 248
12.3.3 Type Conversion: Conversion to real ... 248
12.3.4 Type Conversion: Conversion to double precision .. 249
12.3.5 Type Conversion: Conversion to complex ... 249
12.3.6 Type Conversion: Conversion to double complex ... 249
12.3.7 Type Conversion: Character conversion to integer .. 250
12.3.8 Type Conversion: Conversion to character .. 250
12.3.9 Truncation ... 250
12.3.10 Nearest Whole Number .. 251
12.3.11 Nearest Integer .. 251
12.3.12 Absolute Value ... 251
12.3.13 Remainder ... 252
12.3.14 Transfer of Sign .. 252
12.3.15 Positive Difference ... 253
12.3.16 Double Precision Product ... 253
12.3.17 Choosing Largest Value ... 253
12.3.18 Choosing Smallest Value ... 254

x

Table of Contents

12.3.19 Length ... 254
12.3.20 Length Without Trailing Blanks ... 254
12.3.21 Index of a Substring .. 255
12.3.22 Imaginary Part of Complex Number .. 255
12.3.23 Conjugate of a Complex Number ... 255
12.3.24 Square Root .. 256
12.3.25 Exponential ... 256
12.3.26 Natural Logarithm .. 257
12.3.27 Common Logarithm ... 257
12.3.28 Sine ... 258
12.3.29 Cosine ... 258
12.3.30 Tangent ... 259
12.3.31 Cotangent .. 259
12.3.32 Arcsine .. 259
12.3.33 Arccosine .. 260
12.3.34 Arctangent .. 260
12.3.35 Hyperbolic Sine .. 261
12.3.36 Hyperbolic Cosine .. 261
12.3.37 Hyperbolic Tangent .. 261
12.3.38 Gamma Function .. 262
12.3.39 Natural Log of Gamma Function ... 262
12.3.40 Error Function .. 262
12.3.41 Complement of Error Function .. 263
12.3.42 Lexically Greater Than or Equal .. 263
12.3.43 Lexically Greater Than ... 263
12.3.44 Lexically Less Than or Equal ... 263
12.3.45 Lexically Less Than .. 264
12.3.46 Binary Pattern Processing Functions: Boolean AND ... 264
12.3.47 Binary Pattern Processing Functions: Boolean Inclusive OR .. 264
12.3.48 Binary Pattern Processing Functions: Boolean Exclusive OR ... 265
12.3.49 Binary Pattern Processing Functions: Boolean Complement ... 265
12.3.50 Binary Pattern Processing Functions: Logical Shift ... 265
12.3.51 Binary Pattern Processing Functions: Arithmetic Shift .. 266
12.3.52 Binary Pattern Processing Functions: Circular Shift .. 267
12.3.53 Binary Pattern Processing Functions: Bit Testing .. 268
12.3.54 Binary Pattern Processing Functions: Set Bit ... 268
12.3.55 Binary Pattern Processing Functions: Clear Bit ... 268
12.3.56 Binary Pattern Processing Functions: Change Bit .. 269
12.3.57 Binary Pattern Processing Functions: Arithmetic Shifts .. 269
12.3.58 Allocated Array .. 270
12.3.59 Memory Location ... 270
12.3.60 Size of Variable or Structure .. 270
12.3.61 Volatile Reference .. 270

12.4 External Functions .. 271
12.4.1 Referencing an External Function .. 272
12.4.2 Actual Arguments for an External Function .. 272
12.4.3 External Function Subprogram Restrictions .. 273

12.5 Subroutines .. 273
12.5.1 Referencing a Subroutine: The CALL Statement ... 273
12.5.2 Actual Arguments for a Subroutine .. 273
12.5.3 Subroutine Subprogram Restrictions .. 274

12.6 The ENTRY Statement ... 274

xi

Table of Contents

12.6.1 ENTRY Statements in External Functions ... 275
12.6.2 ENTRY Statement Restrictions .. 275

12.7 The RETURN Statement ... 276
12.7.1 RETURN Statement in the Main Program (Extension) ... 276
12.7.2 RETURN Statement in Function Subprograms .. 276
12.7.3 RETURN Statement in Subroutine Subprograms .. 277

12.8 Subprogram Arguments .. 277
12.8.1 Dummy Arguments .. 278
12.8.2 Actual Arguments ... 278
12.8.3 Association of Actual and Dummy Arguments .. 278

12.8.3.1 Length of Character Actual and Dummy Arguments .. 279
12.8.3.2 Variables as Dummy Arguments ... 279
12.8.3.3 Arrays as Dummy Arguments ... 279
12.8.3.4 Procedures as Dummy Arguments .. 280
12.8.3.5 Asterisks as Dummy Arguments ... 281

Appendices ... 283

A. Open Watcom FORTRAN 77 Extensions to Standard FORTRAN 77 ... 285

xii

Language Reference

Language Reference

2

1 FORTRAN Source Program Format

1.1 Character Set
The FORTRAN character set consists of twenty-six letters, ten digits, and thirteen special characters.

The letters are:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

The digits are: 0 1 2 3 4 5 6 7 8 9

The special characters are:

Character Name of Character

Blank
= Equals
+ Plus
- Minus
* Asterisk
/ Slash
(Left Parenthesis
) Right Parenthesis
, Comma
. Decimal Point
$ Currency Symbol
’ Apostrophe
: Colon

The FORTRAN character set is a subset of the character set of the computing system which you are using.
We shall refer to the larger character set as the processor character set.

1.2 Extended Character Set
Open Watcom FORTRAN 77 also includes the following special characters.

Character Name of Character

! Exclamation Mark
% Percentage Symbol
\ Back slash

Extended Character Set 3

Language Reference

1.3 Source Program Format
Open Watcom FORTRAN 77 supports one source program format. A FORTRAN program is composed of
lines. There are three types of lines; the comment line, the initial line, and the continuation line.

1.3.1 Comment Line

Comment lines are denoted by placing a "C" or "*" in column one of the line. Open Watcom FORTRAN
77 also allows the use of a lowercase "c" as a comment indicator. Blank lines are treated as comment lines.
Comment lines may be placed anywhere in the program source (i.e., they may appear before a FORTRAN
statement, they may be intermingled with continuation lines, or they may appear after a statement). There
is no restriction on the number of comment lines. Comment lines may contain any characters from the
processor character set.

Open Watcom FORTRAN 77 allows end-of-line comments. If a "!" character appears in column 1 or
anywhere in the statement portion of a source line, the remainder of that line is treated as a comment unless
the "!" appears inside quotation marks or in column 6.

1.3.2 Debug Line (Extension)

Debug lines are denoted by placing a "D" or "d" in column one of the line. Debug lines contain
FORTRAN statements. There is no restriction on the number of debug lines. Normally, the FORTRAN
statements on debug lines are ignored by the compiler. See the User’s Guide for information on activating
debug statements.

1.3.3 Initial Line

An initial line is the first line of a FORTRAN statement. Column 6 of this line must be blank or contain the
digit "0". A comment line can never be an initial line. Columns 1 through 5 of an initial line may contain a
statement label. Statement labels are composed entirely of digits. The statement label may be thought of
as an integral number and, as such, leading 0 digits are not significant. For example, the label composed of
the digits "00123" is the same as the label "123". The same label may not identify more than one statement
in a program unit. A program unit is a series of comment lines and FORTRAN statements ending in an
END statement. The body of the FORTRAN statement is entered starting in column 7 and stopping at
column 72. Column 73 and on is called the sequence field and is ignored by the compiler.

1.3.4 Continuation Line

A statement may be continued on a new line. A continuation character is placed in column 6. The
continuation character may not be a blank character or a "0" character. FORTRAN 77 requires that the
continuation character be selected from the FORTRAN character set but Open Watcom FORTRAN 77
allows any character from the processor’s character set. The statement number field must be blank. The
previous statement is continued on the new line, starting in column 7 and continuing to column 72. Under
the control of a compiler option, Open Watcom FORTRAN 77 permits the source statement to extend to
column 132.

4 Source Program Format

FORTRAN Source Program Format

FORTRAN 77 allows up to 19 continuation lines to continue a statement. Open Watcom FORTRAN 77
extends this by allowing more than 19 continuation lines. A minimum of 61 continuation lines are
permitted when the source statement ends at column 72. A minimum of 31 continuation lines are permitted
when the source statement ends at column 132. The maximum number of continuation lines depends on the
sum of the lengths of all the continuation lines.

1.3.5 Significance of the Blank Character

Except in the following cases, blank characters have no meaning within a program unit.

(1) Character and Hollerith constants.

(2) Apostrophe and H edit descriptors in format specifications.

For example, the symbolic name A B is the same as the symbolic name AB.

1.3.6 Significance of Lower Case Characters (Extension)

Except in the following cases, lower case characters are treated as if they were the upper case equivalent.
This is a Open Watcom FORTRAN 77 extension to the usual rules of FORTRAN.

(1) Character and Hollerith constants.

(2) Apostrophe and H edit descriptors in format specifications.

Hence, TOTAL, total, and Total represent the same symbolic name and 3F10.2 and 3f10.2
represent the same format edit descriptor.

1.3.7 Examples

Example:
C This and the following five lines are comment lines.
c The following statement "INDEX = INDEX + 2" has a
c statement number and is continued by placing a "$"
c in column 6.
* Column Numbers
*234567890

10 INDEX = INDEX
$ + 2

* The above blank lines are treated like comment lines.

The following example demonstrates the use of comment lines, blanks lines, and continuation lines. We
use the symbol "$" to denote continuation lines although any character other than a blank or "0" could have
been used.

Source Program Format 5

Language Reference

Example:
* From the quadratic equation
*
* 2
* ax + bx + c = 0
*
* we derive the following two equations:
* ____________
* + / 2
* -b - \/ b - 4ac
* x = ---------------------
* 2a
*
* and express these equations in FORTRAN as:

X1 = (-B + SQRT(B**2 - 4 * A * C))
$ / (2 * A)

X2 = (-B - SQRT(B**2 - 4 * A * C))
$ / (2 * A)

1.4 Order of FORTRAN Statements and Lines
The first statement of a program unit may be a PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA
statement. The PROGRAM statement identifies the start of a main program and there may only be one of
these in an executable FORTRAN program. Execution of a FORTRAN program begins with the first
executable statement in the main program. The other statements identify the start of a subprogram. If the
first statement of a program unit is not one of the above then the program unit is considered to be a main
program.

Although you may not be familiar with all of the terms used here, it is important that you understand that
FORTRAN 77 has specific rules regarding the ordering of FORTRAN statements. You may wish to refer
to this section at later times. In general, the following rules apply to the order of statements and comment
lines within a program unit:

1. Comment lines and INCLUDE statements may appear anywhere.

2. FORMAT statements may appear anywhere in a subprogram.

3. All specification statements must precede all DATA statements, statement function statements,
and executable statements.

4. All statement function statements must precede all executable statements.

5. DATA statements may appear anywhere after the specification statements.

6. ENTRY statements may appear anywhere except between a block IF statement and its
corresponding END IF statement, or between a DO statement and its corresponding terminal
statement. Open Watcom FORTRAN 77 extends these rules to apply to all program structure
blocks resulting from the use of statements introduced to the language by Open Watcom
FORTRAN 77 (e.g., WHILE, LOOP, SELECT).

7. IMPLICIT statements must precede all other specification statements, except PARAMETER
statements. A specification statement that defines the type of a symbolic constant must appear

6 Order of FORTRAN Statements and Lines

FORTRAN Source Program Format

before the PARAMETER statement that defines the name and value of a symbolic constant. A
PARAMETER statement that defines the name and value of a symbolic constant must precede all
other statements containing a reference to that symbolic constant.

The following chart illustrates the required order of FORTRAN statements. Vertical lines delineate
varieties of statements that may be interspersed, while horizontal lines mark varieties of statements that
may not be interspersed.

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA Statement

IMPLICIT
PARAMETER Statements

Comment ENTRY Statements Other
Lines Specification

and Statements

FORMAT Statement
INCLUDE Function
Statement Statements DATA Statements

Statements Executable
Statements

END Statement

Required Order of Comment Lines and Statements

For example, DATA statements may be interspersed with statement function statements and executable
statements but statement function statements must precede executable statements.

Order of FORTRAN Statements and Lines 7

Language Reference

8 Order of FORTRAN Statements and Lines

2 FORTRAN Statements

2.1 Classifying Statements
The following table is a summary of Open Watcom FORTRAN 77 statement classification.

Column 1 indicates that the statement is a specification statement.

Column 2 indicates that the statement is not allowed as the terminal statement of a DO-loop.

Column 3 indicates that the statement is not executable.

Column 4 indicates that the statement is not allowed as the object of a logical IF
or WHILE statement.

Column 5 indicates that the statement cannot have control of execution transferred to it by using a
statement label.

Column 6 indicates that the statement is allowed in a block data subprogram.
�

Statement 1 2 3 4 5 6

ADMIT * * *
ALLOCATE
ASSIGN
AT END * * *
BACKSPACE
BLOCK DATA * * * *
CALL
CASE * * *
CHARACTER * * * * * *
CLOSE
COMMON * * * * * *

Classifying Statements 9

Language Reference

�

Statement 1 2 3 4 5 6

COMPLEX * * * * * *
CONTINUE
CYCLE
DATA * * * * *
DEALLOCATE
DIMENSION * * * * * *
DO * *
DOUBLE COMPLEX * * * * * *
DOUBLE PRECISION * * * * * *
DO WHILE * *
ELSE * * *
ELSE IF * * *
END * * *
END AT END * * *
END BLOCK * * *
END DO * *
ENDFILE
END GUESS * *
END IF * *
END LOOP * * *
END MAP * * * * * *
END SELECT * * * * *
END STRUCTURE * * * * * *
END UNION * * * *
END WHILE * * *
ENTRY * * *
EQUIVALENCE * * * * * *
EXECUTE
EXIT
EXTERNAL * * * * *
FORMAT * * * *
FUNCTION * * * *
assigned GO TO *
computed GO TO
unconditional GO TO *
GUESS * *
arithmetic IF *
logical IF *
block IF * *

10 Classifying Statements

FORTRAN Statements

�

Statement 1 2 3 4 5 6

IMPLICIT * * * * * *
INCLUDE * * * * *
INQUIRE
INTEGER * * * * * *
INTRINSIC * * * * *
LOGICAL * * * * * *
LOOP * *
MAP * * * * * *
NAMELIST * * * * *
OPEN
OTHERWISE * * *
PARAMETER * * * * * *
PAUSE
PRINT
PROGRAM * * * *
QUIT
READ
REAL * * * * * *
RECORD * * * * * *
REMOTE BLOCK * * * *
RETURN *
REWIND
SAVE * * * * * *
SELECT * *
STOP *
STRUCTURE * * * * * *
SUBROUTINE * * * *
UNION * * * * * *
UNTIL * * *
VOLATILE * * * * * *
WHILE * *
WRITE

2.2 FORTRAN Statement Summary
The following sections describe each FORTRAN 77 statement. The statement descriptions are organized
alphabetically for quick reference. The syntax models for each statement are presented in shaded or
unshaded boxes. The unshaded box denotes a standard FORTRAN 77 statement. The shaded box denotes
a Open Watcom FORTRAN 77 extension to the language. Users should note that extensions which are
supported by this compiler may not be supported by other compilers. We leave the choice to use a
particular extension to the discretion of the programmer.

In the following sections the use of square brackets ([]) denotes items which may be optionally specified.
The use of the ellipsis (...) denotes items which may be repeated as often as desired.

FORTRAN Statement Summary 11

Language Reference

2.3 ADMIT Statement

ADMIT

The ADMIT statement is used in conjunction with the structured GUESS statement. The ADMIT statement
marks the beginning of an alternative block of statements that are executed if a QUIT statement is executed
in a previous GUESS or ADMIT block.

Example:
* Assume incorrect sex code

GUESS
IF(SEX .EQ. ’F’)QUIT
IF(SEX .EQ. ’M’)QUIT
PRINT *, ’Invalid sex code encountered’
CALL INVSEX(SEX)
.
.
.

* Wrong assumption - sex code is fine
ADMIT

.

.

.
END GUESS

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

12 ADMIT Statement

FORTRAN Statements

2.4 ALLOCATE Statement

ALLOCATE (array([l:]u[,[l:]u,...])[,...][,LOCATION=loc])
or

ALLOCATE (array([l:]u[,[l:]u,...])[,...][,STAT=ierr])
or

ALLOCATE (char*len)

where:

array is the name of an allocatable array.

l is an integer expression that sets the lower bound of the array dimension.

u is an integer expression that sets the upper bound of the array dimension.

char is the name of an allocatable character variable.

len is an integer expression that sets the length of the character variable.

LOCATION = loc
loc is an integer expression that specifies the location of the allocated memory.

STAT = ierr
ierr is an allocation status specifier. The integer variable or integer array element ierr is
defined with 0 if the allocation succeeded, 1 if the allocation failed, and 2 if the array is
already allocated. The STAT= specifier may not be used with the LOCATION= specifier.

Allocatable arrays and character variables may be dynamically allocated and deallocated at execution time.
An array must have been declared allocatable by specifying its dimensions using colons only. No array
bounds are specified.

Example:
DIMENSION A(:), B(:,:)

In the above example, A is declared to be a one-dimensional allocatable array and B is declared to be a
two-dimensional allocatable array.

A character variable must have been declared allocatable by specifying its size as (*).

Example:
CHARACTER C*(*)

For an allocatable array, the ALLOCATE statement establishes the lower and upper bounds of each array
dimension and calculates the amount of memory required for the array.

For an allocatable character variable, the ALLOCATE statement establishes the number of characters in the
character variable and thus the size of the character variable.

If there is no LOCATION= specifier, it then attempts to dynamically allocate memory for the array or
character variable. The success of the allocation can be checked by using the STAT= specifier.

ALLOCATE Statement 13

Language Reference

If there is a LOCATION= specifier, the expression in the specification is evaluated and that value is used as
the address of the array or character variable. This permits the programmer to specify a substitute memory
allocator or to map the array or character variable onto a fixed memory location.

Example:
DIMENSION A(:), B(:,:)

.

.

.
ALLOCATE(A(N))
ALLOCATE(B(0:4,5))

More than one allocatable array or character variable may appear in an ALLOCATE statement, separated by
commas.

Example:
DIMENSION A(:), B(:,:)

.

.

.
ALLOCATE(A(N), B(0:4,5))

If the allocation fails and the STAT= specifier was not used, an execution-time error occurs. If the STAT=
specifier is used, the specified variable returns a zero value if the allocation succeeded, and a non-zero
value if the allocation failed.

Example:
DIMENSION A(:), B(:,:)

.

.

.
ALLOCATE(A(N), B(0:4,5), STAT=IALLOC)
IF(IALLOC .NE. 0) PRINT *, ’Allocation failure’

An attempt to allocate a previously allocated array or character variable results in an execution-time error.
If the LOCATION= specifier was not used, the array or character variable must be deallocated first before it
can be allocated a second time (see the DEALLOCATE statement).

An absolute memory location may be specified using the LOCATION= specifier.

Example:
CHARACTER*1 SCREEN(:,:)
N = 80*25

*$IFDEF __386__
ALLOCATE(SCREEN(0:1,0:N-1), LOCATION=’B8000’x)

*$ELSE
ALLOCATE(SCREEN(0:1,0:N-1), LOCATION=’B8000000’x)

*$ENDIF
DO I = 0, N-1

SCREEN(0,I) = ’*’
ENDDO
END

The above example maps the array SCREEN onto the IBM PC colour monitor screen memory and then fills
the screen with asterisks (16-bit real-mode only). The character is stored in SCREEN(0,I) and the

14 ALLOCATE Statement

FORTRAN Statements

character attribute (unchanged in this example) is stored in SCREEN(1,I). The column major ordering
of arrays must be taken into consideration when mapping an array onto a fixed area of memory.

The following example is similar but uses an allocatable character variable.

Example:
CHARACTER*(*) SCREEN
INTEGER SCRSIZE, I
PARAMETER (SCRSIZE = 80*25*2)

*$IFDEF __386__
ALLOCATE(SCREEN*SCRSIZE, LOCATION=’B8000’X)

*$ELSE
ALLOCATE(SCREEN*SCRSIZE, LOCATION=’B8000000’X)

*$ENDIF
DO I = 1, SCRSIZE, 2

SCREEN(I:I) = ’*’
ENDDO
END

A user-defined memory allocator may be specified using the LOCATION= specifier.

Example:
CHARACTER*1 BUFFER(:)
N = 128
ALLOCATE(BUFFER(0:N-1), LOCATION=MYALLOC(N))

.

.

.
END

Perhaps a better way to check for a successful allocation, in this case, would be the following.

Example:
CHARACTER*1 BUFFER(:)
N = 128
LOC = MYALLOC(N)
IF(LOC .EQ. 0) STOP
ALLOCATE(BUFFER(0:N-1), LOCATION=LOC)

.

.

.
END

For more information on arrays, see the chapter entitled "Arrays" on page 159.

ALLOCATE Statement 15

Language Reference

2.5 Statement Label Assignment (ASSIGN) Statement
�

ASSIGN s TO i

where:

s is a statement label

i is an integer variable name

The statement label s is assigned to the integer variable i. The statement label must appear in the same
program unit as the ASSIGN statement. The statement label must be that of an executable statement or a
FORMAT statement.

After a statement label has been assigned to an integer variable, that variable may only be used in an
assigned GO TO statement or as a format identifier in an input/output statement. The integer variable must
not be used in any other way (e.g., in an arithmetic expression). It may, however, be redefined with another
statement label using the ASSIGN statement or it may be assigned an integer value (e.g., in an arithmetic
assignment statement).

Example:
INTEGER RET
X = 0.0
ASSIGN 100 TO RET
GO TO 3000

100 X = X + 1
ASSIGN 110 TO RET
GO TO 3000

110 X = X + 1
.
.
.

* Print both X and its square root
3000 Y = SQRT(X)

PRINT *, X, Y
GO TO RET

In the above example, we illustrate the use of the ASSIGN statement and the assigned GO TO statement to
implement a "local subroutine" in a program unit. A sequence of often-used code can be "called" using the
unconditional GO TO statement and "return" is accomplished using the assigned GO TO statement. Care
must be exercised to properly assign the return label value.

Example:
IF(FIRST)THEN

ASSIGN 100 TO LFRMT
ELSE

ASSIGN 200 TO LFRMT
END IF
WRITE(UNIT=5, FMT=LFRMT) X, Y, Z

100 FORMAT(1X,3F10.5)
200 FORMAT(1X,3E15.7)

16 Statement Label Assignment (ASSIGN) Statement

FORTRAN Statements

It should be noted that the ASSIGN statement does not assign the numeric value of the statement label to
the variable.

Example:
ASSIGN 100 TO LABEL2
PRINT *, LABEL2

Try the above example; the value printed will not be 100.

Consider the following example.

Example:
* Illegal use of a GOTO statement.

LABEL2 = 123
LABEL3 = LABEL2 + 10
GO TO LABEL3

LABEL3 is assigned the integer value 133. The assigned GO TO statement, which follows it, is illegal and
a run-time error will occur when it is executed.

Statement label values are quite different from integer values and the two should never be mixed. In the
following example, the assignment statement is illegal since it involves an integer variable that was
specified in an ASSIGN statement.

Example:
* Illegal use of an ASSIGNed variable in an expression.

ASSIGN 100 TO LABEL2
LABEL3 = LABEL2 + 10

Note that if the assignment statement was preceded by

LABEL2 = 100

the assignment statement would have been legal.

Statement Label Assignment (ASSIGN) Statement 17

Language Reference

2.6 AT END Statement

AT END DO [: block-label]

or

AT END, stmt

where:

stmt is an executable statement other than an AT END statement.

The AT END control statement is an extension of the END= option of the READ statement for sequential
files. It allows a statement or a block of code following the READ statement to be executed when an
end-of-file condition is encountered during the read. The AT END statement or block is by-passed if no
end-of-file occurs. It is not valid to use this control statement with direct-access or internal files. It is not
valid to use this statement when END= is also specified in the READ statement. The AT END statement or
block must immediately follow the READ statement to which it applies.

Example:
READ(UNIT=1, FMT=’(I5,F10.4)’) I, X
AT END DO

PRINT *, ’END-OF-FILE ENCOUNTERED ON UNIT 1’
EOFSW = .TRUE.

END AT END

The second form of the AT END statement is illustrated below.

Example:
READ(UNIT=1, FMT=’(F10.4)’) X
AT END, EOFSW = .TRUE.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

18 AT END Statement

FORTRAN Statements

2.7 BACKSPACE Statement
�

BACKSPACE u
BACKSPACE (alist)

where:

u is an external unit identifier.

alist is a list of backspace specifiers separated by commas:

[UNIT =] u
IOSTAT = ios
ERR = s

Execution of a BACKSPACE statement causes the file connected to the specified unit to be positioned at the
beginning of the preceding record. If the preceding record is an endfile record then the file is positioned at
the beginning of the endfile record.

Backspace Specifiers

[UNIT =] u
u is an external unit identifier. An external unit identifier is a non-negative integer
expression. If the optional UNIT= specifier is omitted then the specifier must be the first
item in the list of specifiers.

IOSTAT = ios
is an input/output status specifier. The integer variable or integer array element ios is
defined with zero if no error condition occurs or a positive integer value if an error
condition occurs.

ERR = s
is an error specifier and s is a statement label. When an error occurs, execution is
transferred to the statement labelled by s.

Example:
LOOP

READ(UNIT=8, END=100, FMT=200) RECORD
ENDLOOP

100 BACKSPACE(UNIT=8)
WRITE(UNIT=8, FMT=200) NEWREC

In the previous example, we illustrate how one might append a record to the end of an existing file.

Notes:

1. The unit must be connected for sequential access.

2. If the file is positioned before the first record then the BACKSPACE statement has no effect.

3. It is illegal to backspace a file that does not exist.

BACKSPACE Statement 19

Language Reference

The FORTRAN 77 standard specifies that it is illegal to backspace over records that were written using
list-directed formatting; Open Watcom FORTRAN 77 allows it.

If the file has been opened with access ’APPEND’, which is a form of sequential access in which the file
is positioned at the endfile record, then the BACKSPACE statement cannot be used.

For more information on input/output, see the chapter entitled "Input/Output" on page 215.

20 BACKSPACE Statement

FORTRAN Statements

2.8 BLOCK DATA Statement
�

BLOCK DATA [sub]

where:

sub is an optional symbolic name of the block data subprogram and must not be the name of an
external procedure, main program, common block, other block data subprogram, or any local
name in the block data subprogram.

The BLOCK DATA statement is used to define the start of a block data subprogram. A block data
subprogram is used to provide initial values for variables and array elements in named common blocks.

The only statements which are allowed to appear in a block data subprogram are:

1. IMPLICIT
2. PARAMETER
3. DIMENSION
4. COMMON
5. SAVE
6. EQUIVALENCE
7. DATA
8. STRUCTURE, END STRUCTURE
9. UNION, END UNION
10. MAP, END MAP
11. RECORD
12. END
13. type statements

Example:
BLOCK DATA INITCB
DIMENSION A(10), B(10)
COMMON /CB/ A, B
DATA A/10*1.0/, B/10*2.0/
END

In the above example, the arrays A and B in the named common block CB are initialized.

Notes:

1. More than one named common block may appear in a block data subprogram.

2. All entities of the named common block(s) must be specified.

3. Not all entities need be given initial values.

4. Only entities that appear in (or are associated, through the EQUIVALENCE statement, with
entries in) a named common block may be given initial values.

5. Only one unnamed block data subprogram may occur in an executable program.

BLOCK DATA Statement 21

Language Reference

6. A named block data subprogram may occur only once in an executable program.

22 BLOCK DATA Statement

FORTRAN Statements

2.9 CALL Statement
�

CALL sub [([a [, a] ...])]

where:

sub is a symbolic name of a subroutine and must not be the name of a main program, function,
common block, or block data subprogram. As an extension to FORTRAN 77, Open Watcom
FORTRAN 77 permits the calling of functions.

a is an actual argument.

The CALL statement is used to invoke the execution of a subroutine subprogram or function.

Example:
X = 1.0
Y = 1.1
Z = 1.2
CALL QUAD(X, Y, Z)

.

.

.
END

SUBROUTINE QUAD(ARGA, ARGB, ARGC)
REAL ARGA, ARGB, ARGC
PRINT *, 2.0*ARGA**2 + 4.0*ARGB + ARGC
END

In the above example, the variables X, Y and Z are passed to the subroutine QUAD. This subroutine
computes an expression and prints the result.

Notes:

1. The parameters in the CALL statement are called actual arguments.

2. The parameters in the SUBROUTINE statement are called dummy arguments.

3. The actual arguments in a subroutine or function reference must agree in order, number and
type with the corresponding dummy arguments.

4. An actual argument may be an expression, array name, intrinsic function name, external
procedure name (i.e., a subroutine or function name), a dummy procedure name (i.e., one that
was an argument to the calling subroutine or function), or an alternate return specifier
(subroutines only). An alternate return specifier takes the form *s, where s is the statement
label of an executable statement that appears in the same program unit as the CALL statement.
An expression may not be a character expression involving the concatenation of an operand
whose length specification is (*) unless the operand is the symbolic name of a constant.

5. Actual arguments are associated with dummy arguments by passing the address of the actual
arguments.

CALL Statement 23

Language Reference

It is important to note that versions of FORTRAN compilers that implement the previous
FORTRAN language standard may have associated arguments by passing the value of the actual
argument and assigning it to the dummy argument and then updating the actual argument upon
return from the subprogram (this is called "value-result" argument handling). The FORTRAN
77 language standard prohibits this technique for handling argument association.

The following example illustrates the importance of this rule.

Example:
I=1
CALL ASSOC(I, I)
END
SUBROUTINE ASSOC(M, N)
M = M + 1
PRINT *, M, N
END

In the above example, M and N refer to the same variable; they are both associated to I in the
calling subprogram. The value 2 will be printed twice.

For more information, see the chapter entitled "Functions and Subroutines" on page 243.

24 CALL Statement

FORTRAN Statements

2.10 CASE Statement

CASE cl

where:

cl is a list, enclosed in parentheses, of one or more cases separated by commas, or the DEFAULT
keyword. A case is either

(a) a single integer, logical or character constant expression or

(b) an integer, logical or character constant expression followed by a colon followed by
another expression or the same type. This form of a case defines a range of values
consisting of all integers or characters greater than or equal to the value of the
expression preceding the colon and less than or equal to the value of the expression
following the colon.

The CASE statement is used in conjunction with the SELECT statement. The CASE statement marks the
start of a new CASE block which is a series of zero or more statements ending in another CASE statement, a
CASE DEFAULT statement, or an END SELECT statement.

A particular case value or range of values must not be contained in more than one CASE block.

The CASE DEFAULT statement is used to indicate a block of statements that are to be executed when no
other case is selected.

Example:
SELECT CASE (CH)
CASE (’a’ : ’z’)

PRINT *, ’Lower case letter’
CASE (’A’ : ’Z’)

PRINT *, ’Upper case letter’
CASE (’0’ : ’9’)

PRINT *, ’Digit’
CASE DEFAULT

PRINT *, ’Special character’
END SELECT

In order to retain compatibility with earlier versions of WATCOM FORTRAN 77 compilers, the
OTHERWISE statement may be used in place of the CASE DEFAULT statement.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

CASE Statement 25

Language Reference

2.11 CHARACTER Statement
The CHARACTER statement is a type declaration statement and can be used to declare a name to be of type
character. The implicit type of the name, whether defined by the "first letter rule" (see the chapter entitled
"Names, Data Types and Constants" on page 151) or by an IMPLICIT statement, is either confirmed or
overridden. However, once a name has been declared to be of type character, it cannot appear in another
type declaration statement.

There are various forms of the CHARACTER statement. The following sections describe them.

2.11.1 Standard CHARACTER Statement
�

CHARACTER[*len [,]] name [,name] ...

where:

name is one of the following forms:

v[*len]

a(d)[*len]

a[*len](d)

v is a variable name, symbolic name of a constant, function name or dummy procedure name.

a is an array name.

(d) is that part of the array declarator defining the dimensions of the array.

len is called the length specification and is the length (number of characters) of a character variable,
character array element, symbolic character constant or character function. It has one of the
following forms:

(1) An unsigned positive integer constant.

(2) A positive integer constant expression enclosed in parentheses.

(3) An asterisk in parentheses (*).

The length specification immediately following the word CHARACTER is the length specification for each
entity in the statement not having its own length specification. If omitted, the default is 1. An entity with
its own length specification overrides the default length specification or the length specification
immediately following the word CHARACTER. Note that for an array the length specification applies to
each element of the array.

26 CHARACTER Statement

FORTRAN Statements

Example:
DIMENSION C(-5:5)
CHARACTER A, B*10(10), C*20
CHARACTER*7 X, Y, Z*4

The (*) length specification is only allowed for external functions, dummy arguments or symbolic
character constants. If a dummy argument has a length specification of (*), it assumes the length of the
corresponding actual argument. If the actual argument is an array name, the length assumed by the dummy
argument is the length of an array element of the actual array.

Example:
SUBROUTINE OUTCHR(STR)
CHARACTER STR*(*)
PRINT *, STR
END

In this example, STR is a character variable whose length is the length of the actual argument. Thus
OUTCHR can be called with a character entity of any length.

If an external function has a length specification of (*) declared in a function subprogram, the function
name must appear as the name of a function in a FUNCTION or ENTRY statement in the same subprogram.
When the function is called, the function assumes the length specified in the program unit that called it. In
the following example, when F is called its length is assumed to be 10.

Example:
CHARACTER*(10) F

.

.

.
PRINT *, F()

.

.

.
END

CHARACTER*(*) FUNCTION F
F = ’HELLO’
END

The following example is illegal since F does not appear in a FUNCTION or ENTRY statement.

Example:
* Illegal definition of function F.

CHARACTER*(*) F
.
.
.

PRINT *, F()
.
.
.

END

The length specified for a character function in the program unit that referenced it must agree with the
length specified in the subprogram that defines the character function. Note that there is always agreement
if the function is defined to have a length specification of (*).

CHARACTER Statement 27

Language Reference

If a symbolic name is of type character and has a length specification of (*), it assumes the length of the
corresponding character constant expression in the PARAMETER statement.

The length specification of a character statement function or statement function dummy argument must not
be (*).

2.11.2 Extended CHARACTER Statement: Data Initialization

CHARACTER[*len[,]] name [/cl/] [,name[/cl/]] ...

where:

name is as described in the previous section.

len is as described in the previous section.

cl is a list of the form:

k [,k] ...

k is one of the forms:

c

r*c (equivalent to r successive appearances of c)

c is a constant or the symbolic name of a constant

r is an unsigned positive integer constant or the symbolic name of a constant.

This form of the CHARACTER statement is an extension to the FORTRAN 77 language. The rules for data
initialization are the same as for the DATA statement.

Example:
CHARACTER*5 A/’AAAAA’/, B*3(10)/10*’111’/

In the previous example, A is initialized with the character constant ’AAAAA’ and each element of the
array B is initialized with the character constant ’111’.

28 CHARACTER Statement

FORTRAN Statements

2.12 CLOSE Statement
�

CLOSE (cllist)

where:

cllist is a list of close specifiers separated by commas:

[UNIT =] u
IOSTAT = ios
ERR = s
STATUS = sta

A CLOSE statement is used to terminate the connection of a file to the specified unit.

Close Specifiers

[UNIT =] u
u is an external unit identifier. An external unit identifier is a non-negative integer
expression. If the optional UNIT= specifier is omitted then the specifier must be the first
item in the list of specifiers.

IOSTAT = ios
is an input/output status specifier. The integer variable or integer array element ios is
defined with zero if no error condition occurs or a positive integer value if an error
condition occurs.

ERR = s
is an error specifier and s is a statement label. When an error occurs, execution is
transferred to the statement labelled by s.

STATUS = sta
is a status specifier and sta is a character expression whose value when trailing blanks are
removed evaluates to one of ’KEEP’ or ’DELETE’.

KEEP ’KEEP’ may not be specified for a file whose status is ’SCRATCH’ (see
description of the OPEN statement). If the file exists, it will exist after
execution of the CLOSE statement. If the file does not exist, it will not
exist after execution of the CLOSE statement. If not specified, ’KEEP’ is
assumed, unless the file status is ’SCRATCH’ in which case ’DELETE’ is
assumed.

DELETE If ’DELETE’ is specified, the file will not exist after execution of the
CLOSE statement.

CLOSE Statement 29

Language Reference

Example:
LOOP

READ(UNIT=8, END=100, FMT=200) RECORD
ENDLOOP

100 CLOSE(UNIT=8)

In the previous example, we illustrate how one might process the records in a file and then terminate the
connection of the file to unit 8 using the CLOSE statement.

Notes:

1. Execution of a CLOSE statement specifying a unit that is not connected to a file or a unit that is
connected to a file that does not exist has no effect.

2. It is possible to connect the unit to another file after a CLOSE statement has been executed.

3. It is possible to connect the unit to the same file after a CLOSE statement has been executed,
provided that the file still exists.

4. It is possible to connect the file to another unit after a CLOSE statement has been executed,
provided that the file still exists.

5. At the termination of execution of the program, for whatever the reason of termination, any units
that are connected are closed. Each unit is closed with status ’KEEP’ unless the file status was
’SCRATCH’, in which case the unit is closed with status ’DELETE’. The effect is the same
as if a CLOSE statement is executed without a STATUS= specifier.

For more information on input/output, see the chapter entitled "Input/Output" on page 215.

30 CLOSE Statement

FORTRAN Statements

2.13 COMMON Statement
�

COMMON [/[cb]/] nlist [[,]/[cb]/ nlist] ...

where:

cb is a common block name.

nlist is a list of names each separated by a comma.

If cb is omitted, the blank common block is assumed. If specified, cb is called a named common block.
The names appearing in nlist can be variable names, array names, and array declarators. Dummy
arguments are not allowed in nlist.

The COMMON statement allows sharing of blocks of storage between subprograms. Each name appearing in
the nlist following a common block name cb is declared to belong to that common block. A variable or
an array name can belong to only one common block. A common block name can occur more than once in
the same COMMON statement as well as in more than one COMMON statement. Lists following successive
appearances of the same common block name in COMMON statements are considered a continuation of the
list of names belonging to the common block. A variable or an array can appear in a COMMON statement
only once.

Common blocks are defined as follows. A common block is one consecutive block of storage. It consists
of all the storage sequences of all the entities specified in all the lists declared to belong to that common
block. The order in which each entity appears in a common block is defined by the order in which they
appear in the lists. Storage sequences associated to a common block through the EQUIVALENCE statement
are considered to belong to that common block. In this way a common block may only be extended beyond
the last storage unit. The size of a common block is the sum of all the storage sequences of all the names
belonging to that common block plus any storage sequence which extends the common block through
equivalence association.

An EQUIVALENCE statement must not cause storage sequences of two different common blocks to
become associated nor should they extend the common block by adding storage units preceding the first
storage unit of the common block.

Example:
DIMENSION A(5)
COMMON /COMBLK/ A,B(10),C

In this example, the common block COMBLK contains the array A followed by the array B and finally the
variable C.

COMMON Statement 31

Language Reference

Example:
REAL A,B,C,D
DIMENSION D(5)
EQUIVALENCE (B,D)
COMMON A,B,C

In this example, A, B, C, and D belong to the blank common block; A, B, and C have been explicitly
defined to be in the blank common block whereas D has been equivalenced to a variable in common,
namely B. Also note that the EQUIVALENCE statement has caused the extension of the common block
beyond its last storage unit. In this example, array D has extended the common block by 3 storage units.

Example:
* Illegal definition of a common block.

DIMENSION A(5)
EQUIVALENCE (A(2),B)
COMMON /XYZ/ B

This example demonstrates an illegal use of the COMMON statement. B is in the named common block XYZ
since it appeared in a COMMON statement. A is in the common block XYZ since it was equivalenced to B.
However, A illegally extends the common block by adding 1 storage unit before the first storage unit of the
common block.

The following outlines the differences between a blank common block and a named common block.

(1) All named common blocks with the same name in an executable program must be the same
size. Blank common blocks do not have to be the same size.

(2) Entities in named common blocks can be initialized by using DATA statements in block
data subprograms; entities in blank common blocks cannot.

(3) Entities in named common blocks can become undefined after the execution of a RETURN
or END statement; entities in blank common blocks cannot. This situation can arise when
all subprograms which refer to the named common block become inactive. A typical case
occurs when program overlays are used. If the named common block is placed in an
overlay, then the entities in the named common block will become undefined when the
overlay is replaced by another. Of course, if the named common block is referenced in the
main program then this could never happen. The main program and any named common
blocks referenced in the main program remain memory-resident until the application
terminates.

The SAVE statement should be used if entities in named common blocks must not become
undefined.

The FORTRAN 77 standard specifies that a common block cannot contain both numeric and character
data; Open Watcom FORTRAN 77 allows common blocks to contain both numeric and character data.

The FORTRAN 77 standard specifies that a named common block must be initialized in a block data
subprogram. Open Watcom FORTRAN 77 permits the initialization of named common blocks in other
subprograms.

32 COMMON Statement

FORTRAN Statements

2.14 COMPLEX Statement
The COMPLEX statement is a type declaration statement and can be used to declare a name to be of type
complex. The implicit type of the name, whether defined by the "first letter rule" (see the chapter entitled
"Names, Data Types and Constants" on page 151) or by an IMPLICIT statement, is either confirmed or
overridden. However, once a name has been declared to be of type complex, it cannot appear in another
type declaration statement.

There are various forms of the COMPLEX statement. The following sections describe them.

2.14.1 Standard COMPLEX Statement
�

COMPLEX name [,name] ...

where:

name is a variable name, array name, array declarator, symbolic name of a constant, function name or
dummy procedure name.

This form is the standard form of the COMPLEX statement.

Example:
DIMENSION C(-5:5)
COMPLEX A, B(10), C

In the previous example, A is defined to be a variable of type complex and B and C are defined to be arrays
of type complex.

2.14.2 Extended COMPLEX Statement: Length Specification

COMPLEX[*len[,]] name [,name] ...

where:

name is one of the following forms:

v[*len]

a[*len](d)

a(d)[*len]

v is a variable name, array name, symbolic name of a constant, function name or dummy
procedure name.

COMPLEX Statement 33

Language Reference

a is an array name.

(d) is that part of the array declarator defining the dimensions of the array.

len is called the length specification and is an unsigned positive integer constant or an integer
constant expression enclosed in parentheses whose value is 8 or 16.

This form of the COMPLEX statement is a Open Watcom FORTRAN 77 extension to the FORTRAN 77
language. The length specification specifies the number of bytes of storage that will be allocated for the
name appearing in the COMPLEX statement. The default length specification is 8. A length specification of
16 specifies that the data type of the name appearing in the COMPLEX statement is to be double precision
complex.

The length specification immediately following the word COMPLEX is the length specification for each
entity in the statement not having its own length specification. If a length specification is not specified the
default length specification is used. An entity with its own specification overrides the default length
specification or the length specification immediately following the word COMPLEX. Note that for an array
the length specification applies to each element of the array.

Example:
DIMENSION C(-5:5)
COMPLEX A, B*16(10), C*16
COMPLEX*16 X

In the previous example, X is declared to be a variable of type double precision complex, A is declared to be
a variable of type complex and B and C are declared to be arrays of type double precision complex.

2.14.3 Extended COMPLEX Statement: Data Initialization

COMPLEX[*len[,]] name [/cl/] [,name[/cl/]] ...

where:

name is as described in the previous section.

len is as described in the previous section.

cl is a list of the form:

k [,k] ...

k is one of the forms:

c

r*c (equivalent to r successive appearances of c)

c is a constant or the symbolic name of a constant

34 COMPLEX Statement

FORTRAN Statements

r is an unsigned positive integer constant or the symbolic name of a constant.

This form of the COMPLEX statement is an extension to the FORTRAN 77 language. The rules for data
initialization are the same as for the DATA statement.

Example:
COMPLEX A/(.4,-.3)/, B(10)/10*(0,1)/

In the previous example, A is initialized with the complex constant (.4,-.3) and each element of the
array B is initialized with the complex constant (0,1).

COMPLEX Statement 35

Language Reference

2.15 CONTINUE Statement
�

CONTINUE

Execution of a CONTINUE statement has no effect. This statement is often used in conjunction with DO
statements. It is usually identified with a label. It often provides a convenient reference for statements
which have the ability to transfer control of execution.

Example:
DO 10 X = -5.1, 12.8, 0.125

.

.

.
10 CONTINUE

IF(A .LT. B) GO TO 20
IF(A .GT. C) GO TO 20

.

.

.
20 CONTINUE

36 CONTINUE Statement

FORTRAN Statements

2.16 CYCLE Statement

CYCLE [: block-label]

The CYCLE statement may be used to cause a transfer of control from within a loop to the terminal
statement of a corresponding DO, DO WHILE, WHILE or LOOP statement. If block-label is present
then control is transferred to the terminal statement of the block identified by that block label. The CYCLE
statement is an extension to the FORTRAN 77 language.

Example:
LOOP

WRITE(UNIT=*, FMT=’(A)’) ’Enter a number’
READ(UNIT=*, FMT=’(F10.4)’, IOSTAT=IOS) X
IF(IOS .NE. 0) CYCLE
IF(X .LT. 0) EXIT
PRINT *, X, SQRT(X)

END LOOP
END

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

CYCLE Statement 37

Language Reference

2.17 DATA Statement
�

DATA nlist/clist/ [[,]nlist/clist/] ...

where:

nlist is a list of variable names, array element names, substring names and implied-DO lists.

clist is a list of the form:

a [,a] ...

a is one of the forms:

c

r*c (equivalent to r successive appearances of c)

c is a constant or the symbolic name of a constant

r is an unsigned positive integer constant or the symbolic name of a constant.

The items of nlist are initialized with the values specified in clist in the following manner. The first
item in nlist is assigned the value of the first item in clist, the second item in nlist is assigned the
value of the second item in clist, etc. In this way all items of nlist are initialized.

The number of items in nlist must equal the number of items in clist so that a one-to-one
correspondence exists between the two lists. If an array without a subscript list appears in nlist there
must be an element in clist for each element of the array.

If the type of an entity in nlist is character or logical then the type of its corresponding item in clist
must also be character or logical respectively. As an extension to FORTRAN 77, Open Watcom
FORTRAN 77 permits an item of type character to be initialized with integer data.

An item of type character is initialized using the rules of assignment. If the length of the item in nlist is
greater than the length of the corresponding character constant in clist, the rightmost remaining
characters in the item are initialized with blanks. If the length of the item in nlist is less than the length
of the character constant in clist, the character constant is truncated to the length of the item in
nlist. Note that initializing a character entity causes all of the characters in the entity to become defined
and that each character constant defines exactly one character variable, array element or substring.

If the type of an entity in nlist is integer, real, double precision or complex then the corresponding item
in clist can be one of integer, real, double precision or complex. If necessary the constant in clist is
converted to the type of the item in nlist according to the rules of arithmetic conversion (see the chapter
entitled "Assignment Statements" on page 187).

A variable, array element or substring can only be initialized once. If two entities are associated (for
example equivalenced), only one of the items can be initialized.

38 DATA Statement

FORTRAN Statements

Example:
CHARACTER*30 MSG
LOGICAL TRUE
REAL X, Y(10)
DATA X/1.0/, TRUE/.TRUE./, MSG/’ENTER DATA’/
DATA Y/10*5/

An implied-DO list in a DATA statement has the following form:

(dlist, i = m1, m2[, m3])

where:

dlist is a list of array element names and implied-DO lists.

i is the name of an integer variable called the implied-DO-variable.

m1,m2,m3 are each integer constant expressions. The expressions may contain
implied-DO-variables of other implied-DO lists that have this implied-DO list in their
ranges.

The range of the implied-DO list is the list dlist. An iteration count and the value of the
implied-DO-variable are computed from m1,m2 and m3 in the same way as for a DO-loop except that the
iteration count must be positive. An implied-DO-variable does not affect the definition of a variable by the
same name in the same program unit. An implied-DO list is processed as follows. Each item in the
implied-DO list is processed once for each iteration with the appropriate substitution of values for any
occurrence of the implied-DO-variable. The following example initializes the upper right triangle of the
array A.

Example:
DIMENSION A(5,5)
DATA ((A(I,J),J=1,I),I=1,5)/15*0/

Dummy arguments, functions, and entities in blank common are not allowed in nlist. Entities in a
named common block can be initialized only within a block data subprogram.

The following extensions to data initialization are supported by Open Watcom FORTRAN 77.

1. Character constants can initialize a variable of any type. If the item in nlist is of numeric
type and is being initialized with character data, the size of the item in nlist is the maximum
number of characters that can be stored in the space allocated for that item. The rules for
initializing such items, are the same as for items of type character. See the chapter entitled
"Names, Data Types and Constants" on page 151 for the number of bytes required for a
particular data type.

Example:
INTEGER I,J
DATA I/’AA’/,J/’123456’/

In the previous example, I and J each occupy 4 character storage units. I will be initialized
with the characters AA followed by 2 blank characters. J will be initialized with the characters
1234. Note the the character constant initializing J is truncated on the right to the number of
character storage units occupied by J.

DATA Statement 39

Language Reference

2. As an extension to FORTRAN 77, Open Watcom FORTRAN 77 permits an item of type
character to be initialized with integer data.

Example:
CHARACTER C, D
DATA C/65/, D/66/
END

3. Open Watcom FORTRAN 77 allows data initialization using hollerith constants. Initializing
items using hollerith constants behaves in the same way as initializing items using character
constants. Note that hollerith data can initialize entities of any type. See the chapter entitled
"Names, Data Types and Constants" on page 151 for a description of hollerith constants.

4. Open Watcom FORTRAN 77 allows data initialization using hexadecimal or octal constants.
Hexadecimal or octal constants can be used to initialize memory with any binary pattern.

Items are initialized with hexadecimal constants in the following way. Two hexadecimal digits
are required to initialize one byte of storage. If the number of characters in the hexadecimal
constant is less than 2 times the number of bytes of storage allocated for the entity being
initialized, the entity is padded on the left with zeroes. If the number of characters in the
hexadecimal constant is greater than 2 times the number of bytes of storage allocated for the
entity being initialized, the constant is truncated on the left to the size (in bytes) of the entity
being initialized.

Items are initialized with octal constants in the following way. Each octal digit initializes three
bits of storage. If the number of digits in the octal constant times 3 is less than the number of
bits of storage allocated for the entity being initialized, the entity is padded on the left with zero
bits. If the number of digits in the octal constant times 3 is greater than the number of bits of
storage allocated for the entity being initialized, bits are truncated on the left to the size (in bits)
of the entity being initialized.

Note that hexadecimal or octal data can initialize entities of any type. See the chapter entitled
"Names, Data Types and Constants" on page 151 for a description of hexadecimal and octal
constants.

Example:
DOUBLE PRECISION DPREC
COMPLEX CMPLX

* Initialize an integer variable with the value 5
DATA I/Z05/

* Initialize a real variable with the value 5.0
DATA X/Z41500000/

* Initialize a double precision variable
* with the value 5D0

DATA DPREC/Z4150000000000000/
* Initialize a complex variable
* with the value (5.0,5.0)

DATA CMPLX/Z4150000041500000/
.
.
.

END

40 DATA Statement

FORTRAN Statements

Caution should be used when initializing items with hexadecimal constants, in particular those
whose type is real or double precision, since the data they represent depends on the computer
being used. In the previous example, the hexadecimal constant used to initialize the variable X,
represents the number 5.0 on a computer with an IBM 370 architecture. The number 5.0 will
have a different floating-point representation on other computers.

DATA Statement 41

Language Reference

2.18 DEALLOCATE Statement

DEALLOCATE (arraylist [, STAT = ierr])

where:

arraylist is a list of allocatable array names separated by commas.

ierr is an integer variable that returns the status of the attempted deallocation.

Allocatable arrays may be dynamically allocated and deallocated at execution time. An array must have
been declared allocatable by specifying its dimensions using colons only. No array bounds are specified.

Example:
DIMENSION A(:), B(:,:)

In the above example, A is declared to be a one-dimensional allocatable array and B is declared to be a
two-dimensional allocatable array.

The DEALLOCATE statement frees up any memory allocated for the specified array(s). It then
disassociates the specified array(s) from the memory to which it was associated. The deallocation does not
necessarily succeed. For example, an attempt to deallocate an array that was not previously allocated will
cause an error.

Example:
DIMENSION A(:), B(:,:)

.

.

.
ALLOCATE(A(N), B(0:4,5))

.

.

.
DEALLOCATE(A)

More than one allocatable array may appear in an DEALLOCATE statement, separated by commas.

Example:
DIMENSION A(:), B(:,:)

.

.

.
ALLOCATE(A(N), B(0:4,5))

.

.

.
DEALLOCATE(A, B)

If the deallocation fails and the STAT= specifier was not used, an execution-time error occurs. If the
STAT= specifier is used, the specified variable returns a zero value if the deallocation succeeded, and a
non-zero value if the deallocation failed.

42 DEALLOCATE Statement

FORTRAN Statements

Example:
DIMENSION A(:), B(:,:)

.

.

.
ALLOCATE(A(N), B(0:4,5), STAT=IALLOC)
IF(IALLOC .NE. 0) PRINT *, ’Allocation failure’

.

.

.
DEALLOCATE(A, B, STAT=IFREE)
IF(IFREE .NE. 0) PRINT *, ’Deallocation failure’

An attempt to deallocate an unallocated array results in an execution-time error. The array must be
allocated first (see the ALLOCATE statement).

An array that was allocated using the LOCATION= specifier need not be deallocated.

For more information on arrays, see the chapter entitled "Arrays" on page 159.

DEALLOCATE Statement 43

Language Reference

2.19 DIMENSION Statement
�

DIMENSION a(d) [,a(d)] ...

where:

a is the name of the array.

d defines the dimension of the array and the range of its subscripts. See the chapter entitled "Arrays"
on page 159 for more information on dimensioning arrays.

Each name a appearing in a DIMENSION statement defines a to be an array in the program unit containing
the DIMENSION statement. A name can only be dimensioned once in a program unit. Note that a name
can also be dimensioned in a COMMON statement and type declaration statements.

Example:
DIMENSION A(10), B(-5:5), C(I,J), D(4,*)

In this example A is a 1-dimensional array containing 10 elements, each element referenced as A(1),
A(2), ’...’, A(9), A(10). B is a 1-dimensional array containing 11 elements, each element
referenced as B(-5), B(-4), ’...’, B(4), B(5). C is a 2-dimensional array containing I rows and J
columns. C, I, and J must be dummy arguments or belong to a common block. D is a 2-dimensional array
containing 4 rows. The * in the last dimension indicates that D is an assumed size array. D must be a
dummy argument. The number of columns is determined from the number of elements of the actual
argument. For example, if the actual argument contains 8 elements then D would contain 2 columns (i.e., 8
elements / 4 rows).

For more information on dimensioning arrays refer to the chapter entitled "Arrays" on page 159. See also
the description of the ALLOCATE and DEALLOCATE statements for information on dynamically
allocatable arrays.

44 DIMENSION Statement

FORTRAN Statements

2.20 DO Statement
Two forms of the DO statement are presented. The second form is a Open Watcom FORTRAN 77
extension to the FORTRAN 77 language.

2.20.1 Standard DO Statement
�

DO s [,] i = e1, e2 [, e3]

where:

s is the statement label of an executable statement, called the terminal statement,
which follows the DO statement in the same program unit.

i is an integer, real, or double precision variable, called the DO-variable.

e1, e2, e3 are each an integer, real, or double precision expression.

2.20.2 Extended DO Statement

DO [s[,]] i = e1, e2 [, e3] [: block-label]

where:

s is an optional statement label of an executable statement, called the terminal
statement, which follows the DO statement in the same program unit.

i is an integer, real, or double precision variable, called the DO-variable.

e1, e2, e3 are each an integer, real, or double precision expression.

block-label is an optional block label.

This form of the DO statement is an extension to the FORTRAN 77 language. If no statement label is
present then the terminal statement of the DO-loop must be an END DO statement. In all other respects, the
rules are the same as those given for the standard DO statement.

2.20.3 Description of DO Statement

The range of a DO-loop consists of all of the executable statements that appear following the DO statement
that specifies the DO-loop, up to and including the terminal statement of the DO-loop. Only certain
statements can be the terminal statement of a DO-loop. See the section entitled "Classifying Statements"
on page 9 at the beginning of this chapter for a list of these statements.

DO Statement 45

Language Reference

Transfer of control into the range of a DO-loop from outside the range is not permitted.

A DO-loop may be executed 0 or more times. The following sequence occurs when a DO statement is
encountered.

(i) An initial value, m1, is calculated by evaluating expression e1. A terminal value, m2, is
calculated by evaluating expression e2. An incrementation value, m3, is calculated by
evaluating expression e3 if it is present; otherwise m3 has the value one. If e3 is specified,
m3 must not be zero. The type of m1, m2, and m3 is determined from the DO-variable
and any conversions of type are done as required.

(ii) The DO-variable is defined with the initial value m1.

(iii) The iteration count (i.e., the maximum number of times that the DO-loop will be executed)
is calculated as follows:

MAX(INT((m2 - m1 + m3)/m3), 0)

The iteration count will be zero whenever:

m1 > m2 and m3 > 0, or
m1 < m2 and m3 < 0.

The number of times that the DO-loop is executed may be reduced if control is transferred
outside the range of the DO-loop, or if a RETURN or STOP statement is executed.

The steps involved in each iteration of the DO-loop are as follows:

(i) Check the iteration count. If it is not zero then start execution of the first executable
statement of the DO-loop. If the count is zero then iteration of the DO-loop is complete.

(ii) Execute statements until the terminal statement is encountered. During this time, the
DO-variable may not be redefined.

(iii) Execute the terminal statement. Unless execution of the terminal statement causes a
transfer of control, proceed with the next step which is "incrementation" processing.

(iv) The DO-variable is incremented by the value m3. The iteration count is decremented by
one. Go back to step (i).

Example:
DO 10 I = -5, 5

PRINT *, I, I*I
10 CONTINUE

In this example, the initial value is -5, the terminal value is 5, and the incrementation value is 1 (the
default). The DO-variable is I. The DO-loop is executed

MAX(INT((5 - (-5) + 1)/1), 0)

or 11 times. The successive values of I, inside the range of the DO-loop, are -5, -4, -3, ..., 0, 1, ..., 4, 5.
When the DO-loop is terminated, the value of I will be 6. It should be noted that when a DO-loop variable
is of type real, the iteration count may be one less than expected. Because of rounding errors, the value of
m2 - m1 + m3 may be slightly less than the exact value and when the INT function is applied, the
resulting iteration count is one less than expected.

46 DO Statement

FORTRAN Statements

Example:
DO 10 X = -5, 6, 2

PRINT *, X, X*X
10 CONTINUE

In this example, the terminal value has been changed to 6 and the incrementation value has been changed to
2. The DO-variable is X, a real variable. Thus the values of e1, e2 and e3 are converted to type real.
The DO-loop is executed

MAX(INT((6 - (-5) + 2)/2), 0)
MAX(INT(13 / 2), 0)

or 6 times. The successive values of X, inside the range of the DO-loop, are -5.0, -3.0, -1.0, 1.0, 3.0, 5.0.
When the DO-loop is terminated, the value of X will be 7.0.

DO-loops may be nested, that is, another DO-loop may be contained within the range of the outer DO-loop.
More than one DO-loop may have the same terminal statement.

Example:
DO 10 I = -5, 5
DO 10 J = -2, 3

10 ARRAY(I, J) = 0.0

This is equivalent to the following example.

Example:
DO 10 I = -5, 5

DO 20 J = -2, 3
ARRAY(I, J) = 0.0

20 CONTINUE
10 CONTINUE

If a DO statement appears within the range of a DO-loop, its range must be entirely contained within the
range of the outer DO-loop.

Example:
* Illegal use of nested DO-loops.

DO 20 I = -5, 5
DO 10 J = -2, 3

ARRAY(I, J) = 0.0
20 CONTINUE
10 CONTINUE

The above example is illegal since the terminal statement of the first DO-loop precedes that of the second
DO-loop.

Similarly, the range of a DO-loop that appears within the range of an IF-block, ELSE IF-block, or
ELSE-block must be entirely contained within that IF-block, ELSE IF-block, or ELSE-block, respectively.
This rule applies to all Open Watcom FORTRAN 77 structured block extensions.

DO Statement 47

Language Reference

Example:
* Illegal nesting of a DO-loop and an IF-block.

IF(A .LT. B)THEN
DO 10 I = 1, 5

PRINT *, ’Iteration number’, I
END IF

VECTOR(I) = I
10 CONTINUE

The above example is illegal since the range of the IF-block must terminate after the range of the DO-loop.
Note how statement indentation helps to illustrate the problem with this example.

It is also illegal to attempt to transfer control into the range of a DO-loop. The following example
illustrates this error.

Example:
* Illegal transfer into the range of a DO-loop.

GO TO 20
.
.
.
DO 10, I = 100, 0, -1

PRINT *, ’Counting down from 100 to 0’, I
20 PRINT *, I, SQRT(FLOAT(I))
10 CONTINUE

The following example shows a more subtle form of this error.

Example:
* Illegal transfer into the range of a DO-loop.

DO 10 I = 1, 10
* Skip row 5 of 10x10 matrix

IF(I .EQ. 5)GO TO 10
DO 10 J = 1, 10

A(I, J) = 0.0
10 CONTINUE

Since the CONTINUE statement is included in the range of the inner DO-loop, an error message is issued.

The following example illustrates the Open Watcom FORTRAN 77 structured DO statement.

Example:
DO I = -5, 5

DO J = -2, 3
ARRAY(I, J) = 0.0

END DO
END DO

In keeping with more modern programming practices, this feature allows the programmer to write
DO-loops without resorting to the use of statement labels. A well-chosen indentation style further enhances
the readability of the program.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

48 DO Statement

FORTRAN Statements

2.21 DOUBLE COMPLEX Statement
The DOUBLE COMPLEX statement is a type declaration statement and can be used to declare a name to be
of type double complex. The implicit type of the name, whether defined by the "first letter rule" (see the
chapter entitled "Names, Data Types and Constants" on page 151) or by an IMPLICIT statement, is either
confirmed or overridden. However, once a name has been declared to be of type double complex, it cannot
appear in another type declaration statement.

There are various forms of the DOUBLE COMPLEX statement. The following sections describe them.

2.21.1 Simple DOUBLE COMPLEX Statement

DOUBLE COMPLEX name [,name] ...

where:

name is a variable name, array name, array declarator, symbolic name of a constant, function name or
dummy procedure name.

The DOUBLE COMPLEX statement is an extension to the FORTRAN 77 language.

Example:
DIMENSION C(-5:5)
DOUBLE COMPLEX A, B(10), C

In the previous example, A is defined to be a variable of type double complex and B and C are defined to be
arrays of type double complex.

2.21.2 DOUBLE COMPLEX Statement: Data Initialization

DOUBLE COMPLEX name [/cl/] [,name[/cl/]] ...

where:

name is as described in the previous section.

cl is a list of the form:

k [,k] ...

k is one of the forms:

c

r*c (equivalent to r successive appearances of c)

DOUBLE COMPLEX Statement 49

Language Reference

c is a constant or the symbolic name of a constant

r is an unsigned positive integer constant or the symbolic name of a constant.

This form of the DOUBLE COMPLEX statement is also an extension to the FORTRAN 77 language. The
rules for data initialization are the same as for the DATA statement.

Example:
DOUBLE COMPLEX A/(4D4,5.1D4)/, B(10)/10*(5D1,3.1D1)/

In the previous example, A is initialized with the double precision complex constant (4D4,5.1D4) and
each element of the array B is initialized with the double precision complex constant (5D1,3.1D1).

50 DOUBLE COMPLEX Statement

FORTRAN Statements

2.22 DOUBLE PRECISION Statement
The DOUBLE PRECISION statement is a type declaration statement and can be used to declare a name to
be of type double precision. The implicit type of the name, whether defined by the "first letter rule" (see
the chapter entitled "Names, Data Types and Constants" on page 151) or by an IMPLICIT statement, is
either confirmed or overridden. However, once a name has been declared to be of type double precision, it
cannot appear in another type declaration statement.

There are various forms of the DOUBLE PRECISION statement. The following sections describe them.

2.22.1 Standard DOUBLE PRECISION Statement
�

DOUBLE PRECISION name [,name] ...

where:

name is a variable name, array name, array declarator, symbolic name of a constant, function name or
dummy procedure name.

This form is the standard form of the DOUBLE PRECISION statement.

Example:
DIMENSION C(-5:5)
DOUBLE PRECISION A, B(10), C

In the previous example, A is defined to be a variable of type double precision and B and C are defined to
be arrays of type double precision.

2.22.2 Extended DOUBLE PRECISION Statement: Data Initialization

DOUBLE PRECISION name [/cl/] [,name[/cl/]] ...

where:

name is as described in the previous section.

cl is a list of the form:

k [,k] ...

k is one of the forms:

c

r*c (equivalent to r successive appearances of c)

DOUBLE PRECISION Statement 51

Language Reference

c is a constant or the symbolic name of a constant

r is an unsigned positive integer constant or the symbolic name of a constant.

This form of the DOUBLE PRECISION statement is an extension to the FORTRAN 77 language. The
rules for data initialization are the same as for the DATA statement.

Example:
DOUBLE PRECISION A/4D4/, B(10)/10*5D1/

In the previous example, A is initialized with the double precision constant 4D4 and each element of the
array B is initialized with the double precision constant 5D1.

52 DOUBLE PRECISION Statement

FORTRAN Statements

2.23 DO WHILE Statement

DO [s[,]] WHILE (e) [: block-label]

where:

s is an optional statement label of an executable statement, called the terminal
statement, which follows the DO statement in the same program unit.

e is a logical expression or integer arithmetic expression, in which case the result
of the integer expression is compared for inequality to the integer value 0.

block-label is an optional block label.

The DO WHILE statement is an extension to the FORTRAN 77 language.

Example:
X = 0.0
DO 10 WHILE(X .LT. 100.0)

PRINT *, X, SQRT(X)
X = X + 1.0

10 CONTINUE

If no statement label is present, the terminal statement of the DO-loop must be an END DO statement.

Example:
X = 0.0
DO WHILE(X .LT. 100.0)

PRINT *, X, SQRT(X)
X = X + 1.0

ENDDO

The following example illustrates the use of an integer arithmetic expression.

Example:
I = 10
DO WHILE(I)

PRINT *, I
I = I - 1

ENDDO
END

The DO WHILE statement, is similar to the DO statement. All nesting rules that apply to the DO statement
also apply to the DO WHILE statement. The difference is the way in which the looping is accomplished;
the DO-loop is executed while the logical expression of the DO WHILE statement has a true value or until
control is transferred out of the DO-loop.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

DO WHILE Statement 53

Language Reference

2.24 ELSE Statement
�

ELSE

The ELSE statement is used in conjunction with the IF or ELSE IF statement. The range of the ELSE
block is terminated by a matching END IF statement.

Example:
IF(A .LT. B)THEN

PRINT *, ’A is less than B’
ELSE

PRINT *, ’A is greater than or equal to B’
END IF

Transfer of control into the range of an ELSE block is illegal. It is interesting to note that the ELSE
statement may be identified by a statement label but it must not be referenced by any statement!

Example:
* Illegal branch to a labelled ELSE statement.

IF(A .LT. B)THEN
PRINT *, ’A is less than B’

100 ELSE
PRINT *, ’A is greater than or equal to B’
GO TO 100

END IF

The above is an example of an illegal way to construct an infinitely repeating loop. The following is the
correct way to do this.

Example:
IF(A .LT. B)THEN

PRINT *, ’A is less than B’
ELSE

100 PRINT *, ’A is greater than or equal to B’
GO TO 100

END IF

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

54 ELSE Statement

FORTRAN Statements

2.25 ELSE IF Statement
�

ELSE IF (e) THEN

where:

e is a logical expression or integer arithmetic expression, in which case the result of the integer
expression is compared for inequality to the integer value 0.

The ELSE IF statement is used in conjunction with the IF statement. The range of the ELSE IF block
is terminated by another ELSE IF statement, an ELSE statement, or an END IF statement.

Example:
IF(A .LT. B)THEN

PRINT *, ’A is less than B’
ELSE IF(A .EQ. B)THEN

PRINT *, ’A is equal to B’
ELSE

PRINT *, ’A is greater than B’
END IF

Transfer of control into the range of an ELSE IF block is illegal. It is interesting to note that the ELSE
IF statement may be identified by a statement label but it must not be referenced by any statement!

Example:
* Illegal transfer into the range of
* an ELSE IF statement.

IF(A .EQ. 0.0)GO TO 110
IF(A .LT. B)THEN

PRINT *, ’A is less than B’
ELSE IF(A .EQ. B)THEN

PRINT *, ’A is equal to B or’
110 PRINT *, ’A is equal to 0’

ELSE
PRINT *, ’A is greater than B’

END IF

The above is an example of an illegal attempt to branch into the range of an ELSE IF block.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

ELSE IF Statement 55

Language Reference

2.26 END Statement
�

END

The END statement indicates the end of a sequence of statements and comment lines of a program unit.
Execution of an END statement in a function or subroutine subprogram has the same effect as a RETURN
statement. Control is returned to the invoking program unit. Execution of an END statement in a main
program causes termination of execution of the program.

Example:
SUBROUTINE EULER(X, Y, Z)

.

.

.
END

Upon executing the END statement, execution control is returned to the calling program unit.

Example:
PROGRAM PAYROL

.

.

.
END

Upon executing the END statement, execution of the program is terminated.

Some rather special rules apply to the END statement. The statement is written in columns 7 to 72 of an
initial line. In other words, it must not be continued. Also, no other statement in the program unit may
have an initial line that appears to be an END statement.

Example:
* An illegal ENDIF statement.

IF(A .LT. B)THEN
.
.
.

END
&IF

The above END IF statement is illegal since the initial line appears to be an END statement.

56 END Statement

FORTRAN Statements

2.27 END AT END Statement

END AT END

The END AT END statement is used in conjunction with the structured AT END statement. The END AT
END statement marks the end of a sequence of statements which are part of an AT END-block. The AT
END statement marks the beginning of the AT END-block. The AT END-block is executed when the
preceding READ statement terminates because of an end-of-file condition.

Example:
READ(UNIT=1, FMT=’(3I5)’) I, J, K
AT END DO

PRINT *, ’END-OF-FILE ENCOUNTERED ON UNIT 1’
EOFSW = .TRUE.

END AT END

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

END AT END Statement 57

Language Reference

2.28 END BLOCK Statement

END BLOCK

The END BLOCK statement is used to terminate a REMOTE-block. The END BLOCK statement is
implicitly a transfer statement, since it returns program control from a REMOTE-block.

Example:
REMOTE BLOCK A

I=I+1
PRINT *, ’I=’,I

END BLOCK

For more information, see the description of the EXECUTE and REMOTE BLOCK statements or the chapter
entitled "Program Structure Control Statements" on page 193.

58 END BLOCK Statement

FORTRAN Statements

2.29 END DO Statement

END DO

The END DO statement is used to terminate the range of a "structured" DO statement. A structured DO
statement is one in which a statement label is not present. For more information, see the description of the
structured DO statement or the chapter entitled "Program Structure Control Statements" on page 193.

Example:
DO X = -5.1, 12.8, 0.125

.

.

.
END DO

Example:
X = -5.1
DO WHILE(X .LE. 12.8)

.

.

.
X = X + 0.125

END DO

END DO Statement 59

Language Reference

2.30 ENDFILE Statement
�

ENDFILE u
ENDFILE (alist)

where:

u is an external unit identifier.

alist is a list of endfile specifiers separated by commas:

[UNIT =] u
IOSTAT = ios
ERR = s

Execution of an ENDFILE statement causes an endfile record to be written to the file connected to the
specified unit. The file is then positioned after the endfile record. If the file may be connected for direct
access, only those records before the endfile record are considered to have been written. Thus, only those
records before the endfile record may be read during subsequent direct access connections to the file.

Endfile Specifiers

[UNIT =] u
u is an external unit identifier. An external unit identifier is a non-negative integer
expression. If the optional UNIT= specifier is omitted then the specifier must be the first
item in the list of specifiers.

IOSTAT = ios
is an input/output status specifier. The integer variable or integer array element ios is
defined with zero if no error condition exists or a positive integer value if an error condition
exists.

ERR = s
is an error specifier and s is a statement label. When an error occurs, execution is
transferred to the statement labelled by s.

Example:
LOOP

READ(UNIT=7, END=100, FMT=200)RECORD
WRITE(UNIT=8, FMT=200)RECORD

ENDLOOP
100 ENDFILE(UNIT=8)

In the previous example, we illustrate how one might read all the records from one file (unit 7), write them
to another file (unit 8) and then write an endfile record to the end of the file on unit 8.

60 ENDFILE Statement

FORTRAN Statements

Notes:

1. The unit must be connected for sequential access.

2. After execution of an ENDFILE statement, a BACKSPACE or REWIND statement must be used
to reposition the file before any other input/output statement which refers to this file can be
executed.

3. If the file did not exist before execution of the ENDFILE statement then it will be created after
execution of this statement.

For more information on input/output, see the chapter entitled "Input/Output" on page 215.

ENDFILE Statement 61

Language Reference

2.31 END GUESS Statement

END GUESS

The END GUESS statement is used in conjunction with the structured GUESS statement. The END
GUESS statement marks the end of a series of GUESS-ADMIT blocks.

Example:
CHARACTER CH
READ *, CH
GUESS

IF(CH .LT. ’a’)QUIT
IF(CH .GT. ’z’)QUIT
PRINT *, ’Lower case letter’

ADMIT
IF(CH .LT. ’A’)QUIT
IF(CH .GT. ’Z’)QUIT
PRINT *, ’Upper case letter’

ADMIT
IF(CH .LT. ’0’)QUIT
IF(CH .GT. ’9’)QUIT
PRINT *, ’Digit’

ADMIT
PRINT *, ’Special character’

END GUESS
END

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

62 END GUESS Statement

FORTRAN Statements

2.32 END IF Statement
�

END IF

The END IF statement is used in conjunction with the block IF statement. The END IF statement marks
the end of a sequence of statements which are to be conditionally executed.

Example:
IF(X .LT. 100.0)THEN

PRINT *, ’X IS LESS THAN 100’
END IF

The END IF statement can also be used in conjunction with the ELSE and ELSE IF statements. For
more information, see the chapter entitled "Program Structure Control Statements" on page 193.

END IF Statement 63

Language Reference

2.33 END LOOP Statement

END LOOP

The END LOOP statement is used in conjunction with the structured LOOP statement. The END LOOP
statement marks the end of a sequence of statements which are to be repeated. The LOOP statement marks
the beginning of the loop. The LOOP-block is executed until control is transferred out of the LOOP-block.

The QUIT statement may be used to transfer control out of a LOOP-block.

Example:
LOOP

READ *, X
IF(X .GT. 99.0) QUIT
PRINT *, X

END LOOP

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

64 END LOOP Statement

FORTRAN Statements

2.34 END MAP Statement

END MAP

The END MAP statement is used in conjunction with the MAP declarative statement. The END MAP
statement marks the end of a MAP structure. The following example maps out a 4-byte integer on an Intel
80x86-based processor.

Example:
STRUCTURE /MAPINT/

UNION
MAP

INTEGER*4 LONG
END MAP
MAP

INTEGER*2 LO_WORD
INTEGER*2 HI_WORD

END MAP
MAP

INTEGER*1 BYTE_0
INTEGER*1 BYTE_1
INTEGER*1 BYTE_2
INTEGER*1 BYTE_3

END MAP
END UNION

END STRUCTURE

RECORD /MAPINT/ I

I%LONG = ’01020304’x
PRINT ’(2Z4)’, I%LO_WORD, I%HI_WORD
END

For more information, see the chapter entitled "Structures, Unions and Records" on page 167.

END MAP Statement 65

Language Reference

2.35 END SELECT Statement

END SELECT

The END SELECT statement is used in conjunction with the SELECT statement. The END SELECT
statement marks the end of a series of CASE blocks.

Example:
SELECT CASE (CH)
CASE (’a’ : ’z’)

PRINT *, ’Lower case letter’
CASE (’A’ : ’Z’)

PRINT *, ’Upper case letter’
CASE (’0’ : ’9’)

PRINT *, ’Digit’
CASE DEFAULT

PRINT *, ’Special character’
END SELECT

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

66 END SELECT Statement

FORTRAN Statements

2.36 END STRUCTURE Statement

END STRUCTURE

The END STRUCTURE statement is used in conjunction with the STRUCTURE declarative statement. The
END STRUCTURE statement marks the end of a structure definition.

Example:
STRUCTURE /ADDRESS/

CHARACTER*20 STREET
CHARACTER*20 CITY
CHARACTER*20 STATE
CHARACTER*20 COUNTRY
CHARACTER*10 ZIP_CODE

END STRUCTURE

STRUCTURE /PEOPLE/
CHARACTER*20 NAME
RECORD /ADDRESS/ ADDR
INTEGER*2 AGE

END STRUCTURE

For more information, see the chapter entitled "Structures, Unions and Records" on page 167.

END STRUCTURE Statement 67

Language Reference

2.37 END UNION Statement

END UNION

The END UNION statement is used in conjunction with the UNION declarative statement. The END
UNION statement marks the end of a series of MAP structures. The following example maps out a 4-byte
integer on an Intel 80x86-based processor.

Example:
STRUCTURE /MAPINT/

UNION
MAP

INTEGER*4 LONG
END MAP
MAP

INTEGER*2 LO_WORD
INTEGER*2 HI_WORD

END MAP
MAP

INTEGER*1 BYTE_0
INTEGER*1 BYTE_1
INTEGER*1 BYTE_2
INTEGER*1 BYTE_3

END MAP
END UNION

END STRUCTURE

RECORD /MAPINT/ I

I%LONG = ’01020304’x
PRINT ’(2Z4)’, I%LO_WORD, I%HI_WORD
END

For more information, see the chapter entitled "Structures, Unions and Records" on page 167.

68 END UNION Statement

FORTRAN Statements

2.38 END WHILE Statement

END WHILE

The END WHILE statement is used in conjunction with the structured WHILE statement. The END
WHILE statement marks the end of a sequence of statements which are to be repeated. The WHILE
statement marks the beginning of the WHILE-block. The WHILE-block is executed while the logical
expression (or integer arithmetic expression) of the WHILE statement has a true (or non-zero) value or until
control is transferred out of the WHILE-block.

Example:
X = 1.0
WHILE(X .LT. 100)DO

PRINT *, X, SQRT(X)
X = X + 1.0

END WHILE

Example:
I = 10
WHILE(I)DO

PRINT *, I
I = I - 1

ENDWHILE
END

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

END WHILE Statement 69

Language Reference

2.39 ENTRY Statement
�

ENTRY name [([d [, d] ...])]

where:

name is a symbolic name of an entry in a function or subroutine subprogram. If the ENTRY statement
appears in a subroutine subprogram then name is a subroutine name. If the ENTRY statement
appears in a function subprogram then name is an external function name.

d is a variable name, array name, dummy procedure name, or an asterisk. d is called a dummy
argument. An asterisk is allowed only in a subroutine subprogram.

The ENTRY statement is used to define an alternate entry into a subprogram.

Example:
PRINT *, TMAX2(121.0, -290.0)
PRINT *, TMAX3(-1.0, 12.0, 5.0)
END

FUNCTION TMAX3(ARGA, ARGB, ARGC)
T3 = ARGC
GO TO 10

ENTRY TMAX2(ARGA, ARGB)
T3 = ARGA

10 TMAX2 = ARGA
IF(ARGB .GT. TMAX2) TMAX2 = ARGB
IF(T3 .GT. TMAX2) TMAX2 = T3

END

In the above example, an entry was defined to permit us to find the maximum of two real variables. Either
the entry name TMAX2 or the function name TMAX3 could have been used as the variable for returning the
maximum value since they agree in type. It is not necessary to precede an ENTRY statement with a transfer
statement as the ENTRY statement is not an executable statement; the next statement executed will be the
first executable statement following the ENTRY statement.

Notes:

1. No dummy arguments need be specified in the ENTRY statement. If this is the case, the
parentheses () are optional.

For more information, see the chapter entitled "Functions and Subroutines" on page 243.

70 ENTRY Statement

FORTRAN Statements

2.40 EQUIVALENCE Statement
�

EQUIVALENCE (nlist) [,(nlist)] ...

where:

nlist is a list of at least two names, each name separated by a comma.

The names appearing in nlist can be variable names, array names, array element names, character
names, character substring names, and character array element substring names. Dummy arguments are not
allowed in nlist.

The EQUIVALENCE statement specifies that the storage occupied by the entities appearing in nlist all
start at the same place. It in no way changes the characteristics of an object. For example, if a variable is
equivalenced to an array, the variable does not inherit the properties of the array. Similarly, if a variable of
type integer is equivalenced to a variable of type real, there is no implied type conversion.

If an array element name appears in an EQUIVALENCE statement, the number of subscript expressions
must be the same as the number of dimensions specified when the array was declared and each subscript
expression must be in the range specified. As an extension to FORTRAN 77, Open Watcom FORTRAN
77 allows a single subscript expression for a multi-dimensional array. An array name used by itself is
equivalent to specifying the first element of the array.

If a character substring appears in an EQUIVALENCE statement, the substring defined by the substring
expression must be properly contained in the character entity being substring. A character name used by
itself is equivalent to specifying the first character of the character variable.

Example:
REAL A,B
DIMENSION A(10),B(20)
EQUIVALENCE (A,B(16))

In the above example, the first 5 elements of A occupy the same storage as the last 5 elements of B.

Example:
DIMENSION A(10)
EQUIVALENCE (C,A(2)),(D,A(4))

In the above example, C is assigned the same storage unit as A(2) and D is assigned the same storage unit
as A(4).

EQUIVALENCE Statement 71

Language Reference

The following example illustrates a Open Watcom FORTRAN 77 extension.

Example:
REAL A(2,10),B(20),C(2,2,5)
EQUIVALENCE (A(5),B(1)),(B(1),C(1))

In the above example, a single subscript is specified for arrays A and C. The following table shows the
mapping of a 2-dimensional array onto a 1-dimensional array.

A(1,1) == A(1)
A(2,1) == A(2)
A(1,2) == A(3)
A(2,2) == A(4)
A(1,3) == A(5)
A(2,3) == A(6)

.

.

.

In the above table, "==" is read as "is equivalent to". In FORTRAN, arrays are stored in "column major"
format (i.e., arrays are stored column by column rather than row by row).

Example:
CHARACTER*5 A, D
EQUIVALENCE (A(3:5), D(1:3))

In this example, the last 3 characters of A occupy the same character storage units as the first 3 characters of
D.

There are certain restrictions on EQUIVALENCE statements. It is not possible to equivalence a storage unit
to 2 different storage units. This is illustrated by the following example.

Example:
* Illegally equivalencing a storage unit to
* 2 different storage units.

DIMENSION A(2)
EQUIVALENCE (A(1),B),(A(2),B)

B has been given 2 different storage units.

It is also not possible to specify that consecutive storage units be non-consecutive. For example,

Example:
* Illegally equivalencing consecutive storage units to
* non-consecutive storage units.

DIMENSION A(2),B(2)
EQUIVALENCE (A(1),B(2)),(A(2),B(1))

A(1) and A(2) are consecutive but B(1) and B(2) are not.

The FORTRAN 77 standard specifies that character and numeric data cannot be equivalenced; Open
Watcom FORTRAN 77 allows character and numeric data to be equivalenced.

72 EQUIVALENCE Statement

FORTRAN Statements

2.41 EXECUTE Statement

EXECUTE name

where:

name is the name of a REMOTE BLOCK located in the same program unit.

The EXECUTE statement allows a named block of code to be executed. The named block of code may be
defined anywhere in the same program unit and is delimited by the REMOTE BLOCK and END BLOCK
statements. Executing a REMOTE-block is similar in concept to calling a subroutine, with the advantage
that shared variables do not need to be placed in a COMMON block or passed in an argument list. When
execution of the REMOTE-block is complete (i.e., when the END BLOCK statement is executed), control
returns to the statement following the EXECUTE statement which invoked it.

Example:
EXECUTE INCR
PRINT *, ’FIRST’
EXECUTE INCR
PRINT *, ’SECOND’

.

.

.
REMOTE BLOCK INCR

I=I+1
PRINT *, ’I=’,I

END BLOCK

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

EXECUTE Statement 73

Language Reference

2.42 EXIT Statement

EXIT [: block-label]

The EXIT statement is used to transfer control:

1. from within a loop (DO, DO WHILE, WHILE or LOOP) to the statement following the loop,
2. from within a GUESS or ADMIT block to the statement following the ENDGUESS statement, or
3. from within a remote block to the statement following the EXECUTE statement that invoked the

remote block.

The EXIT statement may be used to cause a transfer of control to the first executable statement that follows
the terminal statement of the block which contains it. Examples of such terminal statements are END DO,
END LOOP, END WHILE, UNTIL, etc. If block-label is present then control is transferred out of the
block identified by that block label. The EXIT statement is an extension to the FORTRAN 77 language.

Example:
LOOP

WRITE(UNIT=*, FMT=’(A)’) ’Enter a number’
READ(UNIT=*, FMT=’(F10.4)’, IOSTAT=IOS) X
IF(IOS .NE. 0) EXIT
IF(X .LT. 0) EXIT
PRINT *, X, SQRT(X)

END LOOP
END

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

74 EXIT Statement

FORTRAN Statements

2.43 EXTERNAL Statement
�

EXTERNAL p [,p] ...

where:

p is the name of an external procedure, dummy procedure or block data subprogram.

The EXTERNAL statement identifies a symbolic name to be a dummy procedure or an external procedure
and allows these names to be passed as an actual argument. In the following example, SAM, ERRRTN and
POLY are declared to be external procedures.

Example:
EXTERNAL SAM, ERRRTN, POLY

In the following example, F is declared to be an external procedure and is passed as such to subroutine
SAM. If the EXTERNAL statement were eliminated then the variable F would be passed on to subroutine
SAM since there is no way of knowing that F is an external function.

Example:
EXTERNAL F

.

.

.
CALL SAM(F)

The appearance of an intrinsic function in an EXTERNAL statement declares that name to be an external
procedure and the intrinsic function by that name is no longer available in that program unit. This allows
the programmer to define a function by the same name as an intrinsic function. In the following example,
the programmer’s SIN function will be called instead of the intrinsic SIN function.

Example:
EXTERNAL SIN

.

.

.
CALL SIN(.1)

A statement function name must not appear in an EXTERNAL statement. A name must only appear in an
EXTERNAL statement once.

EXTERNAL Statement 75

Language Reference

2.44 FORMAT Statement
�

label FORMAT fs

where:

fs is a format specification and is described in the chapter entitled "Format" on page 225.

label is the statement label used by an I/O statement to identify the FORMAT statement to be used.
The FORMAT statement must be labelled.

Example:
REAL X
X = 234.43
PRINT 100, X

100 FORMAT(F10.2)
END

In the previous example, the PRINT statement uses the format specification in the FORMAT statement
whose statement label is 100 to display the value of X.

For more information on the FORMAT statement, see the chapter entitled "Format" on page 225.

76 FORMAT Statement

FORTRAN Statements

2.45 FUNCTION Statement
A FUNCTION statement is used to define the start of a function subprogram. There are two forms of the
FUNCTION function statement. The second form is a Open Watcom FORTRAN 77 extension.

2.45.1 Standard FUNCTION Statement
�

[type] FUNCTION fun ([d [, d] ...])

where:

type is one of LOGICAL, INTEGER, REAL, DOUBLE PRECISION, COMPLEX or CHARACTER
[*len].

fun is a symbolic name of a function subprogram.

d is a variable name, array name, or a dummy procedure name. d is called a dummy argument.

len is called the length specification and is the length (number of characters) of the result of the
character function. It has one of the following forms:

(1) An unsigned positive integer constant.

(2) A positive integer constant expression enclosed in parentheses.

(3) An asterisk in parentheses, (*).

Example:
PRINT *, TMAX3(-1.0, 12.0, 5.0)
END

FUNCTION TMAX3(ARGA, ARGB, ARGC)
TMAX3 = ARGA
IF(ARGB .GT. TMAX3) TMAX3 = ARGB
IF(ARGC .GT. TMAX3) TMAX3 = ARGC

END

In the above example, the function TMAX3 is defined to find the maximum of three real variables.

Notes:

1. No dummy arguments need be specified in the FUNCTION statement. However, the parentheses
() are mandatory.

For more information, see the chapter entitled "Functions and Subroutines" on page 243.

FUNCTION Statement 77

Language Reference

2.45.2 Extended FUNCTION Statement

[type[*len]] FUNCTION fun[*len] ([d [, d] ...])

where:

type is one of LOGICAL, INTEGER, REAL, DOUBLE PRECISION, COMPLEX, CHARACTER
or RECORD /typename/

fun is a symbolic name of a function subprogram.

d is a variable name, array name, or a dummy procedure name. d is called a dummy argument.

len is called the length specification and has one of the following forms:

(1) An unsigned positive integer constant.

(2) A positive integer constant expression enclosed in parentheses.

(3) An asterisk in parentheses, (*).

For valid values of len, refer to the appropriate type declaration statement.

This form of the FUNCTION statement is an extension to the FORTRAN 77 language.

Example:
INTEGER*2 MOD2, I, J
I = 12
J = 5
PRINT *, MOD2(I, J)
END

INTEGER*2 FUNCTION MOD2(I, J)
INTEGER*2 I, J
INTEGER II, JJ
II = I
JJ = J
MOD2 = MOD(II, JJ)
END

Notes:

1. No dummy arguments need be specified in the FUNCTION statement. However, the parentheses
() are mandatory.

2. The length specification can appear only once in the FUNCTION statement.

For more information, see the chapter entitled "Functions and Subroutines" on page 243.

78 FUNCTION Statement

FORTRAN Statements

2.46 Unconditional GO TO Statement
�

GO TO s

where:

s is the statement label of an executable statement that appears in the same program unit as the GO TO
statement.

Example:
GO TO 10
.
.
.

10 S = S + 1

When the GO TO statement is executed, control is transferred to the statement identified by that label. In
the above example, the GO TO statement causes execution to proceed to the statement labelled 10.

Example:
* An illegal GO TO statement

GO TO 100
.
.
.

100 FORMAT(1X, 3F10.2)

The above example contains an illegal GO TO statement since the statement identified by the label 100 is
not executable.

Unconditional GO TO Statement 79

Language Reference

2.47 Computed GO TO Statement
�

GO TO (s [,s]...) [,] i

where:

i is an integer expression.

s is the statement label of an executable statement that appears in the same program unit as the
computed GO TO statement.

The integer expression i is evaluated and the ith label is selected for transfer of control. If i is less than 1
or greater than the number of statement labels in the list then execution control continues with the next
executable statement that follows the computed GO TO statement.

Example:
GO TO (110, 120, 130, 140) INDEX

100 CALL AUDIT

In the above example, control is transferred to the statement identified by the label 110 if INDEX has the
value 1, the label 120 if INDEX has the value 2, etc. If INDEX has a value that is negative, zero or larger
than 4, control continues with the statement labelled 100. In this example, the integer expression consists
simply of an integer variable.

Example:
GO TO (100, 200, 100, 200, 100, 200), I/10

The above example illustrates that statement labels may be repeated in the list and that a "," may follow the
closing right parenthesis.

80 Computed GO TO Statement

FORTRAN Statements

2.48 Assigned GO TO Statement
�

GO TO i [[,] (s [,s]...)]

where:

i is an integer variable name.

s is the statement label of an executable statement that appears in the same program unit as the
assigned GO TO statement.

The variable i must be defined with the value of a statement label of an executable statement that appears
in the same program unit (see the ASSIGN statement). The execution of the assigned GO TO statement
causes a transfer of control to the statement that is identified by that label.

Example:
INTEGER RET
X = 0.0
ASSIGN 100 TO RET
GO TO 3000

100 X = X + 1
ASSIGN 110 TO RET
GO TO 3000

110 X = X + 1
.
.
.

* Print both X and its square root
3000 Y = SQRT(X)

PRINT *, X, Y
GO TO RET

In the above example, we illustrate the use of the ASSIGN statement and the assigned GO TO statement to
implement a "local subroutine" in a program unit. A sequence of often-used code can be "called" using the
unconditional GO TO statement and "return" is accomplished using the assigned GO TO statement. Care
must be exercised to properly assign the return label value.

If a list of statement labels is present then the statement label assigned to i must be in the list. If it is not in
the list, an error will occur when the assigned GO TO statement is executed. Unlike the computed GO TO
statement, execution does not continue with the next statement. This is demonstrated by the following
example. Note that the "," preceding the statement label list is optional.

Example:

Assigned GO TO Statement 81

Language Reference

* Illegal use of the assigned GO TO:
* Statement label 100 does not appear in the statement
* label list of the assigned GO TO statement.

ASSIGN 100 TO ICASE
GO TO ICASE, (110, 120, 130)

* beginning of selections
100 PRINT *, 100

GO TO 200
110 PRINT *, 110

GO TO 200
120 PRINT *, 120

GO TO 200
130 PRINT *, 130
* end of selections
200 END

82 Assigned GO TO Statement

FORTRAN Statements

2.49 GUESS Statement

GUESS [: block-label]

The GUESS statement is an extension to the FORTRAN 77 language. The GUESS statement marks the
beginning of a block of statements for which a certain assumption or hypothesis has been made. This
hypothesis may be tested using logical IF statements in conjunction with QUIT statements. The ADMIT
statement may be used to mark the beginning of an alternate hypothesis. The END GUESS statement is
used to mark the end of a series of GUESS-ADMIT blocks.

Example:
CHARACTER CH
READ *, CH
GUESS

IF(CH .LT. ’a’)QUIT
IF(CH .GT. ’z’)QUIT
PRINT *, ’Lower case letter’

ADMIT
IF(CH .LT. ’A’)QUIT
IF(CH .GT. ’Z’)QUIT
PRINT *, ’Upper case letter’

ADMIT
IF(CH .LT. ’0’)QUIT
IF(CH .GT. ’9’)QUIT
PRINT *, ’Digit’

ADMIT
PRINT *, ’Special character’

END GUESS
END

An optional block label may be specified with the GUESS statement.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

GUESS Statement 83

Language Reference

2.50 Arithmetic IF Statement
�

IF (e) s1, s2, s3

where:

e is an integer, real, or double precision expression.

s1, s2, s3 are statement labels of executable statements that appear in the same program unit
as the arithmetic IF statement.

The expression e is evaluated and if the value is less than zero then transfer is made to the statement
identified by label s1. If the value is equal to zero then transfer is made to the statement identified by
label s2. If the value is greater than zero then transfer is made to the statement identified by label s3.

Example:
IF(SIN(X)) 10, 20, 30

10 PRINT *, ’SIN(X) IS < 0’
GO TO 40

20 PRINT *, ’SIN(X) = 0’
GO TO 40

30 PRINT *, ’SIN(X) > 0’
40 CONTINUE

The above example evaluates the sine of the real variable X and prints whether the result is less than 0,
equal to 0, or greater than 0.

The same label may appear more than once in the arithmetic IF statement.

Example:
IF(SIN(X)) 10, 10, 30

10 PRINT *, ’SIN(X) IS <= 0’
GO TO 40

30 PRINT *, ’SIN(X) > 0’
40 CONTINUE

The above example evaluates the sine of the real variable X and prints whether the result is less than or
equal to zero, or that it is greater than 0.

84 Arithmetic IF Statement

FORTRAN Statements

2.51 Logical IF Statement
�

IF (e) st

where:

e is a logical expression or integer arithmetic expression, in which case the result of the integer
expression is compared for inequality to the integer value 0.

st is an executable statement. Only certain executable statements are allowed. See the section entitled
"Classifying Statements" on page 9 at the beginning of this chapter for a list of allowable statements.

The expression e is evaluated and must result in a true or a false value. If the result is true then the
statement st is executed, otherwise it is not executed.

Example:
IF(A .LT. B)PRINT *, ’A < B’

In the above example, the logical expression A .LT. B is evaluated and, if it is true, the message A <
B is printed. A logical expression is one in which the result is either true or false. An expression such as 1
+ 2 is clearly not an example of a logical expression.

Logical variables have logical values of true or false and may also be used in the logical expression.
Consider the following two examples.

Example:
LOGICAL RESULT
RESULT = A .LT. B
IF(RESULT)PRINT *, ’A < B’

The above example is equivalent to the preceding one but introduces the use of a logical variable.

Example:
LOGICAL RESULT
RESULT = A .LT. B
IF(.NOT. RESULT)PRINT *, ’A >= B’

In the above example, the logical expression is negated through the use of the .NOT. operator in order to
test for the inverse condition, namely .GE..

Much more complex logical expressions can be constructed and then tested for their truth value.

Example:
IF(A.LT.B .OR. C.GE.D)PRINT *, ’A<B or C>=D’

Logical IF Statement 85

Language Reference

An example of an integer expression in an IF statement follows:

Example:
I = 1

* Integer arithmetic expression
IF(I)THEN

PRINT *, ’Yes’
ENDIF

* Equivalent logical expression
IF(I .NE. 0)THEN

PRINT *, ’Yes’
ENDIF
END

86 Logical IF Statement

FORTRAN Statements

2.52 Block IF Statement
There are two forms of the block IF statement. The second is a Open Watcom FORTRAN 77 extension.

2.52.1 Standard Block IF Statement
�

IF (e) THEN

where:

e is a logical expression.

The block IF statement is used in conjunction with the ELSE IF, ELSE, and END IF statements.

Example:
IF(A .LT. B)THEN

PRINT *, ’A < B’
END IF

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

2.52.2 Extended Block IF Statement

IF (e) THEN [: block-label]

where:

e is a logical expression or integer arithmetic expression, in which case the result
of the integer expression is compared for inequality to the integer value 0.

block-label is an optional block label.

This form of the block IF statement is an extension to the FORTRAN 77 language. It is identical to the
standard form of the block IF statement with the exception that an integer arithmetic expression and an
optional block label are permitted.

Example:

Block IF Statement 87

Language Reference

IF(I .EQ. 10)THEN : IFBLK
IF(J .EQ. 20)THEN

.

.

.
IF(K. EQ. 0)QUIT : IFBLK
.
.
.

END IF
.
.
.

END IF

In the previous example, the QUIT statement will transfer control to the statement following the second
END IF statement.

88 Block IF Statement

FORTRAN Statements

2.53 IMPLICIT Statement
Open Watcom FORTRAN 77 supports three forms of the IMPLICIT statement. The second and third
forms are extensions to the FORTRAN 77 language.

2.53.1 Standard IMPLICIT Statement
�

IMPLICIT type (a [,a] ...) [,type (a [,a] ...)]...

where:

type is one of LOGICAL, INTEGER, REAL, DOUBLE PRECISION, COMPLEX or
CHARACTER[*len].

a is either a single letter or a range of letters denoted by separating the first letter in the range from
the last letter in the range by a minus sign.

len is the length of the character entities and is a positive unsigned integer constant or a positive
integer constant expression enclosed in parentheses. If len is not specified, the length is 1.

2.53.2 Extended IMPLICIT Statement

IMPLICIT type[*len] (a [,a] ...)
[,type[*len] (a [,a] ...)] ...

where:

type is one of LOGICAL, INTEGER, REAL, DOUBLE PRECISION, COMPLEX or
CHARACTER.

len is a positive unsigned integer constant or a positive integer constant expression enclosed in
parentheses. If type is CHARACTER then (*) is also allowed. The possible values of len are
as follows:

1. If type is LOGICAL then len can be 1 or 4. The default is 4.

2. If type is INTEGER then len can be 1, 2 or 4. The default is 4.

3. If type is REAL then len can be 4 or 8. The default is 4.

4. If type is DOUBLE PRECISION then len cannot be specified.

5. If type is COMPLEX then len can be 8 or 16. The default is 8.

6. If type is CHARACTER then len can be (*) or any positive integer.

IMPLICIT Statement 89

Language Reference

2.53.3 IMPLICIT NONE Statement

IMPLICIT NONE

2.53.4 Description of IMPLICIT Statement

The IMPLICIT statement defines the default type and length for all variables, arrays, symbolic constants,
external functions and statement functions that begin with any letter that has appeared in an IMPLICIT
statement as a single letter or as a member of a range of letters.

The following example specifies that any name beginning with the letters A, D, E, F or G will have
default a default type of integer and any name beginning with the letters X, Y or Z will have a default type
of character and length 3.

Example:
IMPLICIT INTEGER (A,D-G), CHARACTER*3 (X-Z)

The next example illustrates the extended form of the IMPLICIT statement.

Example:
IMPLICIT INTEGER*2 (A,B), LOGICAL*1 (C-F)
IMPLICIT COMPLEX*16 (X,Y,Z), REAL*8 (P)

Specifying NONE in the IMPLICIT statement will cause Open Watcom FORTRAN 77 to issue an error
when a symbol is used and has not appeared in a type specification statement.

Example:
* Referencing X will cause an error

IMPLICIT NONE
X = 13143.383

In the above example, the IMPLICIT statement specifies that the type of all symbols must be explicitly
declared in a type specification statement. The assignment statement will cause an error since the type of X
has not been explicitly declared.

Notes:

1. The implicit type set by an IMPLICIT statement may be overridden or confirmed for any
variable, array, symbolic constant, external function or statement function name by its
appearance in a type statement. The default length specification may also be overridden or
confirmed in a type statement.

90 IMPLICIT Statement

FORTRAN Statements

Example:
IMPLICIT CHARACTER*10 (S-U)
IMPLICIT INTEGER*2 (P)
CHARACTER STRING
INTEGER POINTS

In the above example, the variable STRING is of type character but its length is 1 since it has
appeared in a CHARACTER statement which has a default length of 1. Also, the variable
POINTS is of type integer but its length is 4 since it has appeared in an INTEGER statement
which has a default length of 4.

2. A letter cannot appear more than once as a single letter or be included in a range of letters in all
IMPLICIT statements in a program unit.

3. An IMPLICIT statement applies only to the program unit that contains it.

4. The IMPLICIT statement does not change the type of intrinsic functions.

5. A program unit can contain more than one IMPLICIT statement.

6. Within the specification statements of a program unit, IMPLICIT statements must precede all
other specification statements except PARAMETER statements.

7. The IMPLICIT NONE statement is allowed only once in a program unit. Furthermore, no
other IMPLICIT statement can be specified in the program unit containing an IMPLICIT
NONE statement.

IMPLICIT Statement 91

Language Reference

2.54 INCLUDE Statement

INCLUDE ’inc_spec’

where:

inc_spec is an include specification. You should refer to the compiler’s User’s Guide for a detailed
description of an include specification and include file processing.

Example:
INCLUDE ’GBLDEFS’

.

.

.
END

92 INCLUDE Statement

FORTRAN Statements

2.55 INQUIRE Statement
The INQUIRE statement is used to ask about certain properties of a named file or its connection to a
particular unit. There are two forms of the INQUIRE statement; inquire by file name and inquire by unit.

2.55.1 INQUIRE by FILE
�

INQUIRE (iflist)

where:

iflist includes the FILE= specifier and may include at most one of each of the inquiry specifiers
listed below. Specifiers are separated by commas. The FILE= specifier has the form

FILE = fin

where fin is a character expression whose value when trailing blanks are removed is the
name of a file being inquired about. The file need not exist or be connected to a unit.

Example:
LOGICAL EX, OD
INTEGER NUM
INQUIRE(FILE=’ROLL’,EXIST=EX,OPENED=OD,NUMBER=NUM)

In the above example, information is requested on the file PAYROLL. In particular, we want to know if it
exists, whether it is connected to a unit, and what the unit number is (if it is indeed connected).

2.55.2 INQUIRE by UNIT
�

INQUIRE (iulist)

where:

iulist includes the UNIT= specifier and may include at most one of each of the inquiry specifiers
listed below. Specifiers are separated by commas. The UNIT= specified has the form

[UNIT =] u

where u is an external unit identifier. An external unit identifier is a non-negative integer
expression. If the optional UNIT= specifier is omitted then the specifier must be the first
item in the list of specifiers.

INQUIRE Statement 93

Language Reference

Example:
LOGICAL EX, OD
CHARACTER*30 FN
INQUIRE(UNIT=7, EXIST=EX, OPENED=OD, NAME=FN)

In the above example, information is requested on unit 7. In particular, we want to know if the unit exists,
whether it is connected to a file, and, if so, what the file name is.

2.55.3 Inquiry Specifiers

The following inquiry specifiers are supported.

IOSTAT = ios
ERR = s
EXIST = ex
OPENED = od
NUMBER = num
NAMED = nmd
NAME = fn
ACCESS = acc
SEQUENTIAL = seq
DIRECT = dir
FORM = fm
FORMATTED = fmt
UNFORMATTED = unf
RECL = rcl
NEXTREC = nr
BLANK = blnk

As an extension to the FORTRAN 77 language, the following inquiry specifiers are also supported.

ACTION = act
CARRIAGECONTROL = cc
RECORDTYPE = rct
BLOCKSIZE = bl

IOSTAT = ios is an input/output status specifier. The integer variable or integer array element ios is
defined with zero if no error condition exists or a positive integer value if an error condition
exists.

ERR = s is an error specifier and s is a statement label. When an error occurs, execution is
transferred to the statement labelled by s.

EXIST = ex ex is a logical variable or logical array element.

Inquire by file: The value .TRUE. is assigned if a file exists with the specified name;
otherwise the value .FALSE. is assigned.

Inquire by unit: The value .TRUE. is assigned if the specified unit exists; otherwise the
value .FALSE. is assigned.

OPENED = od od is a logical variable or logical array element.

94 INQUIRE Statement

FORTRAN Statements

Inquire by file: The value .TRUE. is assigned if the specified file is connected to a unit;
otherwise the value .FALSE. is assigned.

Inquire by unit: The value .TRUE. is assigned if the specified unit is connected to a file;
otherwise the value .FALSE. is assigned.

NUMBER = num
num is an integer variable or integer array element that is assigned the value of the unit
number to which the file is connected. If no unit is connected to the file then num becomes
undefined.

NAMED = nmd
nmd is a logical variable or logical array element name that is assigned the value .TRUE. if
the file has a name; otherwise the value .FALSE. is assigned.

NAME = fn fn is a character variable or character array element. Open Watcom FORTRAN 77 also
permits fn to be a character substring.

It is assigned the name of the file, if the file has a name; otherwise it becomes undefined.
The file name that is returned need not be the same as that given in a FILE= specifier but it
must be suitable for use in the FILE= specification of an OPEN statement (e.g., the file
name returned may have additional system qualifications attached to it).

ACCESS = acc
acc is a character variable or character array element. Open Watcom FORTRAN 77 also
permits acc to be a character substring.

It is assigned the value ’SEQUENTIAL’ if the file is connected for sequential access. It is
assigned the value ’DIRECT’ if the file is connected for direct access. It is assigned an
undefined value if there is no connection.

SEQUENTIAL = seq
seq is a character variable or character array element. Open Watcom FORTRAN 77 also
permits seq to be a character substring.

It is assigned the value ’YES’ if SEQUENTIAL is included in the set of allowed access
methods for the file, the value ’NO’ if SEQUENTIAL is not included in the set of allowed
access methods for the file, or ’UNKNOWN’ if Open Watcom FORTRAN 77 is unable to
determine whether or not SEQUENTIAL is included in the set of allowed access methods
for the file.

DIRECT = dir dir is a character variable or character array element. Open Watcom FORTRAN 77 also
permits dir to be a character substring.

It is assigned the value ’YES’ if DIRECT is included in the set of allowed access methods
for the file, the value ’NO’ if DIRECT is not included in the set of allowed access methods
for the file, or ’UNKNOWN’ if Open Watcom FORTRAN 77 is unable to determine
whether or not DIRECT is included in the set of allowed access methods for the file.

FORM = fm fm is a character variable or character array element. Open Watcom FORTRAN 77 also
permits fm to be a character substring.

INQUIRE Statement 95

Language Reference

It is assigned the value ’FORMATTED’ if the file is connected for formatted input/output,
the value ’UNFORMATTED’ if the file is connected for unformatted input/output, or an
undefined value if there is no connection.

FORMATTED = fmt
fmt is a character variable or character array element. Open Watcom FORTRAN 77 also
permits fmt to be a character substring.

It is assigned the value ’YES’ if FORMATTED is included in the set of allowed forms for
the file, the value ’NO’ if FORMATTED is not included in the set of allowed forms for the
file, or ’UNKNOWN’ if Open Watcom FORTRAN 77 is unable to determine whether or not
FORMATTED is included in the set of allowed forms for the file.

UNFORMATTED = unf
unf is a character variable or character array element. Open Watcom FORTRAN 77 also
permits unf to be a character substring.

It is assigned the value ’YES’ if UNFORMATTED is included in the set of allowed forms
for the file, the value ’NO’ if UNFORMATTED is not included in the set of allowed forms
for the file, or ’UNKNOWN’ if Open Watcom FORTRAN 77 is unable to determine
whether or not UNFORMATTED is included in the set of allowed forms for the file.

RECL = rcl rcl is an integer variable or integer array element that is assigned the value of the record
length of the file connected for direct access. If the file is connected for formatted
input/output, the length is the number of characters. If the file is connected for unformatted
input/output, the length is measured in processor-dependent units (bytes). See the compiler
User’s Guide for a discussion of record length or size. If there is no connection or if the
file is not connected for direct access then the value is undefined. The RECL= specifier is
also allowed if the file is connected for sequential access.

NEXTREC = nr
nr is an integer variable or integer array element that is assigned the value n+1, where n
is the record number of the last record read or written on the file connected for direct
access. If the file is connected but no records have been read or written then the value is 1.
If the file is not connected for direct access or if the position of the file can not be
determined because of an input/output error then nr becomes undefined.

BLANK = blnk
blnk is a character variable or character array element. Open Watcom FORTRAN 77
also permits blnk to be a character substring.

It is assigned the value ’NULL’ if null blank control is in effect for the file connected for
formatted input/output, and is assigned the value ’ZERO’ if zero blank control is in effect
for the file connected for formatted input/output. If there is no connection, or if the file is
not connected for formatted input/output, blnk becomes undefined.

ACTION = act act is a character variable or character array element. Open Watcom FORTRAN 77 also
permits act to be a character substring.

It is assigned the value ’READ’ if data can only be read from the file, ’WRITE’ if data
can only be written from the file, and ’READWRITE’ if data can be both read and written.

96 INQUIRE Statement

FORTRAN Statements

CARRIAGECONTROL = cc
cc is a character variable or character array element. Open Watcom FORTRAN 77 also

permits cc to be a character substring.

It is assigned the value ’YES’ if the first character of each record is interpreted as a
carriage control character and ’NO’ if no interpretation is placed on the first character of
each record.

RECORDTYPE = rct
rct is a character variable or character array element. Open Watcom FORTRAN 77 also

permits rct to be a character substring.

It is assigned a value that represents the record type (or record structure) that is used for the
file. The value assigned depends on the system on which you are running the program.
See the compiler User’s Guide for a discussion of record types.

BLOCKSIZE = bl
bl is an integer variable or integer array element.

It is assigned a value that represents the internal buffer size that is used for input/output
operations on the file. The value assigned depends on the system on which you are running
the program. See the compiler User’s Guide for a discussion of default internal buffer size.

2.55.4 Definition Status of Specifiers - Inquire by File

The following table summarizes which specifier variables or array elements become defined with values
under what conditions when using the FILE= specifier.

IOSTAT = ios (1)
EXIST = ex (2)
OPENED = od (2)
NUMBER = num (4)
NAMED = nmd (3)
NAME = fn (3)
ACCESS = acc (5)
SEQUENTIAL = seq (3)
DIRECT = dir (3)
FORM = fm (5)
FORMATTED = fmt (3)
UNFORMATTED = unf (3)
RECL = rcl (5)
NEXTREC = nr (5)
BLANK = blnk (5)

�

ACTION = act (5)
CARRIAGECONTROL = cc (5)
RECORDTYPE = rct (5)
BLOCKSIZE = bl (5)

1. The IOSTAT= specifier variable is always defined with the most recent error status. If an error
occurs during execution of the INQUIRE statement then the error status is defined with a
positive integer; otherwise the status is that of the most recent input/output statement which
referenced that file.

2. The specifier always becomes defined unless an error condition occurs.

INQUIRE Statement 97

Language Reference

3. This specifier becomes defined with a value only if the file name specified in the FILE=
specifier is an acceptable file name and the named file exists. Also, no error condition can occur
during the execution of the INQUIRE statement.

4. This specifier becomes defined with a value if and only if od becomes defined with the value
.TRUE.. Also, no error condition can occur during the execution of the INQUIRE statement.

5. This specifier may become defined with a value only if od becomes defined with the value
.TRUE.. However, there may be other conditions under which this specifier does not become
defined with a value. In other words, (5) is a necessary, but not sufficient condition. For
example, blnk is undefined if the file is not connected for formatted input/output.

2.55.5 Definition Status of Specifiers - Inquire by Unit

The following table summarizes which specifier variables or array elements become defined with values
under what conditions when using the UNIT= specifier.

IOSTAT = ios (1)
EXIST = ex (2)
OPENED = od (2)
NUMBER = num (3)
NAMED = nmd (3)
NAME = fn (3)
ACCESS = acc (3)
SEQUENTIAL = seq (3)
DIRECT = dir (3)
FORM = fm (3)
FORMATTED = fmt (3)
UNFORMATTED = unf (3)
RECL = rcl (3)
NEXTREC = nr (3)
BLANK = blnk (3)

�

ACTION = act (3)
CARRIAGECONTROL = cc (3)
RECORDTYPE = rct (3)
BLOCKSIZE = bl (3)

1. The IOSTAT= specifier variable is always defined with the most recent error status. If an error
occurs during execution of the INQUIRE statement then the error status is defined with a
positive integer; otherwise the status is that of the most recent input/output statement which
referenced that unit.

2. This specifier always becomes defined unless an error condition occurs.

3. This specifier becomes defined with a value only if the specified unit exists and if a file is
connected to the unit. Also, no error condition can occur during the execution of the INQUIRE
statement.

For more information on input/output, see the chapter entitled "Input/Output" on page 215.

98 INQUIRE Statement

FORTRAN Statements

2.56 INTEGER Statement
The INTEGER statement is a type declaration statement and can be used to declare a name to be of type
integer. The implicit type of the name, whether defined by the "first letter rule" (see the chapter entitled
"Names, Data Types and Constants" on page 151) or by an IMPLICIT statement, is either confirmed or
overridden. However, once a name has been declared to be of type integer, it cannot appear in another type
declaration statement.

There are various forms of the INTEGER statement. The following sections describe them.

2.56.1 Standard INTEGER Statement
�

INTEGER name [,name] ...

where:

name is a variable name, array name, array declarator, symbolic name of a constant, function name or
dummy procedure name.

This form is the standard form of the INTEGER statement.

Example:
DIMENSION C(-5:5)
INTEGER A, B(10), C

In the previous example, A is defined to be a variable of type integer and B and C are defined to be arrays of
type integer.

2.56.2 Extended INTEGER Statement: Length Specification

INTEGER[*len[,]] name [,name] ...

where:

name is one of the following forms:

v[*len]

a[*len](d)

a(d)[*len]

v is a variable name, array name, symbolic name of a constant, function name or dummy
procedure name.

INTEGER Statement 99

Language Reference

a is an array name.

(d) is that part of the array declarator defining the dimensions of the array.

len is called the length specification and is an unsigned positive integer constant or an integer
constant expression enclosed in parentheses whose value is 1, 2 or 4.

This form of the INTEGER statement is a Open Watcom FORTRAN 77 extension to the FORTRAN 77
language. The length specification specifies the number of bytes of storage that will be allocated for the
name appearing in the INTEGER statement. The default length specification is 4. A length specification of
1 or 2 does not change the data type; it merely restricts the magnitude of the integer that can be represented.
See the chapter entitled "Names, Data Types and Constants" on page 151 for more information.

The length specification immediately following the word INTEGER is the length specification for each
entity in the statement not having its own length specification. If a length specification is not specified the
default length specification is used. An entity with its own specification overrides the default length
specification or the length specification immediately following the word INTEGER. Note that for an array
the length specification applies to each element of the array.

Example:
DIMENSION C(-5:5)
INTEGER A, B*2(10), C*2
INTEGER*1 X

In the previous example, X is declared to be a variable of type integer and occupying 1 byte of storage, A is
declared to be a variable of type integer and occupying 4 bytes of storage and B and C are declared to be
arrays of type integer with each element of the array occupying 2 bytes.

2.56.3 Extended INTEGER Statement: Data Initialization

INTEGER[*len[,]] name [/cl/] [,name[/cl/]] ...

where:

name is as described in the previous section.

len is as described in the previous section.

cl is a list of the form:

k [,k] ...

k is one of the forms:

c

r*c (equivalent to r successive appearances of c)

c is a constant or the symbolic name of a constant

100 INTEGER Statement

FORTRAN Statements

r is an unsigned positive integer constant or the symbolic name of a constant.

This form of the INTEGER statement is an extension to the FORTRAN 77 language. The rules for data
initialization are the same as for the DATA statement.

Example:
INTEGER A/100/, B(10)/10*0/

In the previous example, A is initialized with the integer constant 100 and each element of the array B is
initialized with the integer constant 0.

INTEGER Statement 101

Language Reference

2.57 INTRINSIC Statement
�

INTRINSIC f [,f] ...

where:

f is the name of an intrinsic function name.

An INTRINSIC statement is used to identify a symbolic name as the name of an intrinsic function. It also
allows a specific intrinsic function to be passed as an actual argument. The names of intrinsic functions for
type conversion (INT, IFIX, HFIX, IDINT, FLOAT, DFLOAT, SNGL, REAL, DREAL, DBLE, CMPLX,
DCMPLX, ICHAR, CHAR), lexical relationship (LGE, LGT, LLE, LLT), for choosing the largest or
smallest value (MAX, MAX0, AMAX1, DMAX1, AMAX0, MAX1, MIN, MIN0, AMIN1, DMIN1,
AMIN0, MIN1), as well as ALLOCATED, ISIZEOF and LOC, must not be used as actual arguments.

A generic intrinsic function does not lose its generic property if it appears in an INTRINSIC statement.

A name must only appear in an INTRINSIC statement once. A symbolic name must not appear in both an
INTRINSIC and an EXTERNAL statement in a program unit.

Example:
INTRINSIC SIN

.

.

.
CALL SAM(SIN)

In the previous example, the intrinsic function SIN was passed to the subroutine SAM. If the INTRINSIC
statement were eliminated then the variable SIN would be passed to the subroutine SAM.

102 INTRINSIC Statement

FORTRAN Statements

2.58 LOGICAL Statement
The LOGICAL statement is a type declaration statement and can be used to declare a name to be of type
logical. The implicit type of the name, whether defined by the "first letter rule" (see the chapter entitled
"Names, Data Types and Constants" on page 151) or by an IMPLICIT statement, is either confirmed or
overridden. However, once a name has been declared to be of type logical, it cannot appear in another type
declaration statement.

There are various forms of the LOGICAL statement. The following sections describe them.

2.58.1 Standard LOGICAL Statement
�

LOGICAL name [,name] ...

where:

name is a variable name, array name, array declarator, symbolic name of a constant, function name or
dummy procedure name.

This form is the standard form of the LOGICAL statement.

Example:
DIMENSION C(-5:5)
LOGICAL A, B(10), C

In the previous example, A is defined to be a variable of type logical and B and C are defined to be arrays of
type logical.

2.58.2 Extended LOGICAL Statement: Length Specification

LOGICAL[*len[,]] name [,name] ...

where:

name is one of the following forms:

v[*len]

a[*len](d)

a(d)[*len]

v is a variable name, array name, symbolic name of a constant, function name or dummy
procedure name.

LOGICAL Statement 103

Language Reference

a is an array name.

(d) is that part of the array declarator defining the dimensions of the array.

len is called the length specification and is an unsigned positive integer constant or an integer
constant expression enclosed in parentheses whose value is 1 or 4.

This form of the LOGICAL statement is a Open Watcom FORTRAN 77 extension to the FORTRAN 77
language. The length specification specifies the number of bytes of storage that will be allocated for the
name appearing in the LOGICAL statement. The default length specification is 4. A length specification of
1 only changes the storage requirement from 4 bytes to 1 byte; the values of true and false can be
represented regardless of the length specification.

The length specification immediately following the word LOGICAL is the length specification for each
entity in the statement not having its own length specification. If a length specification is not specified the
default length specification is used. An entity with its own specification overrides the default length
specification or the length specification immediately following the word LOGICAL. Note that for an array
the length specification applies to each element of the array.

Example:
DIMENSION C(-5:5)
LOGICAL A, B*1(10), C*1
LOGICAL*4 X

In the previous example, X is declared to be a variable of type logical and occupying 4 bytes of storage, A is
declared to be a variable of type logical and occupying 4 bytes of storage and B and C are declared to be
arrays of type logical with each element of the array occupying 1 byte.

2.58.3 Extended LOGICAL Statement: Data Initialization

LOGICAL[*len[,]] name [/cl/] [,name[/cl/]] ...

where:

name is as described in the previous section.

len is as described in the previous section.

cl is a list of the form:

k [,k] ...

k is one of the forms:

c

r*c (equivalent to r successive appearances of c)

c is a constant or the symbolic name of a constant

104 LOGICAL Statement

FORTRAN Statements

r is an unsigned positive integer constant or the symbolic name of a constant.

This form of the LOGICAL statement is an extension to the FORTRAN 77 language. The rules for data
initialization are the same as for the DATA statement.

Example:
LOGICAL A/.TRUE./, B(10)/10*.FALSE./

In the previous example, A is initialized with the logical constant .TRUE. and each element of the array B
is initialized with the logical constant .FALSE..

LOGICAL Statement 105

Language Reference

2.59 LOOP Statement

LOOP [:block-label]

The LOOP statement is used in conjunction with the structured END LOOP or UNTIL statement. The
LOOP statement marks the beginning of a sequence of statements which are to be repeated. The END
LOOP or UNTIL statement marks the end of the loop. The LOOP-block is executed until control is
transferred out of the LOOP-block or the logical expression (or integer arithmetic expression) of the
UNTIL statement has a true (or non-zero) value.

The QUIT statement may be used to transfer control out of a LOOP-block.

Example:
LOOP

READ *, X
IF(X .GT. 99.0) QUIT
PRINT *, X

END LOOP

Example:
X = 1.0
LOOP

PRINT *, X, SQRT(X)
X = X + 1.0

UNTIL(X .GT. 10.0)

An optional block label may be specified with the LOOP statement.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

106 LOOP Statement

FORTRAN Statements

2.60 MAP Statement

MAP

The MAP statement is used in conjunction with the END MAP declarative statement. The MAP statement
marks the start of a memory mapping structure. A MAP structure must appear within a UNION block. Any
number of variables of any type may appear within a memory map. At least two MAP structures must
appear within a UNION block. A UNION block permits the mapping of the same storage in several
different ways.

The following example maps out a 4-byte integer on an Intel 80x86-based processor.

Example:
STRUCTURE /MAPINT/

UNION
MAP

INTEGER*4 LONG
END MAP
MAP

INTEGER*2 LO_WORD
INTEGER*2 HI_WORD

END MAP
MAP

INTEGER*1 BYTE_0
INTEGER*1 BYTE_1
INTEGER*1 BYTE_2
INTEGER*1 BYTE_3

END MAP
END UNION

END STRUCTURE

RECORD /MAPINT/ I

I%LONG = ’01020304’x
PRINT ’(2Z4)’, I%LO_WORD, I%HI_WORD
END

For more information, see the chapter entitled "Structures, Unions and Records" on page 167.

MAP Statement 107

Language Reference

2.61 NAMELIST Statement

NAMELIST /name/ vlist [[,]/name/ vlist] ...

where:

name is the name, enclosed in slashes, of a group of variables. It may not be the same as a variable
or array name.

vlist is a list of variable names and array names separated by commas.

The NAMELIST statement is used to declare a group name for a set of variables so that they may be read or
written with a single namelist-directed READ, WRITE, or PRINT statement.

The list of variable or array names belonging to a NAMELIST name ends with a new NAMELIST name
enclosed in slashes or with the end of the NAMELIST statement. The same variable name may appear in
more than one namelist.

A dummy variable, dummy array name, or allocatable array may not appear in a NAMELIST list. Also, a
variable whose type is a user-defined structure may not appear in a NAMELIST list.

The NAMELIST statement must precede any statement function definitions and all executable statements.
A NAMELIST name must be declared in a NAMELIST statement and may be declared only once. The
name may appear only in input/output statements. The READ, WRITE, and PRINT statements may be used
to transmit data between a file and the variables specified in a namelist.

Example:
CHARACTER*20 NAME
CHARACTER*20 STREET
CHARACTER*15 CITY
CHARACTER*20 STATE
CHARACTER*20 COUNTRY
CHARACTER*10 ZIP_CODE
INTEGER AGE
INTEGER MARKS(10)
NAMELIST /PERSON/ NAME, STREET, CITY, STATE,

+ COUNTRY, ZIP_CODE, AGE, MARKS

OPEN(UNIT=1, FILE=’PEOPLE’)
LOOP

READ(UNIT=1, FMT=PERSON, END=99)
WRITE(UNIT=6, FMT=PERSON)

ENDLOOP
99 CLOSE(UNIT=1)

END

The following example shows another form of a namelist-directed READ statement.

108 NAMELIST Statement

FORTRAN Statements

Example:
CHARACTER*20 NAME
CHARACTER*20 STREET
CHARACTER*15 CITY
CHARACTER*20 STATE
CHARACTER*20 COUNTRY
CHARACTER*10 ZIP_CODE
INTEGER AGE
INTEGER MARKS(10)
NAMELIST /PERSON/ NAME, STREET, CITY, STATE,

+ COUNTRY, ZIP_CODE, AGE, MARKS

READ PERSON
PRINT PERSON
END

The input data must be in a special format. The first character in each record must be blank. The second
character in the first record of a group of data records must be an ampersand (&) or dollar sign ($)
immediately followed by the NAMELIST name. The NAMELIST name must be followed by a blank and
must not contain any imbedded blanks. This name is followed by data items separated by commas. The
end of a data group is signaled by the character "&" or "$", optionally followed by the string "END". If the
"&" character was used to start the group, then it must be used to end the group. If the "$" character was
used to start the group, then it must be used to end the group.

The form of the data items in an input record is:

Name = Constant
The name may be a variable name or an array element name. The constant may be integer,
real, complex, logical or character. Logical constants may be in the form "T" or ".TRUE"
and "F" or ".FALSE". Character constants must be contained within apostrophes.
Subscripts must be of integer type.

ArrayName = Set of Constants
The set of constants consists of constants of the type integer, real, complex, logical or
character. The constants are separated by commas. The number of constants must be less
than or equal to the number of elements in the array. Successive occurrences of the same
constant may be represented in the form r*constant, where r is a non-zero integer
constant specifying the number of times the constant is to occur.

The variable and array names specified in the input file must appear in the NAMELIST list, but the order is
not important. A name that has been made equivalent to a name in the input data cannot be substituted for
that name in the NAMELIST list. The list can contain names of items in COMMON but must not contain
dummy argument names.

Each data record must begin with a blank followed by a complete variable or array name or constant.
Embedded blanks are not permitted in name or constants. Trailing blanks after integers and exponents are
treated as zeros.

NAMELIST Statement 109

Language Reference

Example:
&PERSON

NAME = ’John Doe’
STREET = ’22 Main St.’ CITY = ’Smallville’
STATE = ’Texas’ COUNTRY = ’U.S.A.’
ZIP_CODE = ’78910-1203’
MARKS = 73, 82, 3*78, 89, 2*93, 91, 88
AGE = 23

&END

The form of the data items in an output record is suitable for input using a namelist-directed READ
statement.

1. Output records are written using the ampersand character (&), not the dollar sign ($), although
the dollar sign is accepted as an alternative during input. That is, the output data is preceded by
"&name" and is followed by "&END".

2. All variable and array names specified in the NAMELIST list and their values are written out,
each according to its type.

3. Character data is enclosed in apostrophes.

4. The fields for the data are made large enough to contain all the significant digits.

5. The values of a complete array are written out in columns.

For more information, see the chapters entitled "Format" on page 225 and "Input/Output" on page 215.

110 NAMELIST Statement

FORTRAN Statements

2.62 OPEN Statement
�

OPEN (oplist)

where:

oplist must include the UNIT= specifier and may include at most one of each of the open
specifiers listed below. Specifiers are separated by commas.

[UNIT =] u
IOSTAT = ios
ERR = s
FILE = fin
STATUS = sta
ACCESS = acc
FORM = fm
RECL = rcl
BLANK = blnk

As an extension to the FORTRAN 77 language, the following inquiry specifiers are also
supported.

ACTION = act
CARRIAGECONTROL = cc
RECORDTYPE = rct
BLOCKSIZE = bl
SHARE = shr

The OPEN statement may be used to connect an existing file to a unit, create a file that is preconnected,
create a file and connect it to a unit, or change certain specifications of a connection between a file and a
unit.

Open Specifiers

[UNIT =] u
u is an external unit identifier. An external unit identifier is a non-negative integer
expression. If the optional UNIT= specifier is omitted then the specifier must be the first
item in the list of specifiers.

IOSTAT = ios
is an input/output status specifier. The integer variable or integer array element ios is
defined with zero if no error condition exists or a positive integer value if an error condition
exists.

ERR = s
is an error specifier and s is a statement label. When an error occurs, execution is
transferred to the statement labelled by s.

OPEN Statement 111

Language Reference

FILE = fin
fin is a character expression whose value when trailing blanks are removed is the name of
a file to be connected to the specified unit. If this specifier is omitted and the unit is not
connected to a file, it becomes connected to a file determined by Open Watcom FORTRAN
77. The name established by Open Watcom FORTRAN 77 is described in the section
entitled "Units" on page 219 of the chapter entitled "Input/Output"

STATUS = sta
sta is a character expression whose value when trailing blanks are removed is ’OLD’,
’NEW’, ’SCRATCH’, or ’UNKNOWN’.

OLD When OLD is specified, a FILE= specifier must be given. The file
must exist.

NEW When NEW is specified, a FILE= specifier must be given. The file
must not exist. Successful execution of the OPEN statement creates the
file and changes the status to OLD.

SCRATCH SCRATCH may only be specified for an unnamed file (i.e. FILE= is
not allowed). When the file is closed, it is deleted.

UNKNOWN If UNKNOWN is specified, the status is ignored. If the STATUS=
specifier is omitted then UNKNOWN is assumed.

ACCESS = acc
acc is a character expression whose value when trailing blanks are removed is
’SEQUENTIAL’ or ’DIRECT’. It specifies the access method for the file. If the
ACCESS= specifier is omitted then ’SEQUENTIAL’ is assumed. If the file exists then the
access method must be in the set of allowed access methods for the file. If the file does not
exist then the file is created with a set of allowed access methods that includes the specified
access method.

Open Watcom FORTRAN 77 also supports access ’APPEND’ which is a form of
sequential access in which the file is positioned at the endfile record. The file must exist or
the append access method must be in the set of allowed access methods for the file. In all
other respects, the file is treated as if ’SEQUENTIAL’ had been specified.

FORM = fm
fm is a character expression whose value when trailing blanks are removed is
’FORMATTED’ or ’UNFORMATTED’. It specifies that the file is being connected for
formatted or unformatted input/output. If the FORM= specifier is omitted and the file is
being connected for direct access then ’UNFORMATTED’ is assumed. If the FORM=
specifier is omitted and the file is being connected for sequential access then
’FORMATTED’ is assumed. If the file exists then the specified form must be included in
the set of allowed forms for the file. If the file does not exist then the file is created with a
set of allowed forms that includes the specified form.

RECL = rcl
rcl is an integer expression whose value must be positive. It specifies the length of each
record in a file being connected for direct access. If the file is being connected for direct
access, this specifier must be given; otherwise it must be omitted. Open Watcom
FORTRAN 77 allows the RECL= specifier for files opened for sequential access.

112 OPEN Statement

FORTRAN Statements

BLANK = blnk
blnk is a character expression whose value when trailing blanks are removed is ’NULL’
or ’ZERO’. If ’NULL’ is specified then all blank characters in numeric formatted input
fields are ignored except that an entirely blank field has a value of zero. If ’ZERO’ is
specified then all blank characters other than leading blanks are treated as zeroes. If this
specifier is omitted then ’NULL’ is assumed. This specifier may only be present for a file
being connected for formatted input/output.

ACTION = act
act is a character expression whose value when trailing blanks are removed is ’READ’,
’WRITE’ or ’READWRITE’. If ’READ’ is specified, data can only be read from the
file. If ’WRITE’ is specified, data can only be written to the file. If ’READWRITE’ is
specified, data can both be read and written. The default is ’READWRITE’.

CARRIAGECONTROL = cc
cc is a character expression whose value when trailing blanks are removed is ’YES’, or
’NO’. If ’YES’ is specified, Open Watcom FORTRAN 77 will automatically add an
extra character at the beginning of each record. This character will be interpreted as a
carriage control character. If ’NO’ is specified, records will be written to the file without
adding a carriage control character at the beginning of the record. The default is ’NO’.

RECORDTYPE = rct
rct is a character expression whose value when trailing blanks are removed specifies the

type of record (or record structure) to be used for the file. The allowed values for rct
depend on the system on which you are running the program. See the compiler User’s
Guide for a discussion of the RECORDTYPE= specifier.

BLOCKSIZE = bl
bl is an integer expression whose value specifies the internal buffer size to be used for file

input/output. The allowed values for bl depend on the system on which you are running
the program. Generally, the larger the buffer, the faster the input/output. See the compiler
User’s Guide for a discussion of the BLOCKSIZE= specifier.

SHARE = shr
shr is a character expression whose value when trailing blanks are removed specifies the

way in which other processes can simultaneously access the file. The allowed values for
shr depend on the system on which you are running the program. See the compiler User’s
Guide for a discussion of the SHARE= specifier.

Example:
OPEN(UNIT=1, FILE=’TEST’, STATUS=’UNKNOWN’,

+ ACCESS=’SEQUENTIAL’,
+ FORM=’FORMATTED’, BLANK=’ZERO’)

In the above example, the file ’TEST’, containing FORMATTED records, is connected to unit 1. The
status of the file is ’UNKNOWN’ since we do not know if it already exists. We will access the file
sequentially, using formatted input/output statements. Blanks in numeric input data are to be treated as
zeroes.

OPEN Statement 113

Language Reference

Notes:

1. If the unit is already connected to a file that exists, the execution of an OPEN statement for that
unit is permitted.

(a) If the same file is opened then only the BLANK= specifier may be different. The
same file is opened if no FILE= specifier was given or if the FILE= specifier
refers to the same file.

(b) If a different file is opened then the currently connected file is automatically
closed.

2. If the file to be connected to the unit does not exist, but is already preconnected to the unit, any
properties specified in the OPEN statement are merged with and supersede those of the
preconnection. For example, the RECL= specification will override the record length attribute
defined by a preconnection of the file.

3. The same file may not be connected to two or more different units.

For more information on input/output, see the chapter entitled "Input/Output" on page 215.

114 OPEN Statement

FORTRAN Statements

2.63 OTHERWISE Statement

OTHERWISE

The OTHERWISE statement is used in conjunction with the SELECT statement. The OTHERWISE
statement marks the start of a new CASE block which is a series of zero or more statements ending in an
END SELECT statement.

When this statement is used and the value of a case expression is not found in any case list then control of
execution is transferred to the first executable statement following the OTHERWISE statement.

The CASE DEFAULT statement may be used in place of the OTHERWISE statement.

Example:
SELECT CASE (CH)
CASE (’a’ : ’z’)

PRINT *, ’Lower case letter’
CASE (’A’ : ’Z’)

PRINT *, ’Upper case letter’
CASE (’0’ : ’9’)

PRINT *, ’Digit’
OTHERWISE

PRINT *, ’Special character’
END SELECT

In the above example, if the character CH is not a letter or digit then the OTHERWISE block is executed.

Note: The OTHERWISE or CASE DEFAULT block must follow all other CASE blocks.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

OTHERWISE Statement 115

Language Reference

2.64 PARAMETER Statement
�

PARAMETER (p=e [,p=e] ...)

where:

p is a symbolic name.

e is a constant expression. Refer to the chapter entitled "Expressions" on page 173 for more
information.

p is known as a symbolic constant whose value is determined by the value of the expression e according to
the rules of assignment as described in the chapter entitled "Assignment Statements" on page 187. Any
symbolic constant appearing in expression e must have been previously defined in the same or a previous
PARAMETER statement in the same program unit. A symbolic constant may not be defined more than once
in a program unit.

If the symbolic name p is of type integer, real, double precision or complex then the corresponding
expression e must be an arithmetic constant expression (see the chapter entitled "Expressions" on page
173). If the symbolic name p is of type character or logical then the expression e must be a character
constant expression or a logical constant expression respectively (see the chapter entitled "Expressions" on
page 173).

Example:
PARAMETER (PI=3.14159,BUFFER=80,PIBY2=PI/2)
PARAMETER (ERRMSG=’AN ERROR HAS OCCURRED’)

If a symbolic constant is not of default implied type, its type must be specified in an IMPLICIT statement
or a type statement before its occurrence in a PARAMETER statement. Similarly, if the length of a character
symbolic constant is not the default length of 1, its length must be specified in an IMPLICIT statement or
a type statement before its occurrence in a PARAMETER statement.

116 PARAMETER Statement

FORTRAN Statements

2.65 PAUSE Statement
�

PAUSE [n]

where:

n is a character constant or an unsigned integer constant of no more than five digits.

Open Watcom FORTRAN 77 allows n to be any unsigned integer constant.

Execution of a PAUSE statement causes a cessation of execution of the program. Execution of the program
may be resumed by the program operator by pressing the terminal line entering key (e.g., ENTER or
RETURN). The PAUSE statement may appear in any program unit.

If the Open Watcom FORTRAN 77 debugger was requested then execution of the PAUSE statement will
cause entry into the debugger. Program execution may be resumed by issuing the debugger "go" command.

Example:
PAUSE 4341

The four digit number 4341 is displayed on the terminal. The program temporarily ceases execution.
Execution is resumed by pressing the terminal line entering key.

Example:
PAUSE ’Ready the paper and then resume execution’

The character string

Ready the paper and then resume execution

is displayed on the terminal. Execution of the program may be resumed.

PAUSE Statement 117

Language Reference

2.66 PRINT Statement
Two forms of the PRINT statement are supported by Open Watcom FORTRAN 77.

2.66.1 Standard PRINT Statement
�

PRINT f [,olist]

where:

f is a format identifier.

olist is an optional output list.

2.66.2 Extended PRINT Statement

PRINT, olist

where:

olist is an output list.

2.66.3 Description of PRINT Statement

The PRINT statement is used to transfer data from the executing FORTRAN program to an external device
or file.

Format Identifier - A format identifier is one of the following:

1. A statement label of a FORMAT statement that appears in the same program unit as the format
identifier.

2. An integer variable name that has been assigned the statement label of a FORMAT statement that
appears in the same program unit as the format identifier (see the ASSIGN statement).

3. An integer array name.
4. A character array name.
5. Any character expression except one involving the concatenation of an operand whose length

specification is (*) unless the operand is a symbolic constant (see the PARAMETER statement).
6. An asterisk (*), indicating list-directed formatting.

Open Watcom FORTRAN 77 supports a variation of list-directed formatting in which the
asterisk (*) may be omitted. It is equivalent to

PRINT * [,olist]

118 PRINT Statement

FORTRAN Statements

7. A NAMELIST name, indicating namelist-directed formatting.

Output list - An output list may contain one or more of the following:

1. A variable name.

2. An array element name.

3. A character substring name.

4. An array name except an assumed-size dummy array.

5. Any other expression except a character expression involving concatenation of an operand
whose length specification is an asterisk in parentheses unless the operand is the symbol name of
a constant (since the length can be determined at compile time).

6. An implied-DO list of the form:

(dlist, i = e1, e2 [,e3])

where dlist is composed of one or more of items (1) through (6).

Example:
CHARACTER*5 S
COMPLEX C
S = ’Hello’
I = 123
X = 12.5
C = (12.5,4.58)
PRINT *, S, I, X, C
END

The above example illustrates list-directed formatting using the PRINT statement. The asterisk specifies
that the variables in the output list are to be displayed in some format that is appropriate to the type of the
variable (hence the term "list-directed"). The CHARACTER variable S is printed using a suitable A format
descriptor. The INTEGER variable I is printed using a suitable I format descriptor. The REAL variable X
is printed using a suitable G format descriptor. The COMPLEX variable C is printed using a suitable G
format descriptor and is displayed with enclosing parentheses and a comma. Output from the above
program would resemble the following.

Hello 123 12.5000000 (12.5000000,4.5799999)

Example:
CHARACTER*5 S
COMPLEX C
S = ’Hello’
I = 123
X = 12.5
C = (12.5,4.58)
PRINT, S, I, X, C
END

The above example illustrates a Open Watcom FORTRAN 77 extension of list-directed formatting using
the PRINT statement. The asterisk is omitted but the results are exactly the same as in the previous
example.

PRINT Statement 119

Language Reference

Example:
PRINT 100, X, Y, Z

100 FORMAT(3F10.5)
PRINT ’(3F10.5)’, X, Y, Z

The above gives two examples of the PRINT statement. In both cases, the format conversion is identical
but it was specified in different ways. When executed, the effect of both PRINT statements is the same.

Example:
PRINT ’(1X,100A1)’, (’*’,I=1,J)

The above example illustrates a technique for producing histograms using the implied DO-loop. Each time
this statement is executed, a number of asterisks are printed, depending on the value of J.

Notes:

1. The PRINT statement is implicitly a formatted output statement.

2. The unit number that is implicitly used in the PRINT statement is unit number 6.

3. If no output list is specified then the effect of the PRINT statement is to produce one or more
records whose characters are all blanks.

4. FORTRAN 77 leaves the format of output in list-directed formatting to the discretion of Open
Watcom FORTRAN 77. Hence other FORTRAN compilers may produce different results. If
the format of output must be consistent from one compiler to the next then list-directed
formatting should not be used.

5. An implication of point (6) above is that nesting of implied-DO lists is permitted. For example,
the output list

((A(I,J), B(I,J), J = 1, 5), I = 1, 10)

may be broken down into the following components:

A(I,J), B(I,J)
(....dlist1...., J = 1, 5)

(.....dlist2..............., I = 1, 10)

For more information on input/output, see the chapter entitled "Input/Output" on page 215. For more
information on formatted input/output, see the chapter entitled "Format" on page 225.

120 PRINT Statement

FORTRAN Statements

2.67 PROGRAM Statement
�

PROGRAM pgm

where:

pgm is the symbolic name of the main program.

A PROGRAM statement is optional in an executable program. If it does appear, it must be the first statement
in the main program.

Example:
PROGRAM CALC

.

.

.
CALL COMPUTE

.

.

.
END

The main program can contain any Open Watcom FORTRAN 77 statement except a FUNCTION,
SUBROUTINE, BLOCK DATA, RETURN or ENTRY statement. Note that a SAVE statement is allowed but
has no effect in the main program.

PROGRAM Statement 121

Language Reference

2.68 QUIT Statement

QUIT [: block-label]

The QUIT statement may be used to cause a transfer of control to the first executable statement that follows
the terminal statement of the block which contains it. Examples of such terminal statements are ADMIT,
CASE, END DO, END LOOP, END WHILE, UNTIL, etc. If block-label is present then control is
transferred out of the block identified by that block label. The QUIT statement is an extension to the
FORTRAN 77 language.

Example:
LOOP

WRITE(UNIT=*, FMT=’(A)’) ’Enter a number’
READ(UNIT=*, FMT=’(F10.4)’, IOSTAT=IOS) X
IF(IOS .NE. 0) QUIT
IF(X .LT. 0) QUIT
PRINT *, X, SQRT(X)

END LOOP
END

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

122 QUIT Statement

FORTRAN Statements

2.69 READ Statement
Three forms of the READ statement are supported by Open Watcom FORTRAN 77.

2.69.1 Standard READ Statement
�

READ (cilist) [ilist]
READ f [,ilist]

where:

cilist is a control information list of specifiers separated by commas:

[UNIT =] u
[FMT =] f
REC = rn
IOSTAT = ios
ERR = s
END = s

f is a format identifier.

ilist is an optional input list.

2.69.2 Extended READ Statement

READ, ilist

where:

ilist is an input list.

2.69.3 Description of READ Statement

The READ statement is used to transfer data from a device or file into the executing FORTRAN program.
As shown above, Open Watcom FORTRAN 77 supports three forms of the READ statement.

Control Information List and Format Identifier

[UNIT =] u
u is an external unit identifier or an internal file identifier.

1. An external unit identifier is a non-negative integer expression or an asterisk
(*) in which case unit 5 is assumed.

READ Statement 123

Language Reference

2. An internal file identifier is the name of a character variable, character array,
character array element, or character substring.

If the optional UNIT= specifier is omitted then the unit specifier must be the first item in
the list of specifiers.

[FMT =] f
f is a format identifier. A format identifier is one of the following:

1. A statement label of a FORMAT statement that appears in the same program unit
as the format identifier.

2. An integer variable name that has been assigned the statement label of a
FORMAT statement that appears in the same program unit as the format identifier
(see the ASSIGN statement).

3. An integer array name.
4. A character array name.
5. Any character expression except one involving the concatenation of an operand

whose length specification is (*) unless the operand is a symbolic constant (see
the PARAMETER statement).

6. An asterisk (*), indicating list-directed formatting.

Open Watcom FORTRAN 77 supports a third form of the READ statement in
which the asterisk (*) may be omitted. This is a form of list-directed
formatting in which unit 5 is assumed. It is equivalent to

READ * [,ilist]

7. A NAMELIST name, indicating namelist-directed formatting.

If the optional FMT= specifier is omitted then the format specifier must be the second item
in the list of specifiers and UNIT= must not be specified for the first item in the list.

REC = rn
rn is an integer expression whose value must be positive. It is the number of the record to
be read when a file is connected for direct access.

IOSTAT = ios
is an input/output status specifier. The integer variable or integer array element ios is
defined with zero if no error occurs, a positive integer value if an error occurs, or a negative
integer value if an end-of-file occurs.

ERR = s
is an error specifier and s is a statement label. When an error occurs, execution is
transferred to the statement labelled by s.

END = s
is an end-of-file specifier and s is a statement label. When an end-of-file occurs, execution
is transferred to the statement labelled by s.

Input list - An input list may contain one or more of the following:

1. A variable name.

2. An array element name.

124 READ Statement

FORTRAN Statements

3. A character substring name.

4. An array name except an assumed-size dummy array.

5. An implied-DO list of the form:

(dlist, i = e1, e2 [,e3])

where dlist is composed of one or more of items (1) through (5).

Example:
READ(5, 100)X, Y, Z
READ(UNIT=5, FMT=100)X, Y, Z

100 FORMAT(3F10.5)
READ(UNIT=5, FMT=’(3F10.5)’)X, Y, Z
READ(5, ’(3F10.5)’)X, Y, Z

The above gives four examples of formatted READ statements, using the first of three supported forms of
the READ statement. In all cases, the format conversion is identical but it was specified in different ways.
When executed, the effect of all READ statements is the same. The unit number that is explicitly used in
this form of the READ statement is unit number 5. There are, in fact, many other ways in which the READ
statement could have been written, all of which would have the same effect when executed. We have not
shown the use of all the specifiers.

Example:
READ 100, X, Y, Z

100 FORMAT(3F10.5)
READ ’(3F10.5)’, X, Y, Z

The above gives two examples of formatted READ statements, using the second of three supported forms of
the READ statement. In both cases, the format conversion is identical but it was specified in different ways.
When executed, the effect of both READ statements is the same. The unit number that is implicitly used in
this form of the READ statement is unit number 5.

Example:
READ(5, *)X, Y, Z
READ(*, *)X, Y, Z
READ(UNIT=5, FMT=*)X, Y, Z
READ(UNIT=*, FMT=*)X, Y, Z
READ *, X, Y, Z
READ , X, Y, Z

The above six examples of list-directed formatted input are all equivalent. Open Watcom FORTRAN 77
assumes unit 5 when the unit number identifier is an asterisk (as in the second and fourth examples). In the
fifth example, the asterisk is a format identifier indicating list-directed formatting. The fifth and sixth
examples are examples of the second and third forms, respectively, of the READ statement in which Open
Watcom FORTRAN 77 assumes unit 5. When the format identifier is an asterisk or when the third form of
the READ statement is used, we call this list-directed list-directed formatting.

READ Statement 125

Language Reference

Example:
READ(8)X, Y, Z
READ(UNIT=8)X, Y, Z

The above gives two examples of unformatted READ statements. The unit number used in the example is 8.
When executed, the effect of both of these statements is the same. The values of the variables X, Y and Z
are read from the file connected to unit 8. The values are stored in the file in their binary form (a form
quite incomprehensible to most human beings). An advantage to using this particular form of the READ
statement is that no conversion is required between the internal binary representation of the values and their
textual (human-readable) form (which means it takes less computer time to process the data).

Notes:

1. The REC= specifier may not be used when list-directed output is specified.

2. If no input list is specified then the effect of the READ statement is to skip one or more records in
the file.

3. An implication of point (5) above is that nesting of implied-DO lists is permitted. For example,
the input list

((A(I,J), B(I,J), J = 1, 5), I = 1, 10)

may be broken down into the following components:

A(I,J), B(I,J)
(....dlist1...., J = 1, 5)

(.....dlist2..............., I = 1, 10)

For more information on input/output, see the chapter entitled "Input/Output" on page 215. For more
information on formatted input/output, see the chapter "Format" on page 225.

126 READ Statement

FORTRAN Statements

2.70 REAL Statement
The REAL statement is a type declaration statement and can be used to declare a name to be of type real.
The implicit type of the name, whether defined by the "first letter rule" (see the chapter entitled "Names,
Data Types and Constants" on page 151) or by an IMPLICIT statement, is either confirmed or overridden.
However, once a name has been declared to be of type real, it cannot appear in another type declaration
statement.

There are various forms of the REAL statement. The following sections describe them.

2.70.1 Standard REAL Statement
�

REAL name [,name] ...

where:

name is a variable name, array name, array declarator, symbolic name of a constant, function name or
dummy procedure name.

This form is the standard form of the REAL statement.

Example:
DIMENSION C(-5:5)
REAL A, B(10), C

In the previous example, A is defined to be a variable of type real and B and C are defined to be arrays of
type real.

2.70.2 Extended REAL Statement: Length Specification

REAL[*len[,]] name [,name] ...

where:

name is one of the following forms:

v[*len]

a[*len](d)

a(d)[*len]

v is a variable name, array name, symbolic name of a constant, function name or dummy
procedure name.

REAL Statement 127

Language Reference

a is an array name.

(d) is that part of the array declarator defining the dimensions of the array.

len is called the length specification and is an unsigned positive integer constant or an integer
constant expression enclosed in parentheses whose value is 4 or 8.

This form of the REAL statement is a Open Watcom FORTRAN 77 extension to the FORTRAN 77
language. The length specification specifies the number of bytes of storage that will be allocated for the
name appearing in the REAL statement. The default length specification is 4. A length specification of 8
specifies that the data type of the name appearing in the REAL statement is to be double precision.

The length specification immediately following the word REAL is the length specification for each entity in
the statement not having its own length specification. If a length specification is not specified the default
length specification is used. An entity with its own specification overrides the default length specification
or the length specification immediately following the word REAL. Note that for an array the length
specification applies to each element of the array.

Example:
DIMENSION C(-5:5)
REAL A, B*8(10), C*8
REAL*8 X

In the previous example, X is declared to be a variable of type double precision, A is declared to be a
variable of type real and B and C are declared to be arrays of type double precision.

2.70.3 Extended REAL Statement: Data Initialization

REAL[*len[,]] name [/cl/] [,name[/cl/]] ...

where:

name is as described in the previous section.

len is as described in the previous section.

cl is a list of the form:

k [,k] ...

k is one of the forms:

c

r*c (equivalent to r successive appearances of c)

c is a constant or the symbolic name of a constant

r is an unsigned positive integer constant or the symbolic name of a constant.

128 REAL Statement

FORTRAN Statements

This form of the REAL statement is an extension to the FORTRAN 77 language. The rules for data
initialization are the same as for the DATA statement.

Example:
REAL A/1.2/, B(10)/10*5.0/

In the previous example, A is initialized with the real constant 1.2 and each element of the array B is
initialized with the real constant 5.0.

REAL Statement 129

Language Reference

2.71 RECORD Statement

RECORD /typename/ name [,name] ...

where:

typename is the name of a user-defined structure type.

name is a variable name, array name, array declarator, function name or dummy procedure
name.

The RECORD statement is used to assign a structure type to a variable.

Example:
STRUCTURE /ADDRESS/

CHARACTER*20 STREET
CHARACTER*15 CITY
CHARACTER*20 STATE
CHARACTER*20 COUNTRY
CHARACTER*10 ZIP_CODE

END STRUCTURE

STRUCTURE /PEOPLE/
CHARACTER*20 NAME
RECORD /ADDRESS/ ADDR
INTEGER*2 AGE

END STRUCTURE

RECORD /PEOPLE/ CUSTOMER

CUSTOMER%NAME = ’John Doe’
CUSTOMER%ADDR%STREET = ’22 Main St.’
CUSTOMER%ADDR%CITY = ’Smallville’
CUSTOMER%ADDR%STATE = ’Texas’
CUSTOMER%ADDR%COUNTRY = ’U.S.A.’
CUSTOMER%ADDR%ZIP_CODE = ’78910-1203’
CUSTOMER%AGE = 23

For more information, see the chapter entitled "Structures, Unions and Records" on page 167.

130 RECORD Statement

FORTRAN Statements

2.72 REMOTE BLOCK Statement

REMOTE BLOCK name

where:

name is a valid FORTRAN symbolic name.

The REMOTE BLOCK statement is used to define a block of statements which may be executed by an
EXECUTE statement. A REMOTE-block must be defined in the program unit in which it is used and is
terminated by an END BLOCK statement. A REMOTE-block is similar in concept to a subroutine, with the
advantage that shared variables do not need to be placed in a common block or passed in an argument list.
When execution of the REMOTE-block is complete, control returns to the statement following the
EXECUTE statement which invoked it.

This feature is helpful in avoiding duplication of code for a common sequence of statements required in a
number of places throughout a program. It can also be an aid to writing a well structured program. This
feature can be mimicked using the ASSIGN and assigned GO TO statements. However, statement numbers
must be introduced which could lead to errors.

Each REMOTE-block must have a different name and it must not be a subprogram or variable name. Note
that a REMOTE-block is local to the program unit in which it is defined and may not be referenced
(executed) from another program unit.

Note that the nested definition of REMOTE-blocks is not permitted.

Example:
EXECUTE INCR
PRINT *, ’FIRST’
EXECUTE INCR
PRINT *, ’SECOND’

.

.

.
REMOTE BLOCK INCR

I=I+1
PRINT *, ’I=’,I

END BLOCK

Both EXECUTE statements will cause REMOTE-block INCR to be executed. That is, variable I will be
incremented and its value will be printed. When the block has been executed by the first EXECUTE
statement, control returns to the PRINT statement following it and the word FIRST is printed. Similarly,
when the block is executed by the second EXECUTE statement, control returns to the PRINT statement
following it and the word SECOND is printed.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

REMOTE BLOCK Statement 131

Language Reference

2.73 RETURN Statement
�

RETURN [e]

where:

e is an integer expression.

A RETURN statement is used to terminate execution of a subprogram and return control to the program unit
that referenced it. As an extension to FORTRAN 77, Open Watcom FORTRAN 77 permits the use of the
RETURN statement in the main program. When a RETURN statement is executed in the main program,
program execution terminates in the same manner as the STOP or END statement.

The expression e is not permitted when returning from an external function subprogram (or main program);
it can only be specified when returning from a subroutine subprogram.

Example:
FUNCTION ABS(A)
ABS = A
IF(A .GE. 0)RETURN
ABS = -A
RETURN
END

For more information, see the chapter entitled "Functions and Subroutines" on page 243.

132 RETURN Statement

FORTRAN Statements

2.74 REWIND Statement
�

REWIND u
REWIND (alist)

where:

u is an external unit identifier.

alist is a list of rewind specifiers separated by commas:

[UNIT =] u
IOSTAT = ios
ERR = s

Execution of a REWIND statement causes the file connected to the specified unit to be positioned at the
beginning (or before the first record) of the file.

Rewind Specifiers

[UNIT =] u
u is an external unit identifier. An external unit identifier is a non-negative integer
expression. If the optional UNIT= specifier is omitted then the specifier must be the first
item in the list of specifiers.

IOSTAT = ios
is an input/output status specifier. The integer variable or integer array element ios is
defined with zero if no error condition exists or a positive integer value if an error condition
exists.

ERR = s
is an error specifier and s is a statement label. When an error occurs, execution is
transferred to the statement labelled by s.

Example:
LOOP

READ(UNIT=7, END=100, FMT=200)RECORD
PRINT *, RECORD

ENDLOOP
100 REWIND(UNIT=7)

LOOP
READ(UNIT=7, END=101, FMT=200)RECORD
WRITE(UNIT=8, FMT=200)RECORD

ENDLOOP
101 CONTINUE

In the previous example, we illustrate how one might process the records in a file twice. After reaching the
endfile record, a REWIND statement is executed and the file is read a second time.

REWIND Statement 133

Language Reference

Notes:

1. The unit must be connected for sequential access.

2. If the file is positioned at the beginning of the file then the REWIND statement has no effect.

3. It is permissible to rewind a file that does not exist but it has no effect.

For more information on input/output, see the chapter entitled "Input/Output" on page 215.

134 REWIND Statement

FORTRAN Statements

2.75 SAVE Statement
�

SAVE [a [,a] ...]

where:

a is a named common block preceded and followed by a slash (/), a variable name or an array name.

The SAVE statement is used to retain the value of an entity after the execution of a RETURN or END
statement in a subprogram. Upon re-entry to the subprogram, the entity will have the same value it had
when exit was made from the subprogram. However, an entity belonging to a common block that has
appeared in a SAVE statement may become redefined in another program unit.

Notes:

1. A name cannot appear in a SAVE statement more than once in the same program unit.

2. Dummy arguments, procedure names and names belonging to a common block are not permitted
in a SAVE statement.

3. A SAVE statement with no list is identical to a SAVE statement containing all allowable names in
a program unit.

4. A common block name appearing in a SAVE statement has the same effect of specifying all
names belonging to that common block in the SAVE statement.

5. If a named common block is specified in a SAVE statement in a subprogram, it must be specified
in a SAVE statement in every subprogram in which that common block appears. Furthermore,
upon executing a RETURN or END statement, the current values of the entities in that common
block are made available to the next program unit executed in which that common block appears.

6. If a named common block is specified in a SAVE statement in the main program unit, the current
values of the entities in that common block are made available to every subprogram that
specifies that common block. In this case, a SAVE statement has no effect in the subprogram.

In the following example, the subroutine BLKINIT initializes the entities of the common block BLK and
uses a SAVE statement to ensure that their values are made available to subroutine BLKPRT.

Example:

SAVE Statement 135

Language Reference

PROGRAM MAIN
.
.
.

CALL BLKINIT
CALL BLKPRT

.

.

.
END

SUBROUTINE BLKINIT
COMMON /BLK/ A,B,C
SAVE /BLK/
A = 1.0
B = 2.0
C = 3.0
END

SUBROUTINE BLKPRT
COMMON /BLK/ A,B,C
SAVE /BLK/
PRINT *, A, B, C
END

136 SAVE Statement

FORTRAN Statements

2.76 SELECT Statement

SELECT [CASE] (e) [FROM] [: block-label]

The SELECT statement is used in conjunction with the CASE and END SELECT statements. The form of
a SELECT block is as follows:

SELECT [CASE] (e) [FROM] [: block-label]
CASE (case-list)

statement (s)
CASE (case-list)

statement (s)
.
.
.

CASE (case-list)
statement(s)

CASE DEFAULT
statement(s)

END SELECT

where:

e is an integer expression.

case-list is a list of one or more cases separated by commas. A case is either

(a) a single integer, logical or character constant expression or

(b) an integer, logical or character constant expression followed by a colon
followed by another expression or the same type. This form of a case
defines a range of values consisting of all integers or characters greater
than or equal to the value of the expression preceding the colon and less
than or equal to the value of the expression following the colon.

The CASE and FROM keywords are optional in the SELECT statement. An optional block label may be
specified with the SELECT statement.

The case expression e is evaluated and if the result is equal to one of the values covered by case-list
then the control of execution is transferred to the associated CASE block.

SELECT Statement 137

Language Reference

Example:
SELECT CASE (CH)
CASE (’a’ : ’z’)

PRINT *, ’Lower case letter’
CASE (’A’ : ’Z’)

PRINT *, ’Upper case letter’
CASE (’0’ : ’9’)

PRINT *, ’Digit’
CASE DEFAULT

PRINT *, ’Special character’
END SELECT

In the above example, if the character CH is not a letter or digit then the CASE DEFAULT block is
executed.

The CASE DEFAULT statement is optional. If it is present and the case expression is out of range (i.e., no
CASE blocks are executed) then the CASE DEFAULT block is executed. If it is not present and the case
expression is out of range then execution continues with the first executable statement following the END
SELECT statement. The CASE DEFAULT block must follow all other CASE blocks.

Example:
SELECT CASE (I)
CASE (1)

Y = Y + X
X = X * 3.2

CASE (2)
Z = Y**2 + X

CASE (3)
Y = Y * 13. + X
X = X - 0.213

CASE (4)
Z = X**2 + Y**2 - 3.0
Y = Y + 1.5
X = X * 32.0

CASE DEFAULT
PRINT *, ’CASE is not in range’

END SELECT
PRINT *, X, Y, Z

In order to retain compatibility with earlier versions of WATCOM FORTRAN 77 compilers, the
OTHERWISE statement may be used in place of the CASE DEFAULT statement.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

138 SELECT Statement

FORTRAN Statements

2.77 STOP Statement
�

STOP [n]

where:

n is a character constant or an unsigned integer constant of no more than five digits.

Open Watcom FORTRAN 77 allows n to be any unsigned integer constant.

Execution of a STOP statement causes termination of execution of the program. A STOP statement may
appear in any program unit (although good programming practice suggests that the main program is the
proper place for this statement).

Example:
STOP 943

The three digit number 943 is displayed on the console prior to program termination.

Example:
STOP ’Finished at last’

The character string

Finished at last

is displayed on the console prior to program termination.

STOP Statement 139

Language Reference

2.78 STRUCTURE Statement

STRUCTURE /typename/

where:

typename is the name for a new, compound variable, data type.

The STRUCTURE statement is used in conjunction with the END STRUCTURE declarative statement. The
STRUCTURE statement marks the start of a structure definition.

The STRUCTURE statement defines a new variable type, called a structure. It does not declare a specific
program variable. The RECORD statement is used to declare variables and arrays to be of this particular
structure type.

Structures may be composed of simple FORTRAN types or more complex structure types. This is shown
in the following example.

Example:
STRUCTURE /ADDRESS/

CHARACTER*20 STREET
CHARACTER*20 CITY
CHARACTER*20 STATE
CHARACTER*20 COUNTRY
CHARACTER*10 ZIP_CODE

END STRUCTURE

STRUCTURE /PEOPLE/
CHARACTER*20 NAME
RECORD /ADDRESS/ ADDR
INTEGER*2 AGE

END STRUCTURE

RECORD /PEOPLE/ CUSTOMER

Element names are local to the structure in which they appear. The same element name can appear in more
than one structure. Nested structures may have elements with the same name. A particular element is
specified by listing the sequence of elements required to reach the desired element, separated by percent
symbols (%) or periods (.).

Example:
CUSTOMER%NAME = ’John Doe’
CUSTOMER%ADDR%STREET = ’22 Main St.’
CUSTOMER%ADDR%CITY = ’Smallville’
CUSTOMER%ADDR%STATE = ’Texas’
CUSTOMER%ADDR%COUNTRY = ’U.S.A.’
CUSTOMER%ADDR%ZIP_CODE = ’78910-1203’
CUSTOMER%AGE = 23

For more information, see the chapter entitled "Structures, Unions and Records" on page 167.

140 STRUCTURE Statement

FORTRAN Statements

2.79 SUBROUTINE Statement
�

SUBROUTINE sub [([d [, d] ...])]

where:

sub is a symbolic name of a subroutine subprogram.

d is a variable name, array name, dummy procedure name or an asterisk (*). d is called a dummy
argument.

A SUBROUTINE statement is used to define the start of a subroutine subprogram.

Example:
CALL TMAX3(-1.0, 12.0, 5.0)
END

SUBROUTINE TMAX3(ARGA, ARGB, ARGC)
THEMAX = ARGA
IF(ARGB .GT. THEMAX) THEMAX = ARGB
IF(ARGC .GT. THEMAX) THEMAX = ARGC
PRINT *, THEMAX

END

In the above example, the subroutine TMAX3 is defined to find and print out the maximum value of three
real variables.

Notes:

1. No dummy arguments need be specified in the SUBROUTINE statement. If such is the case, the
parentheses () are optional.

For more information, see the chapter entitled "Functions and Subroutines" on page 243.

SUBROUTINE Statement 141

Language Reference

2.80 UNION Statement

UNION

The UNION statement is used in conjunction with the END UNION declarative statement. The UNION
statement marks the start of a series of MAP structures. A UNION block must contain at least two MAP
structures. A UNION block permits the mapping of the same storage in several different ways.

The following example maps out a 4-byte integer on an Intel 80x86-based processor.

Example:
STRUCTURE /MAPINT/

UNION
MAP

INTEGER*4 LONG
END MAP
MAP

INTEGER*2 LO_WORD
INTEGER*2 HI_WORD

END MAP
MAP

INTEGER*1 BYTE_0
INTEGER*1 BYTE_1
INTEGER*1 BYTE_2
INTEGER*1 BYTE_3

END MAP
END UNION

END STRUCTURE

RECORD /MAPINT/ I

I%LONG = ’01020304’x
PRINT ’(2Z4)’, I%LO_WORD, I%HI_WORD
END

For more information, see the chapter entitled "Structures, Unions and Records" on page 167.

142 UNION Statement

FORTRAN Statements

2.81 UNTIL Statement

UNTIL (e)

where:

e is a logical expression or integer arithmetic expression, in which case the result of the integer
expression is compared for inequality to the integer value 0.

The UNTIL statement is used in conjunction with the structured LOOP or block WHILE statement. The
LOOP or block WHILE statement marks the beginning of a sequence of statements which are to be repeated.
The UNTIL statement marks the end of the loop. The LOOP-block or WHILE-block is executed until
control is transferred out of the block or the logical expression of the UNTIL statement has a true value.

Example:
X = 1.0
LOOP

PRINT *, X, SQRT(X)
X = X + 1.0

UNTIL(X .GT. 10.0)

Example:
I = 1
WHILE(I .LT. 100)DO

J = 4 * I * I
K = 3 * I
PRINT *, ’4x**2 + 3x + 6 = ’, J + K + 6
I = I + 1

UNTIL((J + K + 6) .GT. 100)

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

UNTIL Statement 143

Language Reference

2.82 VOLATILE Statement
�

VOLATILE [a [,a] ...]

where:

a is a variable name or an array name.

The VOLATILE statement is used to indicate that a variable or an element of an array may be updated
concurrently by other code. A volatile variable or array element will not be cached (in a register) by the
code generator. Each time a volatile variable or array element is referenced, it is loaded from memory.
Each time a volatile variable or array element is updated, it is stored back into memory.

Notes:

1. A name cannot appear in a VOLATILE statement more than once in the same program unit.

2. Dummy arguments, procedure names, and common block names are not permitted in a
VOLATILE statement.

In the following example, the subroutine A_THREAD waits on the HoldThreads semaphore. It uses the
VOLATILE statement to ensure that the variable is re-loaded from memory each time through the loop.

Example:
SUBROUTINE A_THREAD()

STRUCTURE /RTL_CRITICAL_SECTION/
INTEGER*4 DebugInfo
INTEGER*4 LockCount
INTEGER*4 RecursionCount
INTEGER*4 OwningThread
INTEGER*4 LockSemaphore
INTEGER*4 Reserved

END STRUCTURE

INTEGER NumThreads
LOGICAL HoldThreads
VOLATILE HoldThreads
RECORD /RTL_CRITICAL_SECTION/ CriticalSection
COMMON NumThreads, HoldThreads, CriticalSection
INTEGER threadid

WHILE(HoldThreads)DO

CALL Sleep(1)
END WHILE
PRINT ’(’’Hi from thread ’’, i4)’, threadid()
CALL EnterCriticalSection(CriticalSection)
NumThreads = NumThreads - 1
CALL LeaveCriticalSection(CriticalSection)
CALL endthread()
END

144 VOLATILE Statement

FORTRAN Statements

2.83 Block WHILE Statement

WHILE (e) DO [: block-label]

where:

e is a logical expression or integer arithmetic expression, in which case the result of the integer
expression is compared for inequality to the integer value 0.

The block WHILE statement is used in conjunction with the structured END WHILE or UNTIL statement.
The block WHILE statement marks the beginning of a sequence of statements which are to be repeated.
The END WHILE or UNTIL statement marks the end of the WHILE-block. The WHILE-block is executed
while the logical expression of the WHILE statement has a true value or until control is transferred out of
the WHILE-block.

Example:
X = 1.0
WHILE(X .LT. 100)DO

PRINT *, X, SQRT(X)
X = X + 1.0

END WHILE

Example:
I = 1
WHILE(I .LT. 100)DO

J = 4 * I * I
K = 3 * I
PRINT *, ’4x**2 + 3x + 6 = ’, J + K + 6
I = I + 1

UNTIL((J + K + 6) .GT. 100)
END

An optional block label may be specified with the WHILE statement.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193.

Block WHILE Statement 145

Language Reference

2.84 WHILE Statement

WHILE (e) stmt

where:

e is a logical expression.

stmt is an executable statement. Only certain executable statements are allowed. See the section
entitled "Classifying Statements" on page 9 at the beginning of this chapter for a list of allowed
statements.

This form of the WHILE statement allows an executable statement to be repeatedly executed until the
logical expression e is false.

Example:
I = 0
WHILE(I .LE. 100) CALL PRTSQR(I)
END

SUBROUTINE PRTSQR(J)
PRINT *, J, J**2
J = J + 1
END

In the above example, the subroutine PRTSQR is called again and again until the value of I has been
incremented beyond 100. Note that the subroutine increments its argument thereby guaranteeing that the
program will eventually stop execution.

For more information, see the chapter entitled "Program Structure Control Statements" on page 193 Control
Statements".

146 WHILE Statement

FORTRAN Statements

2.85 WRITE Statement
�

WRITE (cilist) [olist]

where:

cilist is a control information list of specifiers separated by commas:

[UNIT =] u
[FMT =] f
REC = rn
IOSTAT = ios
ERR = s

olist is an output list.

The WRITE statement is used to transfer data from the executing FORTRAN program to an external device
or file.

Control Information List

[UNIT =] u
u is an external unit identifier or an internal file identifier.

1. An external unit identifier is a non-negative integer expression or an asterisk
(*) in which case unit 6 is assumed.

2. An internal file identifier is the name of a character variable, character array,
character array element, or character substring.

If the optional UNIT= specifier is omitted then the unit specifier must be the first item in
the list of specifiers.

[FMT =] f
f is a format identifier. A format identifier is one of the following:

1. A statement label of a FORMAT statement that appears in the same program unit
as the format identifier.

2. An integer variable name that has been assigned the statement label of a
FORMAT statement that appears in the same program unit as the format identifier
(see the ASSIGN statement).

3. An integer array name.
4. A character array name.
5. Any character expression except one involving the concatenation of an operand

whose length specification is (*) unless the operand is a symbolic constant (see
the PARAMETER statement).

6. An asterisk (*), indicating list-directed formatting.
7. A NAMELIST name, indicating namelist-directed formatting.

If the optional FMT= specifier is omitted then the format specifier must be the second item
in the list of specifiers and UNIT= must not be specified for the first item in the list.

WRITE Statement 147

Language Reference

REC = rn
rn is an integer expression whose value must be positive. It is the number of the record to
be written when a file is connected for direct access.

IOSTAT = ios
is an input/output status specifier. The integer variable or integer array element ios is
defined with zero if no error condition occurs or a positive integer value if an error
condition occurs.

ERR = s
is an error specifier and s is a statement label. When an error occurs, execution is
transferred to the statement labelled by s.

Output list - An output list may contain one or more of the following:

1. A variable name.

2. An array element name.

3. A character substring name.

4. An array name except an assumed-size dummy array.

5. Any other expression except a character expression involving concatenation of an operand
whose length specification is an asterisk in parentheses unless the operand is the symbolic name
of a constant (since the length can be determined at compile time).

6. An implied-DO list of the form:

(dlist, i = e1, e2 [,e3])

where dlist is composed of one or more of items (1) through (6).

Example:
WRITE(6, 100)X, Y, Z
WRITE(UNIT=6, FMT=100)X, Y, Z

100 FORMAT(3F10.5)
WRITE(UNIT=6, FMT=’(3F10.5)’)X, Y, Z
WRITE(6, ’(3F10.5)’)X, Y, Z

The above gives four examples of formatted WRITE statements. In all cases, the format conversion is
identical but it was specified in different ways. When executed, the effect of all WRITE statements is the
same. The unit number, used here, is 6. There are, in fact, many other ways in which the WRITE statement
could have been written, all of which would have the same effect when executed. We have not shown use
of all the specifiers.

Example:
WRITE(6, *)X, Y, Z
WRITE(*, *)X, Y, Z
WRITE(UNIT=6, FMT=*)X, Y, Z
WRITE(UNIT=*, FMT=*)X, Y, Z

The above four examples of list-directed formatted output are all equivalent. Open Watcom FORTRAN 77
assumes unit 6 when the unit number identifier is an asterisk (as in the second and fourth examples). In the
examples, the format identifier is an asterisk indicating list-directed formatting.

148 WRITE Statement

FORTRAN Statements

Example:
WRITE(8)X, Y, Z
WRITE(UNIT=8)X, Y, Z

The above gives two examples of unformatted WRITE statements. The unit number used in the example is
8. When executed, the effect of both of these statements is the same. The values of the variables X, Y and
Z are written to the file connected to unit 8 in their binary form (a form quite incomprehensible to most
human beings). An advantage to using this particular form of the WRITE statement is that no conversion is
required between the internal binary representation of the values and their textual (human-readable) form
(which means it takes less computer time to process the data).

Notes:

1. If no output list is specified then the effect of the WRITE statement is to produce a record whose
characters are all blanks.

2. The REC= specifier may not be used when list-directed output is specified.

3. An implication of point (6) above is that nesting of implied-DO lists is permitted. For example,
the output list

((A(I,J), B(I,J), J = 1, 5), I = 1, 10)

may be broken down into the following components:

A(I,J), B(I,J)
(....dlist1...., J = 1, 5)

(.....dlist2..............., I = 1, 10)

For more information on input/output, see the chapter entitled "Input/Output" on page 215. For more
information on formatted input/output, see the chapter entitled "Format" on page 225.

 149

Language Reference

150

3 Names, Data Types and Constants

3.1 Symbolic Names
Symbolic names are names that represent variables, arrays, functions, etc. Names are formed using any of
the upper-case letters A-Z and the digits 0-9, the first of which must be a letter. Symbolic names are
limited to 6 characters in length. The following are examples of symbolic names.

AMOUNT
AGE
CUST73

Open Watcom FORTRAN 77 extends the allowable characters that can make up a symbolic name to
include the lower-case letters a-z, the dollar sign ($) and the underscore (_). Note that the dollar sign and
the underscore are treated as letters and are therefore allowed as the first letter of a symbolic name.
Furthermore, Open Watcom FORTRAN 77 allows symbolic names of up to 32 characters. The following
are examples of permissible symbolic names.

Evaluate
$Cheque
ComputeAverage
_device
IO$ERROR
student_total

Open Watcom FORTRAN 77 makes no distinction between upper and lower case letters. The following
symbolic names are identical.

Account
ACCount
ACCOUNT

Spaces are allowed in symbolic names and are ignored. The following symbolic names are identical.

C R E DIT
CRE D I T

FORTRAN 77 allows certain keywords such as WRITE to be used as symbolic names. In Open Watcom
FORTRAN 77, all keywords satisfy the requirements of a symbolic name. A keyword is a sequence of
letters that is interpreted in a special way by Open Watcom FORTRAN 77. Whether a string of characters
is interpreted as a keyword or as a symbolic name depends on the context in which it is used. In the
following example, the first statement is an assignment statement assigning the value 2 to the symbolic
name DO10I. The second statement is the beginning of a DO-loop.

Symbolic Names 151

Language Reference

Example:
DO10I=1
DO10I=1,10

3.2 Data Types
There are 6 basic data types in FORTRAN 77; logical, integer, real, double precision, complex and
character. Open Watcom FORTRAN 77 provides an additional data type, namely double precision
complex (DOUBLE COMPLEX or COMPLEX*16). Open Watcom FORTRAN 77 also supports the
creation of more complex user-defined data types using the STRUCTURE statement.

Each data type can be classified as numeric, logical or character. Each datum occupies a sequence of
storage units. Numeric data and logical data occupy numeric storage units whereas character data occupy
character storage units. In Open Watcom FORTRAN 77, a numeric storage unit occupies 4 bytes and a
character storage unit occupies 1 byte.

The following table summarizes all data types supported by Open Watcom FORTRAN 77.
�

Data Type Size Standard
(in bytes) FORTRAN

LOGICAL 4 yes
LOGICAL*1 1 extension
LOGICAL*4 4 extension
INTEGER 4 yes
INTEGER*1 1 extension
INTEGER*2 2 extension
INTEGER*4 4 extension
REAL 4 yes
REAL*4 4 extension
REAL*8 8 extension
DOUBLE PRECISION 8 yes
COMPLEX 8 yes
COMPLEX*8 8 extension
DOUBLE COMPLEX 16 extension
COMPLEX*16 16 extension
CHARACTER 1 yes
CHARACTER*n n yes

Detailed information on the size and range of values supported by each of these data types is provided in
the User’s Guide.

3.3 Data Type of a Name
A name must only have one data type. Its type is specified by the appearance of that name in a type
statement. If a name does not appear in any type statement then an implied type is assigned to it by the
"first letter rule". A name not appearing in any type statement and beginning with any of the letters I, J, K,
L, M or N is assigned the type integer. A name not appearing in any type statement and beginning with any
other letter is assigned the type real. The implied type of a letter can be changed by an IMPLICIT
statement.

152 Data Type of a Name

Names, Data Types and Constants

The type associated with a name defines the type of the data it is to contain. For example, if A is of type
integer, then the storage unit which A occupies is assumed to contain integer data. Note that the data type
of an array element is the same as the data type associated with the array name.

The data type of a function name specifies the type of the result returned by the function when it is
referenced. A name that identifies a specific intrinsic function has type as specified in the chapter entitled
"Functions and Subroutines" on page 243. A generic function name has no type associated with it; its type
is determined by the type of its argument(s). The appearance of a generic function in a type statement is
not sufficient to remove the generic properties of that name. For example, if SIN was declared to be of type
real, it could still be called with an argument of type complex. The type of an external function reference is
determined in the same way as for variables and arrays. The actual type of the external function is
determined implicitly by its name or explicitly by its appearance in a FUNCTION or type statement. Note
that an IMPLICIT statement can affect the type of the external function being defined.

3.4 Constants
A constant can be one of arithmetic, logical or character. Each constant has a data type and value
associated with it and, once established in a program, cannot be changed. Arithmetic constants consist of
those constants whose data type is one of integer, real, double precision, complex or double precision
complex. Logical constants consist of those constants whose data type is logical and character constants
consist of those constants whose data type is character. The string of characters representing a constant
determines its value and data type. The blank character is insignificant for all but character constants.

3.4.1 Integer Constants

An integer constant is formed by a non-empty string of digits preceded by an optional sign.

The following are examples of integer constants.

1423
+345
-34565788

3.4.2 Real Constants

We first define a simple real constant as follows: an optional sign followed by an integer part followed by
a decimal point followed by a fractional part. The integer and fractional parts are non-empty strings of
digits. Either can be omitted but not both.

A real constant has one of the following forms.

1. A simple real constant.
2. A simple real constant followed by an E followed by an optionally signed integer constant.
3. An integer constant followed by an E followed by an optionally signed integer constant.

The optionally signed integer constant that follows the E is called the exponent. The value of a real
constant that contains an exponent is the value of the constant preceding the E multiplied by the power of
ten determined by the exponent.

The following are examples of real constants.

Constants 153

Language Reference

123.764
.4352344
1423.34E12
+345.E-4
-.4565788E3
2E6
1234.

3.4.3 Double Precision Constant

A double precision constant has one of the following forms.

1. A simple real constant followed by a D followed by an optionally signed integer constant.
2. An integer constant followed by a D followed by an optionally signed integer constant.

The optionally signed integer constant that follows the D is called the exponent. The value of a double
precision constant that contains an exponent is the value of the constant preceding the D multiplied by the
power of ten determined by the double precision exponent. Note that the resulting approximation is of
greater precision than the equivalent real constant. The approximations may be of equal precision if the
approximations are exact representations. For example, 0D0 and 0E0 are double and single precision
constants respectively, both representing zero with the same precision.

The following are examples of double precision constants.

1423.34D12
+345.D-4
-.4565788D5
2D6

3.4.4 Complex Constant

A complex constant consists of a left parenthesis, followed by a real or integer constant representing the
real part of the complex constant, followed by a comma, followed by a real or integer constant representing
the imaginary part of the complex constant, followed by a right parenthesis.

The following are examples of complex constants.

(1423.34E12, 3)
(+345, 4)

3.4.5 Double Precision Complex Constant (Extension)

A double precision complex constant has the same form as a complex constant except that at least one of
the real and imaginary parts must be a double precision constant.

The following are examples of double precision complex constants.

(1423.34D12, 3)
(+345, 4D2)

154 Constants

Names, Data Types and Constants

3.4.6 Logical Constant

A logical constant can have one of the following forms.

1. .TRUE. representing the value true.
2. .FALSE. representing the value false.

3.4.7 Character Constant

A character constant consists of an apostrophe followed by any string of characters followed by an
apostrophe. The apostrophes are not part of the datum. If an apostrophe is to appear as part of the datum it
must be followed immediately by another apostrophe. Note that blanks are significant. The length of the
character constant is the number of characters appearing between the delimiting apostrophes. Consecutive
apostrophes in a character datum represent one character, namely the apostrophe. A character constant
must not have length 0.

The following are examples of character constants.

’ABCDEFG1234567’
’There’’s always tomorrow’

3.4.8 String Constant (Extension)

A string constant consists of an apostrophe followed by any string of characters followed by an apostrophe
and then the letter C or c. The apostrophes are not part of the datum. The datum is stored in memory with
a terminating NUL character (CHAR(0)). If an apostrophe is to appear as part of the datum it must be
followed immediately by another apostrophe. Note that blanks are significant. The length of the string
constant is the number of characters appearing between the delimiting apostrophes plus one for the
terminating NUL character (CHAR(0)). Consecutive apostrophes in a string datum represent one character,
namely the apostrophe. A string constant must not have length 0. A string constant may be used anywhere
a character constant may be used.

The following are examples of string constants.

’Hello there’C
’There’’s always tomorrow’c
’The result for %s=%d’c

3.4.9 Hollerith Constants (Extension)

A hollerith constant consists of a positive unsigned integer constant n followed by the letter H or h
followed by a string of exactly n characters. The actual data is the n characters following the letter H or h.
A hollerith constant is another way of representing character data.

Constants 155

Language Reference

Actually, hollerith constants are treated as character constants and can be used wherever a character
constant can be used. Hollerith constants are different from character constants in that a quote is
represented by two quotes in character constants and by a single quote in hollerith constants.

The following are examples of hollerith constants.

5HABCDEFG
10h xxxxx ’44

3.4.10 Hexadecimal Constants (Extension)

Two forms of hexadecimal constant are supported. The first form can only be used in type declaration or
DATA statements. The second form may be used anywhere an integer constant may be used.

The first form of hexadecimal constant consists of the letter Z or z followed by a string of hexadecimal
digits. A hexadecimal digit can be any digit or one of the letters A, B, C, D, E or F (the lower case of
these letters is also acceptable). The actual data is the hexadecimal digits following the letter Z or z.
Hexadecimal constants of this form can only be used in type declaration statements and DATA statements
for initializing memory with binary patterns.

The following are examples of the first form of hexadecimal constant.

z1234
Zac

The first example is equivalent to the binary pattern 0001 0010 0011 0100. The second example is
equivalent to the binary pattern 1010 1100.

The second form of hexadecimal constant consists of an apostrophe followed by any string of hexadecimal
digits followed by an apostrophe and then the letter X or x. A hexadecimal digit can be any digit or one of
the letters A, B, C, D, E or F (the lower case of these letters is also acceptable). The actual data is the
hexadecimal digits placed inside apostrophes.

The following are examples of the second form of hexadecimal constant.

’1234’x
’ac’X

The first example is equivalent to the binary pattern 0001 0010 0011 0100. The second example is
equivalent to the binary pattern 1010 1100.

3.4.11 Octal Constants (Extension)

An octal constant consists of an apostrophe followed by any string of octal digits followed by an
apostrophe and then the letter O or o. An octal digit can be any of the digits 0 through 7. The actual data
is the octal digits placed inside apostrophes. An octal constant may be used anywhere an integer constant
may be used.

156 Constants

Names, Data Types and Constants

The following are examples of octal constants.

’1234’o
’37’O

The first example is equivalent to the binary pattern 001 010 011 100. The second example is
equivalent to the binary pattern 011 111.

3.5 Symbolic Constants
It is possible to give a constant a symbolic name. This is done through PARAMETER statements. For more
details, see the section on the PARAMETER statement in the chapter entitled "FORTRAN Statements" on
page 9.

Symbolic Constants 157

Language Reference

158 Symbolic Constants

4 Arrays

4.1 Introduction
An array is a non-empty collection of data. Arrays allow a convenient way of manipulating large quantities
of data. An array can be referenced as an entity. In this way it is possible to conveniently pass large
quantities of data between subprograms. Alternatively, it is possible to reference each element of an array
individually so that data can be selectively processed. Consider the task of managing the marks of 100
students. Without arrays one would have to have a unique name for each mark. They might be M1, M2,
etc. up to M100. This is clearly cumbersome. Instead, we can use an array called MARKS containing 100
elements. Now there is one name for all the marks. Each mark can be referenced by using that name
followed by a subscript. Furthermore, suppose the size of the class doubled. Do we add the names M101,
M102, etc. up to M200? Not if we use arrays. If the size of the class doubled, all that need be done is to
define the array to contain 200 elements. It is not hard to see that programs that use arrays tend to be
general in nature. Arrays also facilitate the repetitive computations that must be performed on large
amounts of data in that they lend themselves to loop processing.

4.2 Properties of Arrays
Arrays are defined by an array declarator. The form of an array declarator is:
�

a(d [,d] ...)

where:

a is the symbolic name of the array

d is a dimension declarator.

The number of dimensions of the array is determined by the number of dimension declarators appearing in
the array declarator. Allowable dimensions for arrays range from 1 to 7. A 1-dimensional array can be
viewed as a vector, a 2-dimensional array as a matrix and a 3-dimensional array as a number of parallel
matrices. Arrays with dimension higher than 3 are generally difficult to intuitively describe and hence
examples will deal with arrays whose dimension is 1, 2 or 3.

Each dimension has a range of values. When referencing elements in that dimension, the dimension
expression must fall in that range. The range of a dimension is defined in the dimension declarator. A
dimension declarator has the following form:

Properties of Arrays 159

Language Reference

�

[lo:] hi

where:

lo is the lower dimension bound.

hi is the upper dimension bound.

The lower and upper dimension bounds must be integer expressions and the upper dimension bound must
be greater than or equal to the lower dimension bound. The upper dimension bound of the last dimension
may be an asterisk (*). The meaning of this will be discussed later. If the lower dimension bound is not
specified then a default of 1 is assumed. The size of a dimension is defined as hi − lo + 1. Note that if
the lower dimension bound is not specified the size of the dimension is just hi. The size of the array (or
the number of elements in the array) is defined as the product of all the sizes of the dimensions of the array.
The maximum number of elements in any dimension is limited to 65535. The maximum size of an array is
limited by the amount of available memory.

Arrays are defined by the appearance of an array declarator in a DIMENSION statement, a type statement
or a COMMON statement.

Example:
DIMENSION A(10), B(-5:5,-10:10)
INTEGER C(10,20)
COMMON /DATA/ X,Y(30,30),Z

In the previous example, B is a 2-dimensional array with 11 rows and 21 columns and has 231 elements
(i.e. 11 * 21).

Each array has a data type associated with it. This data type is inherited by all elements of the array.

4.3 Array Elements
Each array is comprised of a sequence of array elements. An array element is referenced by following the
array name with a subscript. Different elements of the array are referenced by simply changing the
subscript. An array element has the following form:
�

a(s[,s]...)

where:

a is the array name.

(s[,s]...) is a subscript.

s is a subscript expression.

160 Array Elements

Arrays

Each subscript expression must be an integer expression and must be in the range defined by the upper and
lower dimension bounds of the corresponding dimension. The number of subscript expressions must be
equal to the dimension of the array.

If an array has n elements then there is a 1-to-1 correspondence between the elements of the array and the
integers from 1 to n. Each subscript has a subscript value associated with it which determines which
element of the array is being referenced. If the subscript value is i then the ith element of the array is the
one referenced. The subscript value depends on the subscript expressions and on the dimensions of the
array. The following table describes how to compute the subscript value.
�

n Dimension Subscript Subscript
Declarator Value

1 (J1:K1) (S1) 1+(S1-J1)

2 (J1:K1,J2:K2) (S1,S2) 1+(S1-J1)
+(S2-J2)*D1

3 (J1:K1,J2:K2,J3:K3) (S1,S2,S3) 1+(S1-J1)
+(S2-J2)*D1
+(S3-J3)*D2*D1

. . . .

. . . .

. . . .

n (J1:K1,...,Jn:Kn) (S1,...,Sn) 1+(S1-J1)
+(S2-J2)*D1
+(S3-J3)*D2*D1
+
+(Sn-Jn)*Dn-1*Dn-2*...*D1

Notes:

1. n is the number of dimensions, 1 <= n <= 7.

2. Ji is the value of the lower bound of the i’th dimension.

3. Ki is the value of the upper bound of the i’th dimension.

4. If only the upper bound is specified, then Ji = 1

5. Si is the integer value of the i’th subscript expression.

6. Di = Ki-Ji+1 is the size of the i’th dimension. If the value of the lower bound is 1, then Di = Ki.

7. A subscript of the form (J1,...,Jn) has subscript value 1 and identifies the first element of the
array. A subscript of the form (K1,...,Kn) has subscript value equal to the size of the array and
identifies the last element of the array.

Array Elements 161

Language Reference

4.4 Classifying Array Declarators by Dimension Declarator
Array declarators can be classified according to the characteristics of the dimension declarator. The
following sections discuss the three classifications.

4.4.1 Constant Array Declarator

A constant array declarator is one in which each of the dimension bound expressions is an integer constant
expression. It is called a constant array declarator because the dimension bound expressions can never
change. In the following example both A(10) and B(−5:5) are constant array declarators.

Example:
SUBROUTINE SQUARE(A)
DIMENSION A(10), B(-5:5)
.
.
.
END

4.4.2 Adjustable Array Declarator

An adjustable array declarator is one that contains at least one variable in all of its dimension bound
expressions. It is called an adjustable array declarator because the dimension bound expressions can
change depending on the current value of the variables in the dimension bound expressions. The array
name must be a dummy argument. In the following example, A(M,2*N) is an adjustable array declarator.
If SQUARE is called with M having value 5 and N having value 10, then the array A will be a 2-dimensional
array having 5 rows and 20 columns.

Example:
SUBROUTINE SQUARE(A, M, N)
DIMENSION A(M,2*N)
.
.
.
END

4.4.3 Assumed-size Array Declarator

An assumed-size array declarator is a constant array declarator or an adjustable array declarator whose
upper dimension bound of the last dimension is an asterisk (e.g., A(M,N,*)) or the integer value 1 (e.g.,
A(M,N,1)). The array name must be a dummy argument. The value of the upper bound of the last
dimension is determined by the number of elements of the actual array argument and is computed as
follows. First we compute the size of the dummy array. Note that this size is really an upper bound.

1. If the corresponding actual array argument is a non-character array name, the size of the dummy
array is the size of the actual array.

2. If the corresponding actual array argument is a non-character array element name with a
subscript value of r in an array of size x, the size of the dummy array is x + 1 − r.

162 Classifying Array Declarators by Dimension Declarator

Arrays

3. If the corresponding actual argument is a character array name, character array element or a
substring character array element which begins at character t of an array with c characters then
the size of the dummy array is INT((c + 1 − t) / e) where e is the size of an element of the
dummy array.

If the assumed-size array has dimension n then the product of the first n − 1 dimensions must be less than or
equal to the size of the array as determined by one of the preceding rules. The value of the assumed
dimension is the largest integer such that the product of all of the dimensions is less than or equal to the size
of the dummy array. In the following example, A(4,*) is an assumed-size array declarator.

Example:
DIMENSION B(10)
.
.
.
CALL SQUARE(B)
.
.
.
END

SUBROUTINE SQUARE(A)
DIMENSION A(4,*)
.
.
.
END

By rule 1, the upper bound of the size of A is 10. We now look for the largest integer n such that 4 * n is
less than or equal to 10. Clearly, n is 2. A is therefore a 2-dimensional array with 4 rows and 2 columns.

4.4.4 Allocatable Array Declarator

An allocatable array declarator is one that contains no dimension bound expressions. It is called an
allocatable array declarator because the dimension bounds are specified at run-time in an ALLOCATE
statement.

Example:
DIMENSION A(:), B(:,:)

.

.

.
ALLOCATE(A(N))
ALLOCATE(B(0:4,5))

In the previous example, A(:) is a one-dimensional allocatable array declarator and B(:,:) is a
two-dimensional allocatable array declarator. The first ALLOCATE statement is used to allocate the array A
with bounds 1:N. The second ALLOCATE statement is used to allocate the array B with bounds 0:4 in the
first dimension and 1:5 in the second dimension.

Classifying Array Declarators by Dimension Declarator 163

Language Reference

4.5 Classifying Array Declarators by Array Name
Array declarators can also be classified according to the characteristic of the array name. The following
sections discuss the two classifications.

4.5.1 Actual Array Declarator

An actual array declarator is one in which the array name is not a dummy argument. All actual array
declarators must also be constant array declarators. An actual array declarator is permitted in a
DIMENSION statement, a type statement or a COMMON statement.

4.5.2 Dummy Array Declarator

A dummy array declarator is one in which the array name is a dummy argument and hence can only appear
in a function or subroutine subprogram. It can be a constant, adjustable or assumed-size array declarator.
A dummy array declarator can appear in a DIMENSION statement or a type statement but not in a COMMON
statement. It should be noted that the array declarator for a dummy array declarator need not be the same as
the array declarator of the corresponding actual array declarator. Also note that every array declarator in a
main program must be a constant array declarator.

4.6 Use of Array Names
The appearance of an array name must always be as part of an array element name except in the following
cases:

1. in a list of dummy arguments. For example, a subroutine that has as one of its arguments an
array.

2. in a COMMON statement to define that array as belonging to a common block.

3. in a type statement either as part of an array declarator or by itself to establish the type of the
array.

4. in an array declarator in a DIMENSION, type or COMMON statement.

5. in an EQUIVALENCE statement.

6. in a DATA statement.

7. in the list of actual arguments when calling an external procedure.

8. In the list of an input/output statement.

9. as a unit identifier for an internal file in an input/output statement.

10. as a format identifier in an input/output statement.

11. in a SAVE statement.

164 Use of Array Names

5 Character Substrings

5.1 Introduction
A substring is a contiguous portion of a character entity. The substring operation selects a substring from a
character entity. The resulting substring can then be treated as a character entity in itself. Substringing also
allows the replacement of substrings from character entities with other character entities.

5.2 Substring Names
Substrings are formed by specifying a substring name. The forms of a substring name are:
�

v([e1] : [e2])
a(s [,s] ...)([e1] : [e2])

where:

v is a character variable name.

a(s[,s]...) is a character array element name.

e1 is an integer expression identifying the leftmost character of the substring.

e2 is an integer expression identifying the rightmost character of the substring.

e1 and e2 are called substring expressions. They must be such that

1 <= e1 <= e2 <= len

where len is the length of the character entity. If e1 is omitted, a value of 1 is assumed. If e2 is omitted,
a value of len is assumed. Both e1 and e2 may be omitted. The length of the substring is e2 - e1 + 1.

Substring Names 165

Language Reference

Example:
CHARACTER A*8, B(4)*8, C*14

* A gets the string ’EVERYDAY’
A = ’EVERYDAY’

* Replace ’DAY’ with ’ONE’ in A
A(6:8) = ’ONE’

* B(1) gets the string ’OTHELLO’
B(1) = ’OTHELLO’

* B(2) gets same value as B(1)
B(2)(:) = ’OTHELLO’

* B(3) gets last 6 characters of B(1)
B(3) = B(1)(3:8)

* B(4) gets first 4 characters of B(1)
* concatenated with the letter ’R’

B(4) = B(1)(1:4) // ’R’
* C gets last 6 characters of B(1)
* concatenated with the variable A

C = B(1)(3:) // A
* Print out the results

PRINT *, A
PRINT ’(A8)’, B
PRINT *, C
END

5.3 Extensions
Open Watcom FORTRAN 77 allows an external character function reference or a character statement

function reference as part of the substring name (see the chapter entitled "Functions and Subroutines" on
page 243. for more information).

Example:
CHARACTER*10 F,G
CHARACTER*10 X

*
* DEFINE CHARACTER STATEMENT FUNCTION
*

G(X) = X
*

PRINT *, F(’0123456789’)(1:5)
PRINT *, G(’0123456789’)(6:10)
END

*
* DEFINE CHARACTER EXTERNAL FUNCTION
*

CHARACTER*(*) FUNCTION F(X)
CHARACTER*10 X
F = X
END

166 Extensions

6 Structures, Unions and Records

6.1 Structures and Records
As an extension to the basic FORTRAN 77 types such as INTEGER, REAL, LOGICAL, etc., Open
Watcom FORTRAN 77 supports the creation of hierarchical, composite data types called structures. A
structure is a template describing the form of a record. It is composed of members or fields of various
types, including other structures. A structure does not reserve any storage.

For example, you could describe the structure of the COMPLEX data type using the following
construction.

Example:
STRUCTURE /CMPLX/

REAL REAL_PART
REAL IMAG_PART

END STRUCTURE

Since the COMPLEX data type is an intrinsic type of FORTRAN, there is no need to do so. The
STRUCTURE and END STRUCTURE statements mark the start and end of a structure definition.

There are, however, many practical examples of collections of data that may be described using a structure.
Consider, for example, the contents of a data record on disk. It may contain fields such as last name, first
name, and middle initial which describe the name of a customer. Each of these fields are fixed in length. A
sample structure declaration might be:

STRUCTURE /NAME/

CHARACTER*20 LAST_NAME
CHARACTER*20 FIRST_NAME
CHARACTER*1 MIDDLE_INITIAL

END STRUCTURE

As we stated above, a structure does not allocate storage. Instead, we have created a new type called NAME
which may be used to describe objects. Objects of the new type are defined using the RECORD statement.
For example, the following statements describe two objects, STUDENT_1 and STUDENT_2, to be of type
NAME.

RECORD /NAME/ STUDENT_1
RECORD /NAME/ STUDENT_2

There are other attributes of a person besides one’s name that could be recorded in the record. For
example, we can also store a person’s date of birth and sex. First, let us define a DATE structure.

STRUCTURE /DATE/

INTEGER*1 DAY
INTEGER*1 MONTH
INTEGER*2 YEAR

END STRUCTURE

Structures and Records 167

Language Reference

Now we can describe a person in terms of name, date of birth, and sex.

STRUCTURE /PERSON/
RECORD /NAME/ NAME
RECORD /DATE/ BIRTH_DATE
CHARACTER*1 SEX

END STRUCTURE

RECORD /PERSON/ STUDENT

Having declared STUDENT to be of type PERSON, how do we reference the component parts of
STUDENT? The following example illustrates this.

STUDENT.NAME.LAST_NAME = ’Pugsley’
STUDENT.NAME.FIRST_NAME = ’Elmar’
STUDENT.NAME.MIDDLE_INITIAL = ’M’
STUDENT.BIRTH_DATE.DAY = 21
STUDENT.BIRTH_DATE.MONTH = 11
STUDENT.BIRTH_DATE.YEAR = 1959
STUDENT.SEX = ’M’

The object’s name is specified first, followed by a "." (or "%") and the structure member name. If the
structure member is itself a record then another "." (or "%") and member name is specified. This continues
until the desired structure member is identified. The "." or "%" is called a field selection operator.

The previous example contained both a structure called NAME (RECORD /NAME/) and a structure
member called NAME (RECORD /NAME/ NAME). The structure name is enclosed within slashes ("/").
A structure name must be unique among structure names. However, the same name can also be used to
name either variables or structure members (fields). Thus it is possible to have a variable named X, a
structure named X, and one or more fields named X.

Structure, field, and variable names are all local to the program unit in which they are defined.

6.2 Arrays of Records
It is often the case that the individual attributes of objects are stored in separate arrays. If, for example,
your application deals with 1000 objects with attributes "size", "weight", and "colour", the traditional
approach is to declare three different arrays.

PARAMETER (MAX_ELS=1000)

REAL SIZE(MAX_ELS)
INTEGER WEIGHT(MAX_ELS)
CHARACTER*2 COLOUR(MAX_ELS)

To read or write the attributes relating to an object, you would use a statement such as:

READ(UNIT=3) SIZE(I), WEIGHT(I), COLOUR(I)

Using a simple structure, we can express the problem as follows:

168 Arrays of Records

Structures, Unions and Records

PARAMETER (MAX_ELS=1000)

STRUCTURE /OBJECT/
REAL SIZE
INTEGER WEIGHT
CHARACTER*2 COLOUR

END STRUCTURE

RECORD /OBJECT/ ITEM(MAX_ELS)

To read or write the attributes relating to an object, you would use a statement such as:

READ(UNIT=3) ITEM(I)

6.3 Unions
Sometimes it is useful to be able to describe parts of structures in different ways in much the same way that
the EQUIVALENCE statement is used to describe a specific storage area in different ways. The UNION -
END UNION statements are used to mark a section of a structure that will have alternate storage
organizations (MAPs). The MAP - END MAP statements are used to define the start and end of an alternate
storage map. Thus several MAP - END MAP pairs will appear between a UNION - END UNION section.

Consider the following example. The subroutine displays the contents of a field using different names and
formats depending on a TYPE field.

Example:

Unions 169

Language Reference

SUBROUTINE PRINT_ITEM(ITEM)
STRUCTURE /DATA_MAP/

INTEGER TYPE
UNION

MAP
LOGICAL LGL

END MAP
MAP

INTEGER INT
END MAP
MAP

REAL FLT
END MAP
MAP

DOUBLE PRECISION DBL
END MAP

END UNION
END STRUCTURE

RECORD /DATA_MAP/ ITEM

IF(ITEM%TYPE .EQ. 1) THEN
PRINT ’(L2)’, ITEM%LGL

ELSEIF(ITEM%TYPE .EQ. 2) THEN
PRINT ’(I8)’, ITEM%INT

ELSEIF(ITEM%TYPE .EQ. 3) THEN
PRINT ’(E12.5)’, ITEM%FLT

ELSEIF(ITEM%TYPE .EQ. 4) THEN
PRINT ’(D12.5)’, ITEM%DBL

ENDIF
END

The organization of the record in memory is as follows:

offset +0 +4 +8

integer logical (slack)

integer (slack)

real (slack)

double precision

The first 4 bytes of storage are occupied by TYPE. The next 4 to 8 bytes of storage are occupied by either
LGL, INT, FLT, or DBL depending on the interpretation of the contents of the variable TYPE. The size of
the record ITEM is a total of 12 bytes. Based on the conventions of the above program example, only 8
bytes of the record ITEM are used when TYPE is 1, 2, or 3. When TYPE is 4 then 12 bytes of the record
are used.

The following example maps out a 4-byte integer on an Intel 80x86-based processor.

170 Unions

Structures, Unions and Records

Example:
STRUCTURE /MAPINT/

UNION
MAP

INTEGER*4 LONG
END MAP
MAP

INTEGER*2 LO_WORD
INTEGER*2 HI_WORD

END MAP
MAP

INTEGER*1 BYTE_0
INTEGER*1 BYTE_1
INTEGER*1 BYTE_2
INTEGER*1 BYTE_3

END MAP
END UNION

END STRUCTURE

RECORD /MAPINT/ I

I%LONG = ’01020304’x
PRINT ’(Z8)’, I%LONG
PRINT ’(Z4,1X,Z4)’, I%LO_WORD, I%HI_WORD
PRINT ’(Z2,3(1X,Z2))’, I%BYTE_0, I%BYTE_1,

$ I%BYTE_2, I%BYTE_3
END

The above example produces the following output:

01020304
0304 0102
04 03 02 01

Unions 171

Language Reference

172 Unions

7 Expressions

The following topics are discussed in this chapter.

• Arithmetic Expressions

• Character Expressions

• Relational Expressions

• Logical Expressions

• Evaluating Expressions

• Constant Expressions

7.1 Arithmetic Expressions
Arithmetic expressions are used to describe computations involving operands with numeric data type,
arithmetic operators and left and right parentheses. The result of the computation is of numeric data type.

7.1.1 Arithmetic Operators

The following table lists the arithmetic operators and the operation they perform.
�

Operator Arithmetic Operation

** Exponentiation
/ Division
* Multiplication
- Subtraction or Negation
+ Addition or Identity

Some operators can be either binary or unary. A binary operator is one that requires two operands. A
unary operator is one that requires one operand. Each of the operators **, /, and * are binary operators.
The operators + and − can either be binary or unary operators. The following table describes how each
operator is used with their operands.

Arithmetic Expressions 173

Language Reference

�

Operator Arithmetic Operation

x ** y x is raised to the power y
x / y x is divided by y
x * y x is multiplied by y
x - y y is subtracted from x
x + y y is added to x

- x x is negated
+ x identity

Arithmetic expressions can contain more than one operator. It is thus necessary to define rules of
evaluation for such expressions. A precedence relation is defined between operators. This relation defines
the order in which operands are combined and hence describes the evaluation sequence of an arithmetic
expression. Operands of higher precedence operators are combined using that operator to form an operand
for an operator of lower precedence. The following rules define the precedence relation among arithmetic
operators.

1. Exponentiation (**) has highest precedence.
2. Multiplication (*) and division (/) have equal precedence but have lower precedence than

exponentiation.
3. Addition (+) and subtraction (−) have equal precedence but have lower precedence than

multiplication and division.

For example, to evaluate the expression

A-B**4

B is raised to the exponent 4 first and the result is then subtracted from A.

Parentheses can be used to alter the evaluation sequence of an arithmetic expression. When a left
parenthesis is encountered, the entire expression enclosed in parentheses is evaluated. Consider the
following expression.

3*(4+5)

We first evaluate the expression in the parentheses, the result being 9. We now multiply the result by 3
giving a final result of 27. Now suppose we remove the parentheses. According to the precedence rules, *
has precedence over + so we perform the multiplication before the addition. The result in this case is 17.

7.1.2 Rules for Forming Standard Arithmetic Expressions

The building blocks for arithmetic expressions are called arithmetic primaries. They are one of the
following:

1. unsigned arithmetic constant
2. arithmetic symbolic constant
3. arithmetic variable reference
4. arithmetic array element reference
5. arithmetic function reference
6. (arithmetic expression)

174 Arithmetic Expressions

Expressions

A grammar for forming arithmetic expressions can be described which reflects the precedence relation
among arithmetic operators.

Exponentiation has highest precedence. We define a factor as:

1. primary
2. primary ** factor

A factor is simply a sequence of primaries, each separated by the exponentiation operator. Rule (2)
specifies that the primaries involving exponentiation operators are combined from right to left when
evaluating a factor.

Next in the precedence hierarchy are the multiplication and division operators. We define a term as:

1. factor
2. term / factor
3. term * factor

A term is simply a sequence of factors, each separated by a multiplication operator or a division operator.
Rules (2) and (3) imply that in such a sequence, factors are combined from left to right when evaluating a
term. Factors can be interpreted as the result obtained from evaluating them. This implies that all factors
are evaluated before any of the multiplication or division operands are combined. This interpretation is
consistent with the precedence relation between the exponentiation operator and the division and
multiplication operators.

An arithmetic expression can now be defined as follows.

1. term
2. + term
3. − term
4. arithmetic expression + term
5. arithmetic expression − term

An arithmetic expression is simply a sequence of terms, each separated by an addition operator or a
subtraction operator. Rules (4) and (5) imply that terms are evaluated from left to right. Rules (2) and (3)
imply that only the first term of an arithmetic expression can be preceded by a unary + or − operator.
Terms can be interpreted in the same way as factors were interpreted in the definition of terms.

Note that consecutive operators are not permitted. For example, the expression

A+-B

is illegal. However, expressions of the form

A+(-B)

are allowed.

Arithmetic Expressions 175

Language Reference

7.1.3 Arithmetic Constant Expression

An arithmetic constant expression is an arithmetic expression in which all primaries are one of the
following.

1. arithmetic constant
2. symbolic arithmetic constant
3. (arithmetic constant expression)

There is a further restriction with the exponentiation operator; the exponent must be of type INTEGER.

As an extension to the FORTRAN 77 language, Open Watcom FORTRAN 77 supports the use of the
intrinsic function ISIZEOF in an arithmetic constant expression.

Example:
PARAMETER (INTSIZ = ISIZEOF(INTEGER))

An integer constant expression is an arithmetic constant expression in which all constants and symbolic
constants are of type INTEGER.

Example:
123
-753+2
-(12*13)

A real constant expression is an arithmetic constant expression in which at least one constant or symbolic
constant is of type REAL and all other constants or symbolic constants are of type REAL or INTEGER.

Example:
123.
-753+2.0
-(13E0*12)

A double precision constant expression is an arithmetic constant expression in which at least one constant
or symbolic constant is of type DOUBLE PRECISION and all other constants or symbolic constants are of
type DOUBLE PRECISION, REAL or INTEGER.

Example:
123.4D0
-753D0*2+.5
-(12D0*12.2)

A complex constant expression is an arithmetic constant expression in which at least one constant or
symbolic constant is of type COMPLEX and all other constants or symbolic constants are of type
COMPLEX, REAL or INTEGER.

176 Arithmetic Expressions

Expressions

Example:
(123,0)
(-753,12.3)*2
-(12,-12.4)-(1.0,.2)

A double precision complex constant expression is an arithmetic constant expression in which at least one
constant or symbolic constant is of type COMPLEX*16 and all other constants or symbolic constants are of
type COMPLEX*16, DOUBLE PRECISION, REAL or INTEGER. If there are no constants or symbolic
constants of type COMPLEX*16 in a constant expression, the type of the constant expression will be
COMPLEX*16 if it contains at least one constant or symbolic constant of type COMPLEX and at least one
constant or symbolic constant of type DOUBLE PRECISION. Open Watcom FORTRAN 77 supports this
type of constant expression as an extension of the FORTRAN 77 language.

Example:
(123,0D0)
(-753,12.3D0)*2
-(12D0,-12.4)-(1.0,.2)

7.1.4 Data Type of Arithmetic Expressions

Evaluating an arithmetic expression produces a result which has a type. The type of the result is
determined by the type of its operands. The following table describes the rules for determining the type of
arithmetic expressions. The letters I, R, D, C and Z stand for INTEGER, REAL, DOUBLE PRECISION,
COMPLEX and COMPLEX*16 respectively. An entry in the table represents the data type of the result
when the operands are of the type indicated by the row and column in which the entry belongs. The
column represents the type of the operand to the right of the operator, and the row represents the type of the
operand to the left of the operator. The table is valid for all of the arithmetic operators.
�

op I*1 I*2 I*4 R D C Z

I*1 I*1 I*2 I*4 R D C Z
I*2 I*2 I*2 I*4 R D C Z
I*4 I*4 I*4 I*4 R D C Z
R R R R R D C Z
D D D D D D Z Z
C C C C C Z C Z
Z Z Z Z Z Z Z Z

Notes:

1. I*1 represents the INTEGER*1 data type, I*2 represents the INTEGER*2 data type, and I*4
represents the INTEGER or INTEGER*4 data type.

2. The data type of the result obtained by dividing an integer datum by an integer datum is also of
type INTEGER even though the mathematical result may not be an integer. This result is called
the integer quotient and is defined as the integer part of the mathematical quotient.

3. Open Watcom FORTRAN 77 supports the double precision complex data type
(COMPLEX*16) as an extension of the FORTRAN 77 language. Combining an operand of type
DOUBLE PRECISION with an operand of type COMPLEX yields a result of type
COMPLEX*16.

Arithmetic Expressions 177

Language Reference

7.2 Character Expressions
Character expressions are used to describe computations involving operands of type CHARACTER, the
concatenation operator (//) and left and right parentheses. The result of the computation is of type
CHARACTER.

7.2.1 Character Operators

There is only one character operator, namely the concatenation operator (//). It requires two operands of
type CHARACTER. If x is the left operand and y is the right operand, then the result is y concatenated to
x. The length of the result is the sum of the lengths of the two operands. For example, the result of

’AAAAA’//’BBB’

is the string AAAAABBB.

7.2.2 Rules for Forming Character Expressions

The building blocks for character expressions are called character primaries. They are one of the
following.

1. character constant
2. character symbolic constant
3. character variable reference
4. character array element reference
5. character substring reference
6. character function reference
7. (character expression)

Character expressions are defined as follows:

1. character primary
2. character expression // character primary

A character expression is simply a sequence of character primaries, each separated by the concatenation
operator (//). Rule 2 implies that character primaries are combined from left to right. Except in a character
assignment statement, the operands in a character expression must not contain operands whose length
specification is (*) unless the operand is a symbolic constant.

Note that, unlike arithmetic expressions, parentheses have no effect on the result of evaluating a character
expression. For example, the result of the expressions

’A’//’B’//’C’

and

’A’//(’B’//’C’)

is identically the string ABC.

178 Character Expressions

Expressions

7.2.3 Character Constant Expressions

A character constant expression is a character expression in which all primaries are one of the following.

1. character constant
2. symbolic character constant
3. (character constant expression)

As an extension to the FORTRAN 77 language, Open Watcom FORTRAN 77 supports the use of the
intrinsic function CHAR in a character constant expression.

Example:
CHARACTER*6 HELLO, WORLD
PARAMETER (HELLO = ’Hello’//CHAR(0))
PARAMETER (WORLD = ’world’//CHAR(7))
PRINT *, HELLO, WORLD
END

7.3 Relational Expressions
A relational expression is used to compare two arithmetic expressions or two character expressions. It is
not possible to compare a character expression to an arithmetic expression. Evaluation of a relational
expression produces a result of type logical.

7.3.1 Relational Operators

The following table lists the relational operators and the operation they perform.
�

Operator Relational Operation

.LT. Less than

.LE. Less than or equal

.EQ. Equal

.NE. Not equal

.GT. Greater than

.GE. Greater than or equal

7.3.2 Form of a Relational Expression

The form of a relational expression is as follows.
�

e1 relop e2

Relational Expressions 179

Language Reference

where:

relop is a relational operator.

e1, e2 are both arithmetic expressions or both character expressions.

7.3.2.1 Arithmetic Relational Expressions

An arithmetic relational expression is a relational expression in which e1 and e2 are both arithmetic
expressions. An arithmetic relational expression has a value of true if the operands satisfy the relation
specified by the relational operator and false otherwise.

A complex operand is only permitted when using either the .EQ. or .NE. relational operators. Open
Watcom FORTRAN 77 allows operands of type COMPLEX*16.

7.3.2.2 Character Relational Expressions

Character relational expressions are relational expressions whose operands are of type CHARACTER.
The value of a relation between character strings is established by using the collating sequence of the
processor character set. The collating sequence is an ordering of the characters in the processor character
set. Note, for example, that the EBCDIC character set has a different collating sequence than that of the
ASCII character set. For example, e1 is greater than e2 if the value of e1 follows the value of e2 in the
processor collating sequence. The value of a character relational expression depends on the collating
sequence. In the case of the .NE. and .EQ. operators, the collating sequence has no effect.

Example:
IF(’A’ .LT. ’a’)THEN

PRINT *, ’The processor character set’
PRINT *, ’appears to be ASCII’

ELSE
PRINT *, ’The processor character set’
PRINT *, ’appears to be EBCDIC’

END IF
END

The above example is a crude test for determining the character set used on your processor.

It is possible to have operands of unequal length. In this case, the character string of smaller length is
treated as if blanks were padded to the right of it to the length of the larger string. The relational operator is
then applied.

7.4 Logical Expressions
Logical expressions are used to describe computations involving operands whose type is LOGICAL or
INTEGER , logical operators and left and right parentheses. The result of the computation is of type
LOGICAL unless both operands are of type INTEGER in which case the result of the computation is of
type INTEGER.

180 Logical Expressions

Expressions

7.4.1 Logical Operators

The following table lists the logical operators and the operation they perform.
�

Operator Logical Operation

.NOT. Logical negation

.AND. Logical conjunction

.OR. Logical inclusive disjunction

.EQV. Logical equivalence

.NEQV. Logical non-equivalence

.XOR. Exclusive or

The logical operator .NOT. is a unary operator; all other logical operators are binary. The following tables
describe the result of each operator when it is used with logical operands.
�

x .NOT. x

true false
false true

�

x y x .AND. y

true true true
true false false
false true false
false false false

�

x y x .OR. y

true true true
true false true
false true true
false false false

�

x y x .EQV. y

true true true
true false false
false true false
false false true

�

x y x .NEQV. y
................ x .XOR. y

true true false
true false true
false true true
false false false

Logical Expressions 181

Language Reference

Note that the operators .NEQV. and .XOR. perform the same logical operation.

The following tables describe the result of the logical operators when they are used with integer operands.
These operators apply to bits in the operand(s), hence we show only the result of operations on individual
bits. The way to read the entries in the following tables is:

1. If the bit in "x" is 0 then the corresponding bit in ".NOT.x" is 1, and so on.

2. If the bit in "x" is 1 and the corresponding bit in "y" is 1 then the corresponding bit in "x.AND.y"
is 1, and so on.

x .NOT. x

0 1
1 0

x y x .AND. y

1 1 1
1 0 0
0 1 0
0 0 0

x y x .OR. y

1 1 1
1 0 1
0 1 1
0 0 0

x y x .EQV. y

1 1 1
1 0 0
0 1 0
0 0 1

x y x .NEQV. y
.............. x .XOR. y

1 1 0
1 0 1
0 1 1
0 0 0

Note that the operators .NEQV. and .XOR. perform the same mathematical operation on bits.

182 Logical Expressions

Expressions

As is the case with arithmetic operators, we must define rules in order to evaluate logical expressions.
Again we define rules of precedence for logical operators which dictate the evaluation sequence of logical
expressions. The following lists the logical operators in order of precedence.

1. .NOT. (highest precedence)
2. .AND.
3. .OR.
4. .EQV., .NEQV. and .XOR. (lowest precedence)

For example, in the expression

A .OR. B .AND. C

the .AND. operator has higher precedence than the .OR. operator so B and C are combined first using the
.AND. operator. The result is then combined with A using the .OR. operator.

Parentheses can be used to alter the sequence of evaluation of logical expressions. If in the previous
example we had written

(A .OR. B) .AND. C

then A and B would have been combined first.

7.4.2 Rules for Forming Logical Expressions

Logical primaries are the building blocks for logical expressions. They are one of the following.

1. logical or integer constant
2. symbolic logical or integer constant
3. logical or integer variable reference
4. logical or integer array element reference
5. logical or integer function reference
6. relational expression
7. (logical or integer expression)

As was done with arithmetic expressions, a grammar can be defined which dictates the precedence relation
among logical operators.

The .NOT. logical operator has highest precedence. We define a logical factor as:

1. logical primary
2. .NOT. logical primary

Next in the precedence hierarchy is the .AND. operator. We define a logical term as:

1. logical factor
2. logical term .AND. logical factor

A logical term is simply a sequence of logical factors, each separated by the .AND. operator. Rule (2)
specifies that the logical factors are combined from left to right.

Next is the .OR. operator. We define a logical disjunct as:

Logical Expressions 183

Language Reference

1. logical term
2. logical disjunct .OR. logical term

A logical disjunct is simply a sequence of logical terms each separated by the .OR. operator. Rule (2)
specifies that the logical terms are combined from left to right.

A logical expression can now be defined as follows.

1. logical disjunct
2. logical expression .EQV. logical disjunct
3. logical expression .NEQV. logical disjunct or logical expression .XOR. logical disjunct

A logical expression is therefore a sequence of logical disjuncts, each separated by the .EQV. operator or
the .NEQV. or .XOR. operator. Rules (2) and (3) indicate that logical disjuncts are combined from left
to right.

Consider the following example.

A .OR. .NOT. B .AND. C

Since the .NOT. operator has highest precedence we first logically negate B. The result is then combined
with C using the .AND. operator. That result is then combined with A using the .OR. operator to form the
final result.

7.4.3 Logical Constant Expressions

A logical constant expression is a logical expression in which each primary is one of the following:

1. logical constant
2. symbolic logical constant
3. a relational expression in which each primary is a constant expression
4. (logical constant expression)

The following are examples of a logical constant expression (assume that A, B, C and D are arithmetic
constants appearing in PARAMETER statements).

.TRUE. .AND. .NOT. .FALSE.
’A’ .LT. ’a’
A * B .GT. C * D

7.5 Evaluating Expressions
Four different types of operators have been discussed; arithmetic, character, relational and logical. It is
possible to form an expression which contains all of these operators. Consider the following example.

A+B .LE. C .AND. X // Y .EQ. Z .AND. L

where A, B and C are of numeric type, X, Y and Z are of type CHARACTER and L is of type LOGICAL.
In this expression, + is an arithmetic operator, // is a character operator, .EQ. is a relational operator and
.AND. is a logical operator. Since we can mix these four types of operators, it is necessary to define a
precedence among these four classes of operators. The following defines this precedence of operators.

184 Evaluating Expressions

Expressions

1. arithmetic operators (highest precedence)
2. character operators
3. relational operators
4. logical operators (lowest precedence)

With this precedence any expression can now be evaluated without ambiguity.

7.6 Constant Expressions
A constant expression is an arithmetic constant expression, a character constant expression or a logical
constant expression.

Constant Expressions 185

Language Reference

186 Constant Expressions

8 Assignment Statements

8.1 Introduction
Assignment statements are used to define entities. There are four different types of assignment.

1. Arithmetic
2. Logical
3. Statement label (ASSIGN)
4. Character

8.2 Arithmetic Assignment
The form of an arithmetic assignment statement is
�

v = e

where:

v is a variable name or array element name of type INTEGER, REAL, DOUBLE PRECISION,
COMPLEX or double precision complex (COMPLEX*16).

e is an arithmetic expression.

The following are examples of arithmetic assignment statements.

Y = X**2 + 4.0*X + 3.0
Z(10) = 4.3*(X+Y)

Executing an arithmetic assignment statement causes the evaluation of the arithmetic expression e,
converting the type of the expression e to the type of v, and defining v with the result.

If v is of type INTEGER*1 or INTEGER*2, then the value of the expression e is first converted to type
INTEGER. The resulting integer is then assigned to v in the following way.

1. If v is of type INTEGER*2 and the value of e is such that −32768 <= e <= 32767, v will be
assigned the value of e. Otherwise, v will be undefined.

2. If v is of type INTEGER*1 and the value of e is such that −128 <= e <= 127, v will be assigned
the value of e. Otherwise, v will be undefined.

Arithmetic Assignment 187

Language Reference

8.3 Logical Assignment
The form of a logical assignment statement is
�

v = e

where:

v is a variable name or array element name of type LOGICAL.

e is a logical expression.

The following are examples of logical assignment statements.

LOG1 = .TRUE.
LOG2 = (X.GT.Y) .AND. (X.LT.Z)
LOG3(2) = LOG2 .EQV. LOG1

Executing a logical assignment statement causes the evaluation of the logical expression e, and defining v
with the result. Note that the type of v and e must be LOGICAL.

8.4 Statement Label Assignment
The form of a statement label assignment is
�

ASSIGN s to i

where:

s is a statement label.

i is the name of an integer variable.

The following is an example of a statement label assignment statement.

ASSIGN 10 TO I

The result of executing an ASSIGN statement causes the integer variable i to be defined with the value of
the statement label s. s must be the statement label of an executable statement or a format statement in the
same program unit in which the ASSIGN statement appears. It is possible to change the value of i by
executing another ASSIGN statement.

During execution when i is used in an assigned GO TO statement, an ASSIGN statement which defines i
must have been executed prior to the execution of the assigned GO TO statement.

188 Statement Label Assignment

Assignment Statements

While the variable i is defined with a statement label, it should not be used in any other way other than in
an assigned GO TO statement. Consider the following example.

Example:
10 ASSIGN 10 TO I
* Illegal use of an ASSIGNed variable

PRINT *, I

The output produced by the PRINT statement is not the integer 10. Its value is undefined and should be
treated that way.

8.5 Character Assignment
The form of a character assignment statement is
�

v = e

where:

v is a character variable name, character array element, or character substring.

e is a character expression.

The following are examples of character assignment statements.

CHARACTER*20 C,D(5)
C=’ABCDEF’
C(3:5)=’XYZ’
D(5)(14:15)=’12’

Executing a character assignment statement causes the evaluation of the character expression e and the
definition of v with the result.

None of the character positions defined in v may be referenced in e. The following example is illegal since
the 4th and 5th character positions of A appear on the left and right hand side of the equal sign.

Example:
* Illegal character assignment.

CHARACTER*10 A,B*5
A(2:6) = A(4:5) // B

The length of v and e may be different. If the length of v is less than the length of e then the assignment
has the effect of truncating e from the right to the length of v. If the length of v is greater than the length
of e, the value assigned to v is the value of e padded on the right with blanks to the length of v.

Character Assignment 189

Language Reference

8.6 Extended Assignment Statement
Open Watcom FORTRAN 77 supports an extension to the FORTRAN 77 assignment statement, namely
the extended assignment statement shown here:

v = v = v = ... = v = e
1 2 3 n

where:

v’i must be one of the following:

1. Variable names or array element names of type INTEGER, REAL, DOUBLE
PRECISION, COMPLEX or double precision complex (COMPLEX*16).

2. Variable names or array element names of type LOGICAL.

3. Character variable names, character array elements, or character substrings.

e must be one of the following and must follow the rules of the arithmetic, logical or character
assignment statements:

1. An arithmetic expression.

2. A logical expression.

3. A character expression.

The extended assignment statement is equivalent to the following individual statements.

v = e
n

v = v
n-1 n

.

.

.
v = v
2 3

v = v
1 2

When using an extended assignment statement involving variables of mixed type, it is important to
understand the exact way in which the assignments are performed. Assignment of each variable is made
using the value of the variable to its immediate right, starting with the rightmost variable which is assigned
the value of the expression. To help make this clear, consider the following program.

190 Extended Assignment Statement

Assignment Statements

Example:
CHARACTER C1*10, C2*5, C3*7
LOGICAL L1, L2, L3
INTEGER*2 K, L
I = S = J = T = 1.25
PRINT *, I, S, J, T
I = K = J = L = 70000
PRINT *, I, K, J, L
C1 = C2 = C3 = ’ABCDEFGHIJKL’
PRINT *, C1, C2, C3
L1 = L2 = L3 = .TRUE.
PRINT *, L1, L2, L3
END

The output from this program would be:

1 1.0000000 1 1.2500000
4464 4464 4464 4464

ABCDE ABCDEABCDEFG
T T T

Note that variables K and L are of type INTEGER*2 and cannot contain any value greater than 32767.
Truncation resulted and this value (4464) was propagated to the left.

Extended Assignment Statement 191

Language Reference

192 Extended Assignment Statement

9 Program Structure Control Statements

9.1 Introduction
The use of structured programming statements has been found to encourage better programming and design
practices among beginners, and aids the more experienced programmer in writing error-free programs.

The format of these statements and their blocks is illustrated below. Following this, the use and meaning of
each statement is described and illustrated with examples. In each of these illustrations, the blocks are
denoted by statement(s) and are delimited by control statements.

In the descriptions, logical-expression can also be an integer expression, in which case the result
of the integer expression is compared for inequality to the integer value 0.

Example:
IF(LEN - 1)THEN

In the preceding example, the expression LEN - 1 is interpreted as LEN - 1 .NE. 0.

9.2 IF - ELSE - END IF
The ELSE portion of this construct is optional, thus there are two possible formats.

(a) IF(logical-expression)THEN [: block-label]
statement(s)

END IF

(b) IF(logical-expression)THEN [: block-label]
statement(s)

ELSE
statement(s)

END IF

This construct is an enhancement of the FORTRAN logical IF statement. If the value of the parenthesized
logical expression is true in (a), the block of statements following the IF statement is executed, after which
control passes to the statement following the END IF statement; otherwise, control will pass directly to the
statement following the END IF statement. When the ELSE statement is used and the logical expression
is true, the block of statements between the IF and the ELSE statements is executed and then control
passes to the statement following the END IF statement; otherwise the block of statements following
ELSE statement is executed and then control passes to the statement following the END IF statement.

An optional block label may be specified with the IF statement (see the CYCLE, EXIT or QUIT statement
for more information).

IF - ELSE - END IF 193

Language Reference

Examples follow which illustrate the use of the two formats.

Example:
IF(I .EQ. 0)THEN

PRINT *, ’I IS ZERO’
I = 1

END IF

If variable I is zero when the IF statement is executed, the string I IS ZERO will be printed, variable I
will be assigned the value 1, and the statement following the END IF will be executed. If variable I is not
zero when the IF statement is executed, control will pass to the statement following the END IF
statement.

Example:
IF(A .GT. B)THEN

PRINT *, ’A GREATER THAN B’
A = A - B

ELSE
PRINT *, ’A NOT GREATER THAN B’

END IF

If the value of variable A is greater than the value of variable B when this IF statement is executed, the
string A GREATER THAN B will be printed and variable A will be assigned the value of the expression A
- B. Control will then pass to the statement following the END IF statement.

If the value of variable A is not greater than the value of variable B when the IF statement is executed, the
string A NOT GREATER THAN B will be printed and control will pass to the statement following the
END IF statement.

9.3 ELSE IF
A further enhancement of the IF-THEN-ELSE construct is the ELSE IF statement which may be used in
the following two formats:

(a) IF(logical-expression-1)THEN [: block-label]
statement(s)

ELSE IF(logical-expression-2)THEN
statement(s)

...
END IF

(b) IF(logical-expression-1)THEN [: block-label]
statement(s)

ELSE IF(logical-expression-2)THEN
statement(s)

...
ELSE

statement(s)
END IF

194 ELSE IF

Program Structure Control Statements

The presence of the "..." in the above formats indicates that the ELSE IF statement may be repeated as
often as desired. If the value of logical-expression-1 is true in case (a), the block of statements
following the IF statement up to the first ELSE IF statement is executed, after which control passes to the
statement following the END IF statement; otherwise, control will pass to the first ELSE IF statement. If
the value of logical-expression-2 is true, the block of statements following the first ELSE IF
statement up to the next ELSE IF statement or END IF statement is executed, after which control passes
to the statement following the END IF statement; otherwise, control will pass to the next ELSE IF
statement, if there is one, or directly to the statement following the END IF statement. When the ELSE
statement is used, as in case (b), and the values of all the logical expressions in the IF and ELSE IF
statements are false, the block of statements following the ELSE statement is executed and then control
passes to the statement following the END IF statement. An optional block label may be specified with
the IF statement (see the CYCLE, EXIT or QUIT statement for more information).

Examples follow which illustrate the use of the two formats.

Example:
IF(I .EQ. 0)THEN

PRINT *, ’I IS ZERO’
ELSE IF(I .GT. 0)THEN

PRINT *, ’I IS GREATER THAN ZERO’
END IF

If variable I is zero when the IF statement is executed, the string I IS ZERO will be printed and the
statement following the END IF statement will be executed. If variable I is not zero when the IF
statement is executed, control will pass to the ELSE IF statement. If variable I is greater than zero, the
string I IS GREATER THAN ZERO will be printed and the statement following the END IF statement
will be executed. If variable I is less than zero then nothing would be printed and control passes from the
ELSE IF statement to the statement following the END IF statement.

Example:
IF(A .GT. B)THEN

PRINT *, ’A GREATER THAN B’
A = A - B

ELSE IF(A .LT. B)THEN
PRINT *, ’A LESS THAN B’
A = B - A

ELSE
PRINT *, ’A EQUAL TO B’
A = 0.0

END IF

If the value of variable A is greater than the value of variable B when the IF statement is executed, the
string A GREATER THAN B will be printed and variable A will be assigned the value of the expression A
- B. Control will then pass to the statement following the END IF statement.

If the value of variable A is not greater than the value of variable B when the IF statement is executed,
control passes to the ELSE IF statement. If the value of variable A is less than the value of variable B, the
string A LESS THAN B will be printed and variable A will be assigned the value of the expression B -
A. Control will then pass to the statement following the END IF statement.

If the value of variable A is not less than the value of variable B when the ELSE IF statement is executed,
the string A EQUAL TO B will be printed and variable A will be assigned the value zero. Control will
pass to the statement following the END IF statement.

ELSE IF 195

Language Reference

9.4 DO - END DO

DO init-expr,end-value[,inc-value] [: block-label]
statement(s)

END DO

This extension to FORTRAN 77 allows the creation of DO-loops without the introduction of statement
numbers. An optional block label may be specified (see the CYCLE, EXIT or QUIT statement for more
information). The END DO statement is used to indicate the end of the range of its corresponding DO
statement. A statement number may not be specified in the corresponding DO statement. Nested DO-loops
of this form require separate END DO statements to terminate the range of the corresponding DO statement.
Since a statement number may appear on the END DO statement, the number may be used to terminate
outer DO-loops. This is not a recommended practice (a CONTINUE statement or a structured DO statement
should be used). A transfer of control from within the DO-loop to a statement number on the END DO
statement is treated in the same manner as if the word CONTINUE had been used instead of END DO.

Some examples follow.

Example:
DO I = 1, 3

DO J = 1, 5
PRINT *, MATRIX(I, J)

END DO
END DO

The above is equivalent to the following example which uses statement numbers.

Example:
DO 10 I = 1, 3

DO 20 J = 1, 5
PRINT *, MATRIX(I, J)

20 CONTINUE
10 CONTINUE

The next example demonstrates the use of a GO TO statement to control execution of all or part of a
DO-loop.

Example:
DO I = 1, 3

DO J = 1, 5
PRINT *, ’INNER LOOP - J=’, J
IF(J .LE. 3)GO TO 20
PRINT *, ’J > 3’

20 END DO
PRINT *, ’OUTER LOOP - J=’, J

END DO

A result of this example is that the character string J > 3 is printed 6 times (i.e., twice for each iteration
of the outer loop). Of course there is a much better way of coding this algorithm using the IF-END IF
construct. The example is included to illustrate the behaviour of transfers of control to an END DO
statement. The following example is an equivalent algorithm to the one above but the intent is much
clearer.

196 DO - END DO

Program Structure Control Statements

Example:
DO I = 1, 3

DO J = 1, 5
PRINT *, ’INNER LOOP - J=’, J
IF(J .GT. 3)THEN

PRINT *, ’J > 3’
END IF

END DO
PRINT *, ’OUTER LOOP - J=’, J

END DO

9.5 DO WHILE - END DO

DO WHILE (e) [: block-label]
statement(s)

END DO

This extension to FORTRAN 77 allows the creation of DO-loops without iterative techniques. Instead, the
DO-loop is executed while the parenthesized expression is true. The logical expression is evaluated before
entry to the DO-loop. If the value is false, control is transferred to the statement following the END DO
statement. If the logical expression if true, the statements of the DO-loop are executed. When the END DO
statement is reached, the expression is re-evaluated and program control proceeds as previously described.
An optional block label may be specified (see the CYCLE, EXIT or QUIT statement for more information).

An optional statement number can be specified after the DO keyword. When the END DO statement is used
to indicate the end of the range of its corresponding DO WHILE statement, a statement number may not be
specified.

Some examples follow.

Example:
I = 1
DO WHILE(I .LE. 3)

J = 1
DO WHILE(J .LE. 5)

PRINT *, MATRIX(I, J)
END DO

END DO

The above is equivalent to the following example which uses statement numbers.

Example:
I = 1
DO 10 WHILE(I .LE. 3)

J = 1
DO 20 WHILE(J .LE. 5)

PRINT *, MATRIX(I, J)
20 CONTINUE
10 CONTINUE

DO WHILE - END DO 197

Language Reference

The next example demonstrates the use of a GO TO statement to control execution of all or part of a
DO-loop.

Example:
I = 1
DO WHILE(I .LE. 3)

J = 1
DO WHILE(J .LE. 5)

PRINT *, ’INNER LOOP - J=’, J
IF(J .LE. 3)GO TO 20
PRINT *, ’J > 3’

20 END DO
PRINT *, ’OUTER LOOP - J=’, J

END DO

A result of this example is that the character string J > 3 is printed 6 times (i.e., twice for each iteration
of the outer loop). Of course there is a much better way of coding this algorithm using the IF-END IF
construct. The example is included to illustrate the behaviour of transfers of control to an END DO
statement. The following example is an equivalent algorithm to the one above but the intent is much
clearer.

Example:
I = 1
DO WHILE(I .LE. 3)

J = 1
DO WHILE(J .LE. 5)

PRINT *, ’INNER LOOP - J=’, J
IF(J .GT. 3)THEN

PRINT *, ’J > 3’
END IF

END DO
PRINT *, ’OUTER LOOP - J=’, J

END DO

9.6 LOOP - END LOOP

LOOP [: block-label]
statement(s)

END LOOP

This extension to FORTRAN 77 causes the statements between the LOOP and END LOOP statements to be
repeated until control is transferred out of the loop, usually by an EXIT or QUIT statement. An optional
block label may be specified (see the CYCLE, EXIT or QUIT statement for more information). An
example follows:

198 LOOP - END LOOP

Program Structure Control Statements

Example:
LOOP

READ *, X
IF(X .EQ. 99.0)EXIT
PRINT *, X

END LOOP

The above statements cause values to be read and printed, one to a line, until the value 99.0 is read. When
variable X has this value, the logical expression in the IF statement evaluates as true and the EXIT
statement causes a transfer of control to the statement following the END LOOP statement. The EXIT
statement is discussed in more detail in a later section.

9.7 WHILE - END WHILE

WHILE(logical-expression)DO [: block-label]
statement(s)

END WHILE

This extension to FORTRAN 77 causes its block of code to be executed repeatedly while the parenthesized
logical expression is true. The logical expression is evaluated before entry to the block. If the value is
false, control passes to the statement following the END WHILE statement. If the logical expression is
true, the statements of the block are executed. When the END WHILE statement is reached, the WHILE
logical expression is re-evaluated and the above program control decisions are repeated. An optional block
label may be specified (see the CYCLE, EXIT or QUIT statement for more information). An example
follows:

Example:
WHILE(J .GT. 0)DO

A(J) = B(I + J)
J = J - 1

END WHILE

If variable J is zero or negative when the WHILE statement is executed, the WHILE block of code will be
by-passed and the statement following the END WHILE statement will be executed.

If variable J is greater than zero when the WHILE statement is executed, the WHILE block will be executed
repeatedly until J becomes equal to zero. The effect of this loop will be to assign values to elements of
array A from array B, starting with the element of A corresponding to the initial value of variable J and
working backwards down the array to element 1.

9.8 WHILE - Executable-statement

WHILE(logical-expression)stmt

WHILE - Executable-statement 199

Language Reference

where:

stmt is an executable statement. Only certain executable statements are are allowed. See the section
entitled "Classifying Statements" on page 9 in the chapter entitled "FORTRAN Statements" for a
list of allowable statements.

This control statement is another form of the WHILE construct.

Example:
WHILE(I .GT. 0)EXECUTE A

When this statement is executed, if the logical expression is not true, control passes to the next statement.
If the expression is true, REMOTE-block A (assumed to be defined elsewhere in the program unit) is
executed, and the logical expression is re-evaluated. This is repeated until the logical expression, when
evaluated, is false; control then passes to the next statement.

9.9 UNTIL

LOOP [: block-label]
statement(s)

UNTIL(logical-expression)

or

WHILE(logical-expression)DO [: block-label]
statement(s)

UNTIL(logical-expression)

The UNTIL statement, an extension to FORTRAN 77, may be combined with either a LOOP or WHILE
statement by replacing the END LOOP or END WHILE statement. It provides a way of specifying a
condition to be tested at the end of each iteration of a loop, which will determine whether or not the loop is
repeated. After all of the statements in the block have been executed, the logical expression in the UNTIL
statement is evaluated. If the result of the condition is false, the loop is repeated; otherwise, control passes
to the statement following the UNTIL statement.

In the following example, the statements between the LOOP and the UNTIL statements are executed until
the value of variable X is greater than 10.0.

Example:
X = 1.0
LOOP

PRINT *, X, SQRT(X)
X = X + 1.0

UNTIL(X .GT. 10.0)

200 UNTIL

Program Structure Control Statements

9.10 SELECT - END SELECT

SELECT [CASE] (e) [FROM] [: block-label]
CASE (case-list)

statement (s)
CASE (case-list)

statement (s)
.
.
.

CASE DEFAULT
statement(s)

END SELECT

where:

case-list is a list of one or more cases separated by commas. A case is either

(a) a single integer, logical or character constant expression or

(b) an integer, logical or character constant expression followed by a colon
followed by another expression or the same type. This form of a case defines
a range of values consisting of all integers or characters greater than or equal
to the value of the expression preceding the colon and less than or equal to
the value of the expression following the colon.

The SELECT construct, an extension to FORTRAN 77, is similar in concept to the FORTRAN computed
GO TO statement. It allows one of a number of blocks of code (case blocks) to be selected for execution by
means of an integer expression in the SELECT statement.

The SELECT statement keywords, CASE and FROM, are optional. The SELECT statement may contain a
block label (see the CYCLE, EXIT or QUIT statements for more information).

Each block must be started with a CASE statement; however, the last block may begin with a CASE
DEFAULT statement. The CASE DEFAULT block is optional. In order to retain compatibility with earlier
versions of WATCOM FORTRAN 77 compilers, the OTHERWISE statement may be used in place of the
CASE DEFAULT statement. The last block is ended by the END SELECT statement. The number of case
blocks is optional, from one to many; however, it is recommended that the SELECT construct not be used
for fewer than 3 case blocks. The conditional execution of one or two blocks of code is handled more
efficiently by the IF-THEN-ELSE construct.

A particular case value or range of values must not be contained in more than one CASE-block. For
example, the following is illegal:

SELECT - END SELECT 201

Language Reference

Example:
* Illegal SELECT block - case value in more
* than one CASE block.

SELECT CASE (I - 3)
CASE (1,3,7:10)

statement(s)
CASE (5,6,8)

statement(s)
CASE (-3:-2+4)

statement(s)
END SELECT

The second CASE-block includes 8 which is already handled by the first CASE-block. As well, the third
CASE-block handles cases −3, −2, −1, 0, 1, 2 but the first CASE-block also handles case 1. Thus the
second and third CASE-ranges are in error.

When the SELECT statement case expression is evaluated as i, the case block whose range contains i is
executed and control passes to the statement following the END SELECT statement. If no range contains i,
control is transferred to the statement following the CASE DEFAULT statement, if one is specified. If the
CASE DEFAULT block is omitted and the case expression is out of range when the SELECT statement is
executed (that is, none of the CASE-blocks handles the particular expression value), control is passed to the
statement following the END SELECT statement and none of the CASE-blocks is executed.

Example:
SELECT CASE (I)
CASE (1)

Y = Y + X
X = X * 3.2

CASE (2)
Z = Y**2 + X
PRINT *, X, Y, Z

CASE (3)
Y = Y * 13. + X
X = X - 0.213

CASE (4)
Z = X**2 + Y**2 - 3.0
Y = Y + 1.5
X = X * 32.0
PRINT *, ’CASE 4’, X, Y, Z

END SELECT

This example will execute in the manner described below for each of the possible values of variable I.

(i) I is zero or negative:
- control will pass to the statement after the END SELECT statement

(ii) I = 1:
- the value of X will be added to Y
- X will be multiplied by 3.2
- control will pass to the statement after the END SELECT statement

(iii) I = 2:
- Z will be assigned the value of the expression Y**2 + X
- the values of X, Y and Z will be printed
- control will pass to the statement after the END SELECT statement

202 SELECT - END SELECT

Program Structure Control Statements

(iv) I = 3:
- Y will be assigned the value of the expression Y * 13. + X
- 0.213 will be subtracted from X
- control will pass to the statement after the END SELECT statement

(v) I = 4:
- Z, Y and X will be assigned new values
- the string CASE 4, followed by the values of X, Y and Z will be printed
- control will pass to the statement after the END SELECT statement

(vi) I = 5, 6, ...:
- control will pass to the statement after the END SELECT statement

CASE DEFAULT allows a block of code to be specified for execution when the SELECT expression is out
of range. It must follow all CASE-blocks and thus is ended by the END SELECT statement. The CASE
DEFAULT statement terminates the previous and last CASE-block. Note that only one CASE DEFAULT
block may be specified in a SELECT construct.

If a CASE DEFAULT block were included in the above example, it would be executed in cases (i) and (vi)
of the description. After a CASE DEFAULT block is executed, control then passes to the statement after
the END SELECT statement.

Empty or null case blocks are permitted (that is, two CASE statements with no statements between). The
net result of executing a null CASE-block is to effectively bypass the SELECT construct.

Example:
SELECT CASE (I * 4 - J)
CASE (-10 : -5)

PRINT *,’First case:’
PRINT *,’-10 <= I*4-J <= -5’

CASE (-4 : 2)
PRINT *,’Second case:’
PRINT *,’-4 <= I*4-J <= 2’

CASE (3, 5, 7)
PRINT *,’Third case:’
PRINT *,’I*4-J is one of 3, 5 or 7’

CASE (4, 6, 8:10)
PRINT *,’Fourth case:’
PRINT *,’I*4-J is one of 4, 6, 8, 9 or 10’

CASE DEFAULT
PRINT *,’All other cases:’
PRINT *,’I*4-J < -10 or I*4-J > 10’

END SELECT

This example will execute in the manner described below for each of the possible values of expression
I*4-J.

(i) expression < −10
- control will pass to the statement after the CASE DEFAULT statement
- the string All other cases: will be printed
- the string I*4-J < -10 or I*4-J > 10 will be printed

(ii) −10 <= expression <= −5:
- control will pass to the statement after the first CASE statement
- the string First case: will be printed

SELECT - END SELECT 203

Language Reference

- the string -10 <= I*J-4 <= -5 will be printed
- control will pass to the statement after the END SELECT statement

(iii) −4 <= expression <= 2:
- control will pass to the statement after the second CASE statement
- the string Second case: will be printed
- the string -4 <= I*J-4 <= 2 will be printed
- control will pass to the statement after the END SELECT statement

(iv) expression = 3, 5 or 7:
- control will pass to the statement after the third CASE statement
- the string Third case: will be printed
- the string I*J-4 is one of 3, 5 or 7 will be printed
- control will pass to the statement after the END SELECT statement

(v) expression = 4, 6, 8, 9 or 10:
- control will pass to the statement after the fourth CASE statement
- the string Fourth case: will be printed
- the string I*J-4 is one of 4, 6, 8, 9 or 10 will be printed.
- control will pass to the statement after the END SELECT statement

(vi) expression > 10:
- control will pass to the statement after the CASE DEFAULT statement
- the string All other cases: will be printed
- the string I*4-J < -10 or I*4-J > 10 will be printed

9.11 EXECUTE and REMOTE BLOCK

EXECUTE name
.
.
.

REMOTE BLOCK name
statement(s)

END BLOCK

where:

name is a valid FORTRAN symbolic name.

The EXECUTE statement, an extension to FORTRAN 77, allows a named block of code to be executed.
The named block of code may be defined anywhere in the same program unit and is delimited by the
REMOTE BLOCK and END BLOCK statements. Executing a REMOTE-block is similar in concept to
calling a subroutine, with the advantage that shared variables do not need to be placed in a common block
or passed in an argument list. In addition there is less overhead involved in executing a REMOTE-block
than in calling a subroutine (in both amount of object code and execution time). When execution of the
REMOTE-block is complete, control returns to the statement following the EXECUTE statement which
invoked it.

204 EXECUTE and REMOTE BLOCK

Program Structure Control Statements

This feature is helpful in avoiding duplication of code for a function (such as I/O) required in a number of
places throughout a program. It can also be an aid to writing a well-structured program.

Each REMOTE-block within the same program unit must have a different name and it must not be a
subprogram or variable name. Note that a REMOTE-block is local to the program unit in which it is
defined and may not be referenced (executed) from another program unit.

REMOTE-blocks may be defined anywhere in the program unit except as follows.

1. They must follow all specification statements.
2. They must not be defined within a control structure.

If a REMOTE BLOCK statement is encountered during execution, control is transferred to the statement
following the corresponding END BLOCK statement.

Note that the nested definition of REMOTE-blocks is not permitted.

Example:
EXECUTE A
PRINT *, ’FIRST’

.

.

.
EXECUTE A
PRINT *, ’SECOND’

.

.

.
REMOTE BLOCK A

I = I + 1
PRINT *, ’I=’, I

END BLOCK

Both EXECUTE statements will cause REMOTE-block A to be executed. That is, variable I will be
incremented and its value will be printed. When the block has been executed by the first EXECUTE
statement, control returns to the PRINT statement following it and the word FIRST is printed. Similarly,
when the block is executed by the second EXECUTE statement, control returns to the PRINT statement
following it and the word SECOND is printed.

REMOTE-blocks may be executed from other REMOTE-blocks. For example, REMOTE-block A might
contain the statement EXECUTE B, where B is a REMOTE-block defined elsewhere in the program unit.
The execution of REMOTE-blocks from other REMOTE-blocks may take place to any level; however, the
recursive execution of REMOTE-blocks is not permitted, either directly or through a chain of EXECUTE
statements. Attempts to execute REMOTE-blocks recursively are detected as errors at execution time.

EXECUTE and REMOTE BLOCK 205

Language Reference

9.12 GUESS-ADMIT-END GUESS

GUESS [: block-label]
statement(s)

ADMIT
statement(s)

ADMIT
statement(s)
.
.
.

ADMIT
statement(s)

END GUESS

The GUESS-ADMIT-END GUESS structure is a rejection mechanism which is useful when sets of
statements are to be conditionally chosen for execution, but not all of the conditions required to make a
selection are available beforehand. It is an extension to FORTRAN 77. The sets of statements to be chosen
may be thought of as alternatives, the first alternative being statements immediately after the GUESS
statement. Execution begins with the statements in the first alternative. If a condition is detected which
indicates that the first alternative was the wrong choice, a QUIT statement may be executed to cause
control to be passed to the statements after the ADMIT statement (i.e., the second alternative). A QUIT
statement within the second alternative passes control to the third alternative, etc. A QUIT statement
within the last alternative passes control to the statement after the END GUESS statement. If an alternative
completes execution without encountering a QUIT statement (i.e., all statements are executed up to the next
ADMIT statement) then control is passed to the statement after the END GUESS statement. An optional
block label may be specified following the keyword GUESS (see the QUIT statement for more
information).

In the following example, two sets of codes and numbers are read in and some simple sequence checking is
performed. If a sequence error is detected an error message is printed and processing terminates; otherwise
the numbers are processed and another pair of numbers is read.

206 GUESS-ADMIT-END GUESS

Program Structure Control Statements

Example:
LOOP : PRLOOP

GUESS
LINE = LINE + 1
READ *, ICODE, X
AT END, QUIT :PRLOOP
IF(ICODE .NE. 1)QUIT
LINE = LINE + 1
READ *, ICODE, Y
AT END, QUIT
IF(ICODE .NE. 2)QUIT
PRINT *, X, Y
CALL PROCES(X, Y)

ADMIT
PRINT *, ’INVALID SEQUENCE: LINE =’, LINE
QUIT :PRLOOP

END GUESS
END LOOP

The above example attempts to read a code and number. If an end of file occurs then the loop is terminated
by the QUIT statement.

If the code is not 1 then we did not get what we expected and an error situation has arisen. Control is
passed to the statement following the ADMIT statement. An error message is printed and the loop is
terminated by the QUIT statement.

If the code is 1 then a second code and number are read. If an end of file occurs then we are missing a set
of data and an error situation has arisen. Control is passed to the statement following the ADMIT statement.
An error message is printed and the loop is terminated by the QUIT statement. Similarly if the expected
code is not 2 an error situation has arisen. Control is passed to the statement following the ADMIT
statement. An error message is printed and the loop is terminated by the QUIT statement.

If the second code is 2, the values of variables X and Y are printed. A subroutine is then called to process
the data. Control resumes at the statement following the END GUESS statement. Since this statement is an
END LOOP, control is transferred to the beginning of the loop.

The above example illustrates the point that all the information required to make a choice (in this case
between a valid set of data and an invalid set) is not available from the beginning. In this case we make an
assumption that the data values are correct (our hypothesis) and then test the assumption at various points in
the algorithm. If any of the tests fail we reject the hypothesis (and, perhaps, select a new hypothesis).

It should be noted that no alternative selection need be coded (i.e., we need not use any ADMIT-blocks).
This is illustrated in the following example.

Example:
GUESS

X=SQRT(X)
IF(X .LT. EPS)QUIT
X=Y+SQRT(Y)
IF(X .LT. EPS)QUIT
CALL INTGRT(X, Y)

END GUESS

It might be noted that the IF-ELSE-END IF construct is simply a specific instance of the more general
GUESS-ADMIT-END GUESS construct wherein the data values are known beforehand (as could be
illustrated using the previous example).

GUESS-ADMIT-END GUESS 207

Language Reference

9.13 QUIT

QUIT [: block-label]

The QUIT statement may be used to transfer control to the first executable statement following the terminal
statement of the block in which it is contained.

When transferring out of a loop, control is passed to the statement following the END DO, END WHILE,
END LOOP or UNTIL statement.

When transferring out of a GUESS block, control is passed to the statement after the next ADMIT or END
GUESS statement.

When transferring out of an IF-block or SELECT-block, control is passed to the statement after the
corresponding END IF or END SELECT statement.

When transferring out of a REMOTE-block, control passes to the statement following the EXECUTE
statement that invoked the REMOTE-block.

If no block label is specified in the QUIT statement, control is transferred from the immediately enclosing
structure. If several structures or DO-loops are nested, it is possible to exit from any one of them by
specifying the block label of the corresponding block structure.

The QUIT statement is most commonly used as the statement in a logical IF or AT END statement but
may also be used to cause an unconditional transfer of control. (The AT END statement is described in a
subsequent section).

Examples of the QUIT statement with and without a block label follow.

Example:
CHARACTER CH
READ *, CH
GUESS

IF(CH .LT. ’a’)QUIT
IF(CH .GT. ’z’)QUIT
PRINT *, ’Lower case letter’

ADMIT
IF(CH .LT. ’A’)QUIT
IF(CH .GT. ’Z’)QUIT
PRINT *, ’Upper case letter’

ADMIT
IF(CH .LT. ’0’)QUIT
IF(CH .GT. ’9’)QUIT
PRINT *, ’Digit’

ADMIT
PRINT *, ’Special character’

END GUESS
END

The above statements read and print values until an end of file occurs. At that point control is passed to the
QUIT statement, as specified by the AT END statement. The QUIT statement causes control to continue
with the statement after the END LOOP statement.

208 QUIT

Program Structure Control Statements

Example:
CHARACTER RECORD(80)
LOOP : RDREC

READ(5,100) RECORD
AT END, STOP
DO I = 1, 80

IF(RECORD(I) .LT. ’0’
+ .OR. RECORD(I) .GT. ’9’)QUIT : RDREC

END DO
WRITE(6,101) RECORD

END LOOP
PRINT *, ’INVALID RECORD’

The above example reads in records and verifies that they contain only numeric data. The QUIT statement
is within two levels of nesting: the DO-loop and the LOOP-END LOOP structure. If a non-numeric
character is found, the QUIT : RDREC statement will cause control to be passed to the PRINT
statement after the END LOOP statement.

9.14 EXIT

EXIT [: block-label]

The EXIT statement is used to transfer control:

1. from within a loop (DO, DO WHILE, WHILE or LOOP) to the statement following the loop,
2. from within a GUESS or ADMIT block to the statement following the ENDGUESS statement, or
3. from within a remote block to the statement following the EXECUTE statement that invoked the

remote block.

When transferring out of a loop, control is passed to the statement following the END DO, END WHILE,
END LOOP or UNTIL statement.

When transferring out of a GUESS block, control is passed to the statement after the corresponding END
GUESS statement.

When transferring out of a REMOTE-block, control passes to the statement following the EXECUTE
statement that invoked the REMOTE-block.

If no block label is specified in the EXIT statement, control is transferred from the immediately enclosing
structure. If several structures or DO-loops are nested, it is possible to exit from any one of them by
specifying the block label of the corresponding block structure.

The EXIT statement is most commonly used as the statement in a logical IF or AT END statement but
may also be used to cause an unconditional transfer of control. (The AT END statement is described in a
subsequent section).

Examples of the EXIT statement with and without a block label follow.

EXIT 209

Language Reference

Example:
LOOP

READ *, X
AT END, EXIT
PRINT *, X

END LOOP

The above statements read and print values until an end of file occurs. At that point control is passed to the
EXIT statement, as specified by the AT END statement. The EXIT statement causes control to continue
with the statement after the END LOOP statement.

Example:
CHARACTER RECORD(80)
LOOP : RDREC

READ(5,100) RECORD
AT END, STOP
DO I = 1, 80

IF(RECORD(I) .LT. ’0’
+ .OR. RECORD(I) .GT. ’9’)EXIT : RDREC

END DO
WRITE(6,101) RECORD

END LOOP
PRINT *, ’INVALID RECORD’

The above example reads in records and verifies that they contain only numeric data. The EXIT statement
is within two levels of nesting: the DO-loop and the LOOP-END LOOP structure. If a non-numeric
character is found, the EXIT : RDREC statement will cause control to be passed to the PRINT
statement after the END LOOP statement.

9.15 CYCLE

CYCLE [: block-label]

The CYCLE statement is used to cause a transfer of control from within a loop to the terminal statement of a
corresponding DO, DO WHILE, WHILE or LOOP statement. If block-label is present then control is
transferred to the terminal statement of the block identified by that block label.

If no block label is specified in the CYCLE statement, control is transferred to the terminal statement of the
immediately enclosing loop structure. If several loop structures are nested, it is possible to cycle to the
terminal statement of any one of them by specifying the block label of the corresponding block structure.

The CYCLE statement is most commonly used as the statement in a logical IF statement but may also be
used to cause an unconditional transfer of control.

Examples of the CYCLE statement with and without a block label follow.

210 CYCLE

Program Structure Control Statements

Example:
LOOP

WRITE(UNIT=*, FMT=’(A)’) ’Enter a number’
READ(UNIT=*, FMT=’(F10.4)’, IOSTAT=IOS) X
IF(IOS .NE. 0) CYCLE
IF(X .LT. 0) EXIT
PRINT *, X, SQRT(X)

END LOOP

The above statements read and print values until a negative integer value is entered. If an input error
occurs, the input operation (READ) is retried using the CYCLE statement. The CYCLE statement causes
control to resume at the END LOOP statement which then immediately transfers control to the statement
following the LOOP statement.

Example:
CHARACTER RECORD(80)
LOOP : RDREC

READ(5,100) RECORD
AT END, STOP
DO I = 1, 80

IF(RECORD(I) .LT. ’0’
+ .OR. RECORD(I) .GT. ’9’)THEN

PRINT *, ’INVALID RECORD’
CYCLE : RDREC

ENDIF
END DO
WRITE(6,101) RECORD

END LOOP

The above example reads in records and verifies that they contain only numeric data. If the record does
not, the input operation is tried again. The CYCLE statement is within three levels of nesting: the IF, the
DO-loop, and the LOOP-END LOOP structure. If a non-numeric character is found, the CYCLE :
RDREC statement will cause control to be passed to the READ statement that follows the LOOP statement.

9.16 AT END

(READ statement)
AT END DO [: block-label]

statement(s)
END AT END

or

(READ statement)
AT END, statement

The AT END control statement, an extension to FORTRAN 77, is an extension of the END= option of the
FORTRAN READ statement for sequential files. It allows a statement or a block of code following the

AT END 211

Language Reference

READ statement to be executed when an end of file condition is encountered during the READ and to be
by-passed immediately following a READ statement. It is not valid to use this control statement with
direct-access or memory-to-memory reads. Clearly, it is not valid to use this statement when END= is
specified in the READ statement.

Example:
READ(7, *) I, X
AT END DO

PRINT *, ’END-OF-FILE ENCOUNTERED’
EOFSW = .TRUE.

END AT END

If the READ statement is executed without encountering end of file, control passes to the statement
following the END AT END statement. If an end of file condition occurs during the read, the string,
END-OF-FILE ENCOUNTERED is printed, logical variable EOFSW is assigned the value .TRUE. and
control passes to the statement following the END AT END statement.

Example:
READ(7, *) X
AT END, EOFSW = .TRUE.

If an end of file is not encountered by the READ statement, control passes to the statement following the AT
END statement. If an end-of-file condition occurs, variable EOFSW is set to .TRUE. and control then
passes to the statement following the AT END statement. Note that the use of the second form of the AT
END statement requires the use of a comma (,) between the AT END word and the executable statement.
This is necessary to distinguish the case where the executable statement is an assignment statement. The
executable statement may be any statement that is also allowed as the operand of a logical IF statement.

9.17 Notes on Structured Programming Statements
In addition to the definitions and examples of these constructs, the following points should be noted:

(i) Any of the new control statements with their blocks may be used within the block of any
other statement. For example, a WHILE-block may contain another WHILE or an
IF-THEN-ELSE block. Blocks may be nested in this manner to any level within storage
limitations. An important exception to this rule is the REMOTE-block A REMOTE-block
may contain other types of blocks (nested to any level); however, another REMOTE-block
may not be defined within it. Furthermore, REMOTE-blocks may not be defined within
another control structure. The following example is illegal.

Example:
* Illegal definition of a REMOTE-block.

IF(I .EQ. 3)then
REMOTE BLOCK A

.

.

.
END BLOCK

END IF

(ii) When nesting blocks, the inner blocks must always be completed with the appropriate
block-terminating END statement before the outer blocks are terminated. Similarly, when
nesting blocks with DO-loops, a DO-loop started within a block must be completed before

212 Notes on Structured Programming Statements

Program Structure Control Statements

the block is completed. A block started within a DO-loop must be terminated before the
DO-loop is completed. Indenting the statements of each new block, as shown in the
examples, is helpful in avoiding invalid nesting and helps to make the structure of the
program visually obvious.

(iii) The normal flow of control of the new programming constructs described earlier may be
altered with standard FORTRAN control statements. For example, the program may exit
from a block using a GO TO, STOP, RETURN or arithmetic IF statement. However, a
block may not be entered in the middle through use of any control statement such as GO
TO or the arithmetic IF.

Consider the following example.

Example:
GO TO 20

10 IF(X .GT. Y)THEN
CALL REDUCE(X, Y)

20 X = X - 1
ELSE

CALL SCALE(X)
END IF

This is an example of an illegal attempt to transfer execution into the middle of an IF-block.
The statement X = X - 1 is contained within the IF-block and may only be transferred
to from within the block.

Example:
IF(X .GT. Y)THEN

20 CALL REDUCE(X, Y)
X = X - 1
IF(X .GT. 0)GO TO 20

ELSE
CALL SCALE(X)

END IF

This last example demonstrates a legal transfer of control within an IF-block. However, we
have seen better ways to express the loop with this IF-block.

Example:
IF(X .GT. Y)THEN

LOOP
CALL REDUCE(X, Y)
X = X - 1

UNTIL(X .LE. 0)
ELSE

CALL SCALE(X)
END IF

(iv) Many control structure statements cannot be branched to using a GO TO statement. For a
list of these statements, see the section entitled "Classifying Statements" on page 9 in the
chapter entitled "FORTRAN Statements"

(v) Many control structure statements cannot be the object statement of a logical IF statement,
or be the last statement of a DO-loop. For a list of these statements, see the section entitled
"Classifying Statements" on page 9 in the chapter entitled "FORTRAN Statements"

Notes on Structured Programming Statements 213

Language Reference

214 Notes on Structured Programming Statements

10 Input/Output

10.1 Introduction
FORTRAN 77 provides a means of communicating information or data between a FORTRAN program
and the computing environment. The computing environment may include a number of devices which are
capable of the recording, retrieval, display, and input of data. Disk and magnetic tape devices are capable
of storing large amounts of data. Other devices such as printers and display terminals can be used to
present a visual (i.e., human-readable) representation of the data. Yet other devices such as terminal
keyboards and card-readers make possible the entry of new data into the computing environment.

For the purposes of our discussion, data is any information which can be processed by an executing
FORTRAN program. Some examples of data are names, addresses, telephone numbers, credit card
balances, flight trajectories, bus schedules, athletic records, etc. In computing, such information is usually
well-organized in order to make it useful for processing.

To use an example, consider the entries in a telephone book. There are essentially three pieces of data
listed for each entry; a name, an address, and a number.

Smith J 32 Arthur St--------------------------555-3208
Smith JW 512 King St--------------------------555-9229
Smith Jack 255-113 Queen St N-----------------555-0572

Each entry is a record. The organization of the book is clear. The name is always listed first, the address
second, and the number last. The records are sorted, for our convenience, by name (within each city or
geographical location). The length of each record is the same. This fixed length does sometimes lead to
problems since entries which have a long name or address won’t fit in a record. The phone company
solved this by continuing the information in subsequent records. We might have solved this problem by
increasing the length of a record with the disadvantage of wasting a lot of printing space. Alternatively, we
could have used a variable length record. This solves the problem of wasted space but creates a severe
problem when trying to display the records in nice orderly columns. The telephone book itself is a
collection of records or a file.

We have introduced much of the terminology of data processing: "data", "records", "fixed and variable
record sizes", "files", "sorted", etc.

10.2 Reading and Writing
FORTRAN provides a mechanism called "reading" for transferring data into the environment of an
executing program. The READ statement is used to do this. Similarly "writing" is the mechanism for
transferring data out of an executing program. The WRITE and PRINT statements are used to do this.
Other statements provide additional functions such as positioning to a certain record in a file, establishing
which files are to be processed by the program, or making inquiries about files.

Reading and Writing 215

Language Reference

10.3 Records
FORTRAN distinguishes between three kinds of records, namely:

1. Formatted
2. Unformatted
3. Endfile

We shall describe each of these in the following sections.

10.3.1 Formatted Record

A formatted record consists of characters. The length of a formatted record is determined by the number of
characters in it. A formatted record may contain no characters at all and thus has zero length. Formatted
records are read or written using formatted input/output statements. An excellent example of a file
consisting of formatted records is our telephone book example.

10.3.2 Unformatted Record

An unformatted record consists of values such as integers, real numbers, complex numbers, etc. It may also
consist of characters. Essentially, these values have the same representation in a record as they have in the
computer’s memory. The length of an unformatted record depends on the amount of storage required to
represent these values in the computer’s memory. For example, on this computer an integer value is stored
using 4 bytes of memory (a byte is a grouping of 8 binary digits). Thus, integer values in unformatted
records also require 4 bytes of storage. For example, 3 integer values stored in an unformatted record
would require 12 bytes of storage. Unformatted records are read or written using unformatted input/output
statements.

To illustrate the difference between a formatted and unformatted record consider the following example.

Example:
INTEGER NUMBER
NUMBER=12345
PRINT 100, NUMBER

100 FORMAT(1X,I5)
WRITE(UNIT=7) NUMBER

If you print the variable NUMBER on a printer, it requires 5 character positions. If you write it to a file
using an unformatted WRITE statement, it only requires 4 bytes or character positions in the record. Note
that a character is conveniently represented in one byte of storage, hence we sometimes use the term "byte"
or "character" interchangeably when talking about the size of variables.

10.3.3 Endfile Record

An endfile record is a special record that follows all other records in a file. Simply stated, an endfile record
occurs at the end of a file. Actually, an endfile record is a conceptual thing. It has no length. When the
end of a file is reached (i.e., an attempt to read a record results in the endfile record being read), an
"end-of-file" condition exists. There are no more records following the endfile record. There is only one
endfile record so it is strictly illegal to attempt to read another record after the endfile record has been read
(i.e., when the end-of-file condition exists).

216 Records

Input/Output

10.4 Files
Earlier we described the notion of a file as a collection of records. In FORTRAN, there are two kinds of
files:

1. External
2. Internal

10.4.1 External Files

External files are files that exist or can be created upon external media such as disks, printers, terminal
displays, etc. A file may exist before the execution of a FORTRAN program. It may be brought into
existence or "created" during execution. It may also be deleted and therefore not exist after the execution
of a FORTRAN program.

All input/output statements may refer to files that exist. In addition, the INQUIRE, OPEN, CLOSE,
WRITE, PRINT, and ENDFILE statements may refer to files that do not exist (and in so doing, may very
well cause the file to be created).

Properties of External Files

Name In FORTRAN, a file may or may not have a name. If it does have a name then, not
surprisingly, it is called a named file. All files in Open Watcom FORTRAN 77 have names
and so it may seem odd to introduce this notion. However, we do since the INQUIRE
statement lets you find out if a file is named and, if so, what its name is. File naming
conventions may differ from one computing system to the next. As well, different
FORTRAN 77 compilers may have different file naming conventions.

Access "Access" simply refers to the way in which we can position to and read or write the data in
a particular record in a file. There are two ways in which records can be accessed in a file;
sequentially or directly.

Using the sequential access method, records may be read or written in order starting with
the first record and proceeding to the last record. For example, it would be quite
impossible to read or write the tenth record in a file and then read or write the third record.
Similarly the eleventh record must be read or written before we can access the twelfth
record. If we adopt the convention that each record in a file has a record number then the
first record is record number 1, the second is 2, and so on. This numbering convention is
important when we look at the other access method which is "direct".

Using the direct access method, records may be read or written in any order. It is possible
to read or write the tenth record of a file and then the third and then the twelfth and so on.
A caveat: a record cannot be read if it has never been written since the file was created. In
direct access, the idea of a record number is very important and so by convention, we
number them starting at 1 as the first record and proceeding on up. With direct access, if
you create a new file and write record number 10 then the file has ten records regardless of
the fact that only one has been written. You could, at some later time, write records 1
through 9 (in whatever order you please) and add additional records by writing records with
record numbers greater than 10.

Some files have the property of being able to sustain both of these access methods. Some
files may only have one of these properties. For example, most line printers cannot be

Files 217

Language Reference

accessed directly. You have no choice but to write records sequentially. Sometimes a file
that was created using the sequential access method may not be accessed using the direct
method or vice versa. FORTRAN calls this property of a file the "set of allowed access
methods".

Record Form Some files have the property of being able to handle both formatted and unformatted record
formats. Some files may only have one of these properties. For example, if you tried to
write unformatted records to a line printer, the result might be gibberish. On the other hand
a graphics printer may readily accept unformatted records for reproducing graphical images
on paper. FORTRAN calls this property of a file the "set of allowed forms".

Record Length Another property of a file is record length. Some files may have restrictions on the length
of a record. Some files do not allow records of zero length. Other files, such as printers,
may restrict the length of a record to some maximum. FORTRAN calls this property the
"set of allowed record lengths".

10.4.2 Internal Files

Internal files are special files that reside only in memory. They do not exist before or after the execution of
a FORTRAN program, only during the execution of a program. An internal file allows you to treat
memory in the computer as if it were one or more records in a file. The file must be a character variable,
character array element, character array, or character substring. A record in this file may be a character
variable, character array element or character substring.

Another way of looking at this is that an internal file that is either a character variable, character array
element or character substring can contain only one record but an internal file that is a character array can
contain several records (as many as there are elements in the array).

Properties of Internal Files

Records Unless the name of a character array is used, only one record is contained in an internal file.
The length of this record is the same as the length of the variable, array element, or
substring. If the file is a character array then each element in the array is a record. The
order of the records in the file is the same as the order of the elements in the array. The
length of a record in this case is the same as the length of the character array elements.

If the number of characters written to a record in an internal file is less than the length of
the record then the record is padded with blanks.

Definition A record may be read only if the variable, array element, or substring is defined (i.e., it has
been assigned some value). Definition may not only result from an output statement such
as WRITE. It may also be defined through other means; for example, a character
assignment statement.

Position For all input/output statements, the file is positioned at the beginning of the first record.
Multiple records may be read or written using the "slash" format edit descriptor (see the
chapter entitled "Format" on page 225).

Restrictions Only sequential access formatted input and output statements (READ and WRITE) may be
used to transfer data to and from records in an internal file.

218 Files

Input/Output

Although FORTRAN 77 states that list-directed formatted input/output to an internal file is
not permitted, Open Watcom FORTRAN 77 allows you to use list-directed formatted
input/output statements. This is an extension to the language standard.

Example:
WRITE(INTFIL,*) X, Y, Z

No other input/output statements (OPEN, ENDFILE, REWIND, etc.) may be used.

Internal files may be used to convert data from one format to another. The following example illustrates
one use of internal files.

Example:
CHARACTER*11 INPUT
PRINT *, ’TYPE IN ’’I’’ FOLLOWED BY AN INTEGER’
PRINT *, ’OR TYPE IN ’’R’’ FOLLOWED BY A REAL’
READ 100, INPUT

100 FORMAT(A11)
IF(INPUT(1:1) .EQ. ’I’)THEN

READ(UNIT=INPUT(2:11), FMT=’(I10)’) IVAR
PRINT *, ’AN INTEGER WAS ENTERED ’, IVAR

ELSE IF(INPUT(1:1) .EQ. ’R’)THEN
READ(UNIT=INPUT(2:11), FMT=’(F10.3)’) RVAR
PRINT *, ’A REAL NUMBER WAS ENTERED ’, RVAR

END IF
END

After checking for an "I" or "R" as the first character of the character variable INPUT, the appropriate
internal READ statement is executed.

10.5 Units
Many FORTRAN 77 input/output statements refer to external files using a mechanism called the unit.
There are many units available to the FORTRAN 77 programmer. Open Watcom FORTRAN 77 numbers
these units from 0 to 999; thus the unit number is a non-negative integer less than 1000.

A unit may be associated with a particular file. This association is called connection. Any unit may or may
not be connected to a file. There are a number of ways in which this connection may be established.

A unit may be preconnected to a file before execution of a program begins. The User’s Guide describes the
mechanism for preconnecting a unit to a file.

Alternatively, a unit may become connected to a file by the execution of an OPEN statement.

All input/output statements except OPEN, CLOSE, and INQUIRE must refer to a unit that is connected to a
file. Open Watcom FORTRAN 77 automatically establishes a connection of the unit to a file if no
connection previously existed. Consider the following example in which unit number 1 is not previously
connected to a file.

Units 219

Language Reference

Example:
WRITE(1,*) ’Output on unit 1’
END

Open Watcom FORTRAN 77 constructs a file name using the specified unit number. The format of the file
name is described in the User’s Guide since it varies from one computer system to the next.

Connection of a unit to a file does not imply that the file must exist. For example, it could be a new file.
When we speak of a unit being connected to a file, we can also say that a file is connected to a unit. Under
the rules of FORTRAN, it is illegal to connect the same file to more than one unit at the same time.
However, a file may be connected to different units at different times. We shall explain how this is
possible.

A file may be disconnected from a unit by the use of the CLOSE statement.

Example:
CLOSE(UNIT=1)

Under certain circumstances, the file may be disconnected from a unit by the use of the OPEN statement.

Example:
OPEN(UNIT=1,FILE=’FILE1’)
.
.
.
OPEN(UNIT=1,FILE=’FILE2’)

In the above example, the second OPEN statement disconnects unit 1 from one file and connects it to a
second file. You may think of the second OPEN statement as automatically closing the first file and then
establishing a connection to the second file.

If a unit has been disconnected from a file through the execution of a CLOSE statement, the unit may
subsequently be connected to the same file or to a different file. It also follows that a file which has been
disconnected from one unit number may be connected to the same unit number or a different unit number.
The following example may help to illustrate this last point.

Example:
OPEN(UNIT=1,FILE=’FILE1’)
.
.
.
CLOSE(UNIT=1)
OPEN(UNIT=2,FILE=’FILE1’)

Once a file has been disconnected, the only means for referring to the file is by its name in an OPEN
statement or an INQUIRE statement.

220 Units

Input/Output

10.6 Specifiers
All input/output statements contain one or more specifiers. They appear in a list separated by commas.
Some of the more common specifiers are those listed below. Not all of them need be used in every
input/output statement. You should consult the description of the input/output statement under
consideration to discover which specifiers are allowed and what they mean.

[UNIT =] u the unit specifier

[FMT =] f the format specifier

REC = rn the record specifier

IOSTAT = ios the input/output status specifier

ERR = s the error specifier

END = s the end-of-file specifier

We shall look at these specifiers in more detail.

10.6.1 The Unit Specifier

The form of a unit specifier in an input/output statement is:

[UNIT =] u u is an external unit identifier or an internal file identifier.

1. An external unit identifier is a non-negative integer expression or an asterisk
(*) in which case unit 5 is assumed for an input statement and unit 6 is assumed
for an output statement. The unit identifier must not be an asterisk for the
BACKSPACE, ENDFILE and REWIND statements.

2. An internal file identifier is the name of a character variable, character array,
character array element, or character substring.

If the optional UNIT= specifier is omitted then the unit specifier must be the first item in the list of
specifiers.

10.6.2 Format Specifier

The form of a format specifier in an input/output statement is:

[FMT =] f f is a format identifier. A format identifier is one of the following:

1. A statement label of a FORMAT statement that appears in the same program unit
as the format identifier.

2. An integer variable name that has been assigned the statement label of a
FORMAT statement that appears in the same program unit as the format identifier
(see the ASSIGN statement).

3. An integer array name.
4. A character array name.

Specifiers 221

Language Reference

5. Any character expression except one involving the concatenation of an operand
whose length specification is (*) unless the operand is a symbolic constant (see
the PARAMETER statement).

6. An asterisk (*), indicating list-directed formatting.
7. A NAMELIST name, indicating namelist-directed formatting.

If the optional FMT= specifier is omitted then the format specifier must be the second item in the list of
specifiers and UNIT= must not be specified for the first item in the list.

10.6.3 Record Specifier

The form of a record specifier in an input/output statement is:

REC = rn rn is an integer expression whose value must be positive. It is the number of the record to
be read when a file is connected for direct access.

10.6.4 Input/Output Status Specifier

The form of an input/output status specifier in an input/output statement is:

IOSTAT = ios ios is an integer variable or integer array element. It is defined with zero if no error
occurs, a positive integer value if an error occurs, or a negative integer value if an
end-of-file occurs.

If an input/output error or end-of-file condition occurs during the execution of an input/output statement
and the input/output status specifier is present then execution of the program is not terminated.
Input/output errors may result from a violation of the rules of FORTRAN or from a file system error. For
example, a negative unit number will result in an error since this is a violation of the rules of FORTRAN.
An example of a file system error might be an attempt to create a file on a non-existent file storage device.

Consult the User’s Guide for a list of Open Watcom FORTRAN 77 diagnostic messages. An input/output
status of nn corresponds to the message IO-nn. For example, if the status returned is 3 then the error is:

IO-03 ENDFILE statement requires sequential access mode

10.6.5 Error Specifier

The form of an error specifier in an input/output statement is:

ERR = s s is a statement label. When an error occurs, execution is transferred to the statement
labelled by s.

If an input/output error occurs during the execution of an input/output statement and the ERR= specifier is
present then execution of the program is not terminated.

222 Specifiers

Input/Output

10.6.6 End-of-File Specifier

The form of an end-of-file specifier in an input/output statement is:

END = s s is a statement label. When an end-of-file condition occurs, execution is transferred to the
statement labelled by s.

If an end-of-file condition occurs during the execution of an input/output statement and the END= specifier
is present then execution of the program is not terminated.

10.7 Printing of Formatted Records
Printing occurs when formatted records are transferred to a device which interprets the first character of the
record as a special spacing command. The remaining characters in the record are "printed". Printing can be
accomplished by use of either the PRINT statement or the WRITE statement. What actually determines
whether or not you are "printing" is the device (or file) to which records are transferred.

The first character of the record controls the vertical spacing. This feature is quite often called ASA
(American Standards Association) carriage control.
�

Character Vertical Spacing Before Printing

Blank One Line
0 Two Lines
- Three Lines
1 To First Line of Next Page
+ No Advance

The "−" control character is an extension to the FORTRAN 77 language that is supported by many
"printing" devices.

Printing of Formatted Records 223

Language Reference

224 Printing of Formatted Records

11 Format

11.1 Introduction
A format specification used in conjunction with formatted I/O provides a means of specifying the way
internal data is converted to a character string and vice versa. A format specification can be given in two
ways.

1. In a FORMAT statement.
2. As values of character expressions or character arrays.

11.2 The FORMAT Statement
The form of a FORMAT statement is
�

label FORMAT fs

where:

label is the statement label used by an I/O statement to identify the FORMAT statement.

fs is a format specification which will be described later.

Example:
REAL X
X = 234.43
PRINT 100, X

100 FORMAT(F10.2)
END

In the previous example, the PRINT statement uses the format specification in the FORMAT statement
whose statement label is 100 to display the value of X.

11.3 FORMAT as a Character Expression
Instead of specifying the statement label of a FORMAT statement, a character expression can be used. The
previous example could be modified as follows and achieve the identical result.

FORMAT as a Character Expression 225

Language Reference

Example:
REAL X
X = 234.43
PRINT ’(F10.2)’, X
END

When using a character expression to represent a format specification, the format specification can be
preceded by blank characters and followed by any character data without affecting the format specification.
The following example produces the identical result to the previous example.

Example:
REAL X
X = 234.43
PRINT ’ (F10.2) THIS IS FOR X’, X
END

If a character array is used to describe the format specification, the format specification is considered to be
the concatenation of all the character array elements in the order given by array element ordering described
in the chapter entitled "Arrays" on page 159. Note that if a character array element is used, the format
specification is considered to be only that array element.

Example:
REAL X
CHARACTER*5 FMTSPEC(3)
X = 234.43
FMTSPEC(1)=’(’
FMTSPEC(2)=’F10.2’
FMTSPEC(3)=’)’
PRINT FMTSPEC, X
END

11.4 Format Specification
A format specification has the following form.
�

([flist])

where:

flist is a list whose items are separated by commas. The forms of the items in flist are:

[r] ed

ned

[r] fs

ed is a repeatable edit descriptor.

ned is a nonrepeatable edit descriptor.

226 Format Specification

Format

fs is a format specification with a nonempty list flist.

r is a positive unsigned integer constant called a repeat specification.

The comma separating the items of flist can be omitted in the following cases.

1. Between a P edit descriptor and an F, E, D or G edit descriptor which immediately follows.
2. Before or after a slash edit descriptor.
3. Before or after a colon edit descriptor.

Open Watcom FORTRAN 77 allows the omission of a comma between the items of flist. Care should
be taken when omitting commas between edit descriptors. For example, the format specification (I5
2I3) may appear to be an I5 edit descriptor followed by two I3 edit descriptors when in actuality it is
interpreted as an I52 edit descriptor followed by an I3 edit descriptor.

11.5 Repeatable Edit Descriptors
The forms of repeatable edit descriptors are:

Iw
Iw.m
Fw.d
Ew.d
Ew.dEe
Dw.d
Gw.d
Gw.dEe
Lw
A
Aw

As an extension to the FORTRAN 77 language, the following repeatable edit descriptors are also
supported.

Ew.dDe
Zw

where:

 I, F, E, D, G, L, A and Z indicate the method of editing.

w and e are positive unsigned integer constants.

d and m are unsigned integer constants.

Repeatable Edit Descriptors 227

Language Reference

11.6 Nonrepeatable Edit Descriptors
The forms of nonrepeatable edit descriptors are:

’hh...h’ (apostrophe)
nHhh...h
Tc
TLc
TRc
nX
/
:
S
SP
SS
kP
BN
BZ
X

As an extension to the FORTRAN 77 language, the following nonrepeatable edit descriptors are also
supported.

$
\

where:

 Apostrophe, H, T, TL, TR, X, /, :, S, SP, SS, P, BN, BZ, \ and $ indicate the method of editing.

h is a character.

n and c are positive unsigned integer constants.

k is an optionally signed integer constant.

Open Watcom FORTRAN 77 allows edit descriptors to be specified using lower case letters.

11.7 Editing
Edit descriptors are used to describe the way the editing between internal representation of data and the
characters of a record in a file is to take place. When the edit descriptors I, F, E, D, G, L, A, H, Z or
apostrophe are processed, they process a sequence of characters called a field. On input, the field is the
character data read from a record; on output it is the character data written to a record. The number of
characters in a field is called the field width.

228 Editing

Format

11.7.1 Apostrophe Editing

The apostrophe edit descriptor has the same form as a character constant and can only be used on output.
It causes the characters in the format specification enclosed in quotes to be written. The field width is the
number of characters enclosed in quotes.

Example:
PRINT ’(’’HI THERE’’)’
END

In the previous example, the string

HI THERE

would be the output produced by the PRINT statement.

11.7.2 H Editing

The nH edit descriptor causes the n characters following the H, including blanks, to be written. Like the
apostrophe edit descriptor, it can only appear in a format specification used for output.

Example:
PRINT ’(8HHI THERE)’
END

In the previous example, the string

HI THERE

would be the output produced by the PRINT statement.

11.7.3 Positional Editing: T, TL, TR and X Editing

The T, TL, TR and X edit descriptors specify at which position the next character will be read from or
written to the record. In the case of input, this allows data to be read more than once with different edit
descriptors. On output, it is possible to overwrite data previously written.

On output it is possible to use positional editing to create a record in which gaps appear. That is, there may
be parts of the record where no data has been written. The parts of a record in which no data has been
written are filled with blanks. The effect is as if the record was previously initialized to blanks. Note that
positioning does not cause any data to be transmitted.

The Tc edit descriptor specifies that the next character to be transmitted is to be from the cth character
position in the record. The TLc edit descriptor specifies that the next character to be transmitted is to be
from the cth position backward from the current position. The TRc edit descriptor is identical to the TLc
edit descriptor except that positioning is forward from the current position. The nX edit descriptor behaves
identically to the TRc edit descriptor; the transmission of the next character is n character positions forward
from the current position. If n is omitted then the transmission of the next character is 1 character position
forward from the current position.

Editing 229

Language Reference

Example:
PRINT ’(’’THE NUMBER IS AN INTEGER’’,TL19,

$ ’’12345’’)’
END

The output produced is

THE NUMBER 12345 IS AN INTEGER

11.7.4 Slash Editing

The slash edit descriptor indicates the end of data transfer on the current record. On input from a record
connected for sequential access, the remaining characters in the record are skipped and the file is positioned
to the start of the next record. Note that entire records may be skipped. On output, a new record is created
and becomes the last and current record of the file. Note that a record with no characters can be written. If
the file is an internal file or a direct access file, the record is filled with blanks.

For a file connected for direct access, the current record number is increased by one and the file is
positioned at the beginning of that record.

11.7.5 Colon Editing

The colon edit descriptor terminates processing of the format specification if there are no more items in the
I/O list. If there are items remaining in the I/O list, the colon edit descriptor has no effect.

11.7.6 S, SP and SS Editing

The S, SP and SS edit descriptors control optional plus characters in numeric output fields. They only
effect the I, F, E, D and G edit descriptors during output and have no effect on input. The FORTRAN 77
standard specifies that before processing a format specification, the appearance of a plus sign in numeric
output fields is optional and is determined by the processor. Open Watcom FORTRAN 77 does not
produce plus signs in numeric output fields. When an SP edit descriptor is encountered, a plus sign is
produced in any subsequent position that optionally contains a plus sign. When as SS edit descriptor is
encountered, a plus sign is not produced in any subsequent position that optionally contains a plus sign. If
an S edit descriptor is encountered, the option is returned to the processor.

Example:
PRINT ’(1H<,I5,SP,I5,SS,I5,1H>)’,1,2,3
END

The output produced by the PRINT statement in the previous example is:

< 1 +2 3>

11.7.7 P Editing

The form of a P edit descriptor is kP where k is an optionally signed integer constant called the scale
factor. The value of the scale factor is zero at the beginning of each I/O statement. The scale factor applies
to all subsequent F, E, D and G edit descriptors until another scale factor is encountered. The scale factor
affects editing in the following way.

230 Editing

Format

1. On input with F, E, D and G editing, provided that no exponent exists in the field, the effect is
that the represented number equals the internally represented number multiplied by 10**k.

2. On input with F, E, D and G editing, the scale factor has no effect if there is an exponent in the
field.

3. On F output editing, the effect is that the represented number equals the internally represented
number multiplied by 10**k.

4. On output with E and D editing, the simple real constant (see the chapter entitled "Names, Data
Types and Constants" on page 151) part of the data is multiplied by 10**k and the exponent is
reduced by k.

5. On output with G editing, the scale factor has no effect unless the magnitude of the datum is
outside the range that allows F editing (see the section entitled "G Editing" on page 235). If E
editing is required, the scale factor has the same effect as with E output editing.

11.7.8 BN and BZ Editing

The BN and BZ edit descriptors are used to describe the interpretation of embedded blanks in numeric input
fields. They only effect I, F, E, D and G editing and have no effect during output. When a BN edit
descriptor is encountered in a format specification, embedded blanks in subsequent numeric input fields are
ignored. However, a field of all blanks has the value of zero. If a BZ edit descriptor is encountered, then
all embedded blanks in subsequent numeric input fields are treated as zeroes. At the beginning of each I/O
statement, all blanks are treated as zeroes or ignored depending on the value of the BLANK= specifier (see
the OPEN statement) currently in effect for the unit.

11.7.9 $ or \ Editing (Extension)

The $ and \ edit descriptors behave identically. The $ and \ edit descriptors are intended for output to an
interactive device such as a terminal. They are a Open Watcom FORTRAN 77 extensions. The output
record is displayed at the terminal leaving the cursor at the end of the record; the carriage return at the end
of the line is suppressed. Its use is intended for prompting for input so that the response can be entered
immediately following the prompt.

Depending on the type of terminal, the prompt may be returned as part of the input. An application must be
aware of the way a particular terminal behaves. The following example demonstrates this. Note that the
format specification in the FORMAT statement labelled 20 ignores the first eleven characters of the
response since the prompt also appears in the response.

Example:
INTEGER AGE
WRITE(6,FMT=10)

10 FORMAT(’Enter age: ’,$)
READ(5,20) AGE

20 FORMAT(11X, I2)
PRINT *,’Your age is ’,AGE
END

If the terminal you are using does not return the prompt as part of the response (that is, a read from the
terminal only includes characters typed at the terminal), the format specification in the FORMAT statement
labelled 20 must be changed, as in the following example, to achieve the same result.

Editing 231

Language Reference

Example:
INTEGER AGE
WRITE(6,FMT=10)

10 FORMAT(’Enter age: ’,\/)
READ(5,20) AGE

20 FORMAT(I2)
PRINT *,’Your age is ’,AGE
END

11.7.10 Numeric Editing: I, F, E, D and G Edit Descriptors

Numeric edit descriptors are used to specify I/O of integer, real, double precision, complex and double
precision complex data. The following rules apply to all numeric edit descriptors.

1. On input, leading blanks are not significant. The interpretation of blanks other than leading
blanks is determined by any BN or BZ edit descriptors in effect and the BLANK= specifier (see
the OPEN statement). A field of all blanks is always zero. Plus signs are optional.

2. On input, with F, E, D and G editing, the decimal location specified in the edit descriptor is
overridden by a decimal point appearing in the input field.

3. On output, the plus sign is optional and is determined by the S, SP and SS edit descriptors. A
negative quantity is represented by a negative sign. A minus sign is never produced when
outputting a value of zero.

4. On output, the representation is always right justified in the field with leading blanks inserted at
the beginning of the field if the number of characters in the representation is less than the field
width.

5. On output, if the number of characters in the external representation is greater than the field
width or an exponent exceeds its specified length using Ew.dEe, Gw.dEe, Ew.dDe or
Gw.dDe edit descriptors, the entire field is filled with asterisks.

11.7.10.1 Integer Editing: Iw and Iw.m Edit Descriptors

The Iw and Iw.m edit descriptors indicate that the field width of the field to be edited is w. The item in the
I/O list must be of type integer; on input the I/O list item will be defined by integer data, on output the I/O
list item must be defined with an integer datum.

On input, the Iw.m edit descriptor is treated identically to the Iw edit descriptor. The output field for the
Iw edit descriptor consists of zero or more leading blanks followed by a minus sign if the value of the I/O
list item is negative or an optional plus sign otherwise, followed by the magnitude of the integer datum with
no leading zeroes. Note that the integer constant contains at least one digit. On output, the Iw.m edit
descriptor specifies that at least m digits are to be displayed with leading zeroes if necessary. The value of
m must be less than or equal to the value of w. If m is zero and the value of the datum is zero, then the
output field is filled with blanks.

Example:
PRINT ’(1H<,I4.4,I5,1H>)’,23,2345

The output produced by the PRINT statement in the previous example is the string:

<0023 2345>

232 Editing

Format

11.7.10.2 Floating-point Editing: F, E, D and G Edit Descriptors

The F, E, D and G edit descriptors describe the editing of real, double precision, complex and double
precision complex data. The I/O list item corresponding to one of these edit descriptors must be of type
real, double precision, complex or double precision complex. On input, the I/O list item will become
defined with a datum whose type is the same as that of the I/O list item. On output, the I/O list item must
be defined with a datum whose type is that of the I/O list item.

11.7.10.3 F Editing

An F edit descriptor has the form Fw.d where w is the field width and d is the number of digits in the
fractional part. The input field consists of an optional sign, followed by a string of digits optionally
containing a decimal point. If the decimal point is omitted, the rightmost d digits with leading zeroes
assumed if necessary, are interpreted as the fractional part of the value represented. An exponent of one of
the following forms may follow.

1. A signed integer constant.
2. An E or D followed by an optionally signed integer constant.

Consider the following example, where the decimal point is omitted. The formula used in the evaluation is:

-d (exponent subfield)
(integer subfield) x 10 x 10

If the specification is F10.8 and the input quantity is 31415E+5 then the following conversion takes place.

-8 5
00031415 x 10 x 10

5
= .00031415 x 10

= 31.415

In other words, the decimal point is assumed to lie to the left of the 8 digits (padded with zeroes on the left)
forming the fractional part of the input value.

The output field produced by an F edit descriptor consists of blanks if necessary followed by a minus sign
if the item in the I/O list is negative or an optional plus sign otherwise, followed by a string of digits
containing a decimal point which represents the magnitude of the I/O list item. The string representing the
magnitude of the I/O list item is modified according to the scale factor and is rounded to d fractional digits.
An optional leading zero is produced only if the magnitude of the I/O list item is less than one. Note that a
leading zero is required if there would otherwise be no digits in the output field.

Example:
PRINT ’(1H<,F8.4,1H>)’, 234.43

The output produced by the PRINT statement in the previous example is the string:

<234.4300>

Editing 233

Language Reference

11.7.10.4 E and D Editing

The Ew.d, Dw.d and Ew.dEe edit descriptors indicate that the field width is w, the fractional part
contains d digits unless a scale factor greater than one is in effect, and the exponent consists of e digits.
The e has no effect on input.

The form of the input field and processing of it is the same as that for F editing. The form of the output
field is:
�

[+] [0] . x x ... x exp
[-] 1 2 d

where:

p indicates a plus or minus sign.

x’s are the d most significant digits of the value after rounding.

exp is a decimal exponent.

The form of the exponent is as follows.

1. When using the Ew.d edit descriptor, the form of the exponent is

E+nn
or if |exp| <= 99

E-nn

and

+nnn
or if 99 < |exp| <= 999

-nnn

2. When using the Ew.dEe edit descriptor, the form of the exponent is

E+n ... n where |exp| <= (10**e)-1
- 1 e

3. When using the Dw.d edit descriptor, the form of the exponent is

D+nn
or if |exp| <= 99

D-nn

and

+nnn
or if 99 < |exp| <= 999

-nnn

Note that a sign in the exponent is always present. If the exponent is 0, a plus sign is used. The forms
Ew.d and Dw.d are not to be used if |exp| > 999.

234 Editing

Format

Example:
PRINT ’(1H<,E10.4,1H>,1H<,E9.4,1H>,1H<,E12.4E3,1H>)’,

$.5, .5, .5
END

The output from the PRINT statement in the previous example is the string:

<0.5000E+00><.5000E+00>< 0.5000E+000>

The scale factor k in a P edit descriptor controls decimal normalization as follows:

1. If -d < k <= 0, then the output field contains |k| leading zeroes and d-|k| significant
digits after the decimal point.

2. If 0 < k < d+2, the output field contains exactly k significant digits to the left of the
decimal point and d-k+1 significant digits to the right of the decimal point.

3. Other values of k are not permitted.

The Ew.dDe edit descriptor behaves in the same way as the Ew.dEe edit descriptor on input; on output
the only difference is that the letter D is used to mark the exponent instead of the letter E.

11.7.10.5 G Editing

The Gw.d and Gw.dEe edit descriptors indicate that the field width is w, the fractional part contains d
digits unless a scale factor greater than one is in effect, and the exponent consists of e digits.

G input editing is the same as F input editing.

The representation on G output editing depends on the magnitude of the datum being edited. Let M be the
magnitude of the datum being edited. Then G output editing behaves as follows.

1. If M < 0.1 or M >= 10**d, Gw.d output editing is equivalent to kPEw.d output editing
and Gw.dEe output editing is equivalent to kPEw.dEe output editing where k is the scaling
factor currently in effect.

2. If 0.1 <= M < 10**d, the scale factor has no effect and the value of M determines the
editing as shown in the following table.

�

Magnitude of Datum Equivalent Edit Descriptor

0.1<=M<1 F<w-n>.d followed by n blanks
1<=M<10 F<w-n>.<d-1> followed by n blanks

. .

. .

. .
10**(d-2)<=M<10**(d-1) F<w-n>.1 followed by n blanks
10**(d-1)<=M<10**d F<w-n>.0 followed by n blanks

where:

<w-n> stands for the integer represented by evaluating w-n.

<d-1> stands for the integer represented by evaluating d-1.

Editing 235

Language Reference

n is 4 for Gw.d editing and e+2 for Gw.dEe editing.

Example:
PRINT ’(1H<,G12.6,1H>,1H<,G12.4E4,1H>)’, .5, .5
END

The output from the PRINT statement in the previous example is the string:

<0.500000 ><0.5000 >

11.7.10.6 Complex Editing

Since a complex datum consists of a pair of real or double precision data, the editing of a complex datum is
specified by two successive pairs of F, E, D or G edit descriptors. The two descriptors may be different and
may be separated by any number of non-repeatable edit descriptors. Double precision complex editing is
identical to complex editing.

11.7.11 L Edit Descriptor

The Lw edit descriptor is used for I/O list items of type logical. The field width is w.

On input the I/O list item will become defined with a datum of type logical. The input field consists of
optional blanks, followed by an optional decimal point followed by a T or F for true or false respectively.
The T and F may be followed by additional characters in the field. Open Watcom FORTRAN 77 allows t
and f in addition to T and F on input.

On output, the I/O list item must be defined with a datum of type logical. The output field consists of w-1
blanks followed by a T for true or F for false.

Example:
PRINT ’(1H<,L3,L5,1H>)’,.TRUE.,.FALSE.

The output produced by the PRINT statement in the previous example is the string:

< T F>

11.7.12 A Edit Descriptor

The A[w] edit descriptor is used for I/O list items of type character. On input, the I/O list item becomes
defined with character data. On output, the I/O list item must be defined with character data. If w is
specified in the edit descriptor, the field width is w otherwise the field width is the number of characters in
the I/O list item.

Open Watcom FORTRAN 77 also permits I/O list items of non-character data types. On input, the I/O list
item becomes defined with the binary representation of the character data. On output, the I/O list item is
assumed to be defined with character data.

If len is the length of the I/O list item and w is specified in A input editing so that w is greater than len,
the rightmost len characters of the input field will be taken. If w is less than len, then the w characters in
the input field will be taken and padded with len-w blanks.

236 Editing

Format

If w is specified in A output editing so that w is greater than len, then the output field will consist of
w-len blanks followed by the len characters of the I/O list item. If w is less than or equal to len, the
output field will consist of the first w characters of the I/O list item.

Example:
PRINT ’(1H<,A5,A8,1H>)’,’ABCDEFG’,’123’

The output produced by the PRINT statement in the previous example is the string:

<ABCDE 123>

11.7.13 Z Editing (Extension)

The Zw edit descriptor is used to display the hexadecimal representation of data or read hexadecimal data.
It is a Open Watcom FORTRAN 77 extension. The Zw edit descriptor can be used for I/O list items of any
type. The field width is w.

On output, w must be greater than or equal to twice the size (in bytes) of the I/O list item since each byte is
represented by two hexadecimal digits. For example, real data requires four bytes. Hence, w must be at
least eight.

Example:
PRINT ’(1H<,Z8,1H>)’, 256

The output produced by the PRINT statement in the previous example is the string:

<00000100>

If w is greater then the number of hexadecimal digits required to represent the data, the leftmost print
positions of the output field are filled with blanks.

Example:
PRINT ’(1H<,Z10,1H>)’,’ABCD’

The output produced by the PRINT statement in the previous example is the string

< C1C2C3C4>

if the EBCDIC character set is being used or

< 41424344>

if the ASCII character set is being used.

On input, if w is greater than twice the size (in bytes) of the I/O list item, the leftmost characters are
truncated from the input field. For example, if the input field contains the string

91A2C3D4

and is read into a character variable whose length is two, the character would contain the hexadecimal data
C3D4. If w is less than twice the size (in bytes) of the I/O item, the I/O item is padded to the left with
hexadecimal zeroes. For example, if the input field contains the string

81C1

Editing 237

Language Reference

and is read into a character variable whose length is four, the character would contain the hexadecimal data
000081C1.

11.8 Format-Directed Input/Output
Format-directed input/output (I/O) is formatted input or output controlled by a format specification. The
action taken during formatted input or output depends on the next edit descriptor in the format specification
and the next item in the input/output list if one exists.

A format specification is processed from left to right. An edit descriptor or a format specification with a
repeat specification of r is processed as a list of r edit descriptors or format specifications. A repeat
specification of one is equivalent to no repeat specification.

For each repeatable edit descriptor in the format specification, there corresponds one item in the I/O list
except an I/O list item of type complex where two repeatable floating-point edit descriptors are required.
Non-repeatable edit descriptors do not correspond to any I/O list item; they communicate information
directly with the record. Whenever a repeatable edit descriptor is encountered in a format specification,
there must be a corresponding item in the I/O list. The edited information is transmitted appropriately
between the item and the record.

Format processing is terminated when any of the following conditions occur.

1. When an edit descriptor has no corresponding item in the I/O list.
2. When a colon edit descriptor is encountered and there are no more items in the I/O list.
3. When the right parenthesis is encountered and there are no more items in the I/O list.

If the right parenthesis of the complete format specification is encountered and the I/O list has not been
exhausted, the file is positioned at the next record and format processing resumes at the start of the format
specification terminated by the last preceding right parenthesis. If there is no such right parenthesis, format
processing resumes at the start of the complete format specification. The part of the format specification
that is reused must contain at least one repeatable edit descriptor. If format processing resumes at a left
parenthesis preceded by a repeat specification, the repeat specification is also reused. The scale factor, sign
control edit descriptors and blank control edit descriptors are not affected when part of a format
specification is reused.

11.9 List-Directed Formatting
List-directed formatting is input/output without a format specification.

Example:
READ(un, *) X, Y, Z
READ(UNIT=un, FMT=*) X, Y, Z
READ *, X, Y, Z
WRITE(un, *) X, Y, Z
WRITE(UNIT=un, FMT=*) X, Y, Z
PRINT *, X, Y, Z

In the previous example, an asterisk instead of a format specification indicates list-directed formatting.

238 List-Directed Formatting

Format

Omitting the asterisk and format specification also indicates list-directed formatting.

Example:
READ, X, Y, Z
PRINT, X, Y, Z

Records used during list-directed formatting are called list-directed records. A list-directed record is a
sequence of values and value separators. Any sequence of blanks is treated as a single blank except when it
appears in a character constant. The end of a record has the same effect as a blank character.

A value is one of the following:

1. A constant.
2. A null value.
3. r*c
4. r*

where:

r is an unsigned, nonzero integer constant.

c is a constant.

The r*c form is equivalent to r successive occurrences of c. The r* form is equivalent to r successive
occurrences of the null value. In these two forms, blanks are permitted only where they are allowed in the
constant c.

A value separator is one of the following:

1. A comma preceded and followed by any number of blanks.
2. A slash preceded and followed by any number of blanks. A slash as a value separator terminates

the execution of the input statement. The definition status of the remaining input items in the
input list remains the same as it was prior to the input statement.

3. Any number of blanks between two values.

A null value is specified by having no character between successive value separators, no characters
preceding the first value separator in a record or the r* form. It has no effect on the current value of the
input item. Note that the end of record following a value separator does not specify a null value.

11.9.1 List-Directed Input

The input forms acceptable to format specifications for a given type are also acceptable for list-directed
formatting with certain exceptions.

1. Blanks are never used as zeroes and blanks embedded in constants are not allowed except in
character constants.

2. An input item of type real or double precision must have an input field suitable for F editing
except that no fractional digits are assumed unless a decimal point is present in the field. Such a
field will be called a numeric input field.

List-Directed Formatting 239

Language Reference

3. An input item of type complex or double precision complex must consist of a left parenthesis
followed by two numeric input fields separated by a comma and followed by a right parenthesis.
The numeric input fields may be preceded or followed by blanks. The end of record can only
appear between the first numeric field and the comma or between the comma and the second
numeric field. Note that a null value must not be used as the real or imaginary part but may
represent the entire complex constant.

4. An input item of type logical must not include either a slash or a comma among the optional
characters allowed in L editing.

5. An input item of type character consists of a non-empty string of characters enclosed in
apostrophes. Apostrophes in character constants are represented by two consecutive apostrophes
without a blank or end of record separating them. Character constants may span records. If this
is the case, the end of record does cause a blanks to be inserted into the character constant. Note
that a comma or slash in a character constant is not a value separator. A character input field is
assigned to a character input item as though it were a character assignment.

11.9.2 List-Directed Output

The form of the output field produced by list-directed output is similar to the form required by list-directed
input. The output of a character constant does not include the enclosing quotes and an apostrophe in a
character constant is output as a single apostrophe. The values are separated by one or more blanks. When
printed, each record will start with a blank if the file is a carriage-control oriented file. For example, the
source listing file produced by Open Watcom FORTRAN 77 is such a file.

11.10 Namelist-Directed Formatting (Extension)
The READ, WRITE, and PRINT statements may be used to transmit data between a file and the variables

specified in a NAMELIST statement.

Example:
CHARACTER*20 NAME
CHARACTER*20 STREET
CHARACTER*15 CITY
CHARACTER*20 STATE
CHARACTER*20 COUNTRY
CHARACTER*10 ZIP_CODE
INTEGER AGE
INTEGER MARKS(10)
NAMELIST /nl/ NAME, STREET, CITY, STATE,

+ COUNTRY, ZIP_CODE, AGE, MARKS
.
.
.

READ(un, nl)
READ(UNIT=un, FMT=nl)
READ nl
WRITE(un, nl)
WRITE(UNIT=un, FMT=nl)
PRINT nl

240 Namelist-Directed Formatting (Extension)

Format

11.10.1 Namelist-Directed Input (Extension)

The input data must be in a special format. The first character in each record must be blank. The second
character in the first record of a group of data records must be an ampersand (&) or dollar sign ($)
immediately followed by the NAMELIST name. The NAMELIST name must be followed by a blank and
must not contain any imbedded blanks. This name is followed by data items, optionally separated by
commas. The end of a data group is signaled by the character "&" or "$", optionally followed by the string
"END". If the "&" character was used to start the group, then it must be used to end the group. If the "$"
character was used to start the group, then it must be used to end the group.

12345678901234567890...
&NL
item1, item2, item3,
item4, item5, ...

The form of the data items in an input record is:

Name = Constant
The name may be a variable name, an array element name, or a character substring name.
The constant may be integer, real, complex, logical or character. Logical constants may be
in the form "T" or ".TRUE" and "F" or ".FALSE". Character constants must be contained
within apostrophes. Subscripts and substring indices must be of integer type.

ArrayName = Set of Constants
The set of constants consists of constants of the type integer, real, complex, logical or
character. The constants are separated by commas. The number of constants must be less
than or equal to the number of elements in the array. Successive occurrences of the same
constant may be represented in the form r*constant, where r is a non-zero integer
constant specifying the number of times the constant is to occur. Consecutive commas
within a list indicate that the values of the array elements remain unchanged.

The variable and array names specified in the input file must appear in the NAMELIST list, but the order is
not important. A name that has been made equivalent to a name in the input data cannot be substituted for
that name in the NAMELIST list. The list can contain names of items in COMMON but must not contain
dummy argument names.

Each data record must begin with a blank followed by a complete variable or array name or constant.
Embedded blanks are not permitted in names or constants. Trailing blanks after integers and exponents are
treated as zeros.

Example:
&PERSON

NAME = ’John Doe’
STREET = ’22 Main St.’ CITY = ’Smallville’
STATE = ’Texas’ COUNTRY = ’U.S.A.’
ZIP_CODE = ’78910-1203’
MARKS = 73, 82, 3*78, 89, 2*93, 91, 88
AGE = 23

&END

The input forms acceptable to format specifications for a given type are also acceptable for
namelist-directed formatting with certain exceptions.

Namelist-Directed Formatting (Extension) 241

Language Reference

1. Blanks are never used as zeroes and blanks embedded in constants are not allowed except in
character constants.

2. An input item of type real or double precision must have an input field suitable for F editing
except that no fractional digits are assumed unless a decimal point is present in the field. Such a
field will be called a numeric input field.

3. An input item of type complex or double precision complex must consist of a left parenthesis
followed by two numeric input fields separated by a comma and followed by a right parenthesis.
The numeric input fields may be preceded or followed by blanks. The end of record can only
appear between the first numeric field and the comma or between the comma and the second
numeric field. Note that a null value must not be used as the real or imaginary part but may
represent the entire complex constant.

4. An input item of type logical must not include either a slash or a comma among the optional
characters allowed in L editing.

5. An input item of type character consists of a non-empty string of characters enclosed in
apostrophes. Apostrophes in character constants are represented by two consecutive apostrophes
without a blank or end of record separating them. Character constants may span records. If this
is the case, the end of record does cause a blank to be inserted into the character constant. Note
that a comma or slash in a character constant is not a value separator. A character input field is
assigned to a character input item as though it were a character assignment.

11.10.2 Namelist-Directed Output

The form of the data items in an output record is suitable for input using a namelist-directed READ
statement.

1. Output records are written using the ampersand character (&), not the dollar sign ($), although
the dollar sign is accepted as an alternative during input. That is, the output data is preceded by
"&name" and is followed by "&END".

2. All variable and array names specified in the NAMELIST list and their values are written out,
each according to its type.

3. Character data is enclosed in apostrophes.

4. The fields for the data are made large enough to contain all the significant digits.

5. The values of a complete array are written out in columns.

242 Namelist-Directed Formatting (Extension)

12 Functions and Subroutines

12.1 Introduction
Functions and subroutines are procedures that fall into one of the following categories.

1. Statement functions
2. Intrinsic functions
3. External functions
4. Subroutines

First let us introduce some terminology.

A program unit is a collection of Open Watcom FORTRAN 77 statements and comments that can be either
a main program or a subprogram.

A main program identifies the program unit where execution is to begin. A main program is a program
unit which has as its first statement a PROGRAM statement or one which does not have a PROGRAM,
FUNCTION, SUBROUTINE or BLOCK DATA statement as its first statement. Complete execution of the
main program implies the complete execution of the program. Each executable program can contain only
one main program.

A subprogram is a program unit that either has a FUNCTION, SUBROUTINE or BLOCK DATA statement
as its first statement. This chapter will only deal with subprograms that have a FUNCTION or
SUBROUTINE statement as its first statement.

12.2 Statement Functions
A statement function is a procedure defined by a single statement. Its definition must follow all
specification statements and precede the first executable statement. The statement defining a statement
function is not an executable statement.

A statement function has the following form.
�

sf ([d [,d] ...]) = e

where:

sf is the name of the statement function.

d is a statement function dummy argument.

Statement Functions 243

Language Reference

e is an expression.

The expression e and the statement function name sf must conform according to the rules of assignment as
described in the chapter entitled "Assignment Statements" on page 187.

The statement function dummy arguments are variable names and are used to indicate the order, number
and type of the arguments of the statement function. A dummy argument name of a statement function
must only appear once in the dummy argument list of the statement function. Its scope is the statement
defining the statement function. That is, it becomes defined when the statement function is referenced and
undefined when execution of the statement function is completed. A name that is a statement function
dummy argument can also be the name of a variable, a common block, the dummy argument of another
statement function or appear in the dummy argument list of a FUNCTION, SUBROUTINE or ENTRY
statement. It cannot be used in any other context.

The expression e can contain any of the following as operands.

1. A constant.
2. A symbolic constant.
3. A variable reference. This can be a reference to a statement function dummy argument or to a

variable that appears within the same program unit which defines the statement function. If the
statement function dummy argument has the same name as a variable in the same program unit,
the statement function dummy argument is used. The variable reference can also be a dummy
argument that appears in the dummy argument list of a FUNCTION or SUBROUTINE statement.
If it is a dummy argument that has appeared in the dummy argument list of an ENTRY statement,
then the ENTRY statement must have previously appeared.

4. An array element reference.
5. An intrinsic function reference.
6. A reference to a statement function whose defining statement has previously appeared.
7. An external function reference.
8. A dummy procedure reference.
9. An expression enclosed in parentheses which adheres to the rules specified for the expression e.

12.2.1 Referencing a Statement Function

A statement function is referenced by its use in an expression. The process of executing a statement
function involves the following steps.

1. The expressions that form the actual arguments to the statement function are evaluated.
2. The dummy arguments of the statement function are associated with the actual arguments.
3. The expression e is evaluated.
4. The value of the result is converted to the type of the statement function according to the rules of

assignment and is available to the expression that contained the reference to the statement
function.

The actual arguments must agree in order, number and type with the corresponding dummy arguments.

244 Statement Functions

Functions and Subroutines

Example:
SUBROUTINE CALC(U, V)
REAL POLY, X, Y, U, V, Z, CONST

*
* Define a Statement Function.
*

POLY(X,Y) = X**2 + Y**2 + 2.0*X*Y + CONST
*
* Invoke the Statement Function.
*

CONST = 23.5
Z = POLY(U, V)
PRINT *, Z
END

In the previous example, note that after the execution of the statement function, the values of X and Y are
not equal to the value of U and V respectively; they are undefined.

12.2.2 Statement Function Restrictions

1. A statement function is local to the program unit in which it is defined. Thus, a statement
function name is not allowed to appear in an EXTERNAL statement and cannot be passed to
another procedure as an actual argument. The following example illegally attempts to pass the
statement function F to the subroutine SAM.

Example:
* Illegally passing a statement function
* to a subroutine.

PROGRAM MAIN
F(X) = X

.

.

.
CALL SAM(F)

.

.

.
END

2. If a statement function F contains a reference to another statement function G, then the
statement defining G must have previously appeared. In the following example, the expression
defining the statement function F illegally references a statement function G whose defining
statement follows the statement defining F.

Statement Functions 245

Language Reference

Example:
* Illegal order of statement functions.

.

.

.
F(X) = X + G(X)
G(X) = X + 2

.

.

.

3. The statement function name must not be the same name of any other entity in the program unit
except possibly the name of a common block.

4. If a dummy argument of a statement function is of type CHARACTER, then its length
specification must be an integer constant expression. The following is illegal.

Example:
SUBROUTINE SAM(X)
CHARACTER*(*) X

* Illegal - CHARACTER*(*) dummy argument not
* allowed in statement function.

F(X) = X
PRINT *, F(’ABC’)
END

5. An actual argument to a statement function can be any expression, except character expressions
involving the concatenation of an operand whose length specification is (*) unless the operand
is a symbolic constant.

12.3 Intrinsic Functions
An intrinsic function is a function that is provided by Open Watcom FORTRAN 77.

12.3.1 Specific Names and Generic Names of Intrinsic Functions

All intrinsic functions can be referenced by using the generic name or the specific name of the intrinsic
function. The specific name uniquely identifies the function to be performed. The type of the result is
predefined thus its name need not appear in a type statement. For example, CLOG is a specific name of the
generic LOG function and computes the natural logarithm of a complex number. The type of the result is
also COMPLEX.

When the generic name is used, a specific name is selected based on the data type of the actual argument.
For example, the generic name of the natural logarithm intrinsic function is LOG. To compute the natural
logarithm of REAL, DOUBLE PRECISION, COMPLEX or DOUBLE PRECISION COMPLEX data, the
generic name LOG can be used. Generic names simplify the use of intrinsic functions because the same
name can be used with more than one type of argument.

246 Intrinsic Functions

Functions and Subroutines

Notes:

1. It is also possible to pass intrinsic functions to subprograms. When doing so, only the specific
name of the intrinsic function can be used as an actual argument. The specific name must have
appeared in an INTRINSIC statement.

2. If an intrinsic function has more than one argument, each argument must be of the same type.

3. The generic and specific name of an intrinsic function is the same for some intrinsic functions.
For example, the specific name of the intrinsic function which computes the sine of an argument
whose type is REAL is called SIN which is also the generic name of the sine function.

The following sections present all generic and specific names of intrinsic functions and describe how they
are used. The following is a guide to interpreting the information presented.

Data types are represented by letter codes.

1. CHARACTER is represented by CH.
2. LOGICAL is represented by L.
3. INTEGER is represented by I.
4. INTEGER*1 is represented by I1.
5. INTEGER*2 is represented by I2.
6. REAL (REAL*4) is represented by R.
7. DOUBLE PRECISION (REAL*8) is represented by D.
8. Single precision COMPLEX (COMPLEX*8) is represented by C.
9. Double precision COMPLEX (COMPLEX*16) is represented by Z.

The "Definition" description gives the mathematical definition of the function performed by the intrinsic
function. There are two fields for each intrinsic function. The "Name" field lists the specific and generic
names of the intrinsic functions. When the name of an intrinsic function is a generic name, it is indicated
by the word "generic" in parentheses; all other names are specific names. The "Usage" field describes how
the intrinsic functions are used. "R ←ATAN2(R,R)" is a typical entry in this field. The name of the
intrinsic function always follows the " ←". In this example the name of the intrinsic function is ATAN2.
The data type of the arguments to the intrinsic function are enclosed in parentheses, are separated by
commas, and always follow the name of the intrinsic function. In this case, ATAN2 requires two
arguments both of type REAL. The type of the result of the intrinsic function is indicated by the type
preceding the " ←". In this case, the result of ATAN2 is of type REAL.

Open Watcom FORTRAN 77 extensions to the FORTRAN 77 language are flagged by a dagger (†).

Intrinsic Functions 247

Language Reference

12.3.2 Type Conversion: Conversion to integer

Definition: int(a)

Name: Usage:

INT (generic) I ←INT(I), I ←INT(R), I ←INT(D), I ←INT(C), I ←INT(Z) †

INT I ←INT(R)

HFIX I2 ←HFIX(R) †

IFIX I ←IFIX(R)

IDINT I ←IDINT(D)

Notes: The value of int(X) is X if X is of type INTEGER. If X is of type REAL or DOUBLE
PRECISION, then int(X) is 0 if |X|<1 and the integer whose magnitude is the largest
integer that does not exceed the magnitude of X and has the same sign of X if |X| > 1.
If X is of type COMPLEX or COMPLEX*16, int(X) is int(real part of X).

† is an extension to FORTRAN 77.

12.3.3 Type Conversion: Conversion to real

Name: Usage:

REAL (generic) R ←REAL(I), R ←REAL(R), R ←REAL(D), R ←REAL(C), R ←REAL(Z) †

REAL R ←REAL(I)

FLOAT R ←FLOAT(I)

SNGL R ←SNGL(D)

Notes: For X of type COMPLEX, REAL(X) is the real part of X. For X of type
COMPLEX*16, REAL(X) is the single precision representation of the real part of X.

† is an extension to FORTRAN 77.

248 Intrinsic Functions

Functions and Subroutines

12.3.4 Type Conversion: Conversion to double precision

Name: Usage:

DBLE (generic) D ←DBLE(I), D ←DBLE(R), D ←DBLE(D), D ←DBLE(C), D ←DBLE(Z) †

DREAL D ←DREAL(Z) †

DFLOAT D ←DFLOAT(I) †

Notes: For X of type COMPLEX, DBLE(X) is the double precision representation of the real
part of X. For X of type COMPLEX*16, DBLE(X) is the real part of X.

† is an extension to FORTRAN 77.

12.3.5 Type Conversion: Conversion to complex

Name: Usage:

CMPLX (generic) C ←CMPLX(I), C ←CMPLX(I,I), C ←CMPLX(R), C ←CMPLX(R,R), C
←CMPLX(D), C ←CMPLX(D,D), C ←CMPLX(C), C ←CMPLX(Z) †

Notes: If X is of type COMPLEX, then CMPLX(X) is X. If X is of type COMPLEX*16,
then CMPLX(X) is a complex number whose real part is REAL(real part of X) and
imaginary part is REAL(imaginary part of X).

If X is not of type COMPLEX, then CMPLX(X) is the complex number whose real
part is REAL(X) and imaginary part is REAL(0). CMPLX(X,Y) is the complex
number whose real part is REAL(X) and whose imaginary part is REAL(Y) for X,Y
not of type COMPLEX.

† is an extension to FORTRAN 77.

12.3.6 Type Conversion: Conversion to double complex

Name: Usage:

DCMPLX (generic) † Z ←DCMPLX(I), Z ←DCMPLX(I,I), Z ←DCMPLX(R), Z ←DCMPLX(R,R), Z
←DCMPLX(D), Z ←DCMPLX(D,D), Z ←DCMPLX(C), Z ←DCMPLX(Z)

Notes: If X is of type COMPLEX*16, then DCMPLX(X) is X. If X is of type COMPLEX,
then DCMPLX(X) is a COMPLEX*16 number whose real part is DBLE(real part of
X) and imaginary part is DBLE(imaginary part of X).

If X is not of type COMPLEX*16, then DCMPLX(X) is the COMPLEX*16 number
whose real part is DBLE(X) and imaginary part is DBLE(0). DCMPLX(X,Y) is the
COMPLEX*16 number whose real part is DBLE(X) and whose imaginary part is
DBLE(Y) for X,Y not of type COMPLEX.

† is an extension to FORTRAN 77.

Intrinsic Functions 249

Language Reference

12.3.7 Type Conversion: Character conversion to integer

Name: Usage:

ICHAR I ←ICHAR(CH)

Notes: ICHAR returns an integer which describes the position of the character in the
processor collating sequence. The first character in the collating sequence is in
position 0 and the last character of the collating sequence is in position n−1 where n is
the number of characters in the collating sequence. The value of ICHAR(X) for X a
character of length one is such that 0 <= ICHAR(X) <= n−1. For any characters X
and Y, the following holds true.

1. X .LT. Y if and only if ICHAR(X) .LT. ICHAR(Y)
2. X .EQ. Y if and only if ICHAR(X) .EQ. ICHAR(Y)

CHAR is the inverse of ICHAR.

12.3.8 Type Conversion: Conversion to character

Name: Usage:

CHAR CH ←CHAR(I)

Notes: CHAR returns the character in the i’th position of the processor collating sequence.
The first character in the collating sequence is in position 0 and the last character of
the collating sequence is in position n−1 where n is the number of characters in the
collating sequence. The value of CHAR(I) is of type CHARACTER of length one.
The argument I must be in the range 0 <= I <= n−1.

ICHAR is the inverse of CHAR.

12.3.9 Truncation

Definition: int(a)

Name: Usage:

AINT (generic) R ←AINT(R), D ←AINT(D)

AINT R ←AINT(R)

DINT D ←DINT(D)

Notes: The value of int(X) is X if X is of type INTEGER. If X is of type REAL or DOUBLE
PRECISION, then int(X) is 0 if |X|<1 and the integer whose magnitude is the largest
integer that does not exceed the magnitude of X and has the same sign of X if |X| > 1.
If X is of type COMPLEX or COMPLEX*16, int(X) is int(real part of X).

250 Intrinsic Functions

Functions and Subroutines

12.3.10 Nearest Whole Number

Definition: int(a+.5) if a>=0; int(a-.5) if a<0

Name: Usage:

ANINT (generic) R ←ANINT(R), D ←ANINT(D)

ANINT R ←ANINT(R)

DNINT D ←DNINT(D)

12.3.11 Nearest Integer

Definition: int(a+.5) if a>=0; int(a-.5) if a<0

Name: Usage:

NINT (generic) I ←NINT(R), I ←NINT(D)

NINT I ←NINT(R)

IDNINT I ←IDNINT(D)

12.3.12 Absolute Value

Definition: (ar**2+ai**2)**1/2 if a is complex; |a| otherwise

Name: Usage:

ABS (generic) I ←ABS(I), I1 ←ABS(I1) †, I2 ←ABS(I2) †, R ←ABS(R), D ←ABS(D), R
←ABS(C), D ←ABS(Z) †

IABS I ←IABS(I)

I1ABS I1 ←I1ABS(I1) †

I2ABS I2 ←I2ABS(I2) †

ABS R ←ABS(R)

DABS D ←DABS(D)

CABS R ←CABS(C)

CDABS † D ←CDABS(Z)

Notes: A complex number is an ordered pair of real numbers, (ar,ai) where ar is the real
part and ai is the imaginary part of the complex number.

† is an extension to FORTRAN 77.

Intrinsic Functions 251

Language Reference

12.3.13 Remainder

Definition: mod(a1,a2) = a1-int(a1/a2)*a2

Name: Usage:

MOD (generic) I ←MOD(I,I), I1 ←MOD(I1,I1) †, I2 ←MOD(I2,I2) †, R ←MOD(R,R), D
←MOD(D,D),

MOD I ←MOD(I,I)

I1MOD I1 ←I1MOD(I1,I1) †

I2MOD I2 ←I2MOD(I2,I2) †

AMOD R ←AMOD(R,R)

DMOD D ←DMOD(D,D)

Notes: The value of int(X) is X if X is of type INTEGER. If X is of type REAL or DOUBLE
PRECISION, then int(X) is 0 if |X|<1 and the integer whose magnitude is the largest
integer that does not exceed the magnitude of X and has the same sign of X if |X| > 1.
If X is of type COMPLEX or COMPLEX*16, int(X) is int(real part of X).

The value of MOD, I1MOD, I2MOD, AMOD or DMOD is undefined if the value of
a2 is 0.

12.3.14 Transfer of Sign

Definition: sign(a1,a2) = |a1| if a2>=0; -|a1| if a2<0

Name: Usage:

SIGN (generic) I ←SIGN(I,I), I1 ←SIGN(I1,I1) †, I2 ←SIGN(I2,I2) †, R ←SIGN(R,R), D
←SIGN(D,D)

ISIGN I ←ISIGN(I,I)

I1SIGN I1 ←I1SIGN(I1,I1) †

I2SIGN I2 ←I2SIGN(I2,I2) †

SIGN R ←SIGN(R,R)

DSIGN D ←DSIGN(D,D)

Notes: If the value of a1 is 0, the result is 0 which has no sign.

252 Intrinsic Functions

Functions and Subroutines

12.3.15 Positive Difference

Definition: a1-a2 if a1>a2; 0 if a1<=a2

Name: Usage:

DIM (generic) I ←DIM(I,I), I1 ←DIM(I1,I1) †, I2 ←DIM(I2,I2) †, R ←DIM(R,R), D ←DIM(D,D)

IDIM I ←IDIM(I,I)

I1IDIM I1 ←I1DIM(I1,I1) †

I2IDIM I2 ←I2DIM(I2,I2) †

DIM R ←DIM(R,R)

DDIM D ←DDIM(D,D)

12.3.16 Double Precision Product

Definition: a1*a2

Name: Usage:

DPROD D ←DPROD(R,R)

12.3.17 Choosing Largest Value

Definition: max(a1,a2,...)

Name: Usage:

MAX (generic) I ←MAX(I,...), I1 ←MAX(I1,...) †, I2 ←MAX(I2,...) †, R ←MAX(R,...), D
←MAX(D,...)

MAX0 I ←MAX0(I,...)

I1MAX0 I1 ←I1MAX0(I1,...) †

I2MAX0 I2 ←I2MAX0(I2,...) †

AMAX1 R ←AMAX1(R,...)

DMAX1 D ←DMAX1(D,...)

AMAX0 R ←AMAX0(I,...)

MAX1 I ←MAX1(R,...)

Intrinsic Functions 253

Language Reference

12.3.18 Choosing Smallest Value

Definition: min(a1,a2,...)

Name: Usage:

MIN (generic) I ←MIN(I,...), I1 ←MIN(I1,...) †, I2 ←MIN(I2,...) †, R ←MIN(R,...), D ←MIN(D,...)

MIN0 I ←MIN0(I,...)

I1MIN0 I1 ←I1MIN0(I1,...) †

I2MIN0 I2 ←I2MIN0(I2,...) †

AMIN1 R ←AMIN1(R,...)

DMIN1 D ←DMIN1(D,...)

AMIN0 R ←AMIN0(I,...)

MIN1 I ←MIN1(R,...)

12.3.19 Length

Definition: Length of character entity

Name: Usage:

LEN I ←LEN(CH)

Notes: The argument to the LEN function need not be defined.

12.3.20 Length Without Trailing Blanks

Definition: Length of character entity excluding trailing blanks

Name: Usage:

LENTRIM I ←LENTRIM(CH)

254 Intrinsic Functions

Functions and Subroutines

12.3.21 Index of a Substring

Definition: index(a1,a2) is location of substring a2 in string a1

Name: Usage:

INDEX I ←INDEX(CH,CH)

Notes: INDEX(x,y) returns the starting position of a substring in x which is identical to y.
The position of the first such substring is returned. If y is not contained in x, zero is
returned.

12.3.22 Imaginary Part of Complex Number

Definition: ai

Name: Usage:

IMAG (generic) † R ←IMAG(C), D ←IMAG(Z)

AIMAG R ←AIMAG(C)

DIMAG D ←DIMAG(Z) †

Notes: A complex number is an ordered pair of real numbers, (ar,ai) where ar is the real
part and ai is the imaginary part of the complex number.

† is an extension to FORTRAN 77.

12.3.23 Conjugate of a Complex Number

Definition: (ar,-ai)

Name: Usage:

CONJG (generic) † C ←CONJG(C), Z ←CONJG(Z)

CONJG C ←CONJG(C)

DCONJG Z ←DCONJG(Z) †

Notes: A complex number is an ordered pair of real numbers, (ar,ai) where ar is the real
part and ai is the imaginary part of the complex number.

† is an extension to FORTRAN 77.

Intrinsic Functions 255

Language Reference

12.3.24 Square Root

Definition: a**1/2

Name: Usage:

SQRT (generic) R ←SQRT(R), D ←SQRT(D), C ←SQRT(C), Z ←SQRT(Z) †

SQRT R ←SQRT(R)

DSQRT D ←DSQRT(D)

CSQRT C ←CSQRT(C)

CDSQRT Z ←CDSQRT(Z) †

Notes: The argument to SQRT must be >= 0. The result of CSQRT and CDSQRT is the
principal value with the real part >= 0. When the real part of the result is 0, the
imaginary part is >= 0.

† is an extension to FORTRAN 77.

12.3.25 Exponential

Definition: e**a

Name: Usage:

EXP (generic) R ←EXP(R), D ←EXP(D), C ←EXP(C), Z ←EXP(Z) †

EXP R ←EXP(R)

DEXP D ←DEXP(D)

CEXP C ←CEXP(C)

CDEXP Z ←CDEXP(Z) †

Notes: The result of a complex function is the principal value.

† is an extension to FORTRAN 77.

256 Intrinsic Functions

Functions and Subroutines

12.3.26 Natural Logarithm

Definition:

log (a)

e

Name: Usage:

LOG (generic) R ←LOG(R), D ←LOG(D), C ←LOG(C), Z ←LOG(Z) †

ALOG R ←ALOG(R)

DLOG D ←DLOG(D)

CLOG C ←CLOG(C)

CDLOG Z ←CDLOG(Z) †

Notes: The value of a must be > 0. The argument of CLOG and CDLOG must not be (0,0).
The result of CLOG and CDLOG is such that -π < imaginary part of the result <= π.
The imaginary part of the result is π only when the real part of the argument is < 0 and
the imaginary part of the argument = 0.

The result of a complex function is the principal value.

† is an extension to FORTRAN 77.

12.3.27 Common Logarithm

Definition:

log (a)

10

Name: Usage:

LOG10 (generic) R ←LOG10(R), D ←LOG10(D)

ALOG10 R ←ALOG10(R)

DLOG10 D ←DLOG10(D)

Intrinsic Functions 257

Language Reference

12.3.28 Sine

Definition: sin(a)

Name: Usage:

SIN (generic) R ←SIN(R), D ←SIN(D), C ←SIN(C), Z ←SIN(Z) †

SIN R ←SIN(R)

DSIN D ←DSIN(D)

CSIN C ←CSIN(C)

CDSIN Z ←CDSIN(Z) †

Notes: All angles are assumed to be in radians.

The result of a complex function is the principal value.

† is an extension to FORTRAN 77.

12.3.29 Cosine

Definition: cos(a)

Name: Usage:

COS (generic) R ←COS(R), D ←COS(D), C ←COS(C), Z ←COS(Z) †

COS R ←COS(R)

DCOS D ←DCOS(D)

CCOS C ←CCOS(C)

CDCOS Z ←CDCOS(Z) †

Notes: All angles are assumed to be in radians.

The result of a complex function is the principal value.

† is an extension to FORTRAN 77.

258 Intrinsic Functions

Functions and Subroutines

12.3.30 Tangent

Definition: tan(a)

Name: Usage:

TAN (generic) R ←TAN(R), D ←TAN(D)

TAN R ←TAN(R)

DTAN D ←DTAN(D)

Notes: All angles are assumed to be in radians.

12.3.31 Cotangent

Definition: cotan(a)

Name: Usage:

COTAN (generic) † R ←COTAN(R), D ←COTAN(D)

COTAN R ←COTAN(R) †

DCOTAN D ←DCOTAN(D) †

Notes: All angles are assumed to be in radians.

† is an extension to FORTRAN 77.

12.3.32 Arcsine

Definition: arcsin(a)

Name: Usage:

ASIN (generic) R ←ASIN(R), D ←ASIN(D)

ASIN R ←ASIN(R)

DASIN D ←DASIN(D)

Notes: The absolute value of the argument of ASIN and DASIN must be <= 1. The result is
such that -π/2 <= result <= π/2.

Intrinsic Functions 259

Language Reference

12.3.33 Arccosine

Definition: arccos(a)

Name: Usage:

ACOS (generic) R ←ACOS(R), D ←ACOS(D)

ACOS R ←ACOS(R)

DACOS D ←DACOS(D)

Notes: The absolute value of the argument of ACOS and DACOS must be <= 1. The result is
such that 0 <= result <= π.

12.3.34 Arctangent

Definition: arctan(a)

Name: Usage:

ATAN (generic) R ←ATAN(R), D ←ATAN(D)

ATAN R ←ATAN(R)

DATAN D ←DATAN(D)

Definition: arctan(a1/a2)

Name: Usage:

ATAN2 (generic) R ←ATAN2(R,R), D ←ATAN2(D,D)

ATAN2 R ←ATAN2(R,R)

DATAN2 D ←DATAN2(D,D)

Notes: The result of ATAN and DATAN is such that -π/2 <= result <= π/2. If the value of
the first argument of ATAN2 and DATAN2 is positive then the result is positive. If
the value of the first argument is 0, the result is 0 if the second argument is positive
and π if the second argument is negative. If the value of the first argument is
negative, the result is negative. If the value of the second argument is 0, the absolute
value of the result is π/2. The arguments must not both be 0. The result of ATAN2
and DATAN2 is such that -π < result <= π.

260 Intrinsic Functions

Functions and Subroutines

12.3.35 Hyperbolic Sine

Definition: sinh(a)

Name: Usage:

SINH (generic) R ←SINH(R) D ←SINH(D)

SINH R ←SINH(R)

DSINH D ←DSINH(D)

12.3.36 Hyperbolic Cosine

Definition: cosh(a)

Name: Usage:

COSH (generic) R ←COSH(R), D ←COSH(D)

COSH R ←COSH(R)

DCOSH D ←DCOSH(D)

12.3.37 Hyperbolic Tangent

Definition: tanh(a)

Name: Usage:

TANH (generic) R ←TANH(R), D ←TANH(D)

TANH R ←TANH(R)

DTANH D ←DTANH(D)

Intrinsic Functions 261

Language Reference

12.3.38 Gamma Function

Definition: gamma(a)

Name: Usage:

GAMMA (generic) R ←GAMMA(R), D ←GAMMA(D)

GAMMA R ←GAMMA(R)

DGAMMA D ←DGAMMA(D)

12.3.39 Natural Log of Gamma Function

Definition:

log (gamma(a))

e

Name: Usage:

LGAMMA (generic) R ←LGAMMA(R), D ←LGAMMA(D)

ALGAMA R ←ALGAMA(R)

DLGAMA D ←DLGAMA(D)

12.3.40 Error Function

Definition: erf(a)

Name: Usage:

ERF (generic) R ←ERF(R), D ←ERF(D)

ERF R ←ERF(R)

DERF D ←DERF(D)

262 Intrinsic Functions

Functions and Subroutines

12.3.41 Complement of Error Function

Definition: 1-erf(a)

Name: Usage:

ERFC (generic) R ←ERFC(R), D ←ERFC(D)

ERFC R ←ERFC(R)

DERFC D ←DERFC(D)

12.3.42 Lexically Greater Than or Equal

Definition: a1>=a2

Name: Usage:

LGE L ←LGE(CH,CH)

Notes: The ASCII collating sequence is used to evaluate the relation.

12.3.43 Lexically Greater Than

Definition: a1>a2

Name: Usage:

LGT L ←LGT(CH,CH)

Notes: The ASCII collating sequence is used to evaluate the relation.

12.3.44 Lexically Less Than or Equal

Definition: a1<=a2

Name: Usage:

LLE L ←LLE(CH,CH)

Notes: The ASCII collating sequence is used to evaluate the relation.

Intrinsic Functions 263

Language Reference

12.3.45 Lexically Less Than

Definition: a1<a2

Name: Usage:

LLT L ←LLT(CH,CH)

Notes: The ASCII collating sequence is used to evaluate the relation.

12.3.46 Binary Pattern Processing Functions: Boolean AND

Definition: iand(i,j) Boolean AND

Name: Usage:

IAND (generic) I ←IAND(I,I), I1 ←IAND(I1,I1), I2 ←IAND(I2,I2)

IAND I ←IAND(I,I)

I1AND I1 ←I1AND(I1,I1)

I2AND I2 ←I2AND(I2,I2)

12.3.47 Binary Pattern Processing Functions: Boolean Inclusive OR

Definition: ior(i,j) Boolean inclusive OR

Name: Usage:

IOR (generic) I ←IOR(I,I), I1 ←IOR(I1,I1), I2 ←IOR(I2,I2)

IOR I ←IOR(I,I)

I1OR I1 ←I1OR(I1,I1)

I2OR I2 ←I2OR(I2,I2)

264 Intrinsic Functions

Functions and Subroutines

12.3.48 Binary Pattern Processing Functions: Boolean Exclusive OR

Definition: ieor(i,j) Boolean exclusive OR

Name: Usage:

IEOR (generic) I ←IEOR(I,I), I1 ←IEOR(I1,I1), I2 ←IEOR(I2,I2)

IEOR I ←IEOR(I,I)

I1EOR I1 ←I1EOR(I1,I1)

I2EOR I2 ←I2EOR(I2,I2)

12.3.49 Binary Pattern Processing Functions: Boolean Complement

Definition: not(i) Boolean complement

Name: Usage:

NOT (generic) I ←NOT(I), I1 ←NOT(I1), I2 ←NOT(I2)

NOT I ←NOT(I)

I1NOT I1 ←I1NOT(I1)

I2NOT I2 ←I2NOT(I2)

12.3.50 Binary Pattern Processing Functions: Logical Shift

Definition: ishl(j,n) Logical shift

Name: Usage:

ISHL (generic) I ←ISHL(I,I), I1 ←ISHL(I1,I1), I2 ←ISHL(I2,I2)

ISHL I ←ISHL(I,I)

I1ISHL I1 ←I1SHL(I1,I1)

I2ISHL I2 ←I2SHL(I2,I2)

Intrinsic Functions 265

Language Reference

Definition: ishft(j,n) Logical shift

Name: Usage:

ISHFT (generic) I ←ISHFT(I,I), I1 ←ISHFT(I1,I1), I2 ←ISHFT(I2,I2)

ISHFT I ←ISHFT(I,I)

I1ISHFT I1 ←I1SHFT(I1,I1)

I2ISHFT I2 ←I2SHFT(I2,I2)

Notes: There are three shift operations: logical, arithmetic and circular. These shift
operations are implemented as integer functions having two arguments. The first
argument, j, is the value to be shifted and the second argument, n, is the number of
bits to shift. If n is less than 0, a right shift is performed. If n is greater than 0, a left
shift is performed. If n is equal to 0, no shift is performed. Note that the arguments
are not modified.

In a logical shift, bits shifted out from the left or right are lost. Zeros are shifted in
from the opposite end.

In an arithmetic shift, j is considered a signed integer. In the case of a right shift,
zeros are shifted into the left if j is positive and ones if j is negative. Bits shifted out
of the right are lost. In the case of a left shift, zeros are shifted into the right and bits
shifted out of the left are lost.

In a circular shift, bits shifted out one end are shifted into the opposite end. No bits
are lost.

12.3.51 Binary Pattern Processing Functions: Arithmetic Shift

Definition: isha(j,n) Arithmetic shift

Name: Usage:

ISHA (generic) I ←ISHA(I,I), I1 ←ISHA(I1,I1), I2 ←ISHA(I2,I2)

ISHA I ←ISHA(I,I)

I1ISHA I1 ←I1SHA(I1,I1)

I2ISHA I2 ←I2SHA(I2,I2)

Notes: There are three shift operations: logical, arithmetic and circular. These shift
operations are implemented as integer functions having two arguments. The first
argument, j, is the value to be shifted and the second argument, n, is the number of
bits to shift. If n is less than 0, a right shift is performed. If n is greater than 0, a left
shift is performed. If n is equal to 0, no shift is performed. Note that the arguments
are not modified.

In a logical shift, bits shifted out from the left or right are lost. Zeros are shifted in
from the opposite end.

266 Intrinsic Functions

Functions and Subroutines

In an arithmetic shift, j is considered a signed integer. In the case of a right shift,
zeros are shifted into the left if j is positive and ones if j is negative. Bits shifted out
of the right are lost. In the case of a left shift, zeros are shifted into the right and bits
shifted out of the left are lost.

In a circular shift, bits shifted out one end are shifted into the opposite end. No bits
are lost.

12.3.52 Binary Pattern Processing Functions: Circular Shift

Definition: ishc(j,n) Circular shift

Name: Usage:

ISHC (generic) I ←ISHC(I,I), I1 ←ISHC(I1,I1), I2 ←ISHC(I2,I2)

ISHC I ←ISHC(I,I)

I1ISHC I1 ←I1SHC(I1,I1)

I2ISHC I2 ←I2SHC(I2,I2)

Notes: There are three shift operations: logical, arithmetic and circular. These shift
operations are implemented as integer functions having two arguments. The first
argument, j, is the value to be shifted and the second argument, n, is the number of
bits to shift. If n is less than 0, a right shift is performed. If n is greater than 0, a left
shift is performed. If n is equal to 0, no shift is performed. Note that the arguments
are not modified.

In a logical shift, bits shifted out from the left or right are lost. Zeros are shifted in
from the opposite end.

In an arithmetic shift, j is considered a signed integer. In the case of a right shift,
zeros are shifted into the left if j is positive and ones if j is negative. Bits shifted out
of the right are lost. In the case of a left shift, zeros are shifted into the right and bits
shifted out of the left are lost.

In a circular shift, bits shifted out one end are shifted into the opposite end. No bits
are lost.

Intrinsic Functions 267

Language Reference

12.3.53 Binary Pattern Processing Functions: Bit Testing

Definition: Test bit - a2’th bit of a1 is tested. If it is 1, .TRUE. is returned. If it is 0, .FALSE. is
returned.

Name: Usage:

BTEST (generic) L ←BTEST(I,I), L ←BTEST(I1,I1), L ←BTEST(I2,I2)

BTEST L ←BTEST(I,I)

I1BTEST L ←I1BTEST(I1,I1)

I2BTEST L ←I2BTEST(I2,I2)

12.3.54 Binary Pattern Processing Functions: Set Bit

Definition: Set bit - Return a1 with a2’th bit set.

Name: Usage:

IBSET (generic) I ←IBSET(I,I), I1 ←IBSET(I1,I1), I2 ←IBSET(I2,I2)

IBSET I ←IBSET(I,I)

I1IBSET I1 ←I1BSET(I1,I1)

I2IBSET I2 ←I2BSET(I2,I2)

12.3.55 Binary Pattern Processing Functions: Clear Bit

Definition: Clear bit - Return a1 with a2’th bit cleared.

Name: Usage:

IBCLR (generic) I ←IBCLR(I,I), I1 ←IBCLR(I1,I1), I2 ←IBCLR(I2,I2)

IBCLR I ←IBCLR(I,I)

I1IBCLR I1 ←I1BCLR(I1,I1)

I2IBCLR I2 ←I2BCLR(I2,I2)

268 Intrinsic Functions

Functions and Subroutines

12.3.56 Binary Pattern Processing Functions: Change Bit

Definition: Change bit - Return a1 with a2’th bit complemented.

Name: Usage:

IBCHNG (generic) I ←IBCHNG(I,I), I1 ←IBCHNG(I1,I1), I2 ←IBCHNG(I2,I2)

IBCHNG I ←IBCHNG(I,I)

I1IBCHNG I1 ←I1BCHNG(I1,I1)

I2IBCHNG I2 ←I2BCHNG(I2,I2)

12.3.57 Binary Pattern Processing Functions: Arithmetic Shifts

Definition: lshift(j,n) Arithmetic left shift

Name: Usage:

LSHIFT (generic) I ←LSHIFT(I,I), I1 ←LSHIFT(I1,I1), I2 ←LSHIFT(I2,I2)

LSHIFT I ←LSHIFT(I,I)

I1LSHIFT I1 ←I1LSHIFT(I1,I1)

I2LSHIFT I2 ←I2LSHIFT(I2,I2)

Definition: rshift(j,n) Arithmetic right shift

Name: Usage:

RSHIFT (generic) I ←RSHIFT(I,I), I1 ←RSHIFT(I1,I1), I2 ←RSHIFT(I2,I2)

RSHIFT I ←RSHIFT(I,I)

I1RSHIFT I1 ←I1RSHIFT(I1,I1)

I2RSHIFT I2 ←I2RSHIFT(I2,I2)

Notes:

With these shift functions, n must be a non-negative integer. In an arithmetic shift, j
is considered a signed integer. In the case of a left shift, zeros are shifted into the
right and bits shifted out of the left are lost. In the case of a right shift, zeros are
shifted into the left if j is positive and ones if j is negative. Bits shifted out of the
right are lost.

If n is equal to 0, no shift is performed. Note that the arguments are not modified.

These functions are compiled as in-line code unless they are passed as arguments.

Intrinsic Functions 269

Language Reference

12.3.58 Allocated Array

Definition: Is array A allocated?

Name: Usage:

ALLOCATED L ←ALLOCATED(A)

12.3.59 Memory Location

Definition: Location of A where A is any variable, array or array element

Name: Usage:

LOC I ←LOC(A)

12.3.60 Size of Variable or Structure

Definition: Size of A in bytes where A is any constant, variable, array, or structure

Name: Usage:

ISIZEOF I ←ISIZEOF(A)

Notes: The size reported for a constant or simple variable is based on its type. The size of a
CHARACTER constant is the number of characters in the constant. The size reported
for an array is the size of the storage area required for the array. The size reported for
a structure is the size of the storage area required for the structure. An assumed-size
CHARACTER variable, assumed-size array, or allocatable array has size 0.

12.3.61 Volatile Reference

Definition: A is a volatile reference

Name: Usage:

VOLATILE A ←VOLATILE(A)

Notes: A volatile reference to a symbol indicates that the value of the symbol may be
modified in ways that are unknown to the subprogram. For example, a symbol in
common being referenced in a subprogram may be modified by another subprogram
that is processing an asynchronous interrupt. Therefore, any subprogram that is
referencing the symbol to determine its value should reference this symbol using the
VOLATILE intrinsic function so that the value currently being evaluated agrees with
the value last stored.

270 Intrinsic Functions

Functions and Subroutines

12.4 External Functions
An external function is a program unit that has a FUNCTION statement as its first statement. It is defined
externally to the program units that reference it. The form of a FUNCTION statement is defined in the
chapter entitled "FORTRAN Statements" on page 9.

The name of an external function is treated as if it was a variable. It is through the function name that the
result of an external function becomes defined. This variable must become defined before the execution of
the external function is completed. Once defined, it can be referenced or redefined. The value of this
variable when a RETURN or END statement is executed is the result returned by the external function.

Example:
INTEGER FUNCTION VECSUM(A, N)
INTEGER A(N), I
VECSUM = 0
DO 10 I = 1, N

VECSUM = VECSUM + A(I)
10 CONTINUE

END

If the variable representing the return value of the external function is of type CHARACTER with a length
specification of (*), it must not be the operand of a concatenation operator unless it appears in a character
assignment statement.

It is also possible for an external function to return results through its dummy arguments by assigning to
them. The following example demonstrates this.

External Functions 271

Language Reference

Example:
INTEGER MARKS(40), N
REAL AVG, STDDEV, MEAN
PRINT *, ’Enter number of marks’
READ(5, *) N
PRINT *, ’Enter marks’
READ(5, *) (MARKS(I), I = 1, N)
AVG = MEAN(MARKS, N, STDDEV)
PRINT *, ’Mean = ’, AVG,

$ ’ Standard Deviation = ’, STDDEV
END

*
* Define function MEAN to return the average by
* defining the function name and return the standard
* deviation by defining a dummy argument.
*

REAL FUNCTION MEAN(A, N, STDDEV)
INTEGER A, N, I
REAL STDDEV
DIMENSION A(N)
MEAN = 0
DO 10 I = 1, N

MEAN = MEAN + A(I)
10 CONTINUE

MEAN = MEAN / N
STDDEV = 0
DO 20 I = 1, N

STDDEV = STDDEV + (A(I) - MEAN)**2
20 CONTINUE

STDDEV = SQRT(STDDEV / (N - 1))
END

12.4.1 Referencing an External Function

When an external function is referenced in an expression or a CALL statement, the following steps are
performed.

1. The actual arguments are evaluated.
2. The actual arguments are associated with the corresponding dummy arguments.
3. The external function is executed.

The type of the external function reference must be the same as the type of the function name in the
external function subprogram. If the external function is of type CHARACTER, the length must also
match.

12.4.2 Actual Arguments for an External Function

An actual argument must be one of the following.

1. Any expression except a character expression involving the concatenation of an operand whose
length specification is (*) unless the operand is a symbolic constant.

2. An array name.
3. An intrinsic function name (must be the specific name) that has appeared in an INTRINSIC

statement.

272 External Functions

Functions and Subroutines

4. An external procedure name.
5. A dummy procedure name.

The actual arguments of an external function reference must match the order, number and type of the
corresponding dummy arguments. If a subroutine is an actual argument, then type agreement is not
required since a subroutine has no type.

12.4.3 External Function Subprogram Restrictions

1. The name of an external function is a global name and must not be the same as any other global
name or name local to the subprogram whose name is that of the external function. Note that the
external function name is treated as a variable within the external function subprogram.

2. The name of a dummy argument is a name local to the subprogram and must not appear in an
EQUIVALENCE, PARAMETER, SAVE, INTRINSIC or DATA statement within the same
subprogram. It may appear in a COMMON statement only as the name of a common block.

3. The name of the external function can in no way, directly or indirectly, be referenced as a
subprogram from within the subprogram it defines. It can appear in a type statement to establish
its type only if the type has not been established in the FUNCTION statement.

12.5 Subroutines
A subroutine is a program unit that has a SUBROUTINE statement as it first statement. It is defined
externally to the program units that reference it. The form of a SUBROUTINE statement can be found in
the chapter entitled "FORTRAN Statements" on page 9.

A subroutine differs from a function in that it does not return a result and hence has no type associated with
it. However, it is possible to return values from a subroutine by defining or redefining the dummy
arguments of the subroutine.

12.5.1 Referencing a Subroutine: The CALL Statement

Unlike a function, a subroutine cannot appear in an expression. Subroutines are referenced by using a
CALL statement. See the chapter entitled "FORTRAN Statements" on page 9 for details on the CALL
statement. When a CALL statement is executed, the following steps are performed.

1. The actual arguments are evaluated.
2. The actual arguments are associated with the corresponding dummy arguments.
3. The subroutine is executed.

A subroutine can be called from any subprogram but must not be called by itself, indirectly or directly.

12.5.2 Actual Arguments for a Subroutine

Each actual argument in a subroutine call must be one of the following.

1. Any expression except a character expression involving the concatenation of an operand whose
length specification is (*) unless the operand is a symbolic constant.

Subroutines 273

Language Reference

2. An array name.
3. An intrinsic function name (must be the specific name) that has appeared in an INTRINSIC

statement.
4. An external procedure name.
5. A dummy procedure name.
6. An alternate return specifier of the form *s where s is a statement number of an executable

statement in the subprogram which contained the CALL statement. This will be covered in more
detail when the RETURN statement is discussed.

The actual arguments must agree in order, number and type with the corresponding dummy arguments.
The type agreement does not apply to an actual argument which is an alternate return specifier or a
subroutine name since neither has a type.

12.5.3 Subroutine Subprogram Restrictions

1. A subroutine subprogram can contain any statement except a FUNCTION, BLOCK DATA or
PROGRAM statement.

2. The name of a subroutine is a global name and must not be used as another global name.
Furthermore, no local name in the subroutine subprogram can have the same name as the
subroutine.

3. The name of a dummy argument is local to the subroutine subprogram and must not appear in an
EQUIVALENCE, PARAMETER, SAVE, INTRINSIC or DATA statement. It may appear in a
COMMON statement only as the name of a common block.

12.6 The ENTRY Statement
An ENTRY statement allows execution of a subprogram to begin at a particular executable statement within
the subprogram in which it appears. An ENTRY statement defines an alternate entry point into a
subprogram and can appear anywhere after the FUNCTION statement in a function subprogram or the
SUBROUTINE statement in a subroutine subprogram. Also, it must not appear as a statement between the
beginning and end of a control structure. For example, an ENTRY statement cannot appear between a block
IF statement and its corresponding END IF statement or between a DO statement and the corresponding
terminal statement. It is possible to have more than one ENTRY statement in a subprogram. An ENTRY
statement is a non-executable statement. The form of an ENTRY statement can be found in the chapter
entitled "FORTRAN Statements" on page 9.

Each entry name defines an external function if it appears in a function, or an external subroutine if it
appears in a subroutine and is referenced in the same way as the actual function or subroutine name would
be referenced. Execution begins at the first executable statement that follows the ENTRY statement. The
order, number, type and names of the dummy argument lists of an ENTRY statement may be different from
that of a FUNCTION, SUBROUTINE or other ENTRY statement. However, there must still be agreement
between the actual argument list used to reference an entry name and the dummy argument list in the
corresponding ENTRY statement.

274 The ENTRY Statement

Functions and Subroutines

12.6.1 ENTRY Statements in External Functions

Entry names may also appear in type statements. Their type may or may not be the same type as other
entry names or the actual name of the external function unless the function is of type CHARACTER. If the
function is of type CHARACTER then the type of all the entry names must be of type CHARACTER.
Conversely, if an entry name is of type CHARACTER, then all other entry names and the function name
must be of type CHARACTER. An entry name, like external function names, is treated as a variable within
the subprogram it appears. Within a function subprogram, there is an association between variables whose
name is an entry name and the variable whose name corresponds to the external function. When such a
variable becomes defined, all other such variables of the same type also become defined and other such
variables not of the same type become undefined. This can be best illustrated by an example.

Example:
PRINT *, EVAL(2), EVAL3(4.0)
END

INTEGER FUNCTION EVAL(X)
INTEGER EVAL2, X
REAL EVAL3, Y
C = 1
GOTO 10
ENTRY EVAL2(X)
C = 2
GOTO 10
ENTRY EVAL3(Y)
C = 3

10 EVAL2 = C * X
END

In the previous example, invoking EVAL would cause the result of 2 to be returned even though EVAL was
never assigned to in the function EVAL but since EVAL2 and EVAL are of the same type they are associated
and hence defining EVAL2 causes EVAL to be defined. However, invoking EVAL3 would cause an
undefined result to be returned since EVAL3 is of type REAL and EVAL2 is of type INTEGER and hence
are not associated. EVAL3 does not become defined.

12.6.2 ENTRY Statement Restrictions

1. An entry name may not appear in any statement previous to the ENTRY statement containing the
entry name except in a type statement.

2. If an entry name in a function is of type CHARACTER, each entry name and the name of the
function must also be of type CHARACTER. If the name of the function or the name of any
entry point has a length specification of (*), then all such entities must have a length
specification of (*) otherwise they must all have a length specification of the same integer
value.

3. If a dummy argument appears in an executable statement, then that statement can be executed
provided that the dummy argument is in the dummy argument list of the procedure name
referenced.

4. A name that appears as a dummy argument in an ENTRY statement must not appear in the
expression of a statement function unless it is a dummy argument of the statement function, it
has appeared in the dummy argument list of a FUNCTION or SUBROUTINE statement, or the
ENTRY statement appears before the statement function statement.

The ENTRY Statement 275

Language Reference

5. A name that appears as a dummy argument in an ENTRY statement must not appear in an
executable statement preceding the ENTRY statement unless it has also appeared in a
FUNCTION, SUBROUTINE, or ENTRY statement that precedes the executable statement.

12.7 The RETURN Statement
A RETURN statement is a way to terminate the execution of a function or subroutine subprogram and return
control to the program unit that referenced it. As an extension to FORTRAN 77, Open Watcom
FORTRAN 77 permits the use of the RETURN statement in the main program. A subprogram (or main
program) may contain more than one RETURN statement or it may contain no RETURN statement. In the
latter case, the END statement has the same effect as a RETURN statement.

Execution of a RETURN or END statement causes all local entities to become undefined except for the
following.

1. Entities specified in a SAVE statement.
2. Entities in blank common.
3. Initially defined entities that have neither been redefined nor become undefined.
4. Entities in a named common block that appears in the subprogram and in a program unit that

references the subprogram directly or indirectly.

12.7.1 RETURN Statement in the Main Program (Extension)

The form of a RETURN statement in a main program is:

RETURN

When a RETURN statement is executed in the main program, program execution terminates in the same
manner as the STOP or END statement. This is an extension to FORTRAN 77.

12.7.2 RETURN Statement in Function Subprograms

The form of a RETURN statement in a function subprogram is:
�

RETURN

When a RETURN statement is executed in a function subprogram, the function value must be defined.
Control is then passed back to the program unit that referenced it.

276 The RETURN Statement

Functions and Subroutines

12.7.3 RETURN Statement in Subroutine Subprograms

The form of a RETURN statement in a subroutine subprogram is:
�

RETURN [e]

where:

e is an integer expression.

If the expression e is omitted or has a value less than one or greater than the number of asterisks appearing
in the dummy argument list of the subroutine or entry name referenced, then control is returned to the next
executable statement that follows the CALL statement in the referencing program unit. If 1 <= e <= n
where n is the number of asterisks appearing in the SUBROUTINE or ENTRY statement which contains the
referenced name, then the expression e identifies the eth asterisk in the dummy argument list. Control is
returned to the statement identified by the alternate return specified in the CALL statement that corresponds
to the eth asterisk in the dummy argument list of the referenced subroutine. The following example
demonstrates the use of alternate return specifiers in conjunction with the RETURN statement.

Example:
REAL X, Y
READ *, X, Y
CALL CMP(X, Y, *10, *20)
PRINT *, ’X equals Y’
GOTO 30

10 PRINT *, ’X less than Y’
GOTO 30

20 PRINT *, ’X greater than Y’
30 END

SUBROUTINE CMP(X, Y, *, *)
IF(X .LT. Y)RETURN 1
IF(X .GT. Y)RETURN 2
RETURN
END

12.8 Subprogram Arguments
Arguments provide a means of communication between program units. Arguments are passed to
subprograms through argument lists and are received by subprograms through argument lists. The
argument list used to pass arguments to a subprogram is called the actual argument list and the arguments
are called actual arguments. The argument list of the receiving subprogram is called the dummy argument
list and the arguments are called dummy arguments. The actual argument list must agree with the dummy
argument list in number, order and type.

Subprogram Arguments 277

Language Reference

12.8.1 Dummy Arguments

Statement function, external functions and subroutines use dummy arguments to define the type of actual
arguments they expect. A dummy argument is one of the following.

1. Variable.
2. Array.
3. Dummy procedure.
4. Asterisk (*) indicating a statement label.

Notes:

1. A statement function dummy argument may only be a variable.

2. An asterisk can only be a dummy argument for a subroutine subprogram.

Dummy arguments that are variables of type INTEGER can be used in dummy array declarators. No
dummy argument may appear in an EQUIVALENCE, DATA, PARAMETER, SAVE, INTRINSIC or
COMMON statement except as a common block name. A dummy argument must not be the same name as
the subprogram name specified in the FUNCTION, SUBROUTINE or ENTRY statement. Other than these
restrictions, dummy arguments can be used in the same way an actual name of the same class would be
used.

12.8.2 Actual Arguments

Actual arguments specify the entities that are to be associated with the dummy arguments when referencing
a subroutine or function. Actual arguments can be any of the following.

1. Any expression, except character expression involving the concatenation of an operand whose
length specification is (*) unless the operand is a symbolic constant.

2. An array name.
3. An intrinsic function name.
4. An external function or subroutine name.
5. A dummy procedure name.
6. An alternate return specifier of the form *s where s is a statement number of an executable

statement in the subprogram which contained the CALL statement.

Notes:

1. A statement function actual argument can only be a variable or an expression.

2. An alternate return specifier can only be an actual argument in the actual argument list of a
subroutine reference.

12.8.3 Association of Actual and Dummy Arguments

When a function or subroutine reference is executed, an association is established between the actual
arguments and the corresponding dummy arguments. The first dummy argument is associated with the first
actual argument, the second dummy argument is associated with the second actual argument, etc.
Association requires that the types of the actual and dummy arguments agree. A subroutine has no type and
when used as an actual argument must be associated with a dummy procedure. An alternate return specifier

278 Subprogram Arguments

Functions and Subroutines

has no type and must be associated with an asterisk. Arguments can be passed through more than one level
of procedure reference. In this case, valid association must exist at all intermediate levels as well as the last
level. Argument association is terminated upon the execution of a RETURN or END statement.

12.8.3.1 Length of Character Actual and Dummy Arguments

If a dummy argument is of type CHARACTER, the corresponding actual argument must also be of type
CHARACTER and the length of the dummy argument must be less than or equal to the length of the actual
argument. If the length of the dummy argument is len then the len leftmost characters of the actual
argument are associated with the dummy argument.

If a dummy argument of type CHARACTER is an array name, then the restriction on the length is on the
whole array and not for each array element. The length of an array element of the dummy argument may
be different from the length of the array element of the corresponding actual array, array element, or array
element substring, but the dummy array argument must not extend beyond the end of the associated actual
array.

12.8.3.2 Variables as Dummy Arguments

A dummy argument that is a variable may be associated with an actual argument that is a variable, array
element, substring or expression. Only if the actual argument is a variable, array element or substring can
the corresponding actual argument be redefined.

12.8.3.3 Arrays as Dummy Arguments

A dummy argument that is an array may be associated with an actual argument that is an array, array
element or array element substring. The number and size of the dimensions in the actual argument array
declarator may be different from the number and size of the dimensions in the dummy argument array
declarator.

If the actual argument is a non-character array name, then the size of the dummy argument array must not
exceed the size of the actual argument array. An element of the actual array becomes associated with the
element in the dummy array with the same subscript value. Association by array element of character
arrays exists only if the lengths of the array elements are the same. If their lengths are not the same, the
dummy and actual array elements will not consist of the same characters.

If the actual argument is a non-character array element name whose subscript value is asv the size of the
dummy argument array must not exceed the size of the actual argument array less asv - 1. Furthermore, the
dummy argument array element whose subscript value is dsv becomes associated with the actual argument
array element whose subscript value is asv + dsv - 1. Consider the following example.

Subprogram Arguments 279

Language Reference

Example:
DIMENSION A(10)
CALL SAM(A(3))
END

SUBROUTINE SAM(B)
DIMENSION B(5)

.

.

.
END

In the previous example, array A is an actual argument and the array B is the dummy argument. Suppose
we wanted to know which element of A is associated with the 4th element of B. Then asv would have
value 3 since the array element A(3) is the actual argument, and dsv is 4. Then the 4th element in B is 3 +
4 - 1 = 6th element of A.

If the actual argument is a character array name, character array element name or character array element
substring which begins at character storage unit ach, then the character storage unit dch of the dummy
argument array is associated with the character storage unit ach + dch - 1 of the actual array. The size of
the dummy character array must not exceed the size of the actual argument array.

12.8.3.4 Procedures as Dummy Arguments

A dummy argument that is a dummy procedure can only be associated with an actual argument that is one
of the following.

1. Intrinsic function.
2. External function.
3. External Subroutine.
4. Another dummy procedure.

If the dummy argument is used as a subroutine (that is it is invoked using a CALL statement) then the
corresponding actual argument must either be a subroutine or a dummy procedure. If the dummy argument
is used as an external function, then the corresponding actual argument must be an intrinsic function,
external function or dummy procedure. Note that it may not be possible to determine in a given program
unit whether a dummy procedure is associated with a function or subroutine. In the following example it is
not possible to tell by looking at this program unit whether PROC is an external subroutine or function.

Example:
SUBROUTINE SAM(PROC)
EXTERNAL PROC

.

.
CALL SAM1(PROC)

.

.

.
END

280 Subprogram Arguments

Functions and Subroutines

12.8.3.5 Asterisks as Dummy Arguments

A dummy argument that is an asterisk may only appear in the dummy argument list of a SUBROUTINE
statement or an ENTRY statement in a subroutine subprogram and may be associated only with an actual
argument that is an alternate return specifier in a CALL statement which references the subroutine.

Example:
CHARACTER*10 RECORD(5)
I = 2
CALL SAM(I, *999, 3HSAM)
PRINT *, ’I should be skipped’

999 PRINT *, ’I should be printed’
END
SUBROUTINE SAM(I, *, K)
CHARACTER*3 K
PRINT *, K
RETURN 1
END

Subprogram Arguments 281

Language Reference

282 Subprogram Arguments

Appendices

Appendices

284

Open Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

A. Open Watcom FORTRAN 77 Extensions to
Standard FORTRAN 77

This appendix summarizes the extensions supported by Open Watcom FORTRAN 77.

1. The INCLUDE statement for embedding source from another file is supported.

INCLUDE ’SRC’

2. Symbolic names are unique up to 32 characters. Also, ’$’, ’_’, and lowercase letters are allowed
in symbolic names.

3. Lowercase and uppercase letters are treated in the same way except in:

1. character and hollerith constants
2. apostrophe and H edit descriptors

4. End-of-line comments are permitted.

PRINT *, ’Hello world’ ! print ’Hello World’

5. The IMPLICIT NONE statement is supported.

6. An asterisk enclosed in parentheses is allowed with the type CHARACTER when specified in an
IMPLICIT statement.

IMPLICIT CHARACTER*(*) (Z)

7. Length specifiers are allowed with types specified in IMPLICIT statements.

IMPLICIT INTEGER*2 (I-N)

8. Length specifiers are allowed with type specification statements.

LOGICAL*1, LOGICAL*4
INTEGER*1, INTEGER*2, INTEGER*4
REAL*4, REAL*8
COMPLEX*8, COMPLEX*16

Length specifiers are also allowed with the type specified in FUNCTION statements.

COMPLEX*16 FUNCTION ZADD(X, Y)

9. Length specifiers are allowed with symbol names.

INTEGER I*2, A*2(10), B(20)*2

COMPLEX FUNCTION ZADD*16(X, Y)

Open Watcom FORTRAN 77 Extensions to Standard FORTRAN 77 285

Appendices

10. The DOUBLE COMPLEX statement is supported (equivalent to COMPLEX*16).

11. Double precision complex constants are allowed.

Z = (1D0, 2D0)

12. Mixing operands of type DOUBLE PRECISION and COMPLEX to yield a COMPLEX*16 result
is allowed.

DOUBLE PRECISION X
COMPLEX Y, Z*16
Z = X + Y

13. User-defined structures are supported.

STRUCTURE/END STRUCTURE
UNION/END UNION
MAP/END MAP
RECORD

14. Both character and non-character data are allowed in the same common block.

INTEGER X
CHARACTER C
COMMON /BLK/ X, C

15. Data initialization of variables in common without a block data subprogram is allowed.

16. Equivalencing character to non-character data is permitted.

INTEGER X
CHARACTER C
EQUIVALENCE (X, C)

17. Single subscripts for multi-dimensional arrays is permitted in EQUIVALENCE statements.

18. Data initialization in a type specification statement is allowed.

DOUBLE PRECISION X/4.3D1/

19. Data initialization with hexadecimal constants is allowed.

INTEGER I/Z00000007/

20. Initializing character items with numeric data is permitted.

21. Hexadecimal and octal constants of the form ’abc’x and ’567’o are supported.

22. A character constant of the form ’abcdef’c places a NUL character (CHAR(0)) at the end of
the character string.

23. Hollerith constants can be used interchangeably with character constants.

CHARACTER*10 A, B
A = ’1234567890’
B = 10H123456790

286 Open Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

Open Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

24. Several additional intrinsic functions are supported:

ALGAMA ALLOCATED BTEST CDABS
CDCOS CDSIN CDEXP CDSQRT
CDLOG COTAN DCMPLX DCONJG
DCOTAN DERF DERFC DFLOAT
DGAMMA DIMAG DLGAMA DREAL
ERF ERFC GAMMA HFIX
IAND IBCHNG IBCLR IBSET
IEOR IOR ISHA ISHC
ISHFT ISHL ISIZEOF LENTRIM
LGAMMA LOC NOT VOLATILE

25. The LOC intrinsic function returns the address of an expression.

26. The ISIZEOF intrinsic function returns the size of a structure name, the size of an array with a
constant array declarator, or the size of a variable.

27. The CHAR intrinsic function is allowed in constant expressions.

28. The ALLOCATE and DEALLOCATE statements may be used to dynamically allocate and
deallocate arrays.

29. The ALLOCATED intrinsic function may be used to determine if an allocatable array is allocated.

30. The following additional I/O specifiers for the OPEN statement are supported.

ACTION=
CARRIAGECONTROL=
RECORDTYPE=
RECL= is also allowed for files opened for

sequential access
ACCESS=’APPEND’
BLOCKSIZE=
SHARE=

31. The following additional I/O specifiers for the INQUIRE statement are supported.

ACTION=
CARRIAGECONTROL=
RECORDTYPE=
BLOCKSIZE=
SHARE=

32. In the INQUIRE statement, character data may also be returned in variables or array elements
with a substring operation.

CHARACTER FN*20
INQUIRE(UNIT=1, FILE=FN(10:20))

33. List-directed I/O is allowed with internal files.

34. No asterisk is required for list-directed I/O.

PRINT, X, Y

35. The NAMELIST statement is supported.

Open Watcom FORTRAN 77 Extensions to Standard FORTRAN 77 287

Appendices

36. Non-character arrays are allowed as format specifiers.

37. The following format edit descriptors are allowed:

Z for displaying data in hexadecimal format

Ew.dDe same as Ew.dEe except D is used as exponentiation character

$ or \ leave cursor at end of line

38. A repeat count is not required for the X edit descriptor (a repeat count of one is assumed).

39. Commas are optional between format edit descriptors.

100 FORMAT(1X I5)

40. It is possible to substring the return values of functions and statement functions.

CHARACTER*7 F, G
F() = ’1234567’
PRINT *, F()(1:3), G()(4:7)

41. Functions may be invoked via the CALL statement. This allows the return value of functions to
be ignored.

42. A RETURN statement is allowed in the main program.

43. Integer constants with more than 5 digits are allowed in the STOP and PAUSE statements.

PAUSE 123456

STOP 123456

44. Multiple assignment is allowed.

X = Y = Z = 0.0

45. The .XOR. operator is supported (equivalent to .NEQV.).

46. The .AND., .OR., .NEQV., .EQV. and .XOR. operators may take integer arguments. They
can be used to perform bit operations on integers.

47. Several additional program structure control statements are supported:

288 Open Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

Open Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

LOOP-ENDLOOP
UNTIL (can be used with WHILE and LOOP)
WHILE-ENDWILE
GUESS-ADMIT-ENDGUESS
ATENDDO-ENDATEND
ATEND
SELECT-ENDSELECT
DOWHILE-ENDDO
DO-ENDDO (no statement number)
REMOTEBLOCK-ENDBLOCK
EXECUTE
QUIT
EXIT
CYCLE

48. Block labels can be used to identify blocks of code.

LOOP : OUTER_LOOP
<statements>
LOOP : INNER_LOOP

<statements>
IF(X .GT.100) QUIT : OUTER_LOOP
<statements>

ENDLOOP
<statements>

ENDLOOP

49. An integer expression in an IF, ELSE IF, DO WHILE, WHILE or UNTIL statement is allowed.
The result of the integer expression is compared for inequality to the integer value 0.

Open Watcom FORTRAN 77 Extensions to Standard FORTRAN 77 289

Index

AMAX1 253
AMIN0 254

$ AMIN1 254
AMOD 252
ANINT 251
apostrophe edit descriptor 229$ edit descriptor 228, 231
argument

actual 44, 277
dummy 44, 70, 77-78, 141, 277

arithmetic assignment statement 187.
arithmetic constant expression 176
arithmetic expression 175

factor 175
primary 174.AND 288
term 175.EQV 288
type of 177.NEQV 288

arithmetic operators.OR 288
precedence 174.XOR 288

arithmetic relational expression 180
array

assumed-size 44
maximum size 160\

array declarator 159
actual 164
adjustable 162

\ edit descriptor 228, 231 allocatable 163
assumed-size 162
constant 162
dummy 164

A maximum number of elements 160
array element 160
array elements

maximum 160A edit descriptor 236
ASA 223ABS 251
ASIN 259access 217
ASSIGN 16-17, 81, 118, 124, 131, 147, 188, 221direct 217, 222
assignment statementsequential 217

arithmetic 187ACCESS= 112
character 189ACOS 260
extended 190actual argument 23, 44, 277
logical 188actual argument list 277
statement label 188actual array declarator 164

assumed-size array 44adjustable array declarator 162
assumed-size array declarator 162ADMIT 12, 83, 122, 206-208
AT END 18, 57, 208-212AIMAG 255
ATAN 260AINT 250
ATAN2 260ALGAMA 262

allocatable array declarator 163
ALLOCATE 13-14, 43-44, 163, 287
ALLOCATED 270, 287
ALOG 257
ALOG10 257
alternate return specifier 23, 274, 278
AMAX0 253

291

Index

comment line 4
comments

B end-of-line 4
COMMON 21, 31-32, 44, 73, 109, 160, 164, 241,

273-274, 278
common blockBACKSPACE 19-20, 61, 221

blank 31binary operator 173
named 21, 31blank common block 31

COMPLEX 33-35, 286blank line 4
complex constant 154BLANK= 114, 231-232
complex constant expression 176BLOCK DATA 6, 21, 121, 243, 274
complex edit descriptor 236block data subprogram 39
COMPLEX*16 152, 286BLOCKSIZE= 113
CONJG 255BN edit descriptor 231
connectionBTEST 268

file 219BZ edit descriptor 231
unit 219

constant 153
character 155
complex 154C
double precision 154
double precision complex 154
hexadecimal 156
hollerith 155CABS 251
integer 153CALL 23, 272-274, 277-278, 280-281, 288
logical 155carriage control 223
octal 156CASE 25, 66, 115, 122, 137-138, 201, 203-204
real 153CASE DEFAULT 25, 115, 138, 201-204
string 155case list 137

constant array declarator 162CCOS 258
constant expression 185CDABS 251
continuation line 4CDCOS 258
CONTINUE 36, 48, 196CDEXP 256
COS 258CDLOG 257
COSH 261CDSIN 258
COTAN 259CDSQRT 256
CSIN 258CEXP 256
CSQRT 256CHAR 179, 250, 287
CYCLE 37, 193, 195-199, 201, 210-211CHARACTER 26, 28, 91, 285

character assignment statement 189
character constant 155
character constant expression 179

Dcharacter expression 178
primaries 178

character relational expression 180
character set

D edit descriptor 234-235FORTRAN 3
DABS 251processor 3
DACOS 260CLOG 257
DASIN 259CLOSE 29-30, 217, 219-220
data 6-7, 21, 28, 32, 35, 39, 50, 52, 101, 105, 129, 156,CMPLX 249

164, 215, 273-274, 278collating sequence 180
data typecolon edit descriptor 230

summary 152column major 72

292

Index

DATAN 260 of type CHARACTER 279
DATAN2 260 variable 279
DBLE 249 dummy argument list 277
DCMPLX 249 dummy array declarator 164
DCONJD 255
DCOS 258
DCOSH 261
DCOTAN 259 E
DDIM 253
DEALLOCATE 14, 42, 44, 287
debug line 4

E edit descriptor 234DEFAULT 25
edit descriptorDERF 262

$ 231DERFC 263
\ 231DEXP 256
A 236DFLOAT 249
apostrophe 229DGAMMA 262
BN 231DIM 253
BZ 231DIMAG 255
colon 230DIMENSION 21, 44, 160, 164
H 229dimension declarator 159
L 236DINT 250
numeric 232-236DIRECT 95

complex 236direct access 217, 222
D 234-235disconnection 220
E 234DLGAMA 262
F 233DLOG 257
I 232DLOG10 257

P 230DMAX1 253
positional 229DMIN1 254
positional T 229DMOD 252
positional TL 229DNINT 251
positional TR 229DO 6, 36-37, 45-48, 53, 59, 196-197, 210, 274
positional X 229DO WHILE 37, 53, 197, 210, 289
repeatable 227-228dollar sign ($)
S 230in symbolic names 151
slash 230DOUBLE COMPLEX 49-50, 152, 286
SP 230DOUBLE PRECISION 51-52, 286
SS 230double precision complex constant 154
Z 237double precision complex constant expression 177

ELSE 54-55, 63, 87, 193, 195double precision constant 154
ELSE IF 54-55, 63, 87, 194-195, 289double precision constant expression 176
END 4, 21, 32, 56, 132, 135, 212, 271, 276, 279DPROD 253
END AT END 57, 212DREAL 249
END BLOCK 58, 73, 131, 204-205DSIGN 252
END DO 45, 53, 59, 74, 122, 196-198, 208-209DSIN 258
END GUESS 62, 83, 206-209DSINH 261
END IF 6, 54-56, 63, 87-88, 193-195, 208, 274DSQRT 256
END LOOP 64, 74, 106, 122, 198-200, 207-211DTAN 259
END MAP 65, 107, 169DTANH 261
END SELECT 25, 66, 115, 137-138, 201-204, 208dummy argument 23, 44, 70, 77-78, 141, 277
END STRUCTURE 67, 140, 167array 279
END UNION 68, 142, 169asterisk 281
END WHILE 69, 74, 122, 145, 199-200, 208-209dummy procedure 280

293

Index

end-of-file 216
end-of-file specifier 223

Fend-of-line
comments 4

END= 18, 211-212, 221, 223
ENDFILE 60-61, 217, 219, 221 F edit descriptor 233
endfile record 216 file 215, 217
ENDGUESS 74, 209 external 217
ENTRY 6, 27, 70, 121, 244, 274-278, 281 internal 218
entry point 274 name 217
EQUIVALENCE 21, 31-32, 71-72, 164, 169, 273-274, file existence 217

278, 286 FILE= 93, 95, 97-98, 112, 114
ERF 262 FLOAT 248
ERFC 263 FMT= 124, 147, 221-222
ERR= 221-222 FORM= 112
error specifier 222 format 6, 16, 76, 118, 124, 147, 221, 225, 231
EXECUTE 58, 73-74, 131, 204-205, 208-209 field 228
EXIT 74, 193, 195-199, 201, 209-210 field width 228
EXP 256 list-directed 118-119, 124-125, 147, 222
exponent 153-154 namelist-directed 119, 124, 147, 222
expression repeat specification 227

arithmetic 175 see also 226
arithmetic constant 176 edit descriptor 226
complex constant 176 format specification 226
double precision complex constant 177 format specifier 221
double precision constant 176 format-directed I/O 238
evaluation of 184 FORMATTED 96
factor 175 formatted input 125
integer constant 176 formatted input/output 216
logical 184 formatted record 216
logical constant 184 FORTRAN 77
primary 174 language extensions 285
real constant 176 FROM 137, 201
relational 179 function 6, 27, 77-78, 121, 153, 243-244, 271,
term 175 273-276, 278, 285

extended assignment statement 190 external 271
extension external name 70

$ edit descriptor 228 generic 153
\ edit descriptor 228 intrinsic 246
E edit descriptor 227 statement 243
X edit descriptor 228
Z edit descriptor 227

extensions
language 285 G
summary 285

EXTERNAL 75, 102, 245
external file 217

access 217 GAMMA 262
name 217 generic function 153
properties 217 ABS 251
record form 218 ACOS 260
record length 218 AINT 250

external function 271 ANINT 251
external function name 70 ASIN 259

294

Index

ATAN 260
ATAN2 260

HBTEST 268
CMPLX 249
CONJG 255
COS 258 H edit descriptor 229
COSH 261 hexadecimal constant 156
COTAN 259 HFIX 248
DBLE 249 hollerith constant 155
DCMPLX 249
DIM 253
ERF 262
ERFC 263 I
EXP 256
GAMMA 262
IAND 264
IBCHNG 269 I edit descriptor 232
IBCLR 268 I1ABS 251
IBSET 268 I1AND 264
IEOR 265 I1BCHNG 269
IMAG 255 I1BCLR 268
INT 248 I1BSET 268
IOR 264 I1BTEST 268
ISHA 266 I1DIM 253
ISHC 267 I1EOR 265
ISHFT 266 I1LSHIFT 269
ISHL 265 I1MAX0 253
LOG 257 I1MIN0 254
LOG10 257 I1MOD 252
LSHIFT 269 I1NOT 265
MAX 253 I1OR 264
MIN 254 I1RSHIFT 269
MOD 252 I1SHA 266
NINT 251 I1SHC 267
NOT 265 I1SHFT 266
REAL 248 I1SHL 265
RSHIFT 269 I1SIGN 252
SIGN 252 I2ABS 251
SIN 258 I2AND 264
SINH 261 I2BCHNG 269
SQRT 256 I2BCLR 268
TAN 259 I2BSET 268
TANH 261 I2BTEST 268

generic name 246 I2DIM 253
GO TO 16-17, 79-81, 131, 188-189, 196, 198, 201, I2EOR 265

213 I2LSHIFT 269
GUESS 12, 62, 83, 206 I2MAX0 253

I2MIN0 254
I2MOD 252
I2NOT 265
I2OR 264
I2RSHIFT 269
I2SHA 266
I2SHC 267

295

Index

I2SHFT 266 AMIN0 254
I2SHL 265 AMIN1 254
I2SIGN 252 AMOD 252
IABS 251 ANINT 251
IAND 264 ASIN 259
IBCHNG 269 ATAN 260
IBCLR 268 ATAN2 260
IBSET 268 BTEST 268
ICHAR 250 CABS 251
IDIM 253 CCOS 258
IDINT 248 CDABS 251
IDNINT 251 CDCOS 258
IEOR 265 CDEXP 256
IF 6, 9, 54-55, 63, 83-84, 86-87, 193-195, 199, CDLOG 257

208-210, 212-213, 274, 289 CDSIN 258
IFIX 248 CDSQRT 256
IMPLICIT 6, 21, 26, 33, 49, 51, 89-91, 99, 103, 116, CEXP 256

127, 152-153, 285 CHAR 179, 250
IMPLICIT NONE 91, 285 CLOG 257
implied-DO list 39 CMPLX 249
INCLUDE 6, 285 CONJG 255
INDEX 255 COS 258
initial line 4 COSH 261
input COTAN 259

formatted 125 CSIN 258
list-directed 125 CSQRT 256
unformatted 126 DABS 251

input/output DACOS 260
formatted 216 DASIN 259
unformatted 216 DATAN 260

INQUIRE 93, 97-98, 217, 219-220, 287 DATAN2 260
INT 248 DBLE 249
INTEGER 91, 99-101 DCMPLX 249
integer constant 153 DCONJG 255
integer constant expression 176 DCOS 258
integer quotient 177 DCOSH 261
internal file 218 DCOTAN 259

definition 218 DDIM 253
position 218 DERF 262
properties 218 DERFC 263
records 218 DEXP 256
restrictions 218 DFLOAT 249

INTRINSIC 102, 247, 272-274, 278 DGAMMA 262
intrinsic function 246 DIM 253

ABS 251 DIMAG 255
ACOS 260 DINT 250
AIMAG 255 DLGAMA 262
AINT 250 DLOG 257
ALGAMA 262 DLOG10 257
ALLOCATED 270 DMAX1 253
ALOG 257 DMIN1 254
ALOG10 257 DMOD 252
AMAX0 253 DNINT 251
AMAX1 253 DPROD 253

296

Index

DREAL 249 IAND 264
DSIGN 252 IBCHNG 269
DSIN 258 IBCLR 268
DSINH 261 IBSET 268
DSQRT 256 ICHAR 250
DTAN 259 IDIM 253
DTANH 261 IDINT 248
ERF 262 IDNINT 251
ERFC 263 IEOR 265
EXP 256 IFIX 248
FLOAT 248 INDEX 255
GAMMA 262 INT 248
HFIX 248 IOR 264
I1ABS 251 ISHA 266
I1AND 264 ISHC 267
I1BCHNG 269 ISHFT 266
I1BCLR 268 ISHL 265
I1BSET 268 ISIGN 252
I1BTEST 268 ISIZEOF 176, 270
I1DIM 253 LEN 254
I1EOR 265 LENTRIM 254
I1LSHIFT 269 LGE 263
I1MAX0 253 LGT 263
I1MIN0 254 LLE 263
I1MOD 252 LLT 264
I1NOT 265 LOC 270
I1OR 264 LSHIFT 269
I1RSHIFT 269 MAX0 253
I1SHA 266 MAX1 253
I1SHC 267 MIN0 254
I1SHFT 266 MIN1 254
I1SHL 265 MOD 252
I1SIGN 252 NINT 251
I2ABS 251 NOT 265
I2AND 264 REAL 248
I2BCHNG 269 RSHIFT 269
I2BCLR 268 SIGN 252
I2BSET 268 SIN 258
I2BTEST 268 SINH 261
I2DIM 253 SNGL 248
I2EOR 265 SQRT 256
I2LSHIFT 269 TAN 259
I2MAX0 253 TANH 261
I2MIN0 254 VOLATILE 270
I2MOD 252 IOR 264
I2NOT 265 IOSTAT= 97-98, 221-222
I2OR 264 ISHA 266
I2RSHIFT 269 ISHC 267
I2SHA 266 ISHFT 266
I2SHC 267 ISHL 265
I2SHFT 266 ISIGN 252
I2SHL 265 ISIZEOF 176, 270, 287
I2SIGN 252
IABS 251

297

Index

K M

keywords 151 main program 6, 243
MAP 65, 68, 107, 142, 169
MAP, END MAP 21
MAX0 253
MAX1 253L
maximum

number of array elements 160
size of an array 160

L edit descriptor 236 MIN0 254
LEN 254 MIN1 254
length specification 26, 34, 100, 104, 128 MOD 252
LENTRIM 254
LGE 263
LGT 263
line N

blank 4
comment 4
continuation 4
debug 4 named common block 21, 31
initial 4 NAMELIST 108-110, 119, 124, 147, 222, 240-242,

list-directed 219 287
list-directed format 118-119, 124-125, 147, 222 namelist-directed format 119, 124, 147, 222
list-directed formatting 238 NINT 251
list-directed input 125 nonrepeatable edit descriptors 228
list-directed output 148 NOT 265
LLE 263
LLT 264
LOC 270, 287
LOCATION= 13-15, 43 O
LOGICAL 103-105
logical assignment statement 188
logical constant 155

octal constant 156logical constant expression 184
OPEN 29, 95, 111-112, 114, 217, 219-220, 231-232,logical expression 184

287logical disjunct 183
operatorlogical factor 183

binary 173logical term 183
precedence 174logical operator 181
relational 179LOOP 6, 37, 64, 106, 143, 198, 200, 210-211
unary 173lower case 5

orderlower case letters
statement 7in symbolic names 151

OTHERWISE 25, 115, 138, 201LSHIFT 269
output

list-directed 148

298

Index

RETURN 32, 46, 56, 121, 132, 135, 213, 271, 274,
276-277, 279, 288

P REWIND 61, 133-134, 219, 221
RSHIFT 269

P edit descriptor 230
PARAMETER 6-7, 21, 28, 91, 116, 118, 124, 147,

S157, 184, 222, 273-274, 278
PAUSE 117, 288
positional edit descriptor 229
preconnection 219 S edit descriptor 230
PRINT 76, 108, 118-120, 131, 189, 205, 209-210, 215, SAVE 21, 32, 121, 135, 164, 273-274, 276, 278

217, 223, 225, 229-230, 232-233, 235-237, 240 scale factor 230
printing 223 SELECT 6, 25, 66, 115, 137, 201-203
PROGRAM 6, 121, 243, 274 sequence field 4
program unit 4, 243 SEQUENTIAL 95

sequential access 217
SHARE= 113
SIGN 252

Q simple real constant 153
SIN 258
SINH 261
slash edit descriptor 230QUIT 12, 64, 83, 88, 106, 122, 193, 195-199, 201,
SNGL 248206-209
SP edit descriptor 230
specific name 246
specifier

end-of-file 223R
error 222
format 221
record 222
status 222READ 18, 57, 108, 110, 123-126, 211-212, 215,
unit 221218-219, 240, 242

SQRT 256REAL 127-129, 248
SS edit descriptor 230real constant 153
STAT= 13-14, 42real constant expression 176
statement 4REC= 126, 149, 221-222
statement function 6, 243RECL= 96, 112, 114
statement label 4record 21, 130, 140, 167, 216
statement label assignment 188endfile 216
statement order 7fixed length 215
status specifier 222form 218
STATUS= 30, 112formatted 216
STOP 46, 132, 139, 213, 276, 288length 218
string constant 155unformatted 216
structure 67, 140, 152, 167variable length 215
STRUCTURE, END STRUCTURE 21record specifier 222
subprogram 6, 243RECORDTYPE= 113

block data 39relational expression 179
subroutine 6, 23, 121, 141, 243-244, 273-278, 281relational operator 179

name 70REMOTE BLOCK 58, 73, 131, 204-205
subscript 160repeatable edit descriptor 227
subscript expression 161

299

Index

subscript value 161
substring 165

Wsubstring expression 165
substring name 165
symbolic names 151

dollar sign ($) in 151 WHILE 6, 9, 37, 69, 143, 145-146, 199-200, 210, 289
lower case letters in 151 WRITE 108, 147-149, 215-218, 223, 240
underscore (_) in 151

X
T

X edit descriptor 229
T edit descriptor 229
TAN 259
TANH 261
TL edit descriptor 229 Z
TR edit descriptor 229

Z edit descriptor 237
U

unary operator 173
underscore (_)

in symbolic names 151
UNFORMATTED 96
unformatted input 126
unformatted input/output 216
unformatted record 216
UNION 68, 107, 142, 169
UNION, END UNION 21
unit 219
unit specifier 221
UNIT= 19, 29, 60, 93, 98, 111, 124, 147, 221-222
UNTIL 74, 106, 122, 143, 145, 200, 208-209, 289

V

VOLATILE 144, 270

300

