Open Watcom Linker

User’s Guide

Version 2.0

Uien Watcom

Notice of Copyright

Copyright 00 2002-2023 the Open Watcom Contributors. Portions Copyright O 1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit https://github.com/open-watcom/open-watcom-v2 .

Preface

The Open Watcom Linker User’s Guide describes how to use the Open Watcom Linker under DOS, ZDOS,
05/2, Windows 9x, Windows NT and QNX. The Open Watcom Linker can generate executable files that
run under DOS, RDOS, ZDOS, CauseWay DOS extender, FlashTek’s DOS extender, Phar Lap’s
386|DOS-Extender and TNT DOS extender, Tenberry Software’ s DOS/4G, Microsoft Windows 3.x,
Microsoft Windows NT/2000/X P, Microsoft Windows 95/98/Me, IBM OS/2, QNX, and Novell’s NetWare
operating system. The Open Watcom Linker can also generate ELF format executable files for those
systems that will support ELF. The Microsoft Response File conversion utility, MS2WLINK, is also
described in this book.

Acknowledgements

This book was produced with the Open Watcom GML electronic publishing system, a software tool
developed by WATCOM. In this system, writers use an ASCI| text editor to create source files containing
text annotated with tags. These tags label the structural elements of the document, such as chapters,
sections, paragraphs, and lists. The Open Watcom GML software, which runs on avariety of operating
systems, interprets the tags to format the text into a form such as you see here. Writers can produce output
for avariety of printers, including laser printers, using separately specified layout directives for such things
as font selection, column width and height, number of columns, etc. The result istype-set quality copy
containing integrated text and graphics.

July, 1997.

Trademarks Used in this Manual

ZDOS isaregistered trademark of Zebor Technology.
DOS/4G is atrademark of Tenberry Software, Inc.

0S/2 and Presentation Manager are trademarks of International Business Machines Corp. IBM, IBM PC
and IBM PS/2 are registered trademarks of International Business Machines Corp.

Intel isaregistered trademark of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. WindowsNT isa
trademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.
Phar Lap, 386|DOS-Extender and TNT are trademarks of Phar Lap Software, Inc.
OQNX isaregistered trademark of QNX Software Systems Ltd.

WATCOM isatrademark of Sybase, Inc. and its subsidiaries.

Table of Contents

The Open Watcom Linker

1 The Open Watcom Linker

2 Linking Executable Filesfor VariouS SYSIEIMS ...t
2.1USING the SY STEM DIFECLIVEoeiuiieierieie ettt sttt st s
2.2 Linking 16-bit X86 EXECULADIE FIIEScevveeeeceee et s nne

2.2.1 Linking 16-bit x86 DOS EXECUtabI€ FIlESocuviveeeciice e
2.2.2 Linking 16-bit x86 DOS .COM Executable FIlescocoeiiirrciiirrieeeeesre e
2.2.3 Linking 16-bit x86 OS/2 EXECUtaDIE FIlESoocvveiiceeceee e
2.2.4 Linking 16-bit x86 OS/2 Dynamic Link Libraries ...
2.2.5 Linking 16-bit x86 QNX EXecutabl@ Files ..o
2.2.6 Linking 16-bit x86 Windows 3.x Executable FileS ...
2.2.7 Linking 16-bit x86 Windows 3.x Dynamic Link Libraries ..o
2.3 Linking 32-bit X86 EXECULADIE FIlESc.oiveuiieiiiriieeer et
2.3.1 Linking 32-bit x86 CauseWay Executable FIlES ..o
2.3.2 Linking 32-bit x86 CauseWay Dynamic Link Librariescccccovevvivivvenienevvneseneeseeeseees
2.3.3 Linking 32-bit x86 DOS/AGW EXeCUtable FilESccvevveeeeeececerese e
2.3.4 Linking 32-bit x86 FlashTek Executable FileSccccocieiiiiiiecire e
2.3.5 Linking 32-bit x86 Novell NetWare Loadable ModUIEScceeevieevecee e
2.3.6 Linking 32-hit x86 OS/2 Executabl@ FIlESccociiiiiiiiie s
2.3.7 Linking 32-bit x86 OS/2 Dynamic Link Librariescccoiiiriieneneeeeeeesese e
2.3.8 Linking 32-bit x86 OS/2 Presentation Manager Executable Files ...,
2.3.9 Linking 32-bit x86 Phar Lap EXecutable FIleS ...
2.3.10 Linking 32-bit x86 Phar Lap TNT Executable FileS ...
2.3.11 Linking 32-bit x86 RDOS EXeCUtaDIE FIlESccovueiriiriereee e
2.3.12 Linking 32-bit x86 RDOS Dynamic Link Librariesc.ccccoeviviirenieneneeesesseeesese s
2.3.13 Linking 32-bit x86 QNX EXeCUtabl€ FIlESccveeeeiiieece e
2.3.14 Linking 32-hit x86 Extended Windows 3.X Executableccccooviviiieninc s,
2.3.15 Linking 32-bit x86 Extended Windows 3.x Dynamic Link Librariesccccceovevvivecvienen.
2.3.16 Linking 32-bit x86 Windows 3.x or 9x Virtual Device DIivercccviriienenencieieeeenens
2.3.17 Linking 32-bit x86 Windows 95 Executable FIleScocoiiiiiiiiiiee e
2.3.18 Linking 32-bit x86 Windows 95 Dynamic Link Libraries ...
2.3.19 Linking 32-bit x86 Windows NT Character-Mode Executable Filescccoeveveircenvnennnn,
2.3.20 Linking 32-bit x86 Windows NT Windowed Executable Filesccooiviiniinnicnncneens
2.3.21 Linking 32-bit x86 Windows NT Dynamic Link Librariesc.cccovevnniennieneineicnieenienens

3 Linker Directives and Options ..
3.1 The ALIAS Directive
3.2 The ALIGNMENT Option

3.3The ANONYMOUSEXPORT DIFECHIVEocvcuirveeirieieriiirieesiee sttt

3.4 The AREA Option
3.5The ARTIFICIAL Option

3.6 The AUTOSECTION DIFECLIVEcueieiuirieieiieisieiete sttt sttt see et sb et ebe e b e b nnenens
3.7 The AUTOUNLOAD OPLION ..ottt sttt st see et sttt st st s sbe e b s s e st b snene

3.8 The BEGIN Directive........
3.9 The CACHE Option

3.10 The CASEEXACT OPLION ...ocvieiieiiisiesieseesieieseeseesaseeseesessessessestestessessessessesssssessessessssessesssssessessensens

3.11 The CHECK Ogption
3.12 The CHECKSUM Option
3.13 The # Directive
3.14 The COMMIT Directive

© O ©O© OO0 0o o

PR RRRRRRRRRPRRPEPRREPRRPEPERERRERR
UV URRMRMWWWWONNNNRRPRPOOOOO

17
20
21
22
24
25
26
27
28
29
30
31
32
33

Table of Contents

3.15The COPYRIGHT OPLiONccveveeeiiecsieenieesieesie e
3.16 The CUSTOM OPLIONoceeeeerierirenieniesie e e
3.17 The CVPACK OpLiONcceeeeeeereeereesiese e
3.18 The DEBUG DIil€CLIVEoeeevieieeceteecteeceectee et

3.18.1 Line Numbering Information - DEBUG WATCOM LINES ...
3.18.2 Local Symbol Information - DEBUG WATCOM LOCALS ..o

3.18.3 Typing Information - DEBUG WATCOM TYPES

3.18.4 All Debugging Information - DEBUG WATCOM ALL .ooeeieeeeeeeeere et

3.18.5 Globa Symbol Informationc.ccceveevererereeieennne.

3.18.6 Globa Symbolsfor the NetWare Debugger - DEBUG NOVELL ccooveiveieiiceee e,

3.18.7 The ONLY EXPORTS Debugging Option
3.18.8 Using DEBUG DIrecCtivesccocevverereneenenieeneeeeenes

3.18.9 Removing Debugging Information from an Executable File ...

3.19 The DESCRIPTION OpPtioNccccvevvieerieirieeseeeeseee e
3.20 The DISABLE Dir€CtiVecccooevereeeeeeeeeeereee st
3.21 The DISTRIBUTE OPtiONc.ccovveirieerieerieerieesie e
3.22 The DOSSEG OpPtioNccveeeeeerireseseseseesieseseeseeneeseeeenens
3.23The DYNAMIC OPtion ...cccoeveveeviereeeeieeeeeesesesve e
3. 24 The ELIMINATE OPLiON ...cvvvivieeeeieirieesieesieesie s
3.25 The END DIreCliVeccccveririerieieinieeieeee e
3.26 The ENDLINK DiIreCliVeccceovrvevrieirieisieesieesienesieseee s
327 The EXIT OPtION oot
3.28 The EXPORT DIreCtiVecccoveeieeeeieieeeesceese e

3.28.1 EXPORT - 0S/2, Win16, Win32 onlycccccceveruennen.

3.28.2EXPORT - ELF ONlY ..ot

3.28.3 EXPORT - Netwar€ onlycccceveerenerenenienenierenienens
3.29 The FARCALLS OPLioN ...ccvevvieviereceeeeeeeeee e
3.30 The FILE DIr€CtiVeccovuieiriiiriirienieieseee s
3.3L The FILLCHAR OpPLioNcccovviiriiiriirenieesieesie e
3.32 The FIXEDLIB DIT€CHVEccevrieerieirieisees e
3.33 The FORCEVECTOR DireCtiVeccovevereerieierieiesieesineennns
3.34 The FORMAT DIr€CtiVecooeiieieeeieieeeeeeeeee e
3.35 The FULLHEADER Optioncccccvveviiiiriieeseesiee e
3.36 The HEAPSIZE Optioncovveivieiiirieesieesee e
3.37 ThEHELP OPLioNceoiiiiieiiieierieerie e
3.38 The HSHIFT OptioNccvviiriiiriieerieereee s
3.39 The IMPFILE OpPtioN ..ccccveeeeeeeeee e seesie e eeeenens
340 The IMPLIB OPLioNccccoveeieeeeerecese s seeseee e eseenens
341 The IMPORT DIreCliVE ...cccoevrieiriiirieesee e

3.41.1IMPORT - OS/2, Win16, Win32 onlyccccccevervenenn.

3412 IMPORT - ELF ONlY oo

3.41.3IMPORT - Netware onlyccooeveenierieneeeeeneneneene
342 The @ DITECLIVE ...cveeeveeceee ettt e
3.43 The INCREMENTAL OPLioNccoovvveeeiieeiees e
3.44 The INTERNALRELOCS Optionccccceevvveerererininsinneens
3.45 The LANGUAGE DIreCtiVeccccvvivrvrereereneneereeeeieeeseenens
3.46 The LARGEADDRESSAWARE Optioncccccoveeirieienienenn
3.47 The LIBFILE DIr€CtiVeccevvieiriiirieeieesiees e
3.48 The LIBPATH DIreCtivecccocevvinrineineeseesieese e
3.49 The LIBRARY DIr€ClVE ...ccocvvereiieirieenieesieese e

3.49.1 Searching for Libraries Specified in Environment Variables ...

3.49.2 Converting Libraries Created using Phar Lap 386|LIB

Vi

35
36
37
38
40
40
40
41
41
41
41
41
42
43

45
46
47
48
49
50
51
52
52

55
56
58
59
60
61
70
71
72
73
74
75
76
76
77
77
78
81
82
83

85
86
87
87
88

Table of Contents

3.50 The LINEARRELOCS OPLIONciiieiiiieisieesteisteseetesessesessesaesessesessssessesessessssessssessesessssessesessesessasens
3.51 The LINKVERSION OPLION ...cuecveirieierieierieesieesieestesesteesteestesessesessesessesessessssessesessesessessssessssensssens
3.52 ThE LONGLIVED OPBLON ...cuiiteiiieisieisesiseseeie sttt st saese st e ste e st e st este et seetasassessesessesessesessens
3.53 The MANGLEDNAMES OPLiON ..ccviiiciiriereieetesietisieesiesesiesesieessesestesessesassessesessesessessssessssessssensssanens
3.54 The MANY AUTODATA OPLION ..uoeeeeieieiesieniesiesiesieseeseeeesesessessesseseessessessessessessessessesessessessessessens
ST I 1Y N o @ o 1o OSSO
3.56 The MAXDATA OPLON .ooieiieiieieseiieieseeeesee s ere st s e st teseeste e s e saenseaeaeneesessessessessesssssessessessens
3.57 The MAXERRORS OPLiONociiiiiisieiie st esieseeeeae e e e sesseste e sreste e stessen e saesaenaenessesssessssessensens
3.58 ThE MESSAGES OPLION ...cvcviiieiiiieiirieiesiet et ste sttt tesestesestesessesaesesae e saesestesesbenesbe e sbenestesessesessesenes
3.59 ThE MINDATA OPLION ..ccviiitiieeierieie ettt ettt sttt st se et seebe e s s ae s sbe s sbe e sbe e ste e etenees
3.60 ThE MIXEDLE32 OPLION ...ecuiiieiirieeisieiesieietesestesestesestesessesessessesessesessesessesessesessensssensesessssessesessesessens
3.61 ThE MODNAME OPLON ..ovcviiieiiiieisieesieesesesteses e sestesestesessesaesesaesesaesestesessesessesessesessesessesessessesessans
3.62 ThE MODFILE DITECHIVEecviiveeiiieeiiieit sttt sttt st sttt st sttt et seebe e te e ne e s nnens
3.63 ThE MODTRACE DITECLIVE ...eeeiiiiiectececteee ettt ettt ettt e ee st st e aae st e e atesbeenresbeennesnnennas
3.64 ThE MODULE DITECHIVEeeetieeiecteceecte ettt sttt sttt et e beeaaesbeensesbeennesaeenresanensesneas
3.65 THEMULTILOAD OPLiON ...eoveiirieisieesieeeie sttt sttt st sttt st st s be et snene
3.66 TNE NAME DITECLIVE ...cueiviiitiieiiietesiet sttt ettt bbbt
3.67 THE NAMELEN OPLON ...ooiiiieicieiiesiiieteee ettt st st et sa e e e e eneesessessessessesnesrestesseneens
3.68 THENEWFILES OPLION .voiciiieeieieeie ettt sttt sttt st st sttt st sttt nesbe e ssenees
3.69 The NEWSEGMENT DIFECLIVE ...c.civiuiiieieiesieiesiete st seete st sae e seeseste e stesestesestesesseseesesaesessesessesessenens
3. 70 TRENLMFLAGS OPLION ..o.ecviiieiiiieisieesieeseseste st e ses e sestesessesaesesaesessesestesestesesseestesessesessesessessesensns
3. 7L The NOAUTODATA OPLON ..cveieieiieierieesieesieeste e ste e te e tesesteses e sestesessesaesesaesessesessesessessssensasensasens
3. 72 The NODEFAULTLIBS OPLIONcciiitiieiesietesietesieteseesesiesesiesesteessesessesessessssesassessessssesessesessessssanens
3. 73 The NOEXTENSION OPON ...oivciiieiiiieiiteestee st te e ste e et seetesae e e s s s se s s st sestenestenestesessensnsens
3.74 The NOINDIRECT OPLON ...coceiiieisieseseisieseseeneeeeseeseeseesesse e ssessessessesseseessessessesssssensessensesessessessens
3. 75 ThE NORELOCS OPLIONcuiiieiirieiirieiesieesieresie sttt st sesbe e seese st e sttt sbe e sbesesbesessessssessnns
3.76 The NOSTDCALL OPLON ...ocuiiieiieciisiesieseeteieseeseeseees e esessessessestes e ssessestessessensessessessssessessessessessensens
3.77 THE NOSTUB OPLiONveiviiiieiisiesiesieste e stesie e seesssaeae e esessesseesestessessestestessessessessessessssessensesessensensens
3. 78 THE NOVECTOR DITECLIVE ...ocveuiiieieterieiesieiesieie st sttt ettt st st saeseseesesae s seesessenessens
3.79 The OBJALIGN OPLION ...ooecviieiiiieieriee sttt sttt se sttt s se s s e ste e sbe e sbe e be e stenensenees
3.80 The OLDLIBRARY OPBLIOMN ...octeiiiirieierieiesieesieieseeiestesestesestesestesestesessesessesessesessessssessesessessssessssensssens
3.8L ThE OFFSET OPLiON ..veiiviiitiieiisietisietesiesesieesseessesessesessessssessesessesessesessesessensssensasessesessesessessssensasens

3.8LLOFFSET = RAW ONIY ..ottt sttt sttt st sn e s s s st et et

3.81L.2 OFFSET - OS/2, Win32, ELF ONIY ..oveviiiiieictieceeesetes ettt

3.8L3 OFFSET - PharLap ONYcoiueirieiinieesiee ettt sttt bbb

3.8L.4 OFFSET - QNX ONIY ooiiieiiieiieiiisiisesieseeie e seeeesee e s e sre e stesteseestesaesaeseensenaeseeneesessessessessessenes
3.82 The ONEAUTODATA OPLON ..ocviiieieiiiisiesiesieiesiereeeeesesestestesse e eseessensessensessssessessessessesssssensensens
3.83 ThE OPTION DIFECHIVE ...coeeitirieiereeierieie sttt sttt sttt st st sttt sttt et et es
3.84 ThE OPTLIB DITECHIVE ...ccveiiteieierieie ettt sttt sttt sttt st st sttt st st st be s

3.84.1 Searching for Optional Libraries Specified in Environment Variablesc.ccccooevveieivcenen.
3.85 The ORDER DIFECLIVEuiitieiieieieieiieeee ettt sttt e e e e ettt ae b e sbe et sbesbesbeseesbenbeneens
3.86 ThE OSDOMAIN OPLIONocviiieeiiieisieesieieesestesesesestesestesessesaesesaesessesestesessesessesessessssesessesessessesensans
3.87 THE OSNAME OPLIONcovieitiietirietiriei sttt e et bbbt b et st sb e nne s
3.88 ThE OSVERSION OPLiON ...vcuiiiceiiieisieisteeseseeeses e seetesae e saesesaesesaessstesestesestesessessssessssesessassnsessesessens
3.89 ThE OUTPUT DIFECLIVE ...ooveetictieteeteete ettt ettt sttt sttt be et eae et e eae e beeneeebeennesaeeneesaeetesaeas
3.90 THE OVERLAY DIFECLIVEoiiteciictectecteete ettt ettt sttt et st sbeeabesbeenbesbeenbesbeenbesanensesneesaesneas
3.91 The PACKCODE OPLiON ..ocuiivieieieesiiieieseeeeseeseeessessesessessessessessessessessensessesssssessssesssssessesssssessessessens
e A N T AN O L YN N © o1 o o [
S (] N I BT = (YOS
394 ThE PRIVILEGE OPION ...oeetiiietirieierieiesiee et st ses e sestesestesestesessesassesaesesaesessesestenessenessenessesessessssensns
3.95 The PROTMODE OPLIONccuiiieiiiieisieisiee et st e seste st sesse et e s e st seste e ste e stenestesessesessessnsensnns
3.96 The PSEUDOPREEMPTION OPLiONccviiiiiiietisieresieiesieesieseseeseseesessesessesessessssesessesessessssessesessesesses

vii

Table of Contents

3.97 The QUIET OLION ...cueiuiiiiiietesie ettt sttt sttt b et be bbb b e besbese et e e e e e e ene et e e enesaeeneeben
3.98 The REDEFSOK OPiON ...cvctiiietirieiesieieseeestesestesestesestesessesessesessessssessesessesessesessensssessssessssessssessasessens
3.99 ThHE REENTRANT OPLiON ...cuiiteiiieieieietesieesesie st e saetesae e saese st ste e ste e ste e tesessesessesassessessssesessesessens
3.100 The REFERENCE DITECLIVEcovivetiiieeiiiet st st et te st teseete et s s st sesteneste e tenessenensns
3.101 The RESOURCE DIFECHIVEc.eeieveeeereiseieiesieseesieieseeseeeeeseesessessessestesseseessessesssssensensensensesseessessens
3.102 The RESOURGCE OPLIONcutiieiirieierieesiee sttt sesie sttt seese st saese st e sie e sbe e sbenesbesesbesessesessessesessnns

3.102.1 RESOURCE - OS/2, WIin16, WIN32 ONlY ...ceeeeeeeereeesese e sieseseeseeseaeseesessese e ssessessssseses

3.102.2 RESOURCE = QNX ONMY ..etitiiiieiisiesieie sttt ettt st et seeseseesessesessenessenens
3.103 ThE RUNTIME DITECLIVEoiveuirieieieietesiee sttt sttt st ettt sttt s sa et s snene

3.103.1 RUNTIME = WIN32 ONIY ..vvteuiiteieiesiete sttt sttt sesbesesteseeteseesessesesaenessnnens

3.103.2 RUNTIME - PharLap ONlYcccooveirieiirieirieiestee sttt st st sae e ssesessasessenessenessenens

3.103.3 RUNTIME = ELF ONIY oottt st st sttt
3.104 The RWRELOCCHECK OPLiON ..cuiivciiieiiiieiiiieisieesteesesestesestesesseseesesaesessesessssessessssessssessssessssesens
3.105 The SCREENNAME OPLiON ...vcciiieeiiieeiiteesieesteses e seetesaetesaesesaesesaesessesessesssessssessssessssessesessesessesens
3.106 The SECTION DITECLIVEocuieeeieiieisiesiesieieie e eeeeee et see st st te e saesteseesaensenaeeeneenessesnessessessessens
3.107 The SEGMENT DITECHIVEveveieiiiieiesieseisieeseeseeeeseeseesessessesseste e s e stestestessensesseseensssesseeseesessessensens
3.108 The SHARELIB OPLiON ...veivieieiieiiiieeseeeeieeeestestese e steste e ste e seesaesesaesaensesesseessssessesssssessessensens
3.109 The SHOWDEAD OPLONocviiiiisieiestiteeseeeeaeseeseesessessessestestessessestestessensessessssssssssssssesessessensens
3.110 THE SMALL OPLION .eiueiiiietiietisieiesieiesiees ettt sttt e b st e st s s be e sbe e ntns
3111 The SORT DITECLIVEcouiiuiitiiterie sttt sttt sttt be bbbt b bbbt a e e et e e e enesaeenenbe
3122 The STACK OPLON .ttt sttt e e e et ea e s e st ebesbesbesaesbesbesee s e nbe e e e eneeneeneens
3.113 The STANDARD OPLION ...coiueeiieieieieteseeeseseseeeseeresaesesaeseste e steseste e ste e tesestesessesessessesessesessesessens
3. 114 THE START OPLION ...eiuiiiiiitiietiieteiet ettt b b e st b bbbt b
3.115 The STARTLINK DIFECHIVE ..oovciiiciiieetisiee ettt sttt ettt sae e st st ne st esbe e s
3116 ThE STATICS OPLION ..oviiiteiiteieeie ettt ettt e b e s b e e bbbttt b et bbb s
3117 THE STUB OPiON ..ottt sttt ettt bttt b et b st
T S N TSRS Y I @ oo o S
3.119 The SYMTRACE DIFECLIVE ...oveiireetirieiesiee sttt st sttt sttt
3.120 The SYNCHRONIZE OPLION ...vciiieirieieienietesesiesesiesesteseetesaesesessessesessesessenessesessesessesessessssessesessesens
3121 ThE SY STEM DITECHIVE ..o.ecveieeiiiieisiee ettt sttt sttt sttt be st e s e

3.121.1 SPECial SYSLEM NEITIES ..ottt ettt be e sbe bbb e e be e e se e e e e e e eneebenaeene
3.122 The THREADNAME OPBLIONvciiieiiiieisieisieisie e tesesteseste et saesesaesessesessesessesessessssesessessnsessesessnsens
3.123 The TOGGLERELOCS OPiON ...ccviiietirieiesieterieiesiesestesessesessesessessssesessesessessssessesessesessessssessssensssenens
3.124 The UNDEFSOK OPLiON ...ciiieiiieieieieteseeeseste s e stetesaesesaeseste e steseste e ste e stessssessssessssessesessesessessssens
3.125 ThE VECTOR DIFECHIVEeeivieierieieiieieseeieie e eeteetes e ssestesteseeste e seeseetenseneensenesneenessessesssssessessessens
3.126 ThE VERBOSE OPLION ...cectiiiitirieierieie sttt sttt sttt st s st et st st sttt et
3.127 ThE VERSION OPLiON ...veiviieiieierieeeeeieeeeeeesessestesessestesteseessessessesesnssnsessessssessessessessessessessessessens
3.128 The VFREMOV AL OPLION ...ocueieiiiiieiie i e seesieie s seeae s e ssessesse s e stesteseessestesaessensensenssnsessssessensens
3.129 The XDCDATA OPLION ..oecuiiieiirieisieesiete ettt sttt s tesee e e sae e s ae e sbe e be e sbe e sbe st sbesesseseesenenns

4 The DOS EXeCUtalle Fil€ FOIMMELccvveerireiriieeie st r e er e
4.1 MEMOIY LEBYOULoeeeiiitieti ettt ettt ettt sttt b e eae b ae e e b e e et e ae e et s ae e sbesaeesheeaeesbeemnesbeenbesbeanneeneannes
4.2 The Open Watcom Linker Memory REQUIFEMENEScccciriririeirieeriee ettt
A.3USING OVENTAYS ..ottt b st bt bbb e b e bbbt bbbttt s b et b

4.3.1 Defining OVElaY SITUCIUIESovcuirieiirieiirieerieest ettt
4.3.1.1 The Dynamic OVerlay ManaQErc..cccoereireninineninsesees e

4.3.2 Nested OVErlay SETUCLUIMNEScceierieiereereeeeee ettt s ne e se e eseese s e sresreseesnenseneeneens
4.3.3 RUIES ADOUL OVEITAYS ..o ettt st st e e ene e ne et e nnees
4.3.4 Increasing the DynamiC OVENay ATEAccccceieieeieeieieceeese ettt ens
4.3.5 How Overlay FIleSar€ OPENEUccoiieiiieiee ettt e
4.4 Converting Microsoft Response Filesto DIireCtive FIlEScoooeieiiiieiieiceereeneeeese e

viii

143
144
145
146
147

Table of Contents

5 The ZDOS EXecutall@ File FOIMELccoiiiiiiieieiee et ettt 197
5.1 IMEIMOTY LBYOUL ..ottt ettt sttt st e e e e s ae s e e s he e b e sbe et e sa e e beeae e bt eaeeebeeanesreeeesreenens 198
5.2 The Open Watcom Linker Memory REQUITEIMENEScccoueiririririniieeiees et 199
5.3 Converting Microsoft Response Filesto DireCtive FileS ... 199

6 ThE RAW FlE FOMMELociiiiiieiise st e e e ettt st e te s e e e ae e e ese e e eneesensesnesressesseseensenenseens 201
L0 AV = 0T = 1Y RS 202
6.2 The Open Watcom Linker Memory REQUITEMENESccccveceeereiiesenesesesies e seesesse e seesessesesnesseseesns 203
6.3 Converting Microsoft Response Filesto DireCtivVe FilESccvvviviievcicceecse e 203

7 The ELF EXecutable File FOMMELc.ooiiiiieee ettt ettt sb e b 205
T L IMEIMONY LBYOUL ..ottt ettt ettt b e e e s ae et e s he e e e sh e et e sa e e b e eae e bt eaeeabeeanesreenesreeneas 206

8 The NetWare O/S Executable FIlE FOMMELcooiviiiiniie et 209
8.1 NetWare Loadabl@ MOUUIEScoviieeereeeeree ettt st e e ne e esesnennennens 210
8.2 MEIMONY LAYOULeeiviititeiteteteste ettt b e eb bbbt e e e e n e e e e 212

9 The OS/2 Executable and DLL Fil€ FOMMELSccvieirieirieesiee ettt st 213
9.1 DYNamMiC LiNK LIBrariEsccciiicecceeese st sttt st sne st st sresbe b nnens 215

9.1.1 Creating aDynamicC LinK LiBrary ...ttt s 215
9.1.2Using aDynamiC LinK LIDIEIYcccooiiiiriiiie ettt s 216
0.2 MBIMONY LBYOUL ..ottt et e st b e e e et e e s he e b e she et e sa e et e eae e bt emeeabeeasesreeneesrnenens 216
9.3 Converting Microsoft Response Filesto DireCtive FIleS ... 217

10 The Phar Lap Executable File FOMMELccoooiiiiiiieieeeree et s 219
10.1 32-bit Protected-Mode APPIICEIIONSccoiveirieirieerieerie e 220
L10.2 MEMOIY USBOE ..e.veeiiieiesieeiesteeeesteeseesseessssseesessseessesssesseessessesssesseessesssessssnsessnsnssssnsnsesseessessennsessennsenns 220
O e 31V = 01TV I Yo SR 221
10.4 The Open Watcom Linker Memory REQUITEMENLScceieeeeieniere e e stese e sre e seeeeses e e sneees 222

11 The QNX EXecutable FIlE@ FOIMELccoiiieiiiiecece ettt st sttt e s aae b e enee s 223
12,2 MEMONY LBYOUL ...ttt ettt ettt ettt st b et he e bt e ae e ebe e ae e saeeeesaeeeesaeeaeesnsanbesnsanbeans 224

12 The Win16 Executable and DLL Fil@ FOIMELScccovirerierieieieeeeeese st 227
12.1 Fixed and MOVEADI€ SEOMENESeouiiiiieeereeeree et s 228
12.2 DisCardable SEgMENESooviiiiiiieeetereee ettt b ettt bbb e ne e 229
12.3 DYNamiC LiNK LiBrariesccovioiiiieie i st et nnesne e nae s 229

12.3.1 Creating aDynamic Link LiDraryccccoeoeieieiecisese st 230
12.3.2Using aDynamicC LinK LIBIaryccooeceiieieieieieceeecee et s 230
12,4 MEIMOIY LAYOUL ..eoveiiieeitiieieesieesiee ettt saas et e s see st e s e s b e sate e beesaee e beessaeenbeesabeenseesnbeensensnseene 231
12.5 Converting Microsoft Response Filesto Directive FIleS ... 231

13 The Windows Virtual Device Driver File FOrMEaL ... 233
13,1 MEMONY LBYOUL ...ttt sttt r e r e e et er e b b an e r e nrennenes 234

14 The Win32 Executable and DLL Fil@ FOIMELSccccovieriereeieieeeeeese st seeee e ee s e e 237
14.1 DYNamiC LiNK LIBrariesoccvioiiieeieseeee ettt sne st nnesne e nae s 239

14.1.1 Creating a Dynamic Link LiDraryccccoeoeieieicinese st 239

14.1.2 Using a DYyNamic LinK LIBIraryccooececieieieieicsieecee e sre et s 239

14.2 MEIMOIY LAYOUL ..ocveiiieeititeieese ettt sttt saes et e s see st e s ste s b e sat e e beesate e beessaeenbeesabeenneennbeensensareene 240

15 Open Watcom Linker DiagnOStiC IMESSAgESc.coveeereereeiireriesiesiesieseesiesteseesseseesee e sses e ssessesbesaeseesbeseeseenean 241

The Open Watcom Linker

The Open Watcom Linker

1 The Open Watcom Linker

The Open Watcom Linker isalinkage editor (linker) that takes object and library files asinput and
produces executable files as output. The following object module and library formats are supported by the
Open Watcom Linker.

* The standard Intel Object Module Format (OMF).

* Microsoft’s extensions to the standard Intel OMF.

* Phar Lap's Easy OMF-386 object module format for linking 386 applications.

» The COFF object module format.

* The ELF object module format.

* The OMF library format.

» The AR object library format (Microsoft, GNU or BSD compatible).

The Open Watcom Linker is capable of producing a number of executable file formats. The following lists
these executable file formats.

* DOS executable files

* RDOS executable filesincluding Dynamic Link Libraries

* ZDOS executablefiles

* ELF executable files

« executable files that run under CauseWay DOS extender including Dynamic Link Libraries

* executable files that run under Tenberry Software’s DOS/4G and DOS/AGW DOS extenders, and
compatible products

* executable files that run under FlashTek’s DOS extender

» executable files that run under Phar Lap’s 386|DOS-Extender

 NetWare Loadable Modules (NLMs) that run under Novell’s NetWare operating system
» OS2 executable files including Dynamic Link Libraries

* QNX executablefiles

* 16-bit Windows (Win16) executable filesincluding Dynamic Link Libraries

* 32-bit Windows (Win32) executable files including Dynamic Link Libraries

The Open Watcom Linker 3

The Open Watcom Linker

* raw binary images

* Intel Hex files (Hex80, Hex86 and extended linear)
In addition to being able to generate the above executabl e file formats, the Open Watcom Linker also runs
under avariety of operating systems. Currently, the Open Watcom Linker runs under the following
operating systems.

* DOS

* ZDOS

e Linux

* 0S/2

« QNX

» Windows NT/2000/XP

* Windows 95/98/Me
We refer to the operating system upon which you run the Open Watcom Linker as the "host".
The chapter entitled "Linking Executable Files for Various Systems' on page 5 summarizes each of the
executable file formats that can be generated by the linker. The chapter entitled "Linker Directives and

Options' on page 17 describes al of the linker directives and options. The remaining chapters describe
aspects of each of the executable file formats.

4 The Open Watcom Linker

2 Linking Executable Files for Various Systems

The Open Watcom Linker command line format is as follows.

wlink {directive}

where directive is a series of Open Watcom Linker directives specified on the command line or in one or
more files. If the directives are contained within afile, the "@" character is used to reference that file. If
no file extension is specified, afile extension of "Ink" is assumed.

Example:
W ink nane testprog @irst @econd option nmap

In the above example, directives are specified on the command line (e.g., "name testprog™" and "option
map") andinfiles(e.g., first. | nk and second. | nk).

2.1 Using the SYSTEM Directive

For each executable file format that can be created using the Open Watcom Linker, a specific SY STEM
directive may be used. The SYSTEM directive selects a subset of the available directives necessary to
create each specific executable file format.

System Description

causaway 32-hit x86 CauseWay executable

cwdllr 32-hit x86 CauseWay Dynamic Link Library (register calling convention)

cwdlls 32-bit x86 CauseWay Dynamic Link Library (stack calling convention)

com 16-bit x86 DOS ".COM" executable

dos 16-bit x86 DOS executable

dos4g 32-hit x86 DOS4GW executable

dos4gnz non-zero based 32-bit x86 DOS/4GW executable

netware 32-bit x86 NetWare Loadable Module. Uses original Novell developer kit (NOVH +

NOVI). Thisisalegacy system type. It isrecommended to use one of the netware clib or
netware_libc system types instead.

novell synonym for "netware". Thisisalegacy systemtype. It isrecommended to use one of the
netware _clib or netware_libc system types instead.

Using the SYSTEM Directive 5

The Open Watcom Linker

6

netware_libc

32-bit x86 NetWare Loadable Module. Targetted for Novells LibC based environment on
NetWare 5 and later. Usesthe full Open Watcom run-time library for NetWare.

netware_libc_lite 32-bit x86 NetWare Loadable Module. Targetted for Novells LibC based environment

netware clib

on NetWare 5 and later. Uses the thin Open Watcom run-time library support for NetWare
and consumes C library functionality from the server libraries.

32-hit x86 NetWare Loadable Module. Targetted for Novells traditional CLIB based
environment on NetWare 3 and later. Usesthe full Open Watcom run-time library for
NetWare.

netware _clib_lite 32-bit x86 NetWare Loadable Module. Targetted for Novellstraditional CLIB based

0s2
os2_dll
0s2_pm
0s2v2
os2v2_dll
0s2v2_pm
pharlap
tnt

rdos

rdos dil
gnx
gnx386
x32r
X32rv
x32s
X32sv
windows
windows_dll

win_vxd

environment on NetWare 3 and later. Uses the thin Open Watcom run-time library support
for NetWare and consumes C library functionality from the server libraries.

16-bit x86 OS/2 executable

16-bit x86 OS2 Dynamic Link Library

16-bit x86 OS/2 Presentation Manager executable

32-hit x86 OS/2 executable

32-bit x86 OS/2 Dynamic Link Library

32-bit x86 OS/2 Presentation Manager executable

32-hit x86 Phar Lap executable

32-hit x86 Phar Lap TNT executable

32-bit x86 RDOS executable

32-bit x86 RDOS Dynamic Link Library

16-bit x86 QNX executable

32-bit x86 QNX executable

32-hit x86 FlashTek executable using register-based calling conventions

32-bit x86 virtual-memory FlashTek executable using register-based calling conventions
32-bit x86 FlashTek executable using stack-based calling conventions

32-bit x86 virtual-memory FlashTek executable using stack-based calling conventions
16-bit x86 Windows 3.x executable

16-bit x86 Windows 3.x Dynamic Link Library

32-bit x86 Windows 3.x or 9x Virtual Device Driver

Using the SYSTEM Directive

Linking Executable Files for Various Systems

win95 32-bit x86 Windows 9x executable

win95 dll 32-bit x86 Windows 9x Dynamic Link Library

nt 32-bit x86 Windows NT character-mode executable

nt_win 32-bit x86 Windows NT windowed executable

win32 synonym for "nt_win"

nt_dll 32-bit x86 Windows NT Dynamic Link Library

win386 32-bit x86 Open Watcom extended Windows 3.x executable or Dynamic Link Library

The various systems that we have listed above are defined in special linker directive fileswhich are plain
ASCII text files that you can edit. Thesefilesarecalled wl i nk. | nk andw system | nk.

Thefilewl i nk. | nk isaspecia linker directivefile that is automatically processed by the Open Watcom
Linker before processing any other directives. On aDOS, ZDOS, OS2, or Windows-hosted system, this
file must be located in one of the paths specified in the PATH environment variable. On a QNX-hosted
system, thisfile should be located inthe / et ¢ directory. A default version of thisfileislocated in the

\ wat coml bi nwdirectory on DOS-hosted systems, the \ wat com bi np directory on OS/2-hosted
systems, the / et ¢ directory on QNX-hosted systems, and the \ wat com bi nnt directory on Windows
95 or Windows NT-hosted systems. Notethat thefile w i nk. | nk includesthefilew syst em | nk
which islocated in the \ wat com bi nwdirectory on DOS, 0S/2, or Windows-hosted systems and the

/ et c directory on QNX-hosted systems.

Thefilesw i nk. | nk and Wl syst em | nk reference the WATCOM environment variable which must
be set to the directory in which you installed your software.

The default name of the linker directive file (W i nk. | nk) can be overridden by the WLINK _LNK
environment variable. If the specified file can’t be opened, the default file name will be used. For
example, if the WLINK _L NK environment variable is defined as follows

set WLI NK_LNK=ny. | nk

then the Open Watcom Linker will attempt to usea rnry. | nk directive file, and if that file cannot be
opened, the linker will revert to using the default wi i nk. | nk file.

In the following sections, we show some of the typical directives that you might use to create a particular
executable file format. The common directives are described in the chapter entitled "Linker Directives and
Options' on page 17. They are "common" in the sense that they may be used with any executable format.
There are other, less general, directives that may be specified for a particular executable format. In each of
the following sections, we refer you to chapters in which you will find more information on the directives
available with the executable format used.

At thispoint, it should be noted that various systems have adopted particular executable file formats. For
example, the CauseWay DOS extender, Tenberry Software DOS/AG(W) and FlashTek DOS extenders all
support one of the OS/2 executable file formats. It isfor this reason that you may find that we direct you to
a chapter which would, at first glance, seem unrelated to the executable file format in which you are
interested.

To summarize, the steps that you should follow to learn about creating a particular executable are:

Using the SYSTEM Directive 7

The Open Watcom Linker

1. Look for asection in this chapter that describes the executable format in which you are
interested.

2. Seethe chapter entitled "Linker Directives and Options' on page 17 for a description of the
common directives.

3. If you require additional information, see also the chapter to which we have referred you.

4. Also check the Open Watcom C/C++ Programmer’s Guide or Open Watcom FORTRAN 77

Programmer’s Guide for more information on creating specific types of applications.

2.2 Linking 16-bit x86 Executable Files

The following sections describe how to link avariety of 16-bit executable files.

2.2.1 Linking 16-bit x86 DOS Executable Files

To create thistype of file, use the following structure.

system dos

option map

nane app_nane
file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The DOS Executable File Format" on page 185.

2.2.2 Linking 16-bit x86 DOS .COM Executable Files

To create thistype of file, use the following structure.

system com

option nap

nane app_nane
file obj 1, obj 2,
library 1ibl, lib2,

For more information, see the chapter entitled "The DOS Executable File Format" on page 185.

2.2.3 Linking 16-bit x86 OS/2 Executable Files

To create thistype of file, use the following structure.

system 0s2

option map

name app_nane
file obj 1, obj 2,
library 1ibl, lib2,

For more information, see the chapter entitled "The OS2 Executable and DLL File Formats' on page 213.

8 Linking 16-bit x86 Executable Files

Linking Executable Files for Various Systems

2.2.4 Linking 16-bit x86 0S/2 Dynamic Link Libraries

To create thistype of file, use the following structure.

system
option
name
file
library

os2 dl |

map
app_nane
obj 1, obj 2,
libl, 1ib2,

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats' on page 213.

2.2.5 Linking 16-bit x86 QNX Executable Files

To create thistype of file, use the following structure.

system
option
name
file
library

gnx

map
app_nane
obj 1, obj 2,
[ibl, lib2,

For more information, see the chapter entitled "The QNX Executable File Format" on page 223.

2.2.6 Linking 16-bit x86 Windows 3.x Executable Files

To create thistype of file, use the following structure.

system
option
name
file
library

w ndows
map
app_nane
obj 1, obj 2,
libl, lib2,

For more information, see the chapter entitled "The Win16 Executable and DLL File Formats' on page 227.

2.2.7 Linking 16-bit x86 Windows 3.x Dynamic Link Libraries

To create thistype of file, use the following structure.

system
option
name
file
library

wi ndows_dl |
map
app_nane
obj 1, obj 2,
[ibl, |ib2,

For more information, see the chapter entitled "The Win16 Executable and DLL File Formats' on page 227.

Linking 16-bit x86 Executable Files 9

The Open Watcom Linker

2.3 Linking 32-bit x86 Executable Files

The following sections describe how to create a variety of 32-bit executable files.

2.3.1 Linking 32-bit x86 CauseWay Executable Files

To create thistype of file, use the following structure.

system causeway
option nap

name app_nane
file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats' on page 213.

2.3.2 Linking 32-bit x86 CauseWay Dynamic Link Libraries

To create thistype of file, use the following structure.

system cwdllr or cwdlls
option nap

nane app_nane

file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The OS2 Executable and DLL File Formats' on page 213.

2.3.3 Linking 32-bit x86 DOS/4GW Executable Files

To create thistype of file, use the following structure.

system dos4g
option map

nane app_nane
file obj 1, obj 2,
library 1ibl, lib2,

For more information, see the chapter entitled "The OS2 Executable and DLL File Formats' on page 213.

2.3.4 Linking 32-bit x86 FlashTek Executable Files

To create these files, use one of the following structures.

system x32r

option map

nane app_nane
file obj 1, obj 2,
library 1ibl, lib2,

10 Linking 32-bit x86 Executable Files

Linking Executable Files for Various Systems

If the system isx32r, a FlashTek executablefileis created for an application using the register calling

convention.

system
option
name
file
library

x32rv

map
app_nane
obj 1, obj 2,
libl, lib2,

If the system isx32rv, avirtual-memory FlashTek executablefile is created for an application using the
register calling convention.

system
option
name
file
library

x32s

map
app_nane
obj 1, obj 2,
[ibl, lib2,

If the system is x32s, a FlashTek executablefileis created for an application using the stack calling

convention.

system
option
name
file
library

x32sv

map
app_nane
obj 1, obj 2,
libl, Iib2,

If the system isx32sv, avirtual-memory FlashTek executable fileis created for an application using the
stack calling convention.

For more information, see the chapter entitled "The OS2 Executable and DLL File Formats' on page 213.

2.3.5 Linking 32-bit x86 Novell NetWare Loadable Modules

To create thistype of file, use the following structure.

system
option
name
file
library
nodul e

netware_(clib]libc)[_lite]
map

app_nane

obj 1, obj 2,

[ibl, lib2,

nod_nane

For more information, see the chapter entitled "The NetWare O/S Executable File Format" on page 209.

2.3.6 Linking 32-bit x86 0S/2 Executable Files

To create thistype of file, use the following structure.

system
option
name
file
library

0os2v2

map
app_nane
obj 1, obj 2,
libl, lib2,

Linking 32-bit x86 Executable Files 11

The Open Watcom Linker

For more information, see the chapter entitled "The OS2 Executable and DLL File Formats' on page 213.

2.3.7 Linking 32-bit x86 0S/2 Dynamic Link Libraries

To create thistype of file, use the following structure.

system os2v2 dll
option nap

name app_nane
file obj 1, obj 2,
library 1ibl, lib2,

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats' on page 213.

2.3.8 Linking 32-bit x86 OS/2 Presentation Manager Executable Files

To create thistype of file, use the following structure.

system 0s2v2_pm
option nap

name app_nane
file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats' on page 213.

2.3.9 Linking 32-bit x86 Phar Lap Executable Files

To create thistype of file, use the following structure.

system pharl ap
option nap

name app_nane
file obj 1, obj 2,
l[ibrary 1ibl, |ib2,

For more information, see the chapter entitled "The Phar Lap Executable File Format" on page 219.

2.3.10 Linking 32-bit x86 Phar Lap TNT Executable Files

To create thistype of file, use the following structure.

system tnt

option map

nane app_nane
file obj 1, obj 2,
library 1ibl, lib2,

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats' on page 237.

12 Linking 32-bit x86 Executable Files

Linking Executable Files for Various Systems

2.3.11 Linking 32-bit x86 RDOS Executable Files

To create thistype of file, use the following structure.

system
option
name
file
library

r dos

map
app_nane
obj 1, obj 2,
libl, 1ib2,

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats" on page 237.

2.3.12 Linking 32-bit x86 RDOS Dynamic Link Libraries

To create thistype of file, use the following structure.

system
option
name
file
library

rdos_dl

map
app_nane
obj 1, obj 2,
[ibl, lib2,

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats' on page 237.

2.3.13 Linking 32-bit x86 QNX Executable Files

To create thistype of file, use the following structure.

system
option
name
file
library

gnx386

map
app_nane
obj 1, obj 2,
[ibl, lib2,

For more information, see the chapter entitled "The QNX Executable File Format" on page 223.

2.3.14 Linking 32-bit x86 Extended Windows 3.x Executable

To create thistype of file, use the following structure.

system
option
name
file
library

wi n386

map
app_nane
obj 1, obj 2,
[ibl, |ib2,

After linking this executable, you must bind the Open Watcom 32-bit Windows-extender to the executable
(a. REXfile) to produce a Windows executable (a . EXE file).

wbi nd

-n app_nanme

For more information, see the chapter entitled "The Win16 Executable and DLL File Formats' on page 227.

Linking 32-bit x86 Executable Files 13

The Open Watcom Linker

2.3.15 Linking 32-bit x86 Extended Windows 3.x Dynamic Link Libraries

To create thistype of file, use the following structure.

system w n386
option nap

name app_nane
file obj 1, obj 2,
[ibrary 1ibl, lib2,

After linking this executable, you must bind the Open Watcom 32-bit Windows-extender for DLLs to the
executable (a. REX file) to produce a Windows Dynamic Link Library (a . DLL file).

wbind -n -d app_nane

For more information, see the chapter entitled "The Win16 Executable and DLL File Formats" on page 227.

2.3.16 Linking 32-bit x86 Windows 3.x or 9x Virtual Device Driver
There are two type of the Virtual Device Driver.

Staticaly loaded Virtual Device Driver used by Windows 3.x or 9x. To create this type of file, use the
following structure.

system w n_vxd
option map

name app_nane
file obj 1, obj 2,
library 1libl, |ib2,

Dynamicaly loaded Virtual Device Driver used by Windows 3.11 or 9x. To create thistype of file, use the
following structure.

system w n_vxd dynam c
option nap

nane app_nane

file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The Windows Virtual Device Driver File Format" on page
233.

2.3.17 Linking 32-bit x86 Windows 95 Executable Files

To create thistype of file, use the following structure.

system wi n95
option map

nane app_nane
file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats" on page 237.

14 Linking 32-bit x86 Executable Files

Linking Executable Files for Various Systems

2.3.18 Linking 32-bit x86 Windows 95 Dynamic Link Libraries

To create thistype of file, use the following structure.

system
option
name
file
library

wi n95 dl |
map
app_nane
obj 1, obj 2,
libl, lib2,

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats" on page 237.

2.3.19 Linking 32-bit x86 Windows NT Character-Mlode Executable Files

To create thistype of file, use the following structure.

system
option
name
file
library

nt

map
app_nane
obj 1, obj 2,
[ibl, lib2,

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats' on page 237.

2.3.20 Linking 32-bit x86 Windows NT Windowed Executable Files

To create thistype of file, use the following structure.

system
option
name
file
library

nt_win

map
app_nane
obj 1, obj 2,
[ibl, lib2,

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats' on page 237.

2.3.21 Linking 32-bit x86 Windows NT Dynamic Link Libraries

To create thistype of file, use the following structure.

system
option
name
file
library

nt _dl |

map
app_nane
obj 1, obj 2,
[ibl, |ib2,

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats' on page 237.

Linking 32-bit x86 Executable Files 15

The Open Watcom Linker

16 Linking 32-bit x86 Executable Files

3 Linker Directives and Options

The Open Watcom Linker supports alarge set of directives and options. The following sections present
these directives and options in alphabetical order. Not all directives and options are supported for all
executable formats. When a directive or option applies only to a subset of the executable formats that the
linker can generate, the supporting formats are noted. In the following example, the notation indicates that
the directive or option is supported for al executable formats.

Example:
Formats: All

In the following example, the notation indicates that the directive or option is supported for OS/2, 16-hit
Windows and 32-bit Windows executable formats only.

Example:
Formats: OS/2, Wnl6, Wn32

Directives tell the Open Watcom Linker how to create your program. For example, using directives you
can tell the Open Watcom Linker which object files are to be included in the program, which library filesto
search to resolve undefined references, and the name of the executable file.

Thefilewl i nk. | nk isaspecia linker directivefile that is automatically processed by the Open Watcom
Linker before processing any other directives. On aDOS, ZDOS, OS2, or Windows-hosted system, this
file must be located in one of the paths specified in the PATH environment variable. On a QNX-hosted
system, thisfile should be located in the / et ¢ directory. A default version of thisfileislocated in the

\ wat com bi nwdirectory on DOS-hosted systems, the \ wat com bi np directory on OS/2-hosted
systems, the / et ¢ directory on QNX-hosted systems, and the \ wat com bi nnt directory on Windows
95 or Windows NT-hosted systems. Note that the file wl i nk. | nk includesthefile W syst em | nk
which islocated in the \ wat com bi nwdirectory on DOS, 0S/2, or Windows-hosted systems and the

/ et c directory on QNX-hosted systems.

Thefilesw i nk. | nk and W syst em | nk reference the WATCOM environment variable which must
be set to the directory in which you installed your software.

The default name of the linker directive file (W i nk. | nk) can be overridden by the WLINK _LNK
environment variable. If the specified file can’t be opened, the default file name will be used. For
example, if the WLINK _L NK environment variable is defined as follows

set WLI NK_LNK=ny. | nk

then the Open Watcom Linker will attempt to usea ny. | nk directive file, and if that file cannot be
opened, the linker will revert to using the default Wl i nk. | nk file.

It is also possible to use environment variables when specifying a directive. For example, if the LIBDIR
environment variable is defined as follows,

set libdir=\test

then the linker directive

Linker Directives and Options 17

The Open Watcom Linker

library %Bibdir%nylib
is equivalent to the following linker directive.
library \test\nylib
Note that a space must precede areference to an environment variable.
Many directives can take alist of one or more arguments separated by commas. Instead of a
comma-delimited list, you can specify a space-separated list provided thelist is enclosed in braces (e.g., {

space delimited list }). For example, the "FILE" directive can take alist of object file names as an
argument.

file first,second,third,fourth

The alternate way of specifying thisis asfollows.

file {first second third fourth}

Where this comesin handy isin make files, where alist of dependentsis usually a space-delimited list.

OBJS = first second third fourth

wink file {$(objs)}

The following notation is used to describe the syntax of linker directives and options.

ABC All itemsin upper case are required.

[abc] Theitem abc is optional.

{abc} Theitem abc may be repeated zero or more times.
{abc}+ Theitem abc may be repeated one or more times.
alb|c One of a, b or ¢ may be specified.

a:=b Theitem a isdefined in terms of b.

Certain characters have special meaning to the linker. When a specia character must appear in a name, you
can imbed the string that makes up the name inside apostrophes (e.g., 'name@8’). This preventsthe linker
from interpreting the special character inits usual manner. Thisisalso truefor file or path names that
contain spaces (e.g., '\program files\software\mylib’). Normally, the linker would interpret a space or
blank in afile name as a separator. The special characters are listed below:

18 Linker Directives and Options

Linker Directives and Options

Equal s

Left Parenthesis

Ri ght Parent hesi s
Comma

Peri od

Left Brace

Ri ght Brace

At Sign

Hash Mark

Per cent age Synbol

Linker Directives and Options

19

ALIAS

3.1 The ALIAS Directive

Formats: All

The"ALIAS' directive is used to specify an equivaent name for a symbol name. The format of the
"ALIAS" directive (short form "A") isasfollows.

ALIAS alias_ name=symbol_name{, alias_hame=symbol _name}

where description
alias name isthealiasname.
symbol_name isthe symbol name to which the alias name is mapped.
Consider the following example.
al i as si ne=nysi ne

When the linker triesto resolve the reference to si ne, it will immediately substitute the name nmysi ne for
si ne and begin searching for the symbol nysi ne.

20 The ALIAS Directive

ALIGNMENT (ELF, 0S/2, Win16, Win32)

3.2 The ALIGNMENT Option
Formats: ELF, 0S/2, Win16, Win32

The"ALIGNMENT" option specifies the alignment for segments in the executable file. The format of the
"ALIGNMENT" option (short form "A") isasfollows.

OPTION ALIGNMENT=n

where description
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m
d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. 1f mis specified, the valueis
multiplied by 1024* 1024.
n specifies the alignment for segments in the executable file and must be a power of 2.
In 16-bit applications, segments in the executabl e file are pointed to by a segment table. An entry in the
segment table contains a 16-bit value which is a multiple of the alignment value. Together they form the
offset of the segment from the start of the segment table. Note that the smaller the value of n the smaller

the executablefile.

By default, the Open Watcom Linker will automatically choose the smallest value of n possible. Y ou need
not specify this option unless you want padding between segments in the executablefile.

The ALIGNMENT Option 21

ANONYMOUSEXPORT (Win16, Win32)

3.3 The ANONYMOUSEXPORT Directive
Formats: Win16, Win32

The"ANONYMOUSEXPORT" directiveis an alternative to the "EXPORT" directive described in "The
EXPORT Directive" on page 52. The symbol associated with this name will not appear in either the
resident or the non-resident namestable. The entry point is, however, still available for ordinal linking.

The format of the "ANONY MOUSEXPORT" directive (short form "ANON") is as follows.

ANONYMOUSEXPORT export{,export}
or
ANONYMOUSEXPORT =lbc file

export ::= entry_name{.ordinal][=internal_name]

where description
entry name isthe name to be used by other applicationsto call the function.

ordinal isan ordinal value for the function. If the ordinal number is specified, other applications
can reference the function by using this ordinal number.

internal_name isthe actual name of the function and should only be specified if it differs from the entry
name.

Ibc_file isafile specification for the name of alibrarian command file. If nofile extensionis
specified, afile extension of "Ibc" isassumed. The linker will process the librarian
command file and look for commands to the librarian that are used to create import library
entries. These commands have the following form.

++symdl | _nane[.[al tsym.export _nane][.ordi nal]

where description

sym is the name of asymbol in aDynamic Link Library.

dil_name is the name of the Dynamic Link Library that defines sym

altsym is the name of asymbol in a Dynamic Link Library. When omitted, the

default symbol nameis sym

export_name isthe name that an application that is linking to the Dynamic Link Library
usesto reference sym When omitted, the default export nameis sym

ordinal isthe ordinal value that can be used to identify syminstead of using the
name export _nane.

All other librarian commands will be ignored.

22 The ANONYMOUSEXPORT Directive

ANONYMOUSEXPORT (Win16, Win32)

Notes:

1. By default, the Open Watcom C and C++ compilers append an underscore (' ") to all function
names. This should be considered when specifying entry_name and internal_namein an
"ANONYMOUSEXPORT" directive.

2. If the name contains characters that are special to the linker then the name may be placed inside
apostrophes (e.g., anonynmousexport ' nmyfunc@’).

3. The symboal associated with the entry name will not appear in either the resident or the
non-resident names table. The entry point is, however, still available for ordinal linking. This
directive isimportant when you wish to reduce the number of entries that are placed in the
resident and non-resident names table.

The ANONYMOUSEXPORT Directive 23

AREA (DOS)

3.4 The AREA Option
Formats: DOS

The"AREA" option can be used to set the size of the memory pool in which overlay sections are loaded by
the dynamic overlay manager. The format of the "AREA" option (short form "AR") is asfollows.

OPTION AREA=N

where description
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m
d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. 1f mis specified, the valueis
multiplied by 1024* 1024.

The default size of the memory pool for agiven application is selected by the Open Watcom Linker and is
equal to twice the size of the largest overlay.

It isalso possible to add to the memory pool at run-time. If you wish to add to the memory pool at
run-time, see the section entitled "Increasing the Dynamic Overlay Area' on page 195.

24 The AREA Option

ARTIFICIAL

3.5 The ARTIFICIAL Option

Formats: All

The"ARTIFICIAL" option should only be used if you are developing a Open Watcom C++ application. A
Open Watcom C++ application contains many compiler-generated symbols. By default, the linker does not
include these symbolsin the map file. The"ARTIFICIAL" option can be used if you wish to include these
compiler-generated symbolsin the map file.

The format of the "ARTIFICIAL" option (short form "ART") is asfollows.

OPTION ARTIFICIAL

The ARTIFICIAL Option 25

AUTOSECTION (DOS)

3.6 The AUTOSECTION Directive
Formats: DOS

The"AUTOSECTION" directive specifies that each object file that appears in a subsequent "FILE"
directive, up to the next "SECTION" or "END" directive, will be assigned a different overlay. The
"AUTOSECTION" method of defining overlaysis most useful when using the dynamic overlay manager,
selected by specifying the "DY NAMIC" option. For more information on the dynamic overlay manager,
see the section entitled "Using Overlays' on page 187.

The format of the"AUTOSECTION" directive (short form "AUTOS") isas follows.

AUTOSECTION [INTO ovl_fil€]

where description

INTO specifiesthat al overlays areto be placed into afile, namely ovl_file. If "INTO" (short
form"IN") is not specified, the overlays are placed in the executable file.

ovl_file isthe file specification for the name of an overlay file. If no file extension is specified, a
file extension of "ovl" is assumed.

Placing overlays in separate files has a number of advantages. For example, if your application was linked
into onefile, it may not fit on a single diskette, making distribution of your application difficult.

26 The AUTOSECTION Directive

AUTOUNLOAD (NetWare)

3.7 The AUTOUNLOAD Option

Formats: NetWare

The"AUTOUNLOAD" option specifies that a NetWare Loadable Module (NLM) built with this option
should automatically be unloaded when all of its entry points are no longer in use. Thisonly appliesif the
NLM was automatically loaded by another modules loading.

The format of the"AUTOUNLOAD" option (short form "TAUTOUN") is as follows.

OPTION AUTOUNLOAD

The AUTOUNLOAD Option 27

BEGIN (DOS)

3.8 The BEGIN Directive
Formats: DOS

The "BEGIN" directiveis used to define the start of an overlay area. The"END" directive is used to define
the end of an overlay area. Anoverlay areaisa piece of memory in which overlays are loaded. All
overlays defined between a"BEGIN" directive and the corresponding "END" directive are |oaded into that
overlay area.

The format of the "BEGIN" directive (short form "B") is as follows.

BEGIN

The format of the "END" directive (short form "E") is as follows.

END

28 The BEGIN Directive

CACHE

3.9 The CACHE Option

Formats: All

The"CACHE" and "NOCACHE" options can be used to control caching of object and library filesin
memory by the linker. When neither the "CACHE" nor "NOCACHE" option is specified, the linker will
only cache small libraries. Object files and large libraries are not cached. The"CACHE" and
"NOCACHE" options can be used to ater this default behaviour. The"CACHE" option enables the
caching of object files and large library files while the "NOCACHE" option disables all caching.

The format of the "CACHE" option (short form "CAC") isasfollows.

OPTION CACHE

The format of the "NOCACHE" option (short form "NOCAC") is asfollows.

OPTION NOCACHE

When linking large applications with many object files, caching object files will cause extensive use of
memory by the linker. On virtual memory systems such as 0S/2, Windows NT or Windows 95, this can
cause extensive page file activity when real memory resources have been exhausted. This can degrade the
performance of other tasks on your system. For this reason, the OS2 and Windows-hosted versions of the
linker do not perform abject file caching by default. This does not imply that object file caching is not
beneficial. If your system haslots of real memory or the linker is running as the only task on the machine,
object file caching can certainly improve the performance of the linker.

On single-tasking environments such as DOS, the benefits of improved linker performance outweighs the
memory demands associated with object file caching. For this reason, object file caching is performed by
default on these systems. If the memory requirements of the linker exceed the amount of memory on your
system, the "NOCACHE" option can be specified.

The QNX operating system is a multi-tasking real-time operating system. However, it isnot avirtua

memory system. Caching object files can consume large amounts of memory. This may prevent other
tasks on the system from running, a problem that may be solved by using the "NOCACHE" option.

The CACHE Option 29

CASEEXACT

3.10 The CASEEXACT Option

Formats: All

The"CASEEXACT" option tells the Open Watcom Linker to respect case when resolving referencesto
global symbols. That is, "ScanName" and "SCANNAME" represent two different symbols. Thisisthe
default because the most commonly used languages (C, C++, FORTRAN) are case sensitive. The format of
the "CASEEXACT" option (short form "C") is as follows.

OPTION CASEEXACT

It is possible to override the default by using the "NOCASEEXACT" option. The "NOCASEEXACT"
option turns off case-sensitive linking. The format of the "NOCASEEXACT" option (short form
"NOCASE") isasfollows.

OPTION NOCASEEXACT

Y ou can specify the "NOCASEEXACT" option in the default directive files W i nk. | nk or
W syst em | nk if required.

Thefilewl i nk. | nk isaspecia linker directivefile that is automatically processed by the Open Watcom
Linker before processing any other directives. On aDOS, ZDOS, OS2, or Windows-hosted system, this
file must be located in one of the paths specified in the PATH environment variable. On a QNX-hosted
system, thisfile should be located in the / et ¢ directory. A default version of thisfileislocated in the

\ wat coml bi nwdirectory on DOS-hosted systems, the \ wat com bi np directory on OS/2-hosted
systems, the / et ¢ directory on QNX-hosted systems, and the \ wat com bi nnt directory on Windows
95 or Windows NT-hosted systems. Notethat thefile wl i nk. | nk includesthefile w syst em | nk
which islocated in the \ wat com bi nwdirectory on DOS, 0S/2, or Windows-hosted systems and the

/ et c directory on QNX-hosted systems.

Thefilesw i nk. | nk and W syst em | nk reference the WATCOM environment variable which must
be set to the directory in which you installed your software.

The default name of the linker directivefile (W i nk. | nk) can be overridden by the WLINK_LNK
environment variable. If the specified file can’t be opened, the default file name will be used. For
example, if the WLINK _LNK environment variableis defined as follows

set WLI NK_LNK=ny. | nk

then the Open Watcom Linker will attempt to usea rnry. | nk directivefile, and if that file cannot be
opened, the linker will revert to using the default wi i nk. | nk file.

30 The CASEEXACT Option

CHECK (NetWare)

3.11 The CHECK Option

Formats: NetWare

The "CHECK" option specifies the name of a procedure to execute before an NLM isunloaded. This
procedure can, for example, inform the operator that the NLM isin use and prevent it from being unloaded.

The format of the "CHECK" option (short form "CH") is as follows.

OPTION CHECK=symbol _name

where description

symbol_name specifies the name of a procedure to execute before the NLM is unloaded.

If the "CHECK" option is not specified, no check procedure will be called.

The CHECK Option 31

CHECKSUM (Win32)

3.12 The CHECKSUM Option
Formats: Win32

The"CHECKSUM" option specifies that the linker should create an MS-CRC32 checksum for the current
image. Thisis primarily used for DLL’s and device drivers but can be applied to any PE format images.
The format of the "CHECK SUM" option (no short form) is as follows.

OPTION CHECKSUM

32 The CHECKSUM Option

COMMENT

3.13 The # Directive

Formats: All

The"#" directive is used to mark the start of acomment. All text from the "#" character to the end of the
lineis considered acomment. The format of the "#" directiveis as follows.

comment
where description
comment isany sequence of characters.

The following directive file illustrates the use of comments.
file main, trigtest

Use nmy own version of "sin" instead of the
library version.

file nysin
[ibrary \math\trig

The # Directive 33

COMMIT (Win32)

3.14 The COMMIT Directive
Formats: Win32

When the operating system allocates the stack and heap for an application, it does not actually allocate the
whole stack and heap to the application when it isinitially loaded. Instead, only a portion of the stack and
heap are allocated or committed to the application. Any part of the stack and heap that is not committed
will be committed on demand.

The format of the "COMMIT" directive (short form "COM") is as follows.

COMMIT mem_type

mem_type ::= STACK=n | HEAP=n

where description
n represents avalue. The complete form of n isthe following.
[Ox] d{d}[k| m
d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. If mis specified, the valueis
multiplied by 1024* 1024.

n represents the amout of stack or heap that isinitially committed to the application. The
short form for "STACK" is"ST" and the short form for "HEAP" is"H".

If you do not specify the "COMMIT HEAP" directive then a4k heap is committed to the application.
If you do not specify the "COMMIT STACK" directive then the default size isthe smaller of 64K or the

size specified by the"STACK" option. See the section entitled "The STACK Option" on page 164 for
more information on specifying a stack size.

34 The COMMIT Directive

COPYRIGHT (NetWare)

3.15 The COPYRIGHT Option

Formats: NetWare

The"COPYRIGHT" option specifies copyright information that is placed in the executablefile. The
format of the "COPYRIGHT" option (short form "COPYR") isas follows.

OPTION COPYRIGHT ’string’

where description

string specifies the copyright information.

The COPYRIGHT Option 35

CUSTOM (NetWare)

3.16 The CUSTOM Option

Formats: NetWare

The format of the "CUSTOM" option (short form "CUST") is as follows.

OPTION CUSTOM=file name

where description

file_name specifies the file name of the custom datafile.

The custom datafile is placed into the executable file when the application is linked but isreally not part of
the program. When the application is loaded into memory, the information extracted from a custom data

fileisnot loaded into memory. Instead, information is passed to the program (as arguments) which allows
the access and processing of thisinformation.

36 The CUSTOM Option

CVPACK

3.17 The CVPACK Option

Formats: All

This option is only meaningful when generating Microsoft CodeView debugging information. This option
causes the linker to automatically run the Open Watcom CodeView 4 Symbolic Debugging Information
Compactor, CVPACK, on the executable that it has created. Thisis necessary to get the CodeView
debugging information into a state where the Microsoft CodeView debugger will accept it.

The format of the "CVPACK" option (short form "CVP") isasfollows.

OPTION CVPACK

For more information on generating CodeView debugging information into the executable, see the section
entitled "The DEBUG Directive' on page 38

The CVPACK Option 37

DEBUG

3.18 The DEBUG Directive

Formats: All

The"DEBUG" directiveis used to tell the Open Watcom Linker to generate debugging information in the
executable file. Thisextrainformation in the executable fileis used by the Open Watcom Debugger. The
format of the "DEBUG" directive (short form "D") is as follows.

DEBUG dbtype [dblis] |
DEBUG [dblis]

dbtype ::= DWARF | WATCOM | CODEVIEW | NOVELL
dblist ::=[db_option{,db_option}]
db_option ::=LINES| TYPES | LOCALS| ALL

DEBUG NOVELL only
db_option ::= ONLYEXPORTS | REFERENCED

The Open Watcom Linker supports four types of debugging information, "DWARF" (the default),
"WATCOM", "CODEVIEW", or "NOVELL".

DWARF (short form "D") specifiesthat al object files contain DWARF format debugging
information and that the executable file will contain DWARF debugging information.

This debugging format is assumed by default when none is specified.

WATCOM (short form "W") specifiesthat all object files contain Watcom format debugging
information and that the executable file will contain Watcom debugging information. This
format permits the selection of specific classes of debugging information (dblist) which are
described below.

CODEVIEW (short form "C") specifies that all object files contain CodeView (CV4) format debugging
information and that the executable file will contain CodeView debugging information.

It will be necessary to run the Microsoft Debugging Information Compactor, CVPACK, on
the executable that it has created. For information on requesting the linker to automatically
run CVPACK, see the section entitled "The CVPACK Option" on page 37 Alternatively,
you can run CVPACK from the command line.

NOVELL (short form "N") specifies aform of global symbol information that can only be processed
by the NetWare debugger.

Note: Except in rare cases, the most appropriate use of the "DEBUG" directive is specifying "DEBUG
ALL" (short form "D A") prior to any "FILE" or "LIBRARY" directives. Thiswill cause the Open
Watcom Linker to emit all available debugging information in the default format.

For the Watcom debugging information format, we can be selective about the types of debugging
information that we include with the executable file. We can categorize the types of debugging information
asfollows:

38 The DEBUG Directive

DEBUG

« global symbol information

* line numbering information

* local symbol information

* typing information

* NetWare global symbol information

The following options can be used with the "DEBUG WATCOM" directive to control which of the above
classes of debugging information isincluded in the executable file.

LINES (short form "LI") specifies line numbering and global symbol information.

LOCALS (short form "L Q") specifieslocal and global symbol information.

TYPES (short form "T") specifies typing and global symbol information.
ALL (short form "A") specifies all of the above debugging information.
ONLYEXPORTS

(short form "ONL") restricts the generation of global symbol information to exported
symbols. This option may only be used with Netware executable formats.

The following options can be used with the "DEBUG NOVELL" directive to control which of the above
classes of debugging information is included in the executable file.

ONLYEXPORTS
(short form "ONL") restricts the generation of global symbol information to exported
symbols.

REFERENCED
(short form "REF") restricts the generation of symbol information to referenced symbols
only.

Note: The position of the "DEBUG" directiveisimportant. The level of debugging information
specified in a"DEBUG" directive only appliesto object files and libraries that appear in subsequent
"FILE" or "LIBRARY" directives. For example, if "DEBUG WATCOM ALL" wasthe only "DEBUG"
directive specified and was also the last linker directive, no debugging information would appear in the
executablefile.

Only global symbol information is actually produced by the Open Watcom Linker; the other three classes
of debugging information are extracted from object modules and copied to the executable file. Therefore,
at compile time, you must instruct the compiler to generate local symbol, line numbering and typing
information in the object file so that the information can be transferred to the executable file. If you have
asked the Open Watcom Linker to produce a particular class of debugging information and it appears that
none is present, one of the following conditions may exist.

1. Thedebugging information is not present in the object files.
2. The"DEBUG" directive has been misplaced.

The DEBUG Directive 39

DEBUG

The following sections describe the classes of debugging information.

3.18.1 Line Numbering Information - DEBUG WATCOM LINES

The"DEBUG WATCOM LINES" option controls the processing of line numbering information. Line
numbering information is the line number and address of the generated code for each line of source codein
aparticular module. This allows Open Watcom Debugger to perform source-level debugging. When the
Open Watcom Linker encounters a"DEBUG WATCOM" directive with a"LINES" or "ALL" option, line
number information for each subsequent object module will be placed in the executable file. Thisincludes
all object modules extracted from object files specified in subsequent "FILE" directives and object modules
extracted from libraries specified in subsequent "LIBRARY" or "FILE" directives.

Note: All modules for which line numbering information is requested must have been compiled with
the"d1" or "d2" option.

A subsequent "DEBUG WATCOM" directive without a"LINES" or "ALL" option terminates the
processing of line numbering information.

3.18.2 Local Symbol Information - DEBUG WATCOM LOCALS

The"DEBUG WATCOM LOCALS" option controls the processing of local symbol information. Local
symbol information is the name and address of all symbolslocal to a particular module. This allows Open
Watcom Debugger to locate these symbols so that you can reference local data and routines by name.
When the Open Watcom Linker encounters a"DEBUG WATCOM™" directive with a"LOCALS" or "ALL"
option, local symbol information for each subsequent object module will be placed in the executable file.
Thisincludes all object modules extracted from object files specified in subsequent "FILE" directives and
object modules extracted from libraries specified in subsequent "LIBRARY" or "FILE" directives.

Note: All modules for which local symbol information is requested must have been compiled with the
"d2" option.

A subsequent "DEBUG WATCOM" directive without a"LOCALS" or "ALL" option terminates the
processing of local symbol information.

3.18.3 Typing Information - DEBUG WATCOM TYPES

The "DEBUG WATCOM TY PES" option controls the processing of typing information. Typing
information includes a description of al types, structures and arrays that are defined in amodule. This
allows Open Watcom Debugger to display variables according to their type. When the Open Watcom
Linker encountersa"DEBUG WATCOM" directivewitha"TYPES" or "ALL" option, typing information
for each subsequent object module will be placed in the executable file. Thisincludes all object modules
extracted from object files specified in subsequent "FILE" directives and object modules extracted from
libraries specified in subsequent "LIBRARY" or "FILE" directives.

40 The DEBUG Directive

DEBUG

Note: All modules for which typing information is requested must have been compiled with the "d2"
option.

A subsequent "DEBUG WATCOM" directive without a"TYPES" or "ALL" option terminates the
processing of typing information.

3.18.4 All Debugging Information - DEBUG WATCOM ALL

The"DEBUG WATCOM ALL" option specifiesthat "LINES", "LOCALS', and "TYPES" options are
requested. The"LINES' option controls the processing of line numbering information. The"LOCALS"
option controls the processing of local symbol information. The"TYPES" option controls the processing
of typing information. Each of these optionsis described in a previous section. A subsequent "DEBUG
WATCOM " directive without an "ALL" option discontinues those options which are not specified in the
list of debug options.

3.18.5 Global Symbol Information

Globa symbol information consists of al the global symbolsin your program and their address. This
allows Open Watcom Debugger to locate these symbols so that you can reference global data and routines
by name. When the Open Watcom Linker encounters a"DEBUG" directive, global symbol information for
all the global symbols appearing in your program is placed in the executablefile.

3.18.6 Global Symbols for the NetWare Debugger - DEBUG NOVELL

The NetWare operating system has a built-in debugger that can be used to debug programs. When
"DEBUG NOVELL" is specified, the Open Watcom Linker will generate global symbol information that
can be used by the NetWare debugger. Note that any line numbering, local symbol, and typing information
generated in the executable file will not be recognized by the NetWare debugger. Also, WSTRIP cannot be
used to remove this form of global symbol information from the executable file.

3.18.7 The ONLYEXPORTS Debugging Option

The "ONLYEXPORTS" option (short form "ONL") restricts the generation of global symbol information
to exported symbols (symbols appearing in an "EXPORT" directive). If "DEBUG WATCOM
ONLYEXPORTS" is specified, Open Watcom Debugger global symbol information is generated only for
exported symbols. If "DEBUG NOVELL ONLYEXPORTS" is specified, NetWare global symbol
information is generated only for exported symbols.

3.18.8 Using DEBUG Directives

Consider the following directive file.

debug wat com al |

file nodul el

debug watcom | i nes
file nodul e2, nodul e3
debug wat com

library nylib

The DEBUG Directive 41

DEBUG

It specifies that the following debugging information is to be generated in the executablefile.
1. globa symbol information for your program

2. line numbering, typing and local symbol information for the following object files:

nodul el. obj

3. line numbering information for the following object files:

nodul e2. obj
nodul e3. obj

Notethat if the"DEBUG WATCOM" directive before the "LIBRARY" directiveis not specified, line
numbering information for all object modules extracted from the library "mylib.lib" would be generated in
the executabl e file provided the object modules extracted from the library have line numbering information
present.

Note: A "DEBUG WATCOM" directive with no option suppresses the processing of line numbering,
local symbol and typing information for all subsequent object modules.

Debugging information can use a significant amount of disk space. As shown in the above example, you
can select only the class of debugging information you want and for those modules you wish to debug. In
this way, the amount of debugging information in the executable file is minimized and hence the amount of
disk space used by the executable file is kept to a minimum.

As you can see from the above example, the position of the "'DEBUG WATCOM" directive isimportant
when describing the debugging information that isto appear in the executablefile.

Note: If you want all classes of debugging information for al filesto appear in the executable file you
must specify "DEBUG WATCOM ALL" beforeany "FILE" and "LIBRARY" directives.

3.18.9 Removing Debugging Information from an Executable File
A utility called WSTRI P has been provided which takes as input an executable file and removes the
debugging information placed in the executable file by the Open Watcom Linker. Note that global symbol
information generated using "DEBUG NOVELL" cannot be removed by WSTRIP.

For more information on this utility, see the chapter entitled "The Open Watcom Strip Utility" in the Open
Watcom C/C++ Tools User’s Guide or Open Watcom FORTRAN 77 Tools User’s Guide.

42 The DEBUG Directive

DESCRIPTION (NetWare, 0S/2, Win16, Win32)

3.19 The DESCRIPTION Option
Formats: NetWare, 0S/2, Win16, Win32

The "DESCRIPTION" option inserts the specified text into the application or Dynamic Link Library. This
isuseful if you wish to embed copyright information into an application or Dynamic Link Library. The
format of the "DESCRIPTION" option (short form "DE") is as follows.

OPTION DESCRIPTION 'string’

where description

string is the sequence of characters to be embedded into the application or Dynamic Link Library.

The DESCRIPTION Option 43

DISABLE

3.20 The DISABLE Directive

Formats: All
The"DISABLE" directiveis used to disable the display of linker messages.

The Open Watcom Linker issues three classes of messages; fatal errors, errors and warnings. Each message
has a 4-digit number associated with it. Fatal messages start with the digit 3, error messages start with the
digit 2, and warning messages start with the digit 1. It is possible for a message to be issued as awarning

or an error.

If afatal error occurs, the linker will terminate immediately and no executable file will be generated.

If an error occurs, the linker will continue to execute so that all possible errors are issued. However, no
executable file will be generated since these errors do not permit a proper executable file to be generated.

If awarning occurs, the linker will continue to execute. A warning message is usually informational and
does not prevent the creation of a proper executable file. However, all warnings should eventually be
corrected.

Note that the behaviour of the linker does not change when a message is disabled. For example, if a
message that normally terminates the linker is disabled, the linker will still terminate but the message
describing the reason for the termination will not be displayed. For this reason, you should only disable
messages that are warnings.

The linker will ignore the severity of the message number. For example, some messages can be displayed
aserrors or warnings. It isnot possible to disable the message when it isissued as awarning and display
the message when it isissued as an error. In general, do not specify the severity of the message when
specifying a message number.

The format of the "DISABLE" directive (short form "DISA") is asfollows.

DISABLE msg_num{, msg_num}

where description

msg_num is amessage number. See the chapter entitled "Open Watcom Linker Diagnostic
Messages' on page 241 for alist of messages and their corresponding numbers.

Thefollowing "DISABLE" directive will disable message 28 (an undefined symbol has been referenced).

di sabl e 28

44 The DISABLE Directive

DISTRIBUTE (DOS)

3.21 The DISTRIBUTE Option
Formats: DOS

The"DISTRIBUTE" option specifies that object modules extracted from library files are to be distributed
throughout the overlay structure. The format of the "DISTRIBUTE" option (short form "DIS") isas
follows.

OPTION DISTRIBUTE

An object module extracted from alibrary file will be placed in the overlay section that satisfies the
following conditions.

1. Thesymbols defined in the object module are not referenced by an ancestor of the overlay
section selected to contain the object module.

2. Atleast one symbol in the object module is referenced by an immediate descendant of the
overlay section selected to contain the module.

Note that libraries specified in the "FIXEDLIB" directive will not be distributed. Also, if a symbol defined
inalibrary moduleisreferenced indirectly (its address is taken), the module extracted from the library will
be placed in the root unless the "NOINDIRECT" option is specified. For more information on the
"NOINDIRECT" option, see the section entitled "The NOINDIRECT Option" on page 113.

For more information on overlays, see the section entitled "Using Overlays' on page 187.

The DISTRIBUTE Option 45

DOSSEG

3.22 The DOSSEG Option

Formats: All

The "DOSSEG" option tells the Open Watcom Linker to order segmentsin a special way. The format of
the "DOSSEG" option (short form "D") is as follows.

OPTION DOSSEG

When the "DOSSEG" option is specified, segments will be ordered in the following way.

1. all segments not belonging to group "DGROUP" with class"CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. al segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class"STACK"
A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. Thissegment isinitialized with the hexadecimal byte pattern "01" and is the first segment in
group "DGROUP" so that storing data at location O can be detected.
Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes"BSS" and
"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable
file
When using Open Watcom run-time libraries, it is not necessary to specify the "DOSSEG" option. One of
the object filesin the Open Watcom run-time libraries contains a special record that specifies the

"DOSSEG" option.

If no "DOSSEG" option is specified, segments are ordered in the order they are encountered by the Open
Watcom Linker.

When the "DOSSEG" option is specified, the Open Watcom Linker definestwo special variables. _edat a

defines the start of the "BSS" class of segmentsand _end defines the end of the "BSS" class of segments.
Y our program must not redefine these symbols.

46 The DOSSEG Option

DYNAMIC (DOS)

3.23 The DYNAMIC Option
Formats: DOS

The"DYNAMIC" option tells the Open Watcom Linker to use the dynamic overlay manager. The format
of the"DYNAMIC" option (short form "DYN") is as follows.

OPTION DYNAMIC

Note that the dynamic overlay manager can only be used with applications that have been compiled using
the "of" option and a big code memory model. The "of" option generates a special prologue/epilogue
sequence for procedures that is required by the dynamic overlay manager. See the compiler User’'s Guide
for more information on the "of" option.

For more information on the dynamic overlay manager, see the section entitled "Using Overlays' on page
187.

The DYNAMIC Option 47

ELIMINATE

3.24 The ELIMINATE Option

Formats: All
The"ELIMINATE" option can be used to enable dead code elimination. Dead code elimination isa
process the linker uses to remove unreferenced segments from the application. The linker will only remove

segments that contain code; unreferenced data segments will not be removed.

The format of the "ELIMINATE" option (short form "EL") isasfollows.

OPTION ELIMINATE

Linking C/C++ Applications
Typically, amodule of C/C++ code contains a number of functions. When thismoduleis
compiled, all functionswill be placed in the same code segment. The chances of each
function in the module being unreferenced are remote and the usefulness of the
"ELIMINATE" option is greatly reduced.

In order to maximize the effect of the "ELIMINATE" option, the "zm" compiler optionis
available to tell the Open Watcom C/C++ compiler to place each function in its own code
segment. This alowsthe linker to remove unreferenced functions from modul es that
contain many functions.

Note, that if afunction isreferenced by data, asin ajump table, the linker will not be able
to eliminate the code for the function even if the datathat referencesit is unreferenced.

Linking FORTRAN 77 Applications
The Open Watcom FORTRAN 77 compiler always places each function and subroutine in
its own code segment, even if they are contained in the same module. Therefore when
linking with the "ELIMINATE" option the linker will be able to eliminate code on a
function/subroutine basis.

48 The ELIMINATE Option

END (DOS)

3.25 The END Directive
Formats: DOS

The "BEGIN" directiveis used to define the start of an overlay area. The"END" directive is used to define
the end of an overlay area. Anoverlay areaisa piece of memory in which overlays are loaded. All
overlays defined between a"BEGIN" directive and the corresponding "END" directive are |oaded into that
overlay area.

The format of the "BEGIN" directive (short form "B") is as follows.

BEGIN

The format of the "END" directive (short form "E") is as follows.

END

The END Directive 49

ENDLINK

3.26 The ENDLINK Directive

Formats: All

The "ENDLINK" directiveis used to indicate the end of a new set of linker commands that are to be
processed after the current set of commands has been processed. The format of the "ENDLINK" directive
(short form "ENDL") is asfollows.

ENDLINK

The"STARTLINK" directive, described in "The STARTLINK Directive" on page 167, is used to indicate
the start of the set of commands.

50 The ENDLINK Directive

EXIT (NetWare)

3.27 The EXIT Option

Formats: NetWare

The format of the "EXIT" option (short form "EX") is as follows.

OPTION EXIT=symbol_name

where description

symbol_name specifies the name of the procedure that is executed when an NLM is unloaded.

The default name of the exit procedureis”_Stop".

Note that the exit procedure cannot prevent the NLM from being unloaded. Once the exit procedure has

executed, the NLM will be unloaded. The "CHECK" option can be used to specify a check procedure that
can prevent an NLM from being unloaded.

The EXIT Option 51

EXPORT (ELF, NetWare, 0S/2, Win16, Win32)

3.28 The EXPORT Directive
Formats: ELF, NetWare, 0S/2, Win16, Win32

The "EXPORT" directive is used to tell the Open Watcom Linker which symbols are available for import
by other executables.

3.28.1 EXPORT - 0S/2, Win16, Win32 only

The "EXPORT" directive can be used to define the names and attributes of functionsin Dynamic Link
Librariesthat are to be exported. An"EXPORT" definition must be specified for every Dynamic Link
Library function that is to be made available externally.

Winl6: An"EXPORT" directiveisaso required for the "window function". This function must be
defined by all programs and is called by Windows to provide information to the program.
For example, the window function is called when awindow is created, destroyed or resized,
when an item is selected from amenu, or when ascroll bar is being clicked with a mouse.

The format of the "EXPORT" directive (short form "EXP") is as follows.

EXPORT export{,export}
or
EXPORT =lbc file

0S/2 only:
export ::= entry_name{.ordinal][=internal_name]
[PRIVATE] [RESIDENT] [iopl_bytes]

Win16, Win32 only:
export ::= entry_name{.ordinal][=internal_name]
[PRIVATE] [RESIDENT]

where description
entry name isthe name to be used by other applicationsto call the function.

ordinal isan ordinal value for the function. If the ordinal number is specified, other applications
can reference the function by using this ordinal number.

internal_name isthe actual name of the function and should only be specified if it differs from the entry
name.

PRIVATE (no short form) specifies that the function’s entry name should be included inthe DLL’s
export table, but not included in any import library that the linker generates.

RESIDENT (short form "RES") specifies that the function’s entry name should be kept resident in
memory (i.e., added to the resident names table).

By default, the entry name is always made memory resident if an ordinal is not specified
(i.e, itisimplicitly RESIDENT). For 16-bit Windows, the limit on the size of the resident

52 The EXPORT Directive

EXPORT (ELF, NetWare, 0S/2, Win16, Win32)

iopl_bytes

Ibc file

Notes:

names table is 64K bytes. Memory resident entry names allow the operating system to
resolve calls more efficiently when the call is by entry name rather than by ordinal.

If an ordinal is specified and RESIDENT is not specified, the entry name is added to the
non-resident namestable (i.e., it isimplicitly non-RESIDENT). If both the ordinal and the
RESIDENT keyword are specified, the symbol is placed in the resident names table.

If you do not want an entry name to appear in either the resident or non-resident names
table, you can use the "ANONY MOUSEXPORT" directive described in "The
ANONYMOUSEXPORT Directive" on page 22.

(OS2 only) isrequired for functions that execute with I/O privilege. iopl_bytes specifies
the total size of the function’s argumentsin bytes. When such afunction is executed, the
specified number of bytesis copied from the caller’'s stack to the I/O-privileged function’s
stack. Note that the processor copies words rather than bytes and can copy up to 31 words.
Thus the number of bytes allowed is up to 62, and must be even.

isafile specification for the name of alibrarian command file. If no file extensionis
specified, afile extension of "Ibc" is assumed. The linker will process the librarian
command file and look for commands to the librarian that are used to create import library
entries. These commands have the following form.

++symdl | _nane[.[al tsym.export _nane][.ordi nal]

where description

sym is the name of a symbol in aDynamic Link Library.

dil_name is the name of the Dynamic Link Library that defines sym

altsym isthe name of a symbol in a Dynamic Link Library. When omitted, the

default symbol nameissym

export_name isthe name that an application that is linking to the Dynamic Link Library
usesto reference sym When omitted, the default export nameis sym

ordinal isthe ordinal value that can be used to identify syminstead of using the
name export _nane.

All other librarian commands will be ignored.

By default, the Open Watcom C and C++ compilers append an underscore (' ') to all function
names. This should be considered when specifying entry_name and internal_namein an
"EXPORT" directive.

If the name contains characters that are specia to the linker then the name may be placed inside
apostrophes (e.g., export ' nmyfunc@’).

If the__export declspec modifier is used in the source code, it is the equivalent of using the
following linker directive:

EXPORT entry_nanme RESI DENT

The EXPORT Directive 53

EXPORT (ELF, NetWare, 0S/2, Win16, Win32)

3.28.2 EXPORT - ELF only

The "EXPORT" directive is used to tell the Open Watcom Linker which symbols are available for import
by other executables. The format of the "EXPORT" directive (short form "EXP") is as follows.

EXPORT entry_name{,entry_name}

where description
entry name isthe name of the exported symbol.
Notes:

1. By default, the Open Watcom C and C++ compilers append an underscore ('_") to all function
names. This should be considered when specifying entry_name in an "EXPORT" directive.

2. If the name contains characters that are special to the linker then the name may be placed inside
apostrophes (e.g., export ' nmyfunc@’).

3.28.3 EXPORT - Netware only

The "EXPORT" directive is used to tell the Open Watcom Linker which symbols are available for import
by other NLMs. The format of the "EXPORT" directive (short form "EXP") is asfollows.

EXPORT entry_name{,entry_name}

where description
entry name isthe name of the exported symbol.
Notes:

1. If the name contains characters that are special to the linker then the name may be placed inside
apostrophes (e.g., export ' nmyfunc@’).

54 The EXPORT Directive

FARCALLS

3.29 The FARCALLS Option

Formats: All

The"FARCALLS' option tells the Open Watcom Linker to optimize Far Calls. Thisisthe default setting
for Open Watcom Linker The format of the "FARCALLS" option (short form "FAR") is asfollows.

OPTION FARCALLS

The "NOFARCALLS" option turns off Far Calls optimization. The format of the "NOFARCALLS' option
(short form "NOFAR") isas follows.

OPTION NOFARCALLS

Y ou can specify the "NOFARCALLS" option in the default directivefiles Wl i nk. | nk or
w syst em | nk if required.

Thefilewl i nk. | nk isaspecia linker directivefile that is automatically processed by the Open Watcom
Linker before processing any other directives. On aDOS, ZDOS, OS2, or Windows-hosted system, this
file must be located in one of the paths specified in the PATH environment variable. On a QNX-hosted
system, thisfile should be located inthe / et ¢ directory. A default version of thisfileislocated in the

\ wat coml bi nwdirectory on DOS-hosted systems, the \ wat com bi np directory on OS/2-hosted
systems, the / et ¢ directory on QNX-hosted systems, and the \ wat com bi nnt directory on Windows
95 or Windows NT-hosted systems. Notethat thefile w i nk. | nk includesthefilew syst em | nk
which islocated in the \ wat com bi nwdirectory on DOS, 0S/2, or Windows-hosted systems and the

/ et c directory on QNX-hosted systems.

Thefilesw i nk. | nk and Wl syst em | nk reference the WATCOM environment variable which must
be set to the directory in which you installed your software.

The default name of the linker directive file (W i nk. | nk) can be overridden by the WLINK _LNK
environment variable. If the specified file can’t be opened, the default file name will be used. For
example, if the WLINK _L NK environment variable is defined as follows

set WLI NK_LNK=ny. | nk

then the Open Watcom Linker will attempt to usea nry. | nk directive file, and if that file cannot be
opened, the linker will revert to using the default wi i nk. | nk file.

The FARCALLS Option 55

FILE

3.30 The FILE Directive

Formats: All

The"FILE" directive is used to specify the object files and library modules that the Open Watcom Linker is
to process. The format of the "FILE" directive (short form "F") is asfollows.

FILE obj_spec{,obj_spec}

obj_spec ::=obj_file[(obj_module)]
| library_file[(obj_module)]

where description

obj_file isafile specification for the name of an object file. If no file extension is specified, afile
extension of "obj" isassumed if you are running a DOS, OS/2 or Windows-hosted version
of the Open Watcom Linker. Also, if you are running a DOS, OS/2 or Windows-hosted
version of the Open Watcom Linker, the object file specification can contain wild cards (*,
?). A fileextension of "0" isassumed if you are running a UNIX-hosted version of the
Open Watcom Linker.

library file isafilespecification for the name of alibrary file. Note that the file extension of the
library file (usually "lib") must be specified; otherwise an object file will be assumed.
When alibrary fileis specified, all object filesin the library are included (whether required
or not).

obj_module isthe name of an object module defined in an object or library file.

Consider the following example.

Example:
wWink systemny _os f \math\sin, nycos

The Open Watcom Linker isinstructed to process the following object files:

\ mat h\ si n. obj
mycos. obj

The object file "mycos.obj" islocated in the current directory since no path was specified.
More than one "FILE" directive may be used. The following example is equivalent to the preceding one.

Example:
W ink systemny_os f \math\sin f mycos

Thus, other directives may be placed between lists of object files.

The "FILE" directive can a so specify object modules from alibrary file or object file. Consider the
following example.

56 The FILE Directive

FILE

Example:
wWink systemny _os f \math\math.lib(sin)

The Open Watcom Linker isinstructed to process the object module "sin" contained in the library file
"math.lib" in the directory "\math".

In the following example, the Open Watcom Linker will process the object module "sin" contained in the
object file "math.obj" in the directory "\math".

Example:
W ink systemny _os f \nath\math(sin)

In the following example, the Open Watcom Linker will include all object modules contained in the library
file"math.lib" in the directory "\math".

Example:
W ink systemny _os f \math\nmath.lib

The FILE Directive 57

FILLCHAR

3.31 The FILLCHAR Option

Formats: All

The"FILLCHAR" option (short form "FILL") specifies the byte value used to fill gapsin the output image.

OPTION FILLCHAR=N

where description
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m
d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. If mis specified, thevalueis
multiplied by 1024* 1024.

n specifies the value to be used in blank areas of the output image. The value must be in the range of 0 to
255, inclusive.

This option is most useful for raw binary output that will be programmed into an (E)EPROM where avaue
of 255 (0xff) is preferred. The default value of nis zero.

58 The FILLCHAR Option

FIXEDLIB (DOS)

3.32 The FIXEDLIB Directive
Formats: DOS

The"FIXEDLIB" directive can be used to explicitly place the modules from alibrary filein the overlay
section in which the "FIXEDLIB" directive appears. The format of the "FIXEDLIB" directive (short form
"FIX") isasfollows.

FIXEDLIB library file{ library_file}

where description

library file isafile specification for the name of alibrary file. If nofile extension is specified, afile
extension of "lib" is assumed.

Consider the following example.

begi n
section filel, file2
section file3
fixedlib nylib

end

Two overlay sections are defined. Thefirst containsfil el andfil e2. Thesecond containsfi | e3
and all modules contained in the library file "mylib.lib".

Note that all modules extracted from library filesthat appear in a"LIBRARY" directive are placed in the

root unlessthe "DISTRIBUTE" option is specified. For more information on the "DISTRIBUTE" option,
see the section entitled "The DISTRIBUTE Option™ on page 45.

The FIXEDLIB Directive 59

FORCEVECTOR (DOS)

3.33 The FORCEVECTOR Directive
Formats: DOS

The "FORCEVECTOR" directive forces the Open Watcom Linker to generate an overlay vector for the
specified symbols. The format of the "FORCEVECTOR" directive (short form "FORCEVE") is asfollows.

FORCEVECTOR symbol _name{,symbol _name}

where description

symbol_name isasymbol name.

60 The FORCEVECTOR Directive

FORMAT

3.34 The FORMAT Directive

Formats: All

The"FORMAT" directive is used to specify the format of the executable file that the Open Watcom Linker
isto generate. Theformat of the "FORMAT" directive (short form "FORM") is as follows.

FORMAT form

form ::= DOS [COM]
| ZDOS[SYS|HWD | FSD]
| RAW [BIN | HEX]
| WINDOWS [win_dll_attrs] [MEMORY] [FONT]
| WINDOWS VXD [STATIC | DYNAMIC]
| WINDOWS NT [TNT] [nt_dll_attrs]
| OS2 [FLAT | LE | LX] [0s2_dIl_attrs| 0s2_attrs]
| PHARLAP [EXTENDED | REX | SEGMENTED]
| NOVELL [NLM | LAN | DSK | NAM | "number’] *description’
| QNX [FLAT]
| ELF [DLL]
| RDOS [DEV | BIN | MBOOQOT]

win_dll_attrs::= DLL [INITGLOBAL | INITINSTANCE]

nt_dil_attrs::= DLL [INITGLOBAL | INITINSTANCE | INITTHREAD
[TERMINSTANCE | TERMGLOBAL | TERMTHREAD]]

0s2_dll_attrs::= DLL [INITGLOBAL | INITINSTANCE
[TERMINSTANCE | TERMGLOBAL]]

0s2_attrs::= PM | PMCOMPATIBLE | FULLSCREEN
| PHYSDEVICE | VIRTDEVICE

where

DOS

description
(short form "D") tells the Open Watcom Linker to generate a DOS "EXE" file.

The name of the executable file will have extension "exe". If "COM" is specified, aDOS
"COM" filewill be generated in which case the name of the executable file will have
extension "com". Note that these default extensions can be overridden by using the
"NAME" directive to name the executablefile.

Not all programs can be generated in the "COM™" format. The following rules must be
followed.

1. The program must consist of only one physical segment. Thisimpliesthat the
size of the program (code and data) must be less than 64k.

2. Theprogram must not contain any segment relocation. A warning message will

be issued by the Open Watcom Linker each time a segment relocation is
encountered.

The FORMAT Directive 61

FORMAT

ZDOS

WINDOWS

A DOS"COM™" file cannot contain debugging information. If you wish to debug a DOS
"COM" file, you must use the"SYMFILE" option to instruct the Open Watcom Linker to
place the debugging information in a separate file.

For more information on DOS executable file formats, see the chapter entitled "The DOS
Executable File Format" on page 185.

(short form "ZD") tells the Open Watcom Linker to generate aZDOS "EXE" file.

The name of the executable file will have extension "exe". If "SYS", "HWD" or "FSD" is
specified, aZDOS driver file will be generated in which case the name of the executable
file will have the extension "sys', "hwd" or "fsd". Note that these default extensions can be
overridden by using the "NAME" directive to name the executablefile.

For more information on ZDOS executable file formats, see the chapter entitled "The
ZDOS Executable File Format" on page 197.

(short form "R") tells the Open Watcom Linker to generate a RAW output file.

If "HEX" is specified, araw 32-hit output file in Intel Hex format with the extension "hex"
will be created. When "BIN" is specified or RAW is given without further specification, a
raw 32-bit image with the extension "bin" will be created. Note that these default
extensions can be overridden by using the "NAME" directive to name the executable file.

A raw output file cannot contain debugging information. 1f you wish to debug araw file,
you must use the "SYMFILE" option to instruct the Open Watcom Linker to place the
debugging information in a separate file.

For more information on RAW executable file formats, see the chapter entitled "The RAW
File Format" on page 201.

tells the Open Watcom Linker to generate a Win16 (16-bit Windows) executablefile.

The name of the executable file will have extension "exe". If "DLL" (short form "DL") is
specified, aDynamic Link Library will be generated; the name of the executable file will
also have extension "exe". Note that these default extensions can be overridden by using
the"NAME" directive to name the executable file.

Specifying "INITGLOBAL" (short form "INITG") will cause Windowsto call an
initialization routine the first time the Dynamic Link Library isloaded. The
"INITGLOBAL" option should be used with "OPTION ONEAUTODATA" (the default for
Dynamic Link Libraries). If the"INITGLOBAL" option isused with "OPTION
MANYAUTODATA", theinitialization code will be called once for the first data segment
allocated but not for subsequent allocations (this is generally not desirable behaviour and
will likely cause a program fault).

Specifying "INITINSTANCE" (short form "INITI") will cause Windowsto call an
initialization routine each time the Dynamic Link Library is used by aprocess. The
"INITINSTANCE" option should be used with "OPTION MANYAUTODATA" (the
default for executable programs).

In either case, the initialization routine is defined by the start address. If neither
"INITGLOBAL" or "INITINSTANCE" is specified, "INITGLOBAL" is assumed.

62 The FORMAT Directive

FORMAT

Specifying "MEMORY" (short form "MEM") indicates that the application will runin
standard or enhanced mode. 1f Windows 3.0 isrunning in standard and enhanced mode,
and "MEMORY" is not specified, awarning message will beissued. The"MEMORY™"
specification was used in the transition from Windows 2.0 to Windows 3.0. The
"MEMORY" specification isignored in Windows 3.1 or |ater.

Specifying "FONT" (short form "FQ") indicates that the proportional -spaced system font
can be used. Otherwise, the old-style mono-spaced system font will be used. The"FONT"
specification was used in the transition from Windows 2.0 to Windows 3.0. The"FONT"
specification isignored in Windows 3.1 or later.

For more information on Windows executable file formats, see the chapter entitled "The
Win16 Executable and DLL File Formats' on page 227.

WINDOWS VXD tells the Open Watcom Linker to generate a Windows VXD file (Virtual Device Driver).

The name of the file will have extension "386". Note that this default extension can be
overridden by using the "NAME" directive to name the driver file.

Specifying "DYNAMIC" (short form "DY N"), dynamicaly loadable driver will be
generated (only for Windows 3.11 or 9x). By default the Open Watcom Linker generate
staticaly loadable driver (for Windows 3.x or 9x).

For more information on Windows Virtual Device Driver file format, see the chapter
entitled "The Windows Virtual Device Driver File Format" on page 233.

WINDOWS NT tells the Open Watcom Linker to generate a Win32 executable file ("PE" format).

If "TNT" is specified, an executable for the Phar Lap TNT DOS extender is created. A
"PL" format (rather than "PE") executable is created so that the Phar Lap TNT DOS
extender will always run the application (including under Windows NT).

If "DLL" (short form "DL") is specified, a Dynamic Link Library will be generated in
which case the name of the executable file will have extension "dII". Note that these
default extensions can be overridden by using the "NAME" directive to name the
executablefile.

Specifying "INITGLOBAL" (short form "INITG") will cause the initialization routine to be
called the first time the Dynamic Link Library isloaded.

Specifying "INITINSTANCE" (short form "INITI") will cause the initialization routine to
be called each time the Dynamic Link Library is referenced by a process.

In either case, the initialization routine is defined by the start address. If neither
"INITGLOBAL" or "INITINSTANCE" is specified, "INITGLOBAL" is assumed.

It isalso possible to specify whether the initialization routineisto be called at DLL
termination or not. Specifying "TERMGLOBAL" (short form "TERMG") will cause the
initialization routine to be called when the last instance of the Dynamic Link Library is
terminated. Specifying "TERMINSTANCE" (short form "TERMI") will cause the
initialization routine to be called each time an instance of the Dynamic Link Library is
terminated. Note that the initialization routine is passed an argument indicating whether it
isbeing called during DLL initialization or DLL termination. If "INITINSTANCE" isused
and no termination option is specified, "TERMINSTANCE" is assumed. If

The FORMAT Directive 63

FORMAT

082

"INITGLOBAL" is used and no termination option is specified, "TERMGLOBAL" is
assumed.

For more information on Windows NT executable file formats, see the chapter entitled
"The Win32 Executable and DLL File Formats' on page 237.

tells the Open Watcom Linker to generate an OS/2 executable file format.

The name of the executable file will have extension "exe". If "LE" is specified, an early
form of the OS/2 32-bit linear executable will be generated. This executable file format is
required by the CauseéWay DOS extender, Tenberry Software’s DOS/4G and DOS4GW
DOS extenders, and similar products.

In order to improve load time and minimize the size of the executable file, the OS/2 32-bit
linear executable file format was changed. If "LX" or "FLAT" (short form "FL") is
specified, the new form of the OS/2 32-bit linear executable will be generated. This
executable file format is required by the FlashTek DOS extender and 32-bit 0S/2
executables.

If "FLAT", "LX" or "LE" is not specified, an OS/2 16-hit executable will be generated.

If "DLL" (short form "DL") is specified, a Dynamic Link Library will be generated in
which case the name of the executable file will have extension "dII". Note that these
default extensions can be overridden by using the "NAME" directive to name the
executablefile.

Specifying "INITGLOBAL" (short form "INITG") will cause theinitialization routine to be
called the first time the Dynamic Link Library isloaded. The"INITGLOBAL" option
should be used with "OPTION ONEAUTODATA" (the default for Dynamic Link
Libraries). If the"INITGLOBAL" option isused with "OPTION MANYAUTODATA",
theinitialization code will be called once for the first data segment allocated but not for
subsequent allocations (thisis generally not desirable behaviour and will likely cause a
program fault).

Specifying "INITINSTANCE" (short form "INITI") will cause theinitialization routine to
be called each time the Dynamic Link Library is referenced by a process. The
"INITINSTANCE" option should be used with "OPTION MANYAUTODATA" (the
default for executable programs).

In either case, the initialization routine is defined by the start address. If neither
"INITGLOBAL" or "INITINSTANCE" is specified, "INITGLOBAL" is assumed.

For OS/2 32-hit linear executable files, it is also possible to specify whether the
initialization routine isto be called at DLL termination or not. Specifying
"TERMGLOBAL" (short form "TERMG") will cause the initialization routine to be called
when the last instance of the Dynamic Link Library isterminated. Specifying
"TERMINSTANCE" (short form "TERMI") will cause the initialization routine to be called
each time an instance of the Dynamic Link Library isterminated. Notethat the
initialization routine is passed an argument indicating whether it is being called during DLL
initialization or DLL termination. If "INITINSTANCE" isused and no termination option
isspecified, "TERMINSTANCE" isassumed. If "INITGLOBAL" isused and no
termination option is specified, "TERMGLOBAL" is assumed.

64 The FORMAT Directive

FORMAT

PHARLAP

If "PM" is specified, a Presentation Manager application will be created. The application
uses the API provided by the Presentation Manager and must be executed in the
Presentation Manager environment.

If "PMCOMPATIBLE" (short form "PMC") is specified, an application compatible with
Presentation Manager will be created. The application can run inside the Presentation
Manager or it can run in a separate screen group. An application can be of thistypeif it
uses the proper subset of OS/2 video, keyboard, and mouse functions supported in the
Presentation Manager applications. Thisisthe default.

If "FULLSCREEN" (short form "FULL") is specified, an OS2 full screen application will
be created. The application will run in a separate screen group from the Presentation
Manager.

If "PHY SDEVICE" (short form "PHY S") is specified, the executable fileis marked as a
physical device driver.

If "VIRTDEVICE" (short form "VIRT") is specified, the executable file is marked as a
virtual device driver.

For more information on OS/2 executable file formats, see the chapter entitled "The OS/2
Executable and DLL File Formats' on page 213.

(short form "PHAR") tells the Open Watcom Linker to generate an executable file that will
run under Phar Lap’s 386|DOS-Extender.

There are 4 forms of executable files: simple, extended, rel ocatable and segmented. If
"EXTENDED" (short form "EXT") is specified, an extended form of the executable file
with file extension "exp" will be generated. If "REX" is specified, arelocatable executable
file with file extension "rex" will be generated. If "SEGMENTED" (short form "SEG") is
specified, a segmented executable file with file extension "exp" will be generated. If
neither "EXTENDED", "REX" or "SEGMENTED" is specified, a simple executable file
with file extension "exp" will be generated. Note that the default file extensions can be
overridden by using the "NAME" directive to name the executablefile.

The simple form isfor flat model 386 applications. It isthe only format that can be loaded
by earlier versions of 386|DOS-Extender (earlier than 1.2).

The extended form is used for flat model applications that have been linked in away which
requires a method of specifying more information for 386|DOS-Extender than possible with
the simple form.

Therelocatable form is similar to the simple form. Unique to the relocatable formis an
offset relocation table. This allows the loader to load the program at any location it
chooses.

The segmented form is used for embedded system applications like Intel RMX. These
executables cannot be loaded by 386|DOS-Extender.

A simple form of the executable fileis generated in all but the following cases.

1. "EXTENDED" isspecified in the"FORMAT" directive.

The FORMAT Directive 65

FORMAT

The"RUNTIME" directive is specified. Options specified by the "RUNTIME"
directive can only be specified in the extended form of the executablefile.

The "OFFSET" option is specified. The value specified in the "OFFSET" option
can only be specified in the extended form of the executable file.

"REX" is specified in the "FORMAT" directive. In this case, the relocatable
form will be generated. Y ou must not specify the "RUNTIME" directive or the
"OFFSET" option when generating the relocatable form.

"SEGMENTED" is specified in the "FORMAT" directive. In this case, the
segmented form will be generated.

For more information on Phar Lap executable file formats, see the chapter entitled "The
Phar Lap Executable File Format" on page 219.

NOVELL (short form "NOV") tells the Open Watcom Linker to generate a NetWare executable file,
more commonly called a NetWare L oadable Module (NLM).

NLMs are further classified according to their function. The executable file will have afile
extension that depends on the class of the NLM being generated. The following describes
the classification of NLMs.

LAN

DSK

NAM

MSL

CDM

HAM

NLM

"number’

66 The FORMAT Directive

instructs the Open Watcom Linker to generate aLAN driver. A LAN
driver isadevicedriver for Local Area Network hardware. A file
extension of "lan" is used for the name of the executable file.

instructs the Open Watcom Linker to generate adisk driver. A file
extension of "dsk" is used for the name of the executablefile.

instructs the Open Watcom Linker to generate a file system name-space
support module. A file extension of "nam" is used for the name of the
executablefile.

instructs the Open Watcom Linker to generate a Mirrored Server Link
module. The default file extensionis"md"

instructs the Open Watcom Linker to generate a Custom Device module.
The default file extension is"cdm”

instructs the Open Watcom Linker to generate a Host Adapter module. The
default file extension is "ham"

instructs the Open Watcom Linker to generate a utility or server
application. Thisisthe default. A file extension of "nIm" is used for the
name of the executablefile.

instructs the Open Watcom Linker to generate a specific type of NLM
using 'number’. Thisisa32 hit value that corresponds to Novell allocated
NLM types.

These are the current defined values:

FORMAT

description

10

11

12

13

14

15

16

21

22

23

24

25

26

27

28

Specifies astandard NLM (default extension .NLM)
Specifies adisk driver module (default extension .DSK)

Specifies a namespace driver module (default extension
NAM)

Specifiesa LAN driver module (default extension .LAN)
Specifies a utility NLM (default extension .NLM)
Specifies a Mirrored Server Link module (default .MSL)
Specifies an Operating System module (default .NLM)
Specifies a Page High OS module (default .NLM)
Specifies aHost Adapter module (default . HAM)
Specifies a Custom Device module (default .CDM)
Reserved for Novell usage

Reserved for Novell usage

Specifies a Ghost module (default .NLM)

Specifies an SMP driver module (default .NLM)
Specifies a NIOS module (default .NLM)
Specifies a ClIOS CAD type module (default .NLM)
Specifies a CIOS CL S type module (default .NLM)
Reserved for Novell NICI usage

Reserved for Novell NICI usage

Reserved for Novell NICI usage

Reserved for Novell NICI usage

Reserved for Novell NICI usage

Reserved for Novell NICI usage

Reserved for Novell NICI usage

Reserved for Novell NICI usage

isatextual description of the program being linked.

The FORMAT Directive

67

FORMAT

For more information on NetWare executable file formats, see the chapter entitled "The
NetWare O/S Executable File Format" on page 209.

QNX tells the Open Watcom Linker to generate a QNX executablefile.
If "FLAT" (short form "FL") is specified, a 32-bit flat executable file is generated.
Under QNX, no file extension is added to the executabl e file name.
Under other operating systems, the name of the executable file will have the extension
"gnx". Note that this default extension can be overridden by using the "NAME" directive

to name the executable file.

For more information on QNX executable file formats, see the chapter entitled "The QNX
Executable File Format" on page 223.

RDOS tells the Open Watcom Linker to generate a RDOS special executablefile.
If "DEV" is specified, adevice driver fileis created.
If "BIN" is specified, a binary executablefileis created.
If "MBOOT" is specified, a 16-bit multi-boot executable fileis created.
The name of the executable file will have the extension "dev" for device driver or "bin" for
binary or multi-boot executable. Note that these default extensions can be overridden by
using the "NAME" directive to name the executable file.

ELF tells the Open Watcom Linker to generate an ELF format executable file.

ELF format DLLs can also be created.

For more information on ELF executable file formats, see the chapter entitled "The ELF
Executable File Format" on page 205.

If no "FORMAT" directiveis specified, the executable file format will be selected for each of the following
host systems in the way described.

DOS If 16-bit object files are encountered, a 16-bit DOS executable will be created. |f 32-hit
object files are encountered, a 32-bit DOS/AG executable will be created.

0S/2 If 16-bit object files are encountered, a 16-bit OS/2 executable will be created. If 32-bit
object files are encountered, a 32-bit OS/2 executable will be created.

QNX If 16-bit object files are encountered, a 16-bit QNX executable will be created. If 32-bit
object files are encountered, a 32-bit QNX executable will be created.

Windows NT If 16-bit object files are encountered, a 16-bit Windows executable will be created. If
32-hit object files are encountered, a 32-bit Win32 executable will be created.

Windows 95 If 16-bit object files are encountered, a 16-bit Windows executable will be created. If
32-hit object files are encountered, a 32-bit Win32 executable will be created.

68 The FORMAT Directive

FORMAT

RDOS If 16-hit object files are encountered, a 16-bit DOS executable will be created. If 32-bit
object files are encountered, a 32-bit RDOS executable will be created.

Linux If 16-bit object files are encountered, a 16-bit DOS executable will be created. If 32-bit
object files are encountered, a 32-bit ELF executable will be created.

The FORMAT Directive 69

FULLHEADER (DOS)

3.35 The FULLHEADER Option
Formats: DOS

Thisoption isvalid for 16-bit DOS "EXE" files. By default, the Open Watcom Linker writesa"MZ"
executable header which isjust large enough to contain all necessary data. The "FULLHEADER" option
may be used to force the header size to 64 bytes, plus the size of relocation records. The format of the
"FULLHEADER" option (short form "FULLH") is asfollows.

OPTION FULLHEADER

Notes:

1. Thisoption may be useful when creating a 16-bit executable which is to be used as a stub
program for a non-DOS executable.

2. Thisoption is not required when using the Open Watcom Linker. It is only needed when the

non-DOS executableis created using a third-party linker which does not automatically extend
the header size.

70 The FULLHEADER Option

HEAPSIZE (0S/2, QNX, Win16, Win32)

3.36 The HEAPSIZE Option
Formats: 0S/2, QNX, Win16, Win32

The "HEAPSIZE" option specifies the size of the heap required by the application. The format of the
"HEAPSIZE" option (short form "H") is asfollows.

OPTION HEAPSIZE=n

where description
n represents avalue. The complete form of nisthe following.
[Ox] d{d} k| mi
d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. 1f mis specified, the valueis
multiplied by 1024* 1024.
n specifies the size of the heap. The default heap sizeis 0 bytes. The maximum value of nis 65536 (64K)
for 16-bit applications and 4G for 32-bit applications which is the maximum size of a physical segment.
Actualy, for a particular application, the maximum value of n is 64K or 4G less the size of group
"DGROUP".

Win32; This parameter isignored for DLL (zero is used).

The HEAPSIZE Option 71

HELP (NetWare)

3.37 The HELP Option

Formats: NetWare

The"HELP" option specifies the file name of an internationalized help file whose language corresponds to
the message file bound to this NLM.

The format of the "HELP" option (short form "HE") is asfollows.

OPTION HELP=hdp file

where description

help_file is the name of the help file.

72 The HELP Option

HSHIFT (DOS, 0S/2, QNX, Win16)

3.38 The HSHIFT Option
Formats: DOS, 0S/2, QNX, Win16

The"HSHIFT" defines the relationship between segment and linear address in a segmented executable.
The format of the "HSHIFT" option is as follows.

OPTION HSHIFT=n

where description

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. 1f mis specified, the valueis
multiplied by 1024* 1024.

n specifies the number of digits to right shift a 32-bit value containing a segment address in its upper 16 bits
in order to convert it to part of alinear address. In more conventional terms, (16 - n) is the amount to shift
asegment value left in order to convert it to part of alinear address.

The"HSHIFT" Option is useful for non-standard segmented architectures that have different alignment
between segments and linear addresses, such asthe IP cores by ARC, Inc. These cores support a 24-hit
addressing mode where segment addresses are shifted 8 bits to form part of the linear address. Thenvalue
and its semantics match the analogous variable used by the compiler for computing addressesin the huge
memory model.

The default value of nis 12, representing the 4-bit shift used in conventional x86 CPUSs.

The HSHIFT Option 73

IMPFILE (NetWare, 0S/2, Win16, Win32)

3.39 The IMPFILE Option
Formats: NetWare, 0S/2, Win16, Win32

The"IMPFILE" option requests the linker to produce a Open Watcom Library Manager command file that
can be used to create an import library that correspondsto the DLL that is being generated. Thisoptionis
useful in situations where the Open Watcom Linker cannot create an import library file when you have
specified the "IMPLIB" option (i.e., the linker fails to launch Open Watcom Library Manager).

The format of the "IMPFILE" option (short form "IMPF") is as follows.

OPTION IMPFILE[=imp_file]

where description

imp_file is afile specification for the name of the command file that can be used to create the import
library file using the Open Watcom Library Manager. If no file extension is specified, no
file extension is assumed.

By default, no command fileis generated. Specifying this option causes the linker to generate an import
library command file. The import library command file contains alist of the entry pointsin your DLL.
When this command file is processed by the Open Watcom Library Manager, an import library file will be
produced.

If no file name is specified, the import library command file will have a default file extension of "lbc" and
the samefile name asthe DLL file. Note that the import library command file will be created in the same
directory asthe DLL file. The DLL file path and name can be specified in the "NAME" directive.

Alternatively, alibrary command file path and name can be specified. The following directive instructs the
linker to generate aimport library command file and call it "mylib.lcf" regardless of the name of the
executablefile.

option inpfile=nylib.Icf

Y ou can also specify a path and/or file extension when using the "IMPFILE=" form of the "IMPFILE"
option.

74 The IMPFILE Option

IMPLIB (NetWare, 0S/2, Win16, Win32)

3.40 The IMPLIB Option
Formats: NetWare, 0S/2, Win16, Win32

The"IMPLIB" option requests the linker to produce an import library that correspondsto the DLL that is
being generated. The format of the "IMPLIB" option (short form "IMPL") is as follows.

OPTION IMPLIB[=imp_lib]

where description

imp_lib isafile specification for the name of the import library file. If no file extensionis
specified, afile extension of "lib" is assumed.

By default, no library file is generated. Specifying this option causes the Open Watcom Linker to generate
animport library file. Theimport library file containsalist of the entry pointsin your DLL.

If no file name is specified, the import library file will have adefault file extension of "lib" and the same
filename asthe DLL file. Note that the import library file will be created in the same directory asthe DLL
file. The DLL file path and name can be specified in the "NAME" directive.

Alternatively, alibrary file path and name can be specified. The following directive instructs the linker to
generate alibrary file and call it "mylib.imp" regardless of the name of the executablefile.

option inplib=nylib.inp

Y ou can a'so specify a path and/or file extension when using the "IMPLIB=" form of the "IMPLIB" option.

Note: At present, the linker spawns the Open Watcom Library Manager to create the import library file.

The IMPLIB Option 75

IMPORT (ELF, NetWare, 0S/2, Win16, Win32)

3.41 The IMPORT Directive
Formats: ELF, NetWare, 0S/2, Win16, Win32

The"IMPORT" directive is used to tell the Open Watcom Linker what symbols are defined externally in
other executables.

3.41.1 IMPORT - 0S/2, Win16, Win32 only

The"IMPORT" directive describes a function that belongs to a Dynamic Link Library. The format of the
"IMPORT" directive (short form "IMP") is asfollows.

IMPORT import{,import}

import ::= internal_name module_name[.entry_name | ordinal]

where description
internal_name isthe name the application used to call the function.

module_name isthe name of the Dynamic Link Library. Note that this need not be the same as thefile
name of the executable file containing the Dynamic Link Library. This name corresponds
to the name specified by the "MODNAME" option when the Dynamic Link Library was
created.

entry name isthe actual name of the function as defined in the Dynamic Link Library.

ordinal isthe ordinal value of the function. The ordinal number is an alternate method that can be
used to reference afunction in a Dynamic Link Library.

Notes:

1. By default, the Open Watcom C and C++ compilers append an underscore (' ') to all function
names. This should be considered when specifying internal_name and entry_namein an
"IMPORT" directive.

2. If the name contains characters that are special to the linker then the name may be placed inside
apostrophes (e.g., i nport ' nmyfunc@’).

The preferred method to resolve references to Dynamic Link Librariesis through the use of import
libraries. Seethe sections entitled "Using a Dynamic Link Library" on page 216, "Using a Dynamic Link
Library" on page 230, or "Using a Dynamic Link Library" on page 239 for more information on import
libraries.

76 The IMPORT Directive

IMPORT (ELF, NetWare, 0S/2, Win16, Win32)

3.41.2 IMPORT - ELF only

The"IMPORT" directive is used to tell the Open Watcom Linker what symbols are defined externally in
other executables. The format of the "IMPORT" directive (short form "IMP") is asfollows.

IMPORT external_name{,external_name}

where description
external_name is the name of the external symbol.
Notes:

1. By default, the Open Watcom C and C++ compilers append an underscore ('_") to all function
names. This should be considered when specifying external_namein an "IMPORT" directive.

2. If the name contains characters that are special to the linker then the name may be placed inside
apostrophes (e.g., i nport ' nmyfunc@’).

3.41.3 IMPORT - Netware only

The"IMPORT" directive is used to tell the Open Watcom Linker what symbols are defined externally in
other NLMs. Theformat of the "IMPORT" directive (short form "IMP") is as follows.

IMPORT external_name{,external_name}

where description
external_name is the name of the external symboal.
Notes:

1. If the name contains characters that are special to the linker then the name may be placed inside
apostrophes (e.g., i nport ' myfunc@’).

If an NLM contains external symbols, the NLMsthat define the external symbols must be loaded before the
NLM that references the external symbolsisloaded.

The IMPORT Directive 77

INCLUDE

3.42 The @ Directive

The"@" directiveinstructs the Open Watcom Linker to process directives from an alternate source. The
format of the"@" directive is as follows.

@directive var
or
@directive file

where description

directive var isthe name of an environment variable. The directives specified by the value of
di rective_var will beprocessed.

directive file isafile specification for the name of alinker directivefile. A file extension of "Ink" is
assumed if no file extension is specified.

The environment variable approach to specifying linker directives allows you to specify commonly used
directives without having to specify them each time you invoke the Open Watcom Linker. If the
environment variable "wlink" is set asin the following example,

set W ink=debug watcom all option map, verbose library math
wink @fink

then each time the Open Watcom Linker isinvoked, full debugging information will be generated, a
verbose map file will be created, and the library file "math.lib" will be searched for undefined references.

A linker directivefile is useful, for example, when the linker input consists of alarge number of object files
and you do not want to type their names on the command line each time you link your program. Note that a
linker directive file can also include other linker directive files.

Let thefile "memos.Ink" be a directive file containing the following lines.

system nmy_os
name menos
file nenos
file actions

file read
file msg
file prompt
file nmemmgr

[ibrary \term o\screen
[ibrary \term o\ keyboard

Winl6 only: We must also use the "EXPORT" directive to define the window function. Thisis done
using the following directive.

export w ndow_function

Consider the following example.

78 The @ Directive

INCLUDE

Example:
W i nk @renps

The Open Watcom Linker isinstructed to process the contents of the directive file "memos.Ink". The
executable image file will be called "memos.exe”. The following object fileswill be loaded from the
current directory.

nmenos. obj
actions. obj
read. obj
nsg. obj
pronpt . obj
menmgr . obj

If any unresolved symbol references remain after all object files have been processed, the library files
"screen.lib" and "keyboard.lib" in the directory "\termio" will be searched (in the order listed).

Notes:

1. Intheabove example, we did not provide the file extension when the directive file was specified.
The Open Watcom Linker assumes afile extension of "Ink" if noneis present.

2. Itisnot necessary to list each object file and library with a separate directive. The following
linker directivefileisequivaent.

system nmy_os

name menos

file menos, actions, read, nsg, pronpt, nermyr
library \term o\screen,\terni o\ keyboard

However, if you want to selectively specify what debugging information should be included, the
first style of directive file will be easier to use. Thisisillustrated in the following sample
directivefile.

system nmy_os

name menos

debug wat com |i nes
file menos

debug wat com al |
file actions

debug watcom | i nes

file read
file msg
file pronmpt
file nmemygr

debug wat com
library \term o\screen
library \term o\ keyboard

3. Information for aparticular directive can span directivefiles. Thisisillustrated in the following
sample directivefile.

system nmy_os

file menos, actions, read, nsg, pronpt, nemmyr
file @hbgfiles

library \termo\screen

library \term o\keyboard

The @ Directive 79

INCLUDE

The directivefile "dbgfiles.Ink” contains, for example, those object files that are used for
debugging purposes.

80 The @ Directive

INCREMENTAL (ELF, 0S/2, PharLap, QNX, Win16, Win32)

3.43 The INCREMENTAL Option
Formats: ELF, 0S/2, PharLap, QNX, Win16, Win32

The"INCREMENTAL" option can be used to enable incremental linking. Incremental linking is a process
whereby the linker attempts to modify the existing executable file by changing only those portions for
which new object files are provided.

The format of the "INCREMENTAL" option (short form "INC") isasfollows.

OPTION INCREMENTAL[=inc_file_ name]

where description

inc_file_name isafile specification for the name of the incremental information file. If no file extension
is specified, afile extension of "ilk" is assumed.

This option engages the incremental linking feature of the linker. This option must be one of the first
options encountered in the list of directives and options supplied to the linker. If the option is presented too
late, the linker will issue a diagnostic message.

By default, the incremental information file has the same name as the program except with an "ilk"
extension unless the "NAME" directive has not been seen yet. If thisisthe case then thefileiscalled
_wWink.ilk.

The linker’ sincremental linking techniqueis very resistant to changes in the underlying object files - there
are very few cases where an incremental re-link isnot possible. The options"ELIMINATE" and
"VFREMOVAL" cannot be used at the same time as incremental linking.

Itis possible, over time, to accumulate unneeded functions in the executable by using incremental linking.
To guarantee an executable of minimum size, you can cause afull relink by deleting the ".ilk" file or by not
specifying the "INCREMENTAL" option.

Do not use a post processor like the Open Watcom Resource Compiler on the executable file since this will
damage the data structures maintained by the linker. Add resources to the executable file using the
"RESOURCE" option which is described in "The RESOURCE Directive" on page 147.

Note: Only DWARF debugging information is supported with incremental linking.

The INCREMENTAL Option 81

INTERNALRELOCS (0S/2)

3.44 The INTERNALRELOCS Option
Formats: 0S/2

The"INTERNALRELOCS" option is used with LX format executables under 32-bit OS/2. By default,
0S/2 executables do not contain internal relocation information and OS/2 Dynamic Link Libraries do
contain internal relocation information. This option causes the Open Watcom Linker to include internal
relocation information in OS/2 LX format executables.

The format of the "INTERNALRELOCS" option (short form "INT") isasfollows.

OPTION INTERNALRELOCS

82 The INTERNALRELOCS Option

LANGUAGE

3.45 The LANGUAGE Directive

Formats: All

The"LANGUAGE" directive is used to specify the language in which strings in the Open Watcom Linker
directives are specified. The format of the "LANGUAGE" directive (short form "LANG") is as follows.

LANGUAGE lang

lang ::= JAPANESE | CHINESE | KOREAN

JAPANESE (short form "JA") specifiesthat strings are to be handled as if they contained characters
from the Japanese Double-Byte Character Set (DBCS).

CHINESE (short form "CH") specifies that strings are to be handled as if they contained characters
from the Chinese Double-Byte Character Set (DBCS).

KOREAN (short form "KO") specifies that strings are to be handled as if they contained characters
from the Korean Double-Byte Character Set (DBCS).

The LANGUAGE Directive 83

LARGEADDRESSAWARE (Win32)

3.46 The LARGEADDRESSAWARE Option
Formats: Win32

The"LARGEADDRESSAWARE" option specifies that the application can handle addresses larger than 2
gigabytes. The linker set appropriate flag to the PE format image header.

The format of the "LARGEADDRESSAWARE" option (short form "LARGE") is asfollows.

OPTION LARGEADDRESSAWARE

84 The LARGEADDRESSAWARE Option

LIBFILE

3.47 The LIBFILE Directive

Formats: All

The"LIBFILE" directiveis used to specify the object files that the Open Watcom Linker isto process. The
format of the "LIBFILE" directive (short form "LIBF") isasfollows.

LIBFILE obj_spec{,obj_spec}

obj_spec ::=obj_file|library file

where description

obj_file isafile specification for the name of an object file. If no file extension is specified, afile
extension of "obj" isassumed if you are running a DOS, OS/2 or Windows-hosted version
of the Open Watcom Linker. Also, if you are running a DOS, OS/2 or Windows-hosted
version of the Open Watcom Linker, the object file specification can contain wild cards (*,
?). A fileextension of "0" isassumed if you are running a UNIX-hosted version of the
Open Watcom Linker.

library file isafile specification for the name of alibrary file. Note that the file extension of the
library file (usually "lib") must be specified; otherwise an object file will be assumed.
When alibrary fileis specified, all object filesin the library are included (whether required
or not).

The difference between the "LIBFILE" directive and the "FILE" directiveis as follows.

1. When searching for an object or library file specified in a"LIBFILE" directive, the current
working directory will be searched first, followed by the paths specified in the"LIBPATH"
directive, and finally the paths specified in the "LIB" environment variable. Note that if the
object or library file name contains a path, only the specified path will be searched.

2. Object or library file names specified in a"LIBFILE" directive will not be used to create the
name of the executable file when no "NAME" directive is specified.

Essentially, object files that appear in "LIBFILE" directives are viewed as components of alibrary that
have not been explicitly placed in alibrary file.

Consider the following linker directivefile.
libpath \libs
libfile nystart

path \objs
file filel, file2

The Open Watcom Linker isinstructed to process the following object files:
\libs\nystart. obj
\objs\filel. obj
\objs\file2. obj

Note that the executable file will have file name "filel" and not "mystart”.

The LIBFILE Directive 85

LIBPATH

3.48 The LIBPATH Directive

Formats: All

The"LIBPATH" directiveis used to specify the directories that are to be searched for library files
appearing in subsequent "LIBRARY" directives and object files appearing in subsequent "LIBFILE"
directives. Theformat of the"LIBPATH" directive (short form "LIBP") is asfollows.

LIBPATH [path_name{; path_name}]

where description
path_name isapath name.

Consider a directive file containing the following linker directives.

file test

i bpath \'math
library trig
libfile newsin

First, the Open Watcom Linker will process the object file "test.obj" from the current working directory.
The object file "newsin.obj" will then be processed, searching the current working directory first. 1f
"newsin.obj" isnot in the current working directory, the "\math" directory will be searched. If any
unresolved references remain after processing the object files, the library file "trig.lib" will be searched. If
thefile "trig.lib" does not exist in the current working directory, the "\math" directory will be searched.

Itisalso possible to specify alist of pathsina"LIBPATH" directive. Consider the following example.
i bpath \ newnat h

\ mat h
library trig

When processing undefined references, the Open Watcom Linker will attempt to processthe library file
"trig.lib" in the current working directory. If "trig.lib" does not exist in the current working directory, the
"\newmath" directory will be searched. If "trig.lib" does not exist in the "\newmath" directory, the "\math"
directory will be searched.

If the name of alibrary file appearing in a"LIBRARY" directive or the name of an object file appearing in
a"LIBFILE" directive contains a path specification, only the specified path will be searched.

Note that

i bpat h pathl
i bpat h pat h2

is equivalent to the following.

i bpat h pat h2
pat hl

86 The LIBPATH Directive

LIBRARY

3.49 The LIBRARY Directive

Formats: All

The"LIBRARY" directiveis used to specify thelibrary files to be searched when unresolved symbols
remain after processing all specified input object files. The format of the "LIBRARY" directive (short form
"L")isasfollows.

LIBRARY library file{,library file}

where description

library file isafile specification for the name of alibrary file. If nofile extension is specified, afile
extension of "lib" is assumed.

Consider the following example.

Example:
Wink systemny os file trig lib \math\trig, \cnplx\trig

The Open Watcom Linker isinstructed to process the following object file:
trig. obj

If any unresolved symbol references remain after all object files have been processed, the following library
fileswill be searched:

\math\trig.lib
\empl x\trig.lib

More than one "LIBRARY" directive may be used. The following exampleis equivaent to the preceding
one.

Example:
wWink systemny os f trig lib \math\trig lib \cnplx\trig

Thus other directives may be placed between lists of library files.

3.49.1 Searching for Libraries Specified in Environment Variables

The"LIB" environment variable can be used to specify alist of paths that will be searched for library files.
The"LIB" environment variable can be set using the "set" command as follows:

set lib=\graphics\lib
\utility

Consider the following "LIBRARY™" directive and the above definition of the "LIB" environment variable.

library \nylibs\util, graph

The LIBRARY Directive 87

LIBRARY

If undefined symbols remain after processing all object files specified in all "FILE" directives, the Open
Watcom Linker will resolve these references by searching the following libraries in the specified order.

PwWdE

Notes:

thelibrary file "\mylibs\util .lib"

thelibrary file "graph.lib" in the current directory
thelibrary file "\graphics\lib\graph.lib"

the library file "\utility\graph.lib"

If alibrary file specified in a"LIBRARY" directive contains an absolute path specification, the
Open Watcom Linker will not search any of the paths specified in the "LIB" environment string
for the library file. Under QNX, an absolute path specification is one that begins the "/"
character. Under all other operating systems, an absolute path specification is one that begins
with a drive specification or the "\" character.

Once alibrary file has been found, no further elements of the "LIB" environment variable are
searched for other libraries of the same name. That is, if the library file "\graphics\lib\graph.lib"
exists, the library file "\utility\graph.lib" will not be searched even though unresolved references
may remain.

3.49.2 Converting Libraries Created using Phar Lap 386ILIB

Phar Lap’slibrarian, 386|L1B, creates libraries whose dictionary is a different format from the one used by
other librarians. For this reason, linking an application using the Open Watcom Linker with libraries
created using 386|L1B will not work. Library files created using 386|LIB must be converted to the form
recognized by the Open Watcom Linker. Thisisachieved by issuing the following WLIB command.

wWib newib +pharlib.lib

The library file "pharlib.lib" isalibrary created using 386|LIB. Thelibrary file "newlib.lib" will be created
so that the Open Watcom Linker can now processit.

88 The LIBRARY Directive

LINEARRELOCS (QNX)

3.50 The LINEARRELOCS Option
Formats: QNX

The"LINEARRELOCS" option instructs the linker to generate offset fixups in addition to the normal
segment fixups. The offset fixups allow the system to move pieces of code and data that were loaded at a
particular offset within a segment to another offset within the same segment.

The format of the "LINEARRELOCS" option (short form "LI") is as follows.

OPTION LINEARRELOCS

The LINEARRELOCS Option 89

LINKVERSION (Win32)

3.51 The LINKVERSION Option
Formats: Win32

The"LINKVERSION" option specifies that the linker should apply the given major and minor version
numbers to the PE format image header. If aversion number is not specified, then the built-in value of 2.18
isused. Theformat of the "LINKVERSION" option (short form "LINKV") is asfollows.

OPTION LINKVERSION = major[.minor]

90 The LINKVERSION Option

LONGLIVED (QNX)

3.52 The LONGLIVED Option
Formats: QNX

The"LONGLIVED" option specifies that the application being linked will reside in memory, or be active,
for along period of time (e.g., background tasks). The memory manager, knowing an application is
"LONGLIVED", alocates memory for the application so as to reduce fragmentation.

The format of the "LONGLIVED" option (short form "LO") is asfollows.

OPTION LONGLIVED

The LONGLIVED Option 91

MANGLEDNAMES

3.53 The MANGLEDNAMES Option

Formats: All

The "MANGLEDNAMES' option should only be used if you are developing a Open Watcom C++
application. Dueto the nature of C++, the Open Watcom C++ compiler generates mangled names for
symbols. A mangled name for a symbol includes the following.

1. symbol name
2. scoping information
3. typing information

Thisinformation is stored in a cryptic form with the symbol. When the linker encounters a mangled name
in an object file, it formats the above information and produces this name in the map file.

If you would like the linker to produce the mangled name as it appeared in the object file, specify the
"MANGLEDNAMES" option.

The format of the "MANGLEDNAMES" option (short form "MANG") isasfollows.

OPTION MANGLEDNAMES

92 The MANGLEDNAMES Option

MANYAUTODATA (0S/2, Win16)

3.54 The MANYAUTODATA Option
Formats: 0S/2, Win16

The"MANYAUTODATA" option specifies that a copy of the automatic data segment (default data
segment defined by the group "DGROUP"), for the program module or Dynamic Link Library (DLL) being
created, is made for each instance. The format of the "MANY AUTODATA" option (short form "MANY")
isasfollows.

OPTION MANYAUTODATA

The default for a program moduleis"MANYAUTODATA" and for aDynamic Link Library is
"ONEAUTODATA". If you do not want the data area of aDLL to be shared across multiple applications,
then you should specify "OPTION MANYAUTODATA".

Win16: Note, however, that this attribute is not supported by Windows 3.x for 16-bit DLLSs.

Y ou should also see the related section entitled "The FORMAT Directive" on page 61 for information on
the "INITINSTANCE", "TERMINSTANCE", "INITGLOBAL", and "TERMGLOBAL" DLL attributes.

The MANYAUTODATA Option 93

MAP

3.55 The MAP Option

Formats: All

The"MAP" option controls the generation of amap file. The format of the "MAP" option (short form "M")
isasfollows.

OPTION MAP[=map_file]

where description

map_file isafile specification for the name of the map file. If no file extension is specified, afile
extension of "map" is assumed.

By default, no map file is generated. Specifying this option causes the Open Watcom Linker to generate a
map file. Themap fileis simply amemory map of your program. That is, it specifies the relative location
of al global symbolsin your program. The map file also contains the size of your program.

If no file name is specified, the map file will have a default file extension of "map" and the same file name
as the executable file. Note that the map file will be created in the current directory even if the executable
file name specified in the "NAME" directive contains a path specification.

Alternatively, afile name can be specified. The following directive instructs the linker to generate a map
fileand call it "myprog.map" regardless of the name of the executablefile.

opti on nap=nyprog

Y ou can also specify a path and/or file extension when using the "MAP=" form of the "MAP" option.

94 The MAP Option

MAXDATA (PharLap)

3.56 The MAXDATA Option

Formats: PharLap

The format of the "MAXDATA" option (short form "MAXD") is as follows.

OPTION MAXDATA=N

where description
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m
d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. If mis specified, thevalueis
multiplied by 1024* 1024.
n specifies the maximum number of bytes, in addition to the memory required by executable image, that
may be allocated by 386|DOS-Extender at the end of the loaded executable image. No more than n bytes
will be alocated.

If the"MAXDATA" option is not specified, a default value of hexadecimal ffffffff isassumed. This means
that 386|DOS-Extender will allocate all available memory to the program at load time.

The MAXDATA Option 95

MAXERRORS

3.57 The MAXERRORS Option

Formats: All
The "MAXERRORS" option can be used to set alimit on the number of error messages generated by the
linker. Note that this does not include warning messages. When thislimit is reached, the linker will issue a

fatal error and terminate.

The format of the "MAXERRORS" option (short form "MAXE") isasfollows.

OPTION MAXERRORS=N

where description

n is the maximum number of error messages issued by the linker.

96 The MAXERRORS Option

MESSAGES (NetWare)

3.58 The MESSAGES Option

Formats: NetWare

The "MESSAGES" option specifies the file name of an internationalized message file that contains the
default messages for the NLM. Thisisthe name of the default message file to load for NLMsthat are
enabled. Enabling allows the same NLM to display messages in different languages by switching message
files.

The format of the "MESSAGES" option (short form "MES") is as follows.

OPTION MESSAGES=mgg _file

where description

msg_file is the name of the message file.

The MESSAGES Option 97

MINDATA (PharLap)

3.59 The MINDATA Option

Formats: PharLap

The format of the "MINDATA" option (short form "MIND") is as follows.

OPTION MINDATA=N

where description

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. If mis specified, thevalueis
multiplied by 1024* 1024.

n specifies the minimum number of bytes, in addition to the memory required by executable image, that
must be allocated by 386|DOS-Extender at the end of the loaded executable image. 1f n bytes are not
available, the program will not be executed.

If the"MINDATA" option is not specified, a default value of zero is assumed. This means that

386|DOS-Extender will load the program as long as there is enough memory for the load image; no extra
memory is required.

98 The MINDATA Option

MIXED1632 (0S/2)

3.60 The MIXED1632 Option
Formats: 0S/2

The"MIXED1632" option specifies that 16-bit and 32-bit logical segments may be grouped into asingle
physical segment. This appliesto both code and data segments.

The format of the "MIXED1632" option (short form "MIX") isasfollows.

OPTION MIXED1632

Thisoption is useful certain specialized applications, such as OS/2 physical device drivers. In most cases,
mixing of 16-bit and 32-bit segments should be avoided.

The MIXED1632 Option 99

MODNAME (0S/2, Win16, Win32)

3.61 The MODNAME Option
Formats: 0S/2, Win16, Win32

The"MODNAME" option specifies a name to be given to the module being created. The format of the
"MODNAME" option (short form "MODN") is as follows.

OPTION MODNAME=module_name

where description

module_name isthe name of a Dynamic Link Library.

Once a module has been loaded (whether it be a program module or a Dynamic Link Library), mod_name
is the name of the module known to the operating system. If the "MODNAME" option is not used to

specify amodule name, the default module name is the name of the executabl e file without the file
extension.

100 The MODNAME Option

MODFILE

3.62 The MODFILE Directive

Formats: All

The"MODFILE" directive instructs the linker that only the specified object files have changed. The format
of the"MODFILE" directive (short form "MODF") is as follows.

MODFILE obj_file{,0bj_file}

where description

obj_file isafile specification for the name of an object file. If nofile extension is specified, afile
extension of "obj" isassumed if you are running a DOS, OS/2 or Windows-hosted version
of the Open Watcom Linker. Also, if you are running a DOS, OS/2 or Windows-hosted
version of the Open Watcom Linker, the object file specification can contain wild cards (*,
?). A fileextension of "0" isassumed if you are running a UNIX-hosted version of the
Open Watcom Linker.

This directiveis used only in concert with incremental linking. This directive tells the linker that only the

specified object files have changed. When this option is specified, the linker will not check the dates on
any of the object files or libraries when incrementally linking.

The MODFILE Directive 101

MODTRACE

3.63 The MODTRACE Directive

Formats: All

The"MODTRACE" directive instructs the Open Watcom Linker to print alist of all modules that reference
the symbols defined in the specified modules. The format of the "MODTRACE" directive (short form
"MODT") isasfollows.

MODTRACE module_name{,module_name}

where description
module_name isthe name of an object module defined in an object or library file.
Theinformation is displayed in the map file. Consider the following example.

Example:
W ink systemny_os op map file test lib math nodt trig

If the module "trig" defines the symbols"sin" and "cos', the Open Watcom Linker will list, in the map file,
all modules that reference the symbols"sin" and "cos’.

102 The MODTRACE Directive

MODULE (ELF, NetWare)

3.64 The MODULE Directive
Formats: ELF, NetWare

The"MODULE" directive is used to specify the DLLs or NLMs to be |oaded before this executable is
loaded. The format of the "MODULE" directive (short form "MODU") is as follows.

MODULE module_name{,module_name}

where description

module name isthefile nameof aDLL or NLM.

WARNING! Versions 3.0 and 3.1 of the NetWare operating system do not support the automatic
loading of modules specified in the "MODULE" directive. Y ou must load them manually.

The MODULE Directive 103

MULTILOAD (NetWare)

3.65 The MULTILOAD Option

Formats: NetWare

The"MULTILOAD" option specifies that the module can be loaded more than once by a"load" command.
The format of the "MULTILOAD" option (short form "MULTIL") isasfollows.

OPTION MULTILOAD

If the"MULTILOAD" option is not specified, it will not be possible to load the module more than once
using the "load" command.

104 The MULTILOAD Option

NAME

3.66 The NAME Directive

Formats: All

The"NAME" directive is used to provide a name for the executable file generated by the Open Watcom
Linker. Theformat of the "NAME" directive (short form "N") is as follows.

NAME exe file
where description
exe file isafile specification for the name of the executable file. Under UNIX, or if the

"NOEXTENSION" option was specified, no file extension is appended. In all other cases,
afile extension suitable for the current executable file format is appended if no file
extension is specified.

Consider the following example.

Example:
W ink systemny_os nane nyprog file test, test2, test3

Thelinker isinstructed to generate an executable file called "myprog.exe" if you are running a DOS, 0S/2
or Windows-hosted version of the linker. If you are running a UNIX-hosted version of the linker, or the
"NOEXTENSION" option was specified, an executable file called "myprog" will be generated.

Notes:

1. Nofile extension was given when the executable file name was specified. The linker assumes a
file extension that depends on the format of the executable file being generated. If you are
running a UNIX-hosted version of the linker, or the "NOEXTENSION" option was specified, no
file extension will be assumed. The section entitled "The FORMAT Directive" on page 61
describesthe "FORMAT" directive and how the file extension is chosen for each executable file
format.

2. If no"NAME" directiveis present, the executable file will have the file name of the first object
file processed by the linker. If the first object file processed is called "test.obj" and no "NAME"
directive is specified, an executablefile called "test.exe" will be generated if you are running a
DOS or OS/2-hosted version of the linker. If you are running a UNIX-hosted version of the
linker, or the "NOEXTENSION" option was used, an executablefile called "test" will be
generated.

The NAME Directive 105

NAMELEN

3.67 The NAMELEN Option

Formats: All

The "NAMELEN" option tells the Open Watcom Linker that all symbols must be uniquely identified in the
number of characters specified or less. If any symbol fails to satisfy this condition, a warning message will
beissued. The warning message will state that a symbol has been defined more than once.

The format of the "NAMELEN" option (short form "NAMEL") is asfollows.

OPTION NAMELEN=n

where description
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m
d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. If mis specified, the valueis
multiplied by 1024* 1024.
Some computer systems, for example, require that all global symbols be uniquely identified in 8 characters.

By specifying an appropriate value for the "NAMELEN" option, you can ease the task of porting your
application to other computer systems.

106 The NAMELEN Option

NEWFILES (0S/2)

3.68 The NEWFILES Option
Formats: 0S/2

The "NEWFILES" option specifies that the application uses the high-performance file system. Thisoption
isapplicable to 16-bit OS/2 applications only. The format of the "NEWFILES" option (short form
"NEWF") isasfollows.

OPTION NEWFILES

The NEWFILES Option 107

NEWSEGMENT (DOS, 0S/2, QNX, Win16)

3.69 The NEWSEGMENT Directive
Formats: DOS, 0S/2, QNX, Win16

Thisdirectiveisintended for 16-bit segmented applications. By default, the Open Watcom Linker
automatically groups logical code segments into physical segments. By default, these segments are 64K
bytesin size. However, the "PACKCODE" option can be used to specify amaximum size for all physical
segments that is smaller than 64K bytes.

The "NEWSEGMENT" directive provides an alternate method of grouping code segmentsinto physical
segments. By placing this directive after a sequence of "FILE" directives, all code segments appearing in
object modules specified by the sequence of "FILE" directives will be packed into aphysical segment.
Note that the size of a physical segment may vary in size. The format of the "NEWSEGMENT" directive
(short form "NEW") is asfollows.

NEWSEGMENT

Consider the following example.

file filel, file2, file3

newsegment
file file4d
file fileb

Code segments from filel, file2 and file3 will be grouped into one physical segment. Code segments from
filed and file5 will be grouped into another physical segment.

Note that code segments extracted from library files will be grouped into physical segments aswell. The
size of these physical segmentsis determined by the "PACKCODE" option and is 64k by default.

108 The NEWSEGMENT Directive

NLMFLAGS (NetWare)

3.70 The NLMFLAGS Option

Formats: NetWare

The"NLMFLAGS' option is used to set bitsin the flags field of the header of the Netware executable file.
The format of the "NLMFLAGS" option (short form "NLMF") is as follows.

OPTION NLMFLAGS=some_value

where description

some value isaninteger valuethat is OR’ed into the flags field of the header of the Netware
executable.

The NLMFLAGS Option 109

NOAUTODATA (0S/2, Win16)

3.71 The NOAUTODATA Option
Formats: 0S/2, Win16

The"NOAUTODATA" option specifies that no automatic data segment (default data segment defined by
the group "DGROUP"), exists for the program module or Dynamic Link Library being created. This option
appliesto 16-bit applications only. The format of the "NOAUTODATA" option (short form "NOA") isas

follows.

OPTION NOAUTODATA

110 The NOAUTODATA Option

NODEFAULTLIBS

3.72 The NODEFAULTLIBS Option

Formats: All

Specia object module records that specify default libraries are placed in object files generated by Open
Watcom compilers. These libraries reflect the memory and floating-point model that a source file was
compiled for and are automatically searched by the Open Watcom Linker when unresolved symbols are
detected. These libraries can exist in the current directory, in one of the paths specified in "LIBPATH"
directives, or in one of the paths specified in the L I B environment variable.

Note that al library files that appear in a"LIBRARY" directive are searched before default libraries. The
"NODEFAULTLIBS' option instructs the Open Watcom Linker to ignore default libraries. That is, only
libraries appearing in a"LIBRARY" directive are searched.

The format of the "NODEFAULTLIBS" option (short form "NOD") is as follows.

OPTION NODEFAULTLIBS

The NODEFAULTLIBS Option 111

NOEXTENSION

3.73 The NOEXTENSION Option

Formats: All

The "NOEXTENSION" option suppresses automatic addition of an extension to the name of the executable
file generated by Open Watcom Linker. This affects both names specified explicitly through the "NAME"
directive as well as default names chosen in the absence of a"NAME" directive.

The format of the "NOEXTENSION" option (short form "NOEXT") is as follows.

OPTION NOEXTENSION

112 The NOEXTENSION Option

NOINDIRECT (DOS)

3.74 The NOINDIRECT Option
Formats: DOS

The "NOINDIRECT" option suppresses the generation of overlay vectors for symbolsthat are referenced
indirectly (their addressis taken) when the module containing the symbol is not an ancestor of at least one
module that indirectly references the symbol. This can greatly reduce the number of overlay vectorsand is
a safe optimization provided there are no indirect calls to these symbols. If, for example, the set of symbols
that are called indirectly is known, you can use the "VECTOR" option to force overlay vectors for these
symbols.

The format of the "NOINDIRECT" option (short form "NOI") is as follows.

OPTION NOINDIRECT

For more information on overlays, see the section entitled "Using Overlays' on page 187.

The NOINDIRECT Option 113

NORELOCS (QNX, Win32)

3.75 The NORELOCS Option
Formats: QNX, Win32

The "NORELOCS" option specifies that no relocation information is to be written to the executable file.
When the "NOREL OCS" option is specified, the executable file can only be run in protected mode and will
not run in real mode. Inreal mode, the relocation information is required; in protected mode, the relocation
information is not required unless your application is running at privilege level 0.

The format of the "NORELOCS" option (short form "NOR") is as follows.

OPTION NORELOCS

where description

NORELOCS tellsthe Open Watcom Linker not to generate relocation information.

114 The NORELOCS Option

NOSTDCALL (Win32)

3.76 The NOSTDCALL Option
Formats: Win32

The"NOSTDCALL" option specifies that the characters unique to the __stdcall calling convention be

trimmed from all of the symbols that are exported from the DLL being created. The format of the
"NOSTDCALL" option (short form "NOSTDC") is as follows.

OPTION NOSTDCALL

Considering the following declarations.

Example:

short PASCAL _ export Functionl(short varl,
| ong varl ong,
short var2);
short PASCAL __export Function2(|ong varlong,
short var2);

Under ordinary circumstances, these _ stdcall symbolsare mappedto " Functionl@12" and
" Function2@8" respectively. The"@12" and " @8" reflect the number of bytesin the argument list (short

ispassed asint). When the "NOSTDCALL" option is specified, these symbols are stripped of the" " and
"@xx" adornments. Thusthey are exported from the DLL as"Functionl" and "Function2".

This option makesit easier to access functions exported from DLLSs, especially when using other software
languages such as FORTRAN which do not add on the __stdcall adornments.

Note: Usethe"IMPLIB" option to create an import library for the DLL which can be used with
software languages that add onthe __stdcall adornments.

The NOSTDCALL Option 115

NOSTUB (0S/2, Win16, Win32)

3.77 The NOSTUB Option
Formats: 0S/2, Win16, Win32

The"NOSTUB" option specifies that no "stub” program isto be placed at the beginning of the executable
file being generated. The format of the "NOSTUB" option is asfollows.

OPTION NOSTUB

Thisoption is helpful in cases when the executabl e file being generated cannot be directly executed by the
user, such as adevice driver, and hence the stub program would be redundant.

116 The NOSTUB Option

NOVECTOR (DOS)

3.78 The NOVECTOR Directive
Formats: DOS

The"NOVECTOR" directive forces the Open Watcom Linker to not generate an overlay vector for the
specified symbols. The format of the"NOVECTOR" directive (short form "NOV") is as follows.

NOVECTOR symbol_name{,symbol _name}

where description
symbol_name isasymbol name.
The linker will create an overlay vector in the following cases.

1. If afunctionin section A callsafunction in section B and section B is not an ancestor of section
A, an overlay vector will be generated for the function in section B. See the section entitled
"Using Overlays' on page 187 for a description of ancestor.

2. If aglobal symbol’s addressis referenced (except by adirect call) and that symbol is defined in
an overlay section, an overlay vector for that symbol will be generated.

Note that in the latter case, more overlay vectors may be generated that necessary. Suppose section A
contains three global functions, f, g and h. Function f passes the address of function g to function h who
can then calls function g indirectly. Also, suppose function g is only called from sections that are ancestors
of section A. Thelinker will generate an overlay vector for function g even though noneis required. In
such a case, the "NOVECTOR" directive can be used to remove the overhead associated with calling a
function through an overlay vector.

The NOVECTOR Directive 117

OBJALIGN (ELF, Win32)

3.79 The OBJALIGN Option
Formats: ELF, Win32

The"OBJALIGN" option specifies the alignment for objects in the executable file. The format of the
"OBJALIGN" option (short form "OBJA") is as follows.

OPTION OBJALIGN=n

where description
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m
d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. 1f mis specified, the valueis
multiplied by 1024* 1024.

n must be avalue that is a power of 2 and is between 16 bytes and 256 megabytes
inclusive. The default is 64Kk.

118 The OBJALIGN Option

OLDLIBRARY (0S/2, Win16, Win32)

3.80 The OLDLIBRARY Option
Formats: 0S/2, Win16, Win32

The"OLDLIBRARY" option is used to preserve the export ordinals for successive versions of a Dynamic
Link Library. Thisensures that any application that references functionsin a Dynamic Link Library by
ordinal will continue to execute correctly. The format of the "OLDLIBRARY" option (short form "OLD")
isasfollows.

OPTION OLDLIBRARY=dll_name

where description

dil_name isafile specification for the name of aDynamic Link Library. If nofile extensionis
specified, afile extension of "DLL" is assumed.

Only the current directory or a specified directory will be searched for Dynamic Link Libraries specified in
the"OLDLIBRARY" option.

The OLDLIBRARY Option 119

OFFSET (RAW, ELF, 0S/2, PharLap, QNX, Win32)

3.81 The OFFSET Option
Formats: RAW, ELF, 0S/2, PharLap, QNX, Win32

For 32-bit RAW applications, the "OFFSET" option specifies the linear base address of the raw output
image.

For OS/2, Win32 and ELF applications, the "OFFSET" option specifies the preferred base linear address at
which the executable or DLL will be loaded.

For 32-bit PharLap and QNX applications, the "OFFSET" option specifies the offset in the program’s
segment in which the first byte of code or datais loaded.

3.81.1 OFFSET - RAW only

The "OFFSET" option specifies the linear base address of the raw output image. The format of the
"OFFSET" option (short form "OFF") is as follows.

OPTION OFFSET=n

where description
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m
d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. If mis specified, thevalueis
multiplied by 1024* 1024.

n specifies the offset (in bytes) at which the output image will be located. The Open Watcom Linker will
round the value up to a multiple of 256 bytesif it is not already a multiple of 256.

The following describes a use of the "OFFSET" option.

Example:
option of f set =0xc0000000

Theimage will be virtually/physically located to the linear address 0xcO000000.

3.81.2 OFFSET - 0S/2, Win32, ELF only

The"OFFSET" option specifies the preferred base linear address at which the executable or DLL will be
loaded. The Open Watcom Linker will relocate the application for the specified base linear address so that
when it isloaded by the operating system, no relocation will be required. This decreases the load time of
the application.

If the operating system is unable to load the application at the specified base linear address, it will load it at
adifferent location which will increase the load time since arelocation phase must be performed.

120 The OFFSET Option

OFFSET (RAW, ELF, 0S/2, PharLap, QNX, Win32)

The format of the "OFFSET" option (short form "OFF") is as follows.

OPTION OFFSET=n

where description

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. If mis specified, thevalueis
multiplied by 1024* 1024.

The"OFFSET" option is used to specify the base linear address (in bytes) at which the program is loaded
and must be amultiple of 64K. Thelinker will round the value up to amultiple of 64K if it isnot already a
multiple of 64K. The default base linear addressis 64K for OS/2 executables and 4096K for Win32
executables. For ELF, the default base address depends on the CPU architecture.

This option is most useful for improving the load time of DLLs, especially for an application that uses
multiple DLLs.

3.81.3 OFFSET - PharLap only

The "OFFSET" option specifies the offset in the program’ s segment in which the first byte of code or data
isloaded. Theformat of the "OFFSET" option (short form "OFF") is as follows.

OPTION OFFSET=n

where description
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| nm
d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. 1f mis specified, the valueis
multiplied by 1024* 1024.

n specifies the offset (in bytes) at which the program is loaded and must be a multiple of 4K. The Open
Watcom Linker will round the value up to amultiple of 4K if it is not aready a multiple of 4K.

It is possible to detect NULL pointer references by linking the program at an offset which is a multiple of
4K. Usually an offset of 4K is sufficient.

The OFFSET Option 121

OFFSET (RAW, ELF, 0S/2, PharLap, QNX, Win32)

Example:
option of fset =4k

When the program is loaded by 386|DOS-Extender, the pages skipped by the "OFFSET" option are not
mapped. Any reference to an unmapped area (such asaNULL pointer) will cause a page fault preventing
the NULL reference from corrupting the program.

3.81.4 OFFSET - QNX only

The"OFFSET" option specifies the offset in the program’ s segment in which the first byte of code or data
isloaded. This option does not apply to 16-bit QNX applications. The format of the "OFFSET" option
(short form "OFF") isasfollows.

OPTION OFFSET=n

where description

n represents avalue. The complete form of n isthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. If mis specified, the valueis
multiplied by 1024* 1024.

n specifies the offset (in bytes) at which the program is loaded and must be a multiple of 4K. The Open
Watcom Linker will round the value up to amultiple of 4K if it is not already a multiple of 4K. The
following describes a use of the "OFFSET" option.

It is possible to detect NULL pointer references by linking the program at an offset which is a multiple of
4K. Usually an offset of 4K is sufficient.

Example:
option of fset=4k

When the program is loaded, the pages skipped by the "OFFSET" option are not mapped. Any reference to

an unmapped area (such asaNULL pointer) will cause a page fault preventing the NULL reference from
corrupting the program.

122 The OFFSET Option

ONEAUTODATA (0S/2, Win16)

3.82 The ONEAUTODATA Option
Formats: 0S/2, Win16

The"ONEAUTODATA" option specifies that the automatic data segment (default data segment defined by
the group "DGROUFP"), for the program module or Dynamic Link Library (DLL) being created, will be
shared by all instances. The format of the "ONEAUTODATA" option (short form "ONE") is as follows.

OPTION ONEAUTODATA

The default for aDynamic Link Library is"ONEAUTODATA" and for a program moduleis
"MANYAUTODATA". If you do not want the data area of aDLL to be shared across multiple
applications, then you should specify "OPTION MANYAUTODATA".

Winl6: Note, however, that this attribute is not supported by Windows 3.x for 16-bit DLLs.

Y ou should also see the related section entitled "The FORMAT Directive" on page 61 for information on
the "INITINSTANCE", "TERMINSTANCE", "INITGLOBAL", and "TERMGLOBAL" DLL attributes.

The ONEAUTODATA Option 123

OPTION

3.83 The OPTION Directive

Formats: All

The"OPTION" directiveis used to specify options to the Open Watcom Linker. The format of the
"OPTION" directive (short form "OP") is as follows.

OPTION option{,option}

where description

option isany of the linker options available for the executable format that is being generated.

124 The OPTION Directive

OPTLIB

3.84 The OPTLIB Directive

Formats: All

The"OPTLIB" directive is used to specify the library files to be searched when unresolved symbols remain
after processing all specified input object files. The format of the "OPTLIB" directive (no short form) isas
follows.

OPTLIB library file{ library_file}

where description

library file isafile specification for the name of alibrary file. If nofile extension is specified, afile
extension of "lib" is assumed.

This directiveis similar to the "LIBRARY" directive except that the linker will not issue awarning
message if the library file cannot be found.

Consider the following example.

Example:
Wink systemny os file trig optlib \nmath\trig, \cnplx\trig

The Open Watcom Linker is instructed to process the following object file:
trig.obj

If any unresolved symbol references remain after all object files have been processed, the following library
fileswill be searched:

\math\trig.lib
\cmpl x\trig.lib

More than one "OPTLIB" directive may be used. The following exampleis equivalent to the preceding
one.

Example:
W ink systemny_os f trig optlib \math\trig optlib \cnmplx\trig

Thus other directives may be placed between lists of library files.

3.84.1 Searching for Optional Libraries Specified in Environment Variables

The "LIB" environment variable can be used to specify alist of paths that will be searched for library files.
The"LIB" environment variable can be set using the "set" command as follows:

set lib=\graphics\lib
\utility

Consider the following "OPTLIB" directive and the above definition of the "LIB" environment variable.

The OPTLIB Directive 125

OPTLIB

optlib \nmylibs\util, graph

If undefined symbols remain after processing all object files specified in all "FILE" directives, the Open
Watcom Linker will resolve these references by searching the following libraries in the specified order.

PwWdE

Notes:

the library file "\mylibs\util.lib"

thelibrary file "graph.lib" in the current directory
thelibrary file "\graphics\lib\graph.lib"

the library file "\utility\graph.lib"

If alibrary file specified ina"OPTLIB" directive contains an absolute path specification, the
Open Watcom Linker will not search any of the paths specified in the"LIB" environment string
for the library file. On UNIX platforms, an absolute path specification is one that begins the /"
character. On al other hosts, an absolute path specification is one that begins with a drive
specification or the "\" character.

Once alibrary file has been found, no further elements of the "LIB" environment variable are
searched for other libraries of the same name. That is, if the library file "\graphics\lib\graph.lib"
exists, the library file "\utility\graph.lib" will not be searched even though unresolved references
may remain.

126 The OPTLIB Directive

ORDER

3.85 The ORDER Directive

Formats: All

The "ORDER" directive is used to specify the order in which classes are placed into the output image, and
the order in which segments are linked within aclass. The directive can optionally also specify the starting
address of aclass or segment, control whether the segment appears in the output image, and facilitate
copying of datafrom one segment to another. The "ORDER" Directiveis primarily intended for embedded
(ROMable) targets that do not run under an operating system, or for other special purpose applications.

The format of the "ORDER" directive (short form "ORD") is as follows.

ORDER {CLNAME class name[class_options]|}+

class options::= [SEGADDR=N][OFFSET=n][copy_option][NOEMI T]{seglist}
copy_option ::=[COPY source_class nhame]
seglist := {SEGMENT seg_name [SEGADDR=n][OFFSET=n][NOEMIT]}+

where description

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. If mis specified, the valueis
multiplied by 1024* 1024.

class name isthe name of aclass defined in one or more object files. If the classis not defined in an
object file, the class_name and all associated options areignored. Note that the "ORDER"
directive does not creste classes or segments. Classes specified with "CLNAME"
keywords will be placed in the output image in the order listed. Any classes that are not
listed will be placed after the listed ones.

SEGADDR=Nn (short form "SEGA") specifies the segment portion of the starting address of the class or
segment in the output image. It is combined with "OFFSET" to represent a unique linear
address. "SEGADDR" isonly valid for segmented formats. Itsuse in other contextsis
undefined. The"HSHIFT" value affects how the segment value is converted to alinear
address.

OFFSET=n (short form "OFF") specifies the offset portion of the starting address of the class or
segment in the output image. It is combined with "SEGADDR" to represent a unique linear
address. Offset islimited to arange of 0 to 65535 in segmented architectures, but can be a
larger value for non-segmented architectures, up to the limits of the architecture.

When "SEGADDR" and/or "OFFSET" are specified, the location counter used to generate
the executable is advanced to that address. Any gaps are filled with the"FILLCHAR"
value, except for HEX output format, in which case they are simply skipped. If the location
counter is already beyond the specified location, an error message is generated. This would
likely be the result of having specified classes or segmentsin incorrect order, or not
providing enough room for preceding ones. Without the "SEGADDR" and "OFFSET"
options, classes and segments are placed in the executable consecutively, possibly with a

The ORDER Directive 127

ORDER

small gap in between if required by the alignment specified for the class. If "SEGADDR"
is specified without corresponding "OFFSET", the offset portion of the address defaultsto
0.

COPY (short form "CQ") indicates that the data from the segment named source _class nameisto
be used in this segment.

NOEMIT (short form "NOE") indicates that the datain this segment should not be placed in the
executable.

SEGMENT indicates the order of segments within a class, and possibly other options associated with
that segment. Segments listed are placed in the executable in the order listed. They must
be part of the class just named. Any segmentsin that class not listed will follow the last
listed segment. The segment options are a subset of the class options and conform to the
same specifications.

In ROM-based applications it is often necessary to:
* Fix the program location
* Separate code and data to different fixed parts of memory
* Place a copy of initialized datain ROM (usually right after the code)

* Prevent the origina of the initialized data from being written to the loadfile, since it residesin RAM
and cannot be saved there.

The "ORDER" directive caters for these requirements. Classes can be placed in the executable in a specific
order, with absolute addresses specified for one or more classes, and segments within a class can be forced
into a specified order with absolute addresses specified for one or more of them. Initialized data can be
omitted at its target address, and a copy included at a different address.

Following is a sample "ORDER" directive for an embedded target (AM186ER). The bottom 32K of
memory isRAM for data. A DGROUP starting address of 0x80:0 isrequired. The upper portion of
memory isFLASH ROM. Code starts at address 0xD000:0. The initialized datafrom DGROUP is placed
immediately after the code.

order clnane BEGDATA NCEM T segaddr =0x80 segment _NULL segnent
_AFTERNULL

cl nane DATA NCEM T segnent _DATA

cl nane BSS

cl name STACK

cl nane START segaddr =0xD000

cl nane CODE segnment BEGTEXT segnent _TEXT

cl name ROVDATA COPY BEGDATA

cl name ROVDATAE

DGROUP consists of classes"BEGDATA", "DATA", "BSS", "BSS2" and "STACK". Note that these are
marked "NOEMIT" (except for the BSS classes and STACK which are not initialized, and therefore have
no datain them anyway) to prevent data from being placed in the loadfile at 0x80:0. Thefirst class of
DGROUP is given the fixed starting segment address of 0x80 (offset is assumed to be 0). The segments

" NULL"," AFTERNULL" and"_DATA" will be allocated consecutively in that order, and because they
are part of DGROUP, will al share the same segment portio of the address, with offsets adjusted
accordingly.

128 The ORDER Directive

ORDER

The code section consists of classes"START" and "CODE". These are placed beginning at 0xD000:0.
"START" contains only one segment, which will befirst. It will have a CS value of 0xD000. Code has
two segments, "BEGTEXT" and"_TEXT" which will be placed after "START", in that order, and packed
into asingle CS value of their own (perhaps 0xD001 in this example), unless they exceed 64K in size,
which should not be the case if the program was compiled using the small memory model.

The classes "ROMDATA" and "ROMDATAE" were created in assembly with one segment each and no
symbols or datain them. The class names can be used to identify the beginning and end of initialized data
so it can be copied to RAM by the startup code.

The"COPY" option actually works at the group level, because that is the way it is generally needed. The
entire dataisin DGROUP. "ROMDATA" will be placed in agroup of itsown called "AUTO". (Note:
each group mentioned in the map file under the name "AUTO" is a separate group. They are not combined
or otherwise related in any way, other than they weren’t explicitly created by the programmer, compiler or
assembler, but rather automatically created by the linker in the course of itswork.) Therefore thereisa
unique group associated with this class. The"COPY" option finds the group associated with "BEGDATA"
and copies all the object datafrom thereto "ROMDATA". Specifically, it places a copy of this datain the
executable at the location assigned to "ROMDATA", and adjusts the length of "ROMDATA" to account for
this. All symbol references to this data are to its execution address (0x80:0), not where it ended up in the
executable (for instance 0xD597:0). The starting address of "ROMDATAE" is aso adjusted to account for
the data assigned to "ROMDATA". That way, the program can use the symbol "ROMDATAE" to identify
the end of the copy of DGROUP. It isalso necessary in case more than one "COPY" class exists
consecutively, or additional code or data need to follow it.

It should also be noted that the "DOSSEG" option (whether explicitly given to the linker, or passed in an

object file) performs different class and segment ordering. If the "ORDER" directiveis used, it overrides
the "DOSSEG" option, causing it to be ignored.

The ORDER Directive 129

OSDOMAIN (NetWare)

3.86 The OSDOMAIN Option

Formats: NetWare

The"OSDOMAIN" option is used when the application is to run in the operating system domain (ring 0).

The format of the "OSDOMAIN" option (short form "OSD") is as follows.

OPTION OSDOMAIN

130 The OSDOMAIN Option

OSNAME

3.87 The OSNAME Option

Formats: All

The"OSNAME" option can be used to set the name of the target operating system of the executablefile
generated by the linker. The format of the "OSNAME" option (short form "OSN") is as follows.

OPTION OSNAME='"string’

where description
string isany sequence of characters.

Theinformation specified by the "OSNAME" option will be displayed in the creating a ? executable
message. Thisisthelast line of output produced by the linker, provided the "QUIET" option is not
specified. Consider the following example.

opti on osnanme=" Super CS
The last line of output produced by the linker will be as follows.

creating a SuperOS executabl e

Some executable formats have a stub executable file that is run under 16-bit DOS. The message displayed
by the default stub executable file will be modified when the "OSNAME" optionis used. The default stub
executable displays the following message:

0s/2: this is an OS/ 2 executabl e
Win1l6: this is a Wndows execut abl e
Win32: this is a Wndows NT execut abl e

If the "OSNAME" option used in the previous example was specified, the default stub executable would
generate the following message.

this is a SuperOS executabl e

The OSNAME Option 131

OSVERSION (Win32)

3.88 The OSVERSION Option
Formats: Win32

The "OSVERSION" option specifies that the linker should apply the given major and minor version
numbers to the PE format image header. This specifies the major and minor versions of the operating
system required to load thisimage. If aversion number is not specified, then the built-in value of 1.11 is
used. Theformat of the "OSVERSION" option (short form "OSV") is as follows.

OPTION OSVERSION = major[.minor]

132 The OSVERSION Option

OUTPUT

3.89 The OUTPUT Directive

Formats: All

The"OUTPUT" directive overrides the normal operating system specific executable format and creates
either araw binary image or an Intel Hex file. The format of the"OUTPUT" directive (short form "OUT")
isasfollows.

OUTPUT RAW|HEX [OFFSET=n][HSHIFT=n][STARTREC]

where description

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| ni

d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. 1f mis specified, the valueis
multiplied by 1024* 1024.

RAW specifies the output file to be araw binary and will contain an absolute image of the
executable’ s code and data. Default file extension is "bin".

HEX specifies the output file to contain a representation of the absolute image of the code and
data using the Intel standard hex file format. Default file extensionis"hex".

OFFSET=n (short form "OFF") specifies that linear addresses below n should be skipped when
outputting the executable image. This option does not affect address calculations and is
intended to avoid unwanted padding when writing executable images that do not start at
linear address zero.

HSHIFT defines the relationship between segment values for type 02 records and linear addresses.
The value n isthe number of digitsto right shift a 32-bit value containing a segment
addressinits upper 16 bitsin order to convert it to part of alinear address. In more
conventional terms, (16 - n) is the amount to shift a segment value left in order to convert
it to part of alinear address.

STARTREC (short form "ST") specifies that a Starting Address record will be included in Intel Hex
output. Thisoptionisignored if output typeis not Intel hex.

For raw binary files, the position in the fileis the linear address after the offset is subtracted fromit. Any
gaps filled with the value specified through "OPTION FILLCHAR" (default is 0).

For hex files, the linear address (after subtracting the offset) is used to determine the output record
generated. Records contain 16 bytes, unless a gap occurs prior to that in which case the record is shorter,
and a new record starts after the gap. There are three types of Intel Hex records. The oldest and most
widely used is HEX80, which can only deal with 16-bit addresses. For many ROM-based applications, this
is enough, especially once an offset has been subtracted. For maximum versatility, all addresses less than
65536 are generated in this form.

The OUTPUT Directive 133

ouTPUT

134 The

The HEX86 standard creates a segmentation that mirrors the CPU segmentation. Type 02 records define
the segment, and all subsequent addresses are based on that segment value. For addresses above 64K, This
formisused. A program that understands HEX86 should assume the segment valueis zero until an 02
record is encountered. This preserves backward compatibility with HEX80, and allows the automatic
selection algorithm used in Open Watcom Linker to work properly.

Type 02 records are assumed to have segment values that, when shifted left four bits, form alinear address.
However, thisis not suitable for 24-bit segmented addressing schemes. Therefore, Open Watcom Linker
uses the value specified through "OPTION HSHIFT" to determine the relationship between segments and
offsets. This approach can work with any 16:16 segmented architecture regardless of the segment
alignment. The default shift valueis 12, representing the conventional 8086 architecture. Thisis not to be
confused with the optional "OUTPUT HSHIFT" value discussed below.

Of course, PROM programmers or third-party tools probably were not designed to work with
unconventional shift values, hence for cases where code for a 24-bit (or other non-standard) target needsto
be programmed into a PROM or processed by athird-party tool, the "OUTPUT HSHIFT" option can be
used to override the "OPTION HSHIFT" value. Thiswould usualy be of the form "OUTPUT
HSHIFT=12" to restore the industry standard setting. The default for "OUTPUT HSHIFT" isto follow
"OPTION HSHIFT". When neither is specified, the default "OPTION HSHIFT" value of 12 applies,
providing industry standard compliance.

If the address exceeds the range of type 02 records (1 MB for HSHIFT=12 and 16 MB for HSHIFT=8),
type 04 extended linear records are generated, again ensuring seamless compatibility and migration to large
file sizes.

If "STARTREC" is specified for "OUTPUT HEX", the penultimate record in the file (just before the end
record) will be astart address record. The value of the start address will be determined by the module start
record in an object file, typically the result of an "END start" assembler directive. If the start addressisless
than 65536 (always for 16-bit applications, and where applicable for 32-bit applications), atype 03 record
with segment and offset values will be emitted. If the start addressis equal to or greater than 65536, then a
type 05 linear starting address record will be generated. Note that neither of these cases depends directly
onthe"HSHIFT" or "OUTPUT HSIFT" settings. If HSHIFT=8, then the segment and offset values for the
start symbol will be based on that number and used accordingly, but unlike other addressinformationin a
hex file, thisis not derived from alinear address and hence not converted based on the HSHIFT value.

OUTPUT Directive

OVERLAY (DOS)

3.90 The OVERLAY Directive
Formats: DOS

The"OVERLAY™" directive alows you to specify the class of segments which are to be overlayed. The
format of the"OVERLAY" directive (short form "OV") isasfollows.

OVERLAY class{,class}
where description
class is the class name of the segmentsto be overlayed.

The"FILE" directive is used to specify the object files that belong to the overlay structure. Each object file
defines segments that contain code or data. Segments are assigned a class name by the compiler. A classis
essentially a collection of segments with common attributes. For example, compilers assign class names to
segments so that segments containing code belong to one class(es) and segments containing data belong to
another class(es). When an overlay structure is defined, only segments belonging to certain classes are
allowed in the overlay structure. By default, the Open Watcom Linker overlays all segments whose class
name ends with "CODE". These segments usually contain the executable code for a program.

It isalso possible to overlay other classes. Thisisdone using the"OVERLAY" directive. For example,

overlay code, far_data

places all segments belonging to the classes"CODE" and "FAR_DATA" in the overlay structure.
Segments belonging to the class"FAR_DATA" contain only data. The above "OVERLAY" directive
causes code and datato be overlayed. Therefore, for any module that contains segments in both classes,
datain segments with class"FAR_DATA" will be in memory only when code in segments with class
"CODE" arein memory. Thisresultsin amore efficient use of memory. Of course the data must be
referenced only by code in the overlay and it must not be modified.

WARNING! Care must be taken when overlaying data. If aroutine modifies datain an overlayed data
segment, it should not assume it contains that value if it isinvoked again. The data may have been
overwritten by another overlay.

Notes:

1. Youshould not specify aclassin an "OVERLAY" directive that belongs to the group
"DGROUP'. Theseclasses are "BEGDATA", "DATA", "BSS" and "STACK".

If you are linking object files generated by a compiler that uses a class name that does not end with

"CODE" for segments containing executable code, the "OVERLAY" directive can be used to identify the
classes that belong to the overlay structure. Consider the following example.

The OVERLAY Directive 135

OVERLAY (DOS)

Example:
overl ay codel, code2

Any segment belonging to the class called "CODE1" or "CODE2" is placed in the overlay structure.
Segments belonging to a class whose name ends with "CODE" will no longer be placed in the overlay

structure.

136 The OVERLAY Directive

PACKCODE (DOS, 0S/2, QNX, Win16)

3.91 The PACKCODE Option
Formats: DOS, 0S/2, QNX, Win16

Thisoption isintended for 16-bit segmented applications. By default, the Open Watcom Linker
automatically groups logical code segments into physical segments. The "PACKCODE" optionis used to
specify the size of the physical segment. The format of the "PACKCODE" option (short form "PACKC")
isasfollows.

OPTION PACKCODE=n

where description
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| ni
d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. 1f mis specified, the valueis
multiplied by 1024* 1024.
n specifies the size of the physical segments into which code segments are packed. The default value of n
is64K for 16-bit applications. Note that thisis also the maximum size of a physical segment. To suppress
automatic grouping of code segments, specify avalue of O for n.
Notes:

1. Only adjacent segments are packed into a physical segment.

2. Segments belonging to the same group are packed in a physical segment. Segments belonging to
different groups are not packed into a physical segment.

3. Segments with different attributes are not packed together unless they are explicitly grouped.

The PACKCODE Option 137

PACKDATA (DOS, 0S/2, QNX, Win16)

3.92 The PACKDATA Option
Formats: DOS, 0S/2, QNX, Win16

Thisoption isintended for 16-bit segmented applications. By default, the Open Watcom Linker
automatically groups logical far data segments into physical segments. The "PACKDATA" option isused
to specify the size of the physical segment. The format of the "PACKDATA" option (short form
"PACKD") isasfollows.

OPTION PACKDATA=N

where description
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| ni
d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. 1f mis specified, the valueis
multiplied by 1024* 1024.
n specifies the size of the physical segmentsinto which far data segments are packed. The default value of
nis 64K for 16-bit applications. Note that thisis also the maximum size of a physical segment. To
suppress automatic grouping of far data segments, specify avalue of 0 for n.
Notes:

1. Only adjacent segments are packed into a physical segment.

2. Segments belonging to the same group are packed in a physical segment. Segments belonging to
different groups are not packed into a physical segment.

3. Segments with different attributes are not packed together unless they are explicitly grouped.

138 The PACKDATA Option

PATH

3.93 The PATH Directive

Formats: All

The"PATH" directiveis used to specify the directories that are to be searched for object files appearing in
subsequent "FILE" directives. When the "PATH" directive is specified, the current directory will no longer
be searched unlessit appearsin the "PATH" directive. The format of the "PATH" directive (short form
"P") isasfollows.

PATH path_name{; path_name}

where description
path_name isapath name.

Consider adirective file containing the following linker directives.

path \ mat h

file sin

path \stats

file nmean, variance

It instructs the Open Watcom Linker to process the following object files:

\ mat h\ si n. obj
\ st at s\ mrean. obj
\'stats\vari ance. obj

It isalso possible to specify alist of pathsin a"PATH" directive. Consider the following example.

path \ nmat h
\stats
file sin

First, the linker will attempt to load the file "\math\sin.obj". If unsuccessful, the linker will attempt to load
the file "\stats\sin.obj".

It is possible to override the path specified in a"PATH" directive by preceding the object file namein a
"FILE" directive with an absolute path specification. On UNIX platforms, an absolute path specification is
one that beginsthe /" character. On al other hosts, an absolute path specification is one that begins with a
drive specification or the "\" character.

path \ mat h

file sin

path \stats

file mean, \nydir\variance

The above directive file instructs the linker to process the following object files:
\ mat h\ si n. obj

\ st at s\ mrean. obj
\ mydi r\vari ance. obj

The PATH Directive 139

PRIVILEGE (QNX)

3.94 The PRIVILEGE Option
Formats: QNX

The"PRIVILEGE" option specifiesthe privilege level (0, 1, 2 or 3) at which the application will run. The
format of the "PRIVILEGE" option (short form "PRIV") is as follows.

OPTION PRIVILEGE=n

where description
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m
d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. 1f mis specified, the valueis
multiplied by 1024* 1024.

The default privilege level isO.

140 The PRIVILEGE Option

PROTMODE (0S/2)

3.95 The PROTMODE Option
Formats: 0S/2

The"PROTMODE" option specifies that the application will only run in protected mode. This option
appliesto 16-bit OS/2 applications only. The format of the "PROTMODE" option (short form "PROT") is

as follows.

OPTION PROTMODE

The PROTMODE Option 141

PSEUDOPREEMPTION (NetWare)

3.96 The PSEUDOPREEMPTION Option

Formats: NetWare

The "PSEUDOPREEMPTION" option specifies that an additional set of system callswill yield control to

other processes. Multitasking in current NetWare operating systems is non-preemptive. That is, a process
must give up control in order for other processes to execute. Using the "PSEUDOPREEMPTION" option
increases the probability that all processes are given an equal amount of CPU time.

The format of the "PSEUDOPREEMPTION" option (short form "PS") isas follows.

OPTION PSEUDOPREEMPTION

142 The PSEUDOPREEMPTION Option

QUIET

3.97 The QUIET Option

Formats: All

The"QUIET" option tells the Open Watcom Linker to suppress all informational messages. Only warning,
error and fatal messages will beissued. By default, the Open Watcom Linker issues informational
messages. The format of the "QUIET" option (short form "Q") is as follows.

OPTION QUIET

The QUIET Option 143

REDEFSOK

3.98 The REDEFSOK Option

Formats: All

The "REDEFSOK™" option tells the Open Watcom Linker to ignore redefined symbols and to generate an
executable file anyway. By default, warning messages are displayed and an executablefile is generated if
redefined symbols are present.

The format of the "REDEFSOK" option (short form "RED") is as follows.

OPTION REDEFSOK

The "NOREDEFSOK" option tells the Open Watcom Linker to treat redefined symbols as an error and to
not generate an executable file. By default, warning messages are displayed and an executablefileis
generated if redefined symbols are present.

The format of the "NOREDEFSOK" option (short form "NORED") is as follows.

OPTION NOREDEF SOK

144 The REDEFSOK Option

REENTRANT (NetWare)

3.99 The REENTRANT Option

Formats: NetWare

The"REENTRANT" option specifies that the moduleisreentrant. That is, if an NLM is LOADed twice,
the actual code in the server’smemory isreused. The NLM’s start procedureis called once for each
LOAD. Theformat of the"REENTRANT" option (short form "RE") is as follows.

OPTION REENTRANT

The REENTRANT Option 145

REFERENCE

3.100 The REFERENCE Directive

Formats: All

The "REFERENCE" directiveis used to explicitly reference a symbol that is not referenced by any object
file processed by the linker. If any symbol appearing in a"REFERENCE" directive is not resolved by the
linker, an error message will be issued for that symbol specifying that the symbol is undefined.

The "REFERENCE" directive can be used to force object files from libraries to be linked with the
application. Also note that a symbol appearing in a"REFERENCE" directive will not be eliminated by
dead code elimination. For more information on dead code elimination, see the section entitled "The
ELIMINATE Option" on page 48.

The format of the "REFERENCE" directive (short form "REF") is as follows.

REFERENCE symbol _name{, symbol_name}

where description
symbol_name isthe symbol for which areference is made.

Consider the following example.

ref erence dom no

The symbol dom no will be searched for. The object module that defines this symbol will be linked with
the application. Note that the linker will also attempt to resolve symbols referenced by this module.

146 The REFERENCE Directive

RESOURCE (Win32)

3.101 The RESOURCE Directive
Formats: Win32

The "RESOURCE" directive is used to specify resource files to add to the executable file being generated.
The format of the "RESOURCE" directive (short form "RES") is asfollows.

RESOURCE resource file{,resource file}

where description

resource file isafile specification for the name of the resource file that to be added to the executable
file. If nofile extension is specified, afile extension of "res' is assumed.

The RESOURCE Directive 147

RESOURCE (0S/2, QNX, Win16, Win32)

3.102 The RESOURCE Option
Formats: 0S/2, QNX, Win16, Win32

For 16-bit OS/2 executable files and Win16 or Win32 executable files, the "RESOURCE" option requests
the linker to add the specified resource file to the executable file being generated. For QNX executable
files, the "RESOURCE" option specifies the contents of the resource record.

3.102.1 RESOURCE - 0S/2, Win16, Win32 only

The "RESOURCE" option requests the linker to add the specified resource file to the executablefile that is
being generated. The format of the "RESOURCE" option (short form "RES") is as follows.

OPTION RESOURCE[=resource filg]

where description

resource _file isafile specification for the name of the resource file that is to be added to the executable
file. If nofile extension is specified, afile extension of "RES" is assumed for all but QNX
format executables.

The "RESOURCE" option cannot be used for 32-bit OS/2 executables.

3.102.2 RESOURCE - QNX only

The "RESOURCE" option specifies the contents of the resource record in QNX executable files. The
format of the "RESOURCE" option (short form "RES") is as follows.

OPTION RESOURCE resource_info

resource_info ::="string’ | =resource_file

where description

resource file isafilespecification for the name of the resourcefile. No file extension is assumed.
string isasequence of characters which is placed in the resource record.

If aresourcefileis specified, the contents of the resource file are included in the resource record.

The resource record contains, for example, help information and is displayed when the following command
is executed.

use <execut abl e>

QNX also provides the usemsg utility to manipulate the resource record of an executablefile. Itsuseis
recommended. This utility is described in the QNX "Utilities Reference" manual.

148 The RESOURCE Option

RUNTIME (ELF, PharLap, Win32)

3.103 The RUNTIME Directive
Formats: ELF, PharLap, Win32

For Win32 applications, the "RUNTIME" directive specifies the environment under which the application
will run.

For PharLap applications, the"RUNTIME" directive describesinformation that is used by
386|DOS-Extender to setup the environment for execution of the program.

For ELF applications, the "RUNTIME" directive specifes ABI type and version under which the
application will run.

3.103.1 RUNTIME - Win32 only

The"RUNTIME" directive specifies the environment under which the application will run. The format of
the "RUNTIME" directive (short form "RU") is asfollows.

RUNTIME env[=major[.minor]]

env ::= NATIVE | WINDOWS | CONSOLE | POSI X | OS2 | DOSSTYLE
| RDOS | EFIBOOT

where description
env=major.minor Specifying a system version in the form "major" or "major.minor" indicates the

minimum operating system version required for the application. For example, the
following indicates that the application requires Windows 95.

runti me wi ndows=4.0
NATIVE (short form "NAT") indicates that the application is a native Windows NT application.
WINDOWS (short form "WIN") indicates that the application is a Windows application.

CONSOLE (short form "CON") indicates that the application is a character-mode (command line
oriented) application.

POSIX (short form "POS") indicates that the application uses the POSIX subsystem available with
Windows NT.
0s2 indicates that the application is a 16-bit OS/2 1.x application.

DOSSTYLE (short form "DOS") indicates that the application is a Phar Lap TNT DOS extender
application that uses INT 21 to communicate to the DOS extender rather than callsto a
DLL.

RDOS indicates that the application is a 32-bit RDOS application.

The RUNTIME Directive 149

RUNTIME (ELF, PharLap, Win32)

EFIBOOT

indicates that the application is a EFl boot application.

3.103.2 RUNTIME - PharLap only

The"RUNTIME" directive describes information that is used by 386|DOS-Extender to setup the
environment for execution of the program. The format of the "RUNTIME" directive (short form "RU") is

as follows.

RUNTIME run_option{,run_option}

run_option ::= MINREAL=n | MAXREAL=n | CALLBUFS=n | MINIBuf=n

| MAXIBUF=n | NISTACK=n | ISTKSIZE=n
| REALBREAK=0ffset | PRIVILEGED | UNPRIVILEGED

offset ::=n | symbol_name

where

symbol_name

MINREAL

MAXREAL

CALLBUFS

description
represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. If mis specified, thevalueis
multiplied by 1024* 1024.

isasymbol name.

(short form "MINR") specifies the minimum number of bytes of conventional memory
required to be free after a program is loaded by 386|DOS-Extender. Note that this memory
isno longer available to the executing program. The default value of nis0 in which case
386|DOS-Extender allocates all conventional memory for the executing program. The
Open Watcom Linker truncates the specified value to a multiple of 16. n must be less than
or equal to hexadecimal 100000 (64K* 16).

(short form "MAXR") specifies the maximum number of bytes of conventional memory
than can be |eft free after a program is loaded by 386|DOS-Extender. Note that this
memory is not available to the executing program. The default value of nis 0 in which
case 386|DOS-Extender allocates all conventional memory for the executing program. n
must be less than or equal to hexadecimal ffff0. The Open Watcom Linker truncates the
specified value to a multiple of 16.

(short form "CALLB") specifies the size of the call buffer allocated for switching between
32-hit protected mode and real mode. This buffer is used for communicating information
between real-mode and 32-bit protected-mode procedures. The buffer address is obtained
at run-time with a 386|DOS-Extender system call. The size returned is the size of the
buffer in kilobytes and is less than or equal to 64.

The default buffer sizeis zero unless changed using the "CALLBUFS" option. The Open
Watcom Linker truncates the specified value to amultiple of 1024. n must be less than or
equal to 64K. Note that nisthe number of bytes, not kilobytes.

150 The RUNTIME Directive

RUNTIME (ELF, PharLap, Win32)

MINIBUF (short form "MINIB") specifies the minimum size of the data buffer that is used when DOS
and BIOS functions are called. The size of this buffer is particularly important for file 1/0.
If your program reads or writes large amounts of data, alarge value of n should be
specified. n represents the number of bytes and must be less than or equal to 64K. The
default value of nis 1K. The Open Watcom Linker truncates the specified valueto a
multiple of 1024.

MAXIBUF (short form "MAXIB") specifies the maximum size of the data buffer that is used when
DOS and BIOS functions are called. The size of this buffer is particularly important for
filel/O. If your program reads or writes large amounts of data, alarge value of n should be
specified. n represents the number of bytes and must be less than or equal to 64K. The
default value of nis4K. The Open Watcom Linker truncates the specified valueto a
multiple of 1024.

NISTACK (short form "NIST") specifies the number of stack buffersto be allocated for use by
386|DOS-Extender when switching from 32-bit protected mode to real mode. By default, 4
stack buffers are allocated. n must be greater than or egqual to 4.

ISTKSIZE (short form "ISTK") specifies the size of the stack buffers allocated for use by
386|DOS-Extender when switching from 32-bit protected mode to real mode. By defaullt,
the size of astack buffer is 1K. The value of n must be greater than or equal to 1K and less
than or equal to 64K. The Open Watcom Linker truncates the specified value to a multiple
of 1024.

REALBREAK (short form "REALB") specifies how much of the program must be loaded into
conventional memory so that it can be accessed and/or executed in real mode. If nis
specified, the first n bytes of the program must be |oaded into conventional memory. If
symbol is specified, all bytes up to but not including the symbol must be loaded into
conventional memory.

PRIVILEGED (short form "PRIV") specifies that the executable isto run at Ring O privilege level.

UNPRIVILEGED (short form "UNPRIV") specifies that the executableisto run at Ring 3 privilege level
(i.e, unprivileged). Thisisthe default privilege level.

3.103.3 RUNTIME - ELF only

The"RUNTIME" directive specifiesthe Application Binary Interface (ABI) type and version under which
the application will run. The format of the "RUNTIME" directive (short form "RU") isas follows.

RUNTIME ABIVER[=abinum.abiversion] | abispec

abispec ::= abiname[=abiversion]

abiname ::= SVR4 | LINUX | FREEBSD | NETBSD | SOLARIS

The RUNTIME Directive 151

RUNTIME (ELF, PharLap, Win32)

where

description

abi=abinum.abiversion Specifying ABI/OS type and optional version indicates specific ABI that an ELF

SVR4

LINUX

FREEBSD

NETBSD

SOLARIS

ABIVER

application iswritten for. Thisinformation may affect how the ELF executable will be
interpreted by the operating system. If ABI version is not specified, zero will be used. A
list of official ABI types may be found in the System VV Application Binary Interface
specification.

For example, both of the following example indicate that the application requires Linux,
but does not specify ABI version (numeric value zero).

runtime |inux
runti me abiver=3.0

indicates that the application is a generic ELF application conforming to the System V
Release 4 ABI. Thisisthe default.

(short form "LIN") indicates that the application is a Linux application.
(short form "FRE") indicates that the application is a FreeBSD application.
(short form "NET") indicates that the application is a NetBSD application.
(short form "SOL") indicates that the application is a Sun Solaris application.

(short form "ABI") specifies the numeric ABI type and optionally version. This method
allows specification of ABI types not explicitly supported by the Open Watcom Linker.

152 The RUNTIME Directive

RWRELOCCHECK (Win16)

3.104 The RWRELOCCHECK Option

Formats: Win16

The "RWRELOCCHECK" option causes the linker to check for segment relocations to a read/write data
segment and issue awarning if any are found. Thisoption is useful if you are building a 16-bit Windows
application that may have more than one instance running at a given time.

The format of the "RWRELOCCHECK" option (short form "RWR") is as follows.

OPTION RWRELOCCHECK

The RWRELOCCHECK Option 153

SCREENNAME (NetWare)

3.105 The SCREENNAME Option

Formats: NetWare

The"SCREENNAME" option specifies the name of the first screen (the screen that is automatically created
when an NLM isloaded). The format of the "SCREENNAME" option (short form "SCR") is as follows.

OPTION SCREENNAME "name’

where description
name specifies the screen name.

If the"SCREENNAME" option is not specified, the description text specified in the "FORMAT" directive
is used as the screen name.

154 The SCREENNAME Option

SECTION (DOS)

3.106 The SECTION Directive
Formats: DOS

The"SECTION" directiveis used to define the start of an overlay. All object filesin subsequent "FILE"
directives, up to the next "SECTION" or "END" directive, belong to that overlay. The format of the
"SECTION" directive (short form "S") isas follows.

SECTION [INTO ovl_fil€]

where description

INTO specifies that the overlay isto be placed into a separate file, namely ovl_file. If "INTO"
(short form "IN") is not specified, the overlay is placed in the executable file. Note that
more than one overlay can be placed in the same file by specifying the same file name in
multiple "SECTION" directives.

ovl_file isthefile specification for the name of an overlay file. If no file extension is specified, a
file extension of "ovl" is assumed.

Placing overlays in separate files has a number of advantages. For example, if your application was linked
into onefile, it may not fit on asingle diskette, making distribution of your application difficult.

The SECTION Directive 155

SEGMENT (0S/2, QNX, Win16, Win32)

3.107 The SEGMENT Directive
Formats: 0S/2, QNX, Win16, Win32

The "SEGMENT" directiveis used to describe the attributes of code and data segments. The format of the
"SEGMENT" directive (short form "SEG") is asfollows.

156 The SEGMENT Directive

SEGMENT (0S/2, QNX, Win16, Win32)

SEGMENT seg_desc{,seg_desc}

seg_desc ::= seg_id {seg_attrs}+

seg_id::="seg_name | CLASS 'class_ name' | TYPE [CODE | DATA]
0s/2:

seg_attrs::= PRELOAD | LOADONCALL
| TOPL | NOIOPL

| EXECUTEONLY | EXECUTEREAD

| READONLY | READWRITE
| SHARED | NONSHARED

| CONFORMING | NONCONFORMING
| PERMANENT | NONPERMANENT

| INVALID | RESIDENT
| CONTIGUOUS | DYNAMIC

Win32;
seg_attrs::= PAGEABLE | NONPAGEABLE

| SHARED | NONSHARED

Win16:

seg_attrs::= PRELOAD | LOADONCALL

| EXECUTEONLY | EXECUTEREAD

| READONLY | READWRITE
| SHARED | NONSHARED

| MOVEABLE | FIXED

| DISCARDABLE

VxD:

seg_attrs::= PRELOAD | LOADONCALL
| 1OPL | NOIOPL
| SHARED | NONSHARED

| DISCARDABLE | NONDISCARDABLE
| CONFORMING | NONCONFORMING

| RESIDENT

ONX:
seg_attrs::= EXECUTEONLY | EXECUTEREAD

| READONLY | READWRITE

where description
seg_name
class hame

class.
PRELOAD

is the name of the code or data segment whose attributes are being specified.

isaclassname. The attributes will be assigned to al segments belonging to the specified

(short form "PR", OS/2, VxD and Win16 only) specifies that the segment is loaded as soon

as the executable fileisloaded. Thisisthe default.

LOADONCALL (short form"LO", OS/2, VXD and Win16 only) specifies that the segment is loaded only

when accessed.

The SEGMENT Directive 157

SEGMENT (0S/2, QNX, Win16, Win32)

PAGEABLE (short form "PAGE", Win32 only) specifies that the segment can be paged from memory.
Thisisthe default.

NONPAGEABLE (short form "NONP", Win32 only) specifies that the segment, once loaded into memory,
must remain in memory.

CONFORMING (short form "CON", OS/2 and VXD only) specifies that the segment will assume the I/O
privilege of the segment that referenced it. By default, the segment is
"NONCONFORMING".

NONCONFORMING (short form "NONC", OS/2 and VD only) specifies that the segment will not
assume the I/O privilege of the segment that referenced it. Thisisthe default.

|OPL (short form 1", OS/2 and VXD only) specifies that the segment requires 1/0 privilege. That
is, they can accessthe hardware directly.

NOI OPL (short form "NOI", OS2 and VXD only) specifies that the segment does not require 1/0
privilege. Thisisthe default.

PERMANENT (short form "PERM", OS/2 32-hit only) specifies that the segment is permanent.

NONPERMANENT (short form "NONPERM", OS/2 32-bit only) specifies that the segment is not
permanent.

INVALID (short form "INV", OS/2 32-bit only) specifies that the segment isinvalid.
RESIDENT (short form "RES", OS/2 32-bit and VXD only) specifies that the segment is resident.
CONTIGUOUS (short form "CONT", OS/2 32-hit only) specifies that the segment is contiguous.
DYNAMIC (short form "DYN", OS/2 32-hit only) specifies that the segment is dynamic.

EXECUTEONLY (short form "EXECUTEQ", OS/2, QNX and Win16 only) specifies that the segment can
only be executed. This attribute should only be specified for code segments. This attribute
should not be specified if it is possible for the code segment to contain jump tableswhich is
the case with the Open Watcom C, C++ and FORTRAN 77 optimizing compilers.

EXECUTEREAD (short form "EXECUTER", OS/2, QNX and Win16 only) specifies that the segment can
only be executed and read. This attribute, the default for code segments, should only be
specified for code segments. This attribute is appropriate for code segments that contain
jump tables asis possible with the Open Watcom C, C++ and FORTRAN 77 optimizing
compilers.

READONLY (short form "READO", OS/2, QNX and Win16 only) specifies that the segment can only be
read. This attribute should only be specified for data segments.

READWRITE (short form "READW", OS/2, QNX and Win16 only) specifies that the segment can be
read and written. Thisisthe default for data segments. This attribute should only be
specified for data segments.

SHARED (short form "SH") specifies that a single copy of the segment will be loaded and will be
shared by all processes.

158 The SEGMENT Directive

SEGMENT (0S/2, QNX, Win16, Win32)

NONSHARED (short form "NONS") specifies that a unique copy of the segment will be loaded for each
process. Thisisthe default.

MOVEABLE (short form "MOV", Winl16 only) specifies that the segment is movesable. By defaullt,
segments are moveable.

FIXED (short form "FIX", Winl6 only) specifies that the segment is fixed.

DISCARDABLE (short form "DIS", Win16 and VXD only) specifies that the segment is discardable. By
default, segments are not discardable.

NONDISCARDABLE (short form "NOND", VxD only) specifies that the segment is not discardable. By
default, segments are not discardable.

Note: Attributes specified for segments identified by a segment name override attributes specified for
segments identified by a class name.

The SEGMENT Directive 159

SHARELIB (NetWare)

3.108 The SHARELIB Option

Formats: NetWare
The"SHARELIB" option specifies the file name of an NLM to be loaded as a shared NLM. Shared NLMs
contain global code and global datathat are mapped into all memory protection domains. This method of

loading APIs can be used to avoid ring transitions to call other APIs in other domains.

The format of the "SHARELIB" option (short form "SHA") is as follows.

OPTION SHARELI|B=shared nIm

where description

shared niIm isthefile name of the shared NLM.

160 The SHARELIB Option

SHOWDEAD

3.109 The SHOWDEAD Option

Formats: All

The "SHOWDEAD" option instructs the linker to list, in the map file, the symbols associated with dead
code and unused C++ virtual functionsthat it has eliminated from the link. The format of the
"SHOWDEAD" option (short form "SHO") is as follows.

OPTION SHOWDEAD

The "SHOWDEAD" option works best in concert with the"ELIMINATE" and "VFREMOVAL" options.

The SHOWDEAD Option 161

SMALL (DOS)

3.110 The SMALL Option
Formats: DOS

The"SMALL" option tells the Open Watcom Linker to use the standard overlay manager (as opposed to
the dynamic overlay manager) and that near calls can be generated to overlay vectors corresponding to
routines defined in the overlayed portion of your program. The format of the "SMALL" option (short form
"SM") isasfollows.

OPTION SMALL

This option should only be specified in the following circumstances.
1. Your program has been compiled for a small code memory model.
2. You are creating an overlayed application.
3. Thecodein your program, including overlay areas, does not exceed 64K.
If the"SMALL" option is not specified and you are creating an overlayed application, the linker will

generate far callsto overlay vectors. In this case, your application must have been compiled using a big
code memory model.

162 The SMALL Option

SORT

3.111 The SORT Directive

Formats: All

The"SORT" directiveis used to sort the symbolsin the "Memory Map" section of the map file. By defaullt,
symbols are listed on a per module basis in the order the modules were encountered by thelinker. That is, a
module header is displayed followed by the symbols defined by the module.

The format of the "SORT" directive (short form "SO") is as follows.

SORT [GLOBAL] [ALPHABETICAL]

If the "SORT" directive is specified without any options, asin the following example, the module headers
will be displayed each followed by the list of symbolsit defines sorted by address.

sort

If only the "GLOBAL" sort option (short form "GL") is specified, asin the following example, the module
headers will not be displayed and all symbolswill be sorted by address.

sort gl obal

If only the"ALPHABETICAL" sort option (short form "ALP") is specified, asin the following example,
the module headers will be displayed each followed by the list of symbolsit defines sorted alphabetically.

sort al phabeti cal

If both the "GLOBAL" and "ALPHABETICAL" sort options are specified, as in the following example, the
module headers will not be displayed and all symbolswill be sorted alphabetically.

sort gl obal al phabeti cal
If you are linking a Open Watcom C++ application, mangled names are sorted by using the base name. The

base name is the name of the symbol asit appeared in the sourcefile. See the section entitled "The
MANGLEDNAMES Option" on page 92 for more information on mangled names.

The SORT Directive 163

STACK

3.112 The STACK Option

Formats: All

The"STACK" option can be used to increase the size of the stack. The format of the "STACK" option
(short form "ST") is as follows.

OPTION STACK=n

where description

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. 1f mis specified, the valueis
multiplied by 1024* 1024.

The default stack size varies for both 16-bit and protected-mode 32-bit applications depending on the
executable format. Y ou can determine the default stack size by looking at the map file that can be
generated when an applicationislinked ("OPTION MAP"). During execution of your program, you may
get an error message indicating your stack has overflowed. If you encounter such an error, you must link
your application again, this time specifying alarger stack size using the "STACK" option.

Example:
option stack=8192

Note: This parameter isignored for DLL (zero is used).

164 The STACK Option

STANDARD (DOS)

3.113 The STANDARD Option
Formats: DOS

The"STANDARD" option instructs the Open Watcom Linker to use the standard overlay manager (as
opposed to the dynamic overlay manager). Y our application must be compiled for a big code memory
model. The format of the"STANDARD" option (short form "STAN") is as follows.

OPTION STANDARD

The standard overlay manager isthe default. For more information on overlays, see the section entitled
"Using Overlays' on page 187.

The STANDARD Option 165

START

3.114 The START Option

Formats: All

The format of the"START" optionis as follows.

OPTION START=symbol_name

where description
symbol_name specifies the name of the procedure where execution begins.

For the Netware executable format, the default name of the start procedureis”_Prelude”.

166 The START Option

STARTLINK

3.115 The STARTLINK Directive

Formats: All

The"STARTLINK" directive is used to indicate the start of anew set of linker commands that are to be
processed after the current set of commands has been processed. The format of the "STARTLINK"
directive (short form "STARTL") isasfollows.

STARTLINK

The"ENDLINK" directive is used to indicate the end of the set of commands identified by the
"STARTLINK" directive.

The STARTLINK Directive 167

STATICS

3.116 The STATICS Option

Formats: All

The"STATICS" option should only be used if you are developing a Open Watcom C or C++ application.
The Open Watcom C and C++ compilers produce definitions for static symbolsin the object file. By
default, these static symbols do not appear in the map file. 1f you want static symbolsto be displayed in the
map file, usethe "STATICS" option.

The format of the"STATICS' option (short form "STAT") isasfollows.

OPTION STATICS

168 The STATICS Option

STUB (0S/2, Win16, Win32)

3.117 The STUB Option
Formats: 0S/2, Win16, Win32

The"STUB" option specifies an executable file containing a "stub” program that is to be placed at the
beginning of the executable file being generated. The "stub" program will be executed if the moduleis
executed under DOS. The format of the "STUB" optionis asfollows.

OPTION STUB=stub_name

where description

stub_name isafile specification for the name of the stub executable file. If no file extension is
specified, afile extension of "EXE" is assumed.

The Open Watcom Linker will search all paths specified in the PATH environment variable for the stub

executable file. The stub executable file specified by the "STUB" option must not be the same as the
executable file being generated.

The STUB Option 169

SYMFILE

3.118 The SYMFILE Option

Formats: All

The"SYMFILE" option provides a method for specifying an alternate file for debugging information. The
format of the"SYMFILE" option (short form "SYMF") is asfollows.

OPTION SYMFILE[=symbol_filg]

where description

symbol_file isafile specification for the name of the symbol file. If no file extension is specified, afile
extension of "sym" is assumed.

By default, no symbol file is generated; debugging information is appended at the end of the executable
file. Specifying this option causes the Open Watcom Linker to generate a symbol file. The symbol file
contains the debugging information generated by the linker when the "DEBUG" directiveisused. The
symbol file can then be used by Open Watcom Debugger. If no debugging information is requested, no
symbol fileis created, regardless of the presence of the "SYMFILE" option.

If no file name is specified, the symboal file will have a default file extension of "sym" and the same path
and file name as the executable file. Note that the symbol file will be placed in the same directory as the
executablefile.

Alternatively, afile name can be specified. The following directive instructs the linker to generate a
symbol file and call it "myprog.sym" regardless of the name of the executablefile.

option synf=nyprog

Y ou can also specify apath and/or file extension when using the "SY MFILE=" form of the"SYMFILE"
option.

Notes:

1. Thisoption should be used to debug aDOS "COM" executable file. A DOS"COM" executable
file must not contain any additional information other than the executable information itself
since DOS uses the size of the file to determine what to load.

2. Thisoption should be used when creating a Microsoft Windows executable file. Typically,
before an executable file can be executed as a Microsoft Windows application, aresource
compiler takes the Windows executable file and a resource file as input and combines them. If
the executable file contains debugging information, the resource compiler will strip the
debugging information from the executable file. Therefore, debugging information must not be
part of the executable file created by the linker.

170 The SYMFILE Option

SYMTRACE

3.119 The SYMTRACE Directive

Formats: All

The"SYMTRACE" directive instructs the Open Watcom Linker to print alist of all modulesthat reference
the specified symbols. The format of the "SYMTRACE" directive (short form "SYMT") is asfollows.

SYMTRACE symbol_name{,symbol_name}

where description
symbol_name isthe name of asymboal.
Theinformation is displayed in the map file. Consider the following example.

Example:
W ink systemny_os op map file test lib math synt sin, cos

The Open Watcom Linker will list, in the map file, all modules that reference the symbols "sin" and "cos'.

The SYMTRACE Directive 171

SYNCHRONIZE (NetWare)

3.120 The SYNCHRONIZE Option

Formats: NetWare

The"SYNCHRONIZE" option forces an NLM to complete loading before starting to load other NLMs.
Normally, the other NLMs are loading during the startup procedure. The format of the "SYNCHRONIZE"

option (short form "SY") is asfollows.

OPTION SYNCHRONIZE

172 The SYNCHRONIZE Option

SYSTEM

3.121 The SYSTEM Directive

Formats: All
There are three forms of the "SY STEM" directive.

Thefirst form of the"SY STEM" directive (short form "SYS") is called a system definition directive. It
allows you to associate a set of linker directives with a specified name called the system name. This set of
linker directivesis called a system definition block. The format of a system definition directiveisas
follows.

SYSTEM BEGIN system _name {directive} END

where description

system_name isaunique system name.

directive isalinker directive.

A system definition directive cannot be specified within another system definition directive.

The second form of the "SY STEM" directiveis called a system deletion directive. It allows you to remove

the association of aset of linker directives with a system name. The format of a system deletion directiveis
asfollows.

SYSTEM DELETE system _name

where description
system _name is adefined system name.

The third form of the "SY STEM" directiveis as follows.

SYSTEM system _name

where description
system name isadefined system name.

When this form of the "SY STEM" directive is encountered, all directives specified in the system definition
block identified by syst em_narme will be processed.

Let us consider an example that demonstrates the use of the"SY STEM" directive. The following linker
directives define a system called statistics.

The SYSTEM Directive 173

SYSTEM

system begin statistics
format dos

i bpath \libs

library stats, graphics
option stack=8k

end

They specify that a statistics application isto be created by using the libraries "stats.lib" and "graphics.lib".
Theselibrary files are located in the directory "\libs'. The application requires a stack size of 8k and the
specified format of executable will be generated.

Suppose the linker directives in the above example are contained in the file "stats.Ink". |f we wish to create
a statistics application, we can issue the following command.

wWink @tats systemstatistics file nyappl

As demonstrated by the above example, the "SY STEM" directive can be used to localize the common
attributes that describe a class of applications.

The system deletion directive can be used to redefine a previously defined system. Consider the following
example.

system begi n at _dos
i bpath 9NATCOMA | i b286
| i bpat h 9AMATCOMA | i b286\ dos
format dos ~
end
system begi n n98 _dos
sys at_dos "
i bpath 9AATCOWA | i b286\ dos\ n98
end
system begi n dos
sys at_dos "
end

If you wish to redefine the definition of the "dos" system, you can specify the following set of directives.

system del ete dos
system begi n dos
sys n98 dos *

end

This effectively redefines a'"dos"' system to be equivalent to a"n98_dos" system (NEC PC-9800 DOS),
rather than the previously defined "at_dos"' system (AT-compatible DOS).

For additional examples on the use of the "SY STEM" directive, examine the contents of the wl i nk. | nk
andw syst em | nk files.

Thefilewl i nk. | nk isaspecia linker directivefile that is automatically processed by the Open Watcom
Linker before processing any other directives. On aDOS, ZDOS, 0S/2, or Windows-hosted system, this
file must be located in one of the paths specified in the PATH environment variable. On a QNX-hosted
system, thisfile should be located in the / et ¢ directory. A default version of thisfileislocated in the

\ wat com bi nwdirectory on DOS-hosted systems, the \ wat com bi np directory on OS/2-hosted
systems, the / et ¢ directory on QNX-hosted systems, and the \ wat com bi nnt directory on Windows
95 or Windows NT-hosted systems. Note that the file wl i nk. | nk includesthefile W syst em | nk

174 The SYSTEM Directive

SYSTEM

which islocated in the \ wat com bi nwdirectory on DOS, 0OS/2, or Windows-hosted systems and the
/ et c directory on QNX-hosted systems.

Thefilesw i nk. | nk and Wl syst em | nk reference the WATCOM environment variable which must
be set to the directory in which you installed your software.

The default name of the linker directivefile (W i nk. | nk) can be overridden by the WLINK_L NK

environment variable. If the specified file can’t be opened, the default file name will be used. For
example, if the WLINK _LNK environment variable is defined as follows

set W.I NK_LNK=ny. | nk

then the Open Watcom Linker will attempt to usea ny. | nk directive file, and if that file cannot be
opened, the linker will revert to using the default W i nk. | nk file.

3.121.1 Special System Names

There are two special system names. When the linker has processed all object files and the executable file
format has not been determined, and a system definition block has not been processed, the directives
specified in the "286" or "386" system definition block will be processed. The"386" system definition
block will be processed if a 32-bit object file has been processed. Furthermore, only arestricted set of
linker directivesisallowed in a"286" and "386" system definition block. They are asfollows.

* FORMAT

* LIBFILE

* LIBPATH

* LIBRARY

* NAME

* OPTION

* RUNTIME (for Phar Lap executable files only)

* SEGMENT (for OS/2 and QNX executable files only)

The SYSTEM Directive 175

THREADNAME (NetWare)

3.122 The THREADNAME Option

Formats: NetWare

The"THREADNAME" option is used to specify the pattern to be used for generating thread names. The
format of the "THREADNAME" option (short form "THR") is as follows.

OPTION THREADNAME ’thread_name’

where description

thread name specifies the pattern used for generating thread names and must be astring of 1to 5
characters.

Thefirst thread name is generated by appending "0" to thread_name, the second by appending "1" to

thread_name, etc. If the"THREADNAME" option is not specified, the first 5 characters of the description
specified in the "FORMAT" directive are used as the pattern for generating thread names.

176 The THREADNAME Option

TOGGLERELOCS (0S/2)

3.123 The TOGGLERELOCS Option
Formats: 0S/2

The"TOGGLERELOCS' option is used with LX format executables under 32-bit DOS/4G only. The
"INTERNALRELOCS" option causes the Open Watcom Linker to include internal relocation information
in DOS/4G LX format executables. Having done so, the linker normally clears the "internal fixups done"
flag in the LX executable header (bit 0x10). The "TOGGLERELOCS" option causes the linker to toggle
the value of the "internal fixups done" flag in the LX executable header (bit 0x10). Thisoption isused with
DOS/AG non-zero based executables. Contact Tenberry Software for further explanation.

The format of the "TOGGLERELOCS' option (short form "TOG") isas follows.

OPTION TOGGLERELOCS

The TOGGLERELOCS Option 177

UNDEFSOK

3.124 The UNDEFSOK Option

Formats: All

The "UNDEFSOK" option tells the Open Watcom Linker to generate an executable file even if undefined
symbols are present. By default, no executable file will be generated if undefined symbols are present.

The format of the "UNDEFSOK" option (short form "U") is asfollows.

OPTION UNDEFSOK

The "NOUNDEFSOK" option tells the Open Watcom Linker to not generate an executable file if undefined
symbols are present. Thisisthe default behaviour.

The format of the "NOUNDEFSOK" option (short form "NOU") is as follows.

OPTION NOUNDEFSOK

178 The UNDEFSOK Option

VECTOR (DOS)

3.125 The VECTOR Directive
Formats: DOS

The"VECTOR" directive forces the Open Watcom Linker to generate an overlay vector for the specified
symbols and is intended to be used when the "NOINDIRECT" option is specified. See the section entitled
"The NOINDIRECT Option" on page 113 for additional information on the usage of the "VECTOR"
directive.

The format of the "VECTOR" directive (short form "VE") isasfollows.

VECTOR symbol _name{,symbol _name}

where description
symbol_name isasymbol name.

For more information on overlays, see the section entitled "Using Overlays' on page 187.

The VECTOR Directive 179

VERBOSE

3.126 The VERBOSE Option

Formats: All

The"VERBOSE" option controls the amount of information produced by the Open Watcom Linker in the
map file. The format of the "VERBOSE" option (short form "V") is asfollows.

OPTION VERBOSE

If the"VERBOSE" option is specified, the linker will list, for each object file, all segments it defines and
their sizes. By default, thisinformation is not produced in the map file.

180 The VERBOSE Option

VERSION (NetWare, 0S/2, Win16, Win32)

3.127 The VERSION Option
Formats: NetWare, 0S/2, Win16, Win32

The"VERSION" option can be used to identify the application so that it can be distinguished from other
versions (releases) of the same application.

This option is most useful when creating aDLL or NLM since applications that use the DLL or NLM may
only execute with a specific version of the DLL or NLM.

The format of the "VERSION" option (short form "VERS') is as follows.

0S/2, Win16, Win32:
OPTION VERSI ON=major[.minor]
Netware:
OPTION VERSI ON=major[.minor[.revision]]

where description

major specifies the major version number.

minor specifies the minor version number and must be less than 100.

revision specifiestherevision. Therevision should be anumber or aletter. If itisanumber, it must
be less than 27.

The VERSION Option 181

VFREMOVAL

3.128 The VFREMOVAL Option

Formats: All

The"VFREMOVAL" option instructs the linker to remove unused C++ virtual functions. The format of
the"VFREMOVAL" option (short form "VFR") isasfollows.

OPTION VFREMOVAL

If the"VFREMOVAL" option is specified, the linker will attempt to eliminate unused virtual functions. In
order for the linker to do this, the Open Watcom C++ "zv" compiler option must be used for all object files
in the executable. The"VFREMOVAL" option works best in concert with the"ELIMINATE" option.

182 The VFREMOVAL Option

XDCDATA (NetWare)

3.129 The XDCDATA Option

Formats: NetWare

The"XDCDATA" option specifies the name of afile that contains Remote Procedure Call (RPC)
descriptions for callsin thisNLM. RPC descriptions for APIs make it possible for APIsto be exported
across memory-protection domain boundaries.

The format of the "XDCDATA" option (short form "XDC") is as follows.

OPTION XDCDATA=rpc file

where description

rpc_file is the name of the file containing RPC descriptions.

The XDCDATA Option 183

The Open Watcom Linker

184 The XDCDATA Option

4 The DOS Executable File Format

This chapter deals specifically with aspects of DOS executable files. The DOS executable file format will
only run under the DOS operating system.

Input to the Open Watcom Linker is specified on the command line and can be redirected to one or more
files or environment strings. The Open Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_ name=symbol_name{,alias_name=symbol_name}
AUTOSECTION

BEGIN {section_type [INTO ovl_fil€] {directive}} END
DEBUG dbtype [dblist] | DEBUG [dblist]

DISABLE msg_num{,msg_num}

ENDLINK

FILE obj_spec{,obj _spec}

FIXEDLIB library file{ library_file}
FORCEVECTOR symbol_name{,symbol_name}
FORMAT DOS[COM]

LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{;path_name}

LIBRARY library file{,library file}

MODTRACE obj_module{,obj _module}

NAME exe file

NEWSEGMENT

NOVECTOR symbol_name{,symbol _name}

OPTION option{,option}

AREA=n
ARTIFICIAL
[NOJCACHE
[NOJCASEEXACT
CVPACK
DISTRIBUTE
DOSSEG
DYNAMIC
ELIMINATE
[NOJFARCALLS
FULLHEADER
MANGLEDNAMES
MAP[=map _fil€]

The DOS Executable File Format 185

The Open Watcom Linker

MAXERRORS=n
NAMELEN=n
NODEFAULTLIBS
NOEXTENSION
NOINDIRECT
OSNAME="¢tring’
PACKCODE=n
PACKDATA=N
QUIET

REDEFSOK
SHOWDEAD

SMALL

STACK=n
STANDARD
START=symbol_name
STATICS
SYMFILE[=symbol_fil€]
[NOJUNDEFSOK
VERBOSE
VFREMOVAL

OPTLIB library_file{ library file}
OVERLAY class{,class}

PATH path_name{; path_name}
REFERENCE symbol_name{,symbol_name}

SECTION

SORT [GLOBAL] [ALPHABETICAL]
STARTLINK

SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system _name {directive} END
SYSTEM system _name

VECTOR symbol_name{,symbol_name}

comment

@directive file

You can view all the directives specific to DOS executable files by simply typing the following:

wink ? dos

4.1 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1

2.

all segments not belonging to group "DGROUP" with class "CODE"

all other segments not belonging to group "DGROUP"

all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"

all segments belonging to group "DGROUP" with class "BSS"

186 Memory Layout

The DOS Executable File Format

6. all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. Thissegment isinitialized with the hexadecimal byte pattern "01" and is the first segment in
group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes"BSS" and
"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable
file.

4.2 The Open Watcom Linker Memory Requirements

The Open Watcom Linker uses all available memory when linking an application. For DOS-hosted
versions of the Open Watcom Linker, this includes expanded memory (EMS) and extended memory. Itis
possible for the size of the image being linked to exceed the amount of memory available in your machine,
particularly if the image fileis to contain debugging information. For this reason, atemporary disk fileis
used when al available memory is used by the Open Watcom Linker.

Normally, the temporary fileis created in the current working directory. However, by defining the "tmp"
environment variable to be a directory, you can tell the Open Watcom Linker where to create the temporary
file. Thiscan be particularly useful if you have aRAM disk. Consider the following definition of the
"tmp" environment variable.

set tnmp=\tnp

The Open Watcom Linker will create the temporary file in the directory "\tmp".

4.3 Using Overlays

Overlays are used primarily for large programs where memory requirements do not permit all portions of
the program to reside in memory at the sametime. An overlayed program consists of aroot and a number
of overlay areas.

Theroot always residesin memory. The root usually contains routines that are frequently used. For
example, afloating-point library might be placed in the root. Also, any modules extracted from alibrary
file during the linking process are placed in the root unless the "DISTRIBUTE" option is specified. This
option tells the Open Watcom Linker to distribute modules extracted from libraries throughout the overlay
structure. See the section entitled "The DISTRIBUTE Option™ on page 45 for information on how these
object modules are distributed. Libraries can also be placed in the overlay structure by using the
"FIXEDLIB" directive. See the section entitled "The FIXEDLIB Directive" on page 59 for information on
how to use this directive.

An overlay area is a piece of memory shared by various parts of aprogram. Each overlay areahasa
structure associated with it. This structure defines where in the overlay area sections of a program are
loaded. Sections of aprogram that are loaded into an overlay area are called overlays.

The Open Watcom Linker supports two overlay managers. the standard overlay manager and the dynamic

overlay manager. The standard overlay manager requires the user to create an overlay structure that defines
the "call" relationship between the object modules that comprise an application. It isthe responsibility of

Using Overlays 187

The Open Watcom Linker

the user to define an optimal overlay structure so as to minimize the number of calls that cause overlaysto
beloaded. The"SMALL" and"STANDARD" options select the standard overlay manager. The
"SMALL" option isrequired if you are linking an application compiled for a small code memory model.
The "STANDARD" option isrequired if you are linking an application compiled for a big code memory
model. By default, the Open Watcom Linker assumes your application has been compiled using a memory
model with abig code model. Option "STANDARD" is the default.

The"DYNAMIC" option, described in the section entitled "The DY NAMIC Option" on page 47, selects
the dynamic overlay manager. The dynamic overlay manager is more sophisticated than the standard
overlay manager. The user need not be concerned about the "call" relationship between the object modules
that comprise an application. Basically, each moduleis placed in its own overlay. The dynamic overlay
manager swaps each module (overlay) into asingle overlay area. Thisoverlay areais used as a pool of
memory from which memory for overlaysis allocated. The larger the memory pool, the greater the number
of modules that can simultaneously residein memory. The size of the overlay area can be controlled by the
"AREA" option. Seethe section entitled "The AREA Option" on page 24 for information on using this
option.

Note that the dynamic overlay manager can only be used with applications that have been compiled using
the "of" option and a big code memory model.

4.3.1 Defining Overlay Structures

Consider the following directive file.

#

Define files that belong in the root.

#

file fileO, filel

#

Define an overlay area.

#

begi n
section file file2
section file file3, file4d
section file fileb

end

1. Theroot consistsof fil e0Oandfil el.

2. Threeoverlaysare defined. Thefirst overlay (overlay #1) contains f i | e2, the second overlay
(overlay #2) containsf i | e3 and f i | e4, and the third overlay (overlay #3) contains fi | 5.

The following diagram depicts the overlay structure.

188 Using Overlays

The DOS Executable File Format

T L R R +<- start of root
| |

| fileO |

| filel |

| |

Fomem - Fomem - Fomem - +<- start of overlay
| #1 | #2 | #3 | area

| | |

| file2 | file3 | fileb |

| [filed | |

| I I |

Foemaaiaa e e +

Notes:
1. The3overlaysareal loaded at the same memory location. Such overlays are called parallel.

In the previous example, only one overlay areawas defined. It is possible to define more than one overlay
area as demonstrated by the following example.

#

Define files that belong in the root.

#

file fileO, filel

#

Define an overlay area.

#

begi n
section file file2
section file file3, file4
section file fileb

end

#

Define an overlay area.

#

begi n
section file file6
section file file7
section file file8

end

Two overlay areas are defined. Thefirst isidentical to the overlay area defined in the previous example.
The second overlay area contains three overlays; the first overlay (overlay #4) contains f i | €6, the second
overlay (overlay #5) contains f i | e7, and the third overlay (overlay #6) contains f i | €8.

The following diagram depicts the overlay structure.

Using Overlays 189

The Open Watcom Linker

T L R R +<- start of root

I I

| fileO |

| filel |

I I

Fomem - Fomem - Fomem - +<- start of overlay
| #1 | #2 | #3 | area

I | I

| file2 | file3 | fileb |

| [filed | |

I I I I

e e e +<- start of overlay
| #4 | #5 | #6 | area

I I I I

| file6 | file7 | file8 |

I | | I

Fom e e e e o - Fom e e e e o - Fom e e e e o - +

In the above example, the "AUTOSECTION" directive could have been used to define the overlays for the
second overlay area. The following example illustrates the use of the "AUTOSECTION" directive.

#

Define files that belong in the root.

#

file fileO, filel

#

Define an overlay area.

#

begi n
section file file2
section file file3, file4d
section file fileb

end
#
Define an overlay area.
#
begi n
aut osection
file file6
file file7
file file8
end

In al of the above examples the overlays are placed in the executablefile. 1t ispossible to place overlaysin
separate files by specifying the "INTO" option in the "SECTION" directive that starts the definition of an
overlay. By specifying the"INTO" option in the"AUTOSECTION" directive, all overlays created asa
result of the"AUTOSECTION" directive are placed in one overlay file.

Consider the following example. It issimilar to the previous example except for the following. Overlay #1

isplaced in thefile "ovl1.ovl", overlay #2 is placed in the file "ovl2.ovl", overlay #3 is placed in thefile
"ovl3.ovl" and overlays #4, #5 and #6 are placed in file "ovl4.ovI".

190 Using Overlays

The DOS Executable File Format

#
Define files that belong in the root.
#
file fileO, filel
#
Define an overlay area.
#
begi n
section into ovll file file2
section into ovl2 file file3, file4
section into ovl3 file fileb
end
#
Define an overlay area.
#
begi n
aut osection into ovl 4
file file6
file file7
file file8
end

4.3.1.1 The Dynamic Overlay Manager

Let us again consider the above example but this time we will use the dynamic overlay manager. The
easiest way to take the above overlay structure and use it with the dynamic overlay manager isto simply
specify the "DYNAMIC" option.

option DYNAM C

Even though we have defined an overlay structure with more than one overlay area, the Open Watcom
Linker will alocate one overlay areaand overlays from both overlay areas will be loaded into asingle
overlay area. The size of the overlay area created by the Open Watcom Linker will be twice the size of the
largest overlay area (unless the "AREA" option is used).

To take full advantage of the dynamic overlay manager, the following sequence of directives should be
used.

Using Overlays 191

The Open Watcom Linker

#
Define files that belong in the root.
#
file fileO, filel
#
Define an overlay area.
#
begi n
aut osection into ovl1l
file file2
aut osection into ovl2
file file3
file file4d
aut osection into ovl3
file fileb
aut osection into ovl 4
file file6
file file7
file file8
end

In the above example, each module will bein its own overlay. Thiswill result in a module being |oaded
into memory only when it isrequired. If separate overlay files are not required, asingle
"AUTOSECTION" directive could be used as demonstrated by the following example.

#
Define files that belong in the root.
#
file fileO, filel
#
Define an overlay area.
#
begi n
aut osection
file file2
file file3
file file4d
file fileb
file file6
file file7
file file8
end

4.3.2 Nested Overlay Structures
Nested overlay structures occur when the "BEGIN"-"END" directives are nested and are only useful if the
standard overlay manager is being used. If you have selected the dynamic overlay manager, the nesting
levels will be ignored and each overlay will be loaded into a single overlay area.

Consider the following directive file.

192 Using Overlays

The DOS Executable File Format

#
Define files that belong in the root.
#
file fileO, filel
#
Define a nested overlay structure.
#
begi n
section file file2
section file file3
begin
section file file4, fileb
section file file6
end
end

Notes:
1. Theroot containsfil eOandfil el.
2. Four overlays are defined. Thefirst overlay (overlay #1) contains fi | e2, the second overlay
(overlay #2) contains f i | €3, thethird overlay (overlay #3) contains fil e4 andfi | €5, and
the fourth overlay (overlay #4) contains f i | €6.

The following diagram depicts the overlay structure.

R L +<- start of root
I I
| fileO |
| filel |
I I
e o +<- start of overlay
| #1 | #2 | area
I I I
| file2 | file3 |
I | I
I | I
| S S +<- start of overlay
| | #3 | #4 [area
I I I I
| | filed | file6 |
| [files5 | |
I I I I
I - - +
Notes:

1. Overlay #1 and overlay #2 are parallel overlays. Overlay #3 and overlay #4 are also parallel
overlays.

2. Overlay #3 and overlay #4 are loaded in memory following overlay #2. Inthis case, overlay #2
is called an ancestor of overlay #3 and overlay #4. Conversely, overlay #3 and overlay #4 are
descendants of overlay #2.

3. Theroot is an ancestor of all overlays.

Using Overlays 193

The Open Watcom Linker

Nested overlays are particularly useful when the routines that make up one overlay are used only by afew
other overlays. Inthe above example, the routinesin overlay #2 would only be used by routinesin overlay
#3 and overlay #4 but not by overlay #1.

4.3.3 Rules About Overlays

The Open Watcom Linker handles all the details of loading overlays. No changes to a program have to be
made if, for example, it becomes so large that you have to change to an overlay structure. Certain rules
have to be followed to ensure the proper execution of your program. These rules pertain more to the
organization of the components of your program and less to the way it was coded.

1. Careshould be taken when passing addresses of functions as arguments. Consider the following

example.
T I +<- start of root
I I
| mai n |
I I
R R +<- start of overlay
| nodulea | noduleb | ar ea
I | I
I f I h I
I g I I
I I I
. e +

Function f passes the address of static function g to function h. Function h then calls function g
indirectly. Function f and function g are defined in modulea and function h is defined in
moduleb. Furthermore, suppose that modulea and moduleb are parallel overlays. The linker will
not generate an overlay vector for function g sinceit is static so when function h calls function g
indirectly, unpredictable results may occur. Notethat if gisaglobal function, an overlay vector
will be generated and the program will execute correctly.

2. You should organize the overlay structure to minimize the number of times overlays haveto be
loaded into memory. Consider aloop calling two routines, each routine in adifferent overlay. If
the overlay structure is such that the overlays are paralld, that is they occupy the same memory,
each iteration of the loop will cause 2 overlays to be loaded into memory. Thiswill significantly
increase execution time if the loop is iterated many times.

3. If anumber of overlays have a number of common routines that they all reference, the common
routines will most likely be placed in an ancestor overlay of the overlays that reference them.
For this reason, whenever an overlay isloaded, all its ancestors are also loaded.

4. Inanoverlayed program, the overlay loader isincluded in the executablefile. If we are dealing
with relatively small programs, the size of the overlay loader may be larger than the amount of
memory saved by overlaying the program. In alarger application, the size of the overlayed
version would be smaller than the size of the non-overlayed version. Note that overlaying a
program resultsin alarger executable file but the memory requirements are less.

5. Thesymbols”_OVLTAB_ "," OVLSTARTVEC ","_OVLENDVEC_ ",

" LOVLLDR_"," NOVLLDR_"," SOVLLDR_"," LOVLINIT_"

" _NOVLINIT__"and"__SOVLINIT__" are defined when you use overlays. Your program
should not define these symbols.

194 Using Overlays

The DOS Executable File Format

6. When using the dynamic overlay manager, you should not take the address of static functions.
Static functions are not given overlay vectors, so if the module in which the address of a static
function is taken, is moved by the dynamic overlay manager, that address will no longer point to
the static function.

4.3.4 Increasing the Dynamic Overlay Area

Unlessthe "AREA" option has been specified, the default size of the dynamic overlay areaistwicethe size
of the largest overlay (or module if each moduleisits own overlay). It is possibleto add additional overlay
areas at run-time so that the dynamic overlay manager can use the additional memory. A routine has been
provided, called _ovl addar ea. Thisfunction is defined as follows.

void far _ovl _addarea(unsi gned segnent, unsi gned size);

Thefirst argument is the segment address of the block memory you wish to add. The second argument is
the size, in paragraphs, of the memory block.

In assembly language, the functioniscalled _ovl _addar ea_ with the first argument being passed in
register AX and the second argument in register DX.

4.3.5 How Overlay Files are Opened

The overlay manager normally opens overlay files, including executable files containing overlays, in
compatibility mode. Compatibility mode is a sharing mode. A file opened in compatibility mode means
that it can be opened any number of times provided that it is not currently opened under one of the other
sharing modes. In other words, the file must always be opened in compatibility mode.

The overlay manager keeps most recently used overlay files open for efficiency. This meansthat any
application, including the currently executing application, that may want to open an overlay file, must open
it in compatibility mode. For example, the executing application may have data at the end of the executable
file that it wishesto access.

If an application wishes to open the file in a sharing mode other than compatibility mode, the function
_ovl _openfl ags has been defined which alows the caller to specify the sharing mode with which the
overlay fileswill be opened by the overlay manager. Thisfunction is defined as follows.

unsi gned far _ovl _openfl ags(unsi gned shari ng_node);
Legal values for the sharing mode are as follows.

Sharing Mode Vaue

compatibility mode 0x00
deny read/write mode 0x01

deny write mode 0x02
deny read mode 0x03
deny none mode 0x04

The return value is the previous sharing mode used by the overlay manager to open overlay files.

Note that DOS opens executable files in compatibility mode when loading them for execution. Thisis
important for executable files on networks that may be accessed simultaneously by many users.

Using Overlays 195

The Open Watcom Linker

In assembly language, the functioniscalled _ovl _openf | ags_ with itsargument being passed in
register AX.

4.4 Converting Microsoft Response Files to Directive Files

A utility called MS2WLINK can be used to convert Microsoft linker response files to Open Watcom Linker
directive files. The response files must correspond to the linker found in version 7 or earlier of Microsoft
C. Later versions of response files such as those used with Microsoft Visual C++ are not entirely
supported.

The same utility can also convert much of the content of IBM OS/2 LINK 386 response files since the
syntax issimilar.

Input to MS2WLINK is processed in the same way as the Microsoft linker processesitsinput. The
differenceisthat MS2WLINK writes the corresponding Open Watcom Linker directive file to the standard
output device instead of a creating an executable file. The resulting output can be redirected to adisk file
which can then be used as input to the Open Watcom Linker to produce an executable file.

Suppose you have a Microsoft linker response file called "test.rsp". Y ou can convert thisfile to a Open
Watcom Linker directive file by issuing the following command.

Example:
nms2wW i nk @est.rsp >test.lnk

Y ou can now use the Open Watcom Linker to link your program by issuing the following command.

Example:
W ink @ est

An aternative way to link your application with the Open Watcom Linker from a Microsoft responsefileis
to issue the following command.

Example:
ms2wW i nk @est.rsp | wink

Since the Open Watcom Linker gets its input from the standard input device, you do not have to create a
Open Watcom Linker directive file to link your application.

Note that MS2WLINK can also process module-definition files used for creating OS/2 applications.

196 Converting Microsoft Response Files to Directive Files

5 The ZDOS Executable File Format

This chapter deals specifically with aspects of ZDOS executable files. The ZDOS executable file format
will only run under the ZDOS operating system.

Input to the Open Watcom Linker is specified on the command line and can be redirected to one or more
files or environment strings. The Open Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_ name=symbol_name{,alias_name=symbol_name}
DEBUG dbtype [dblist] | DEBUG [dhblist]
DISABLE msg_num{,msg_num}
ENDLINK

FILE obj_spec{,obj spec}

FORMAT ZDOS[SYS | HWD | FSD]
LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{; path_name}
LIBRARY library_file{ library file}
MODFILE obj_file{,obj_file}
MODTRACE obj_module{,obj _module}
NAME exe file

OPTION option{,option}

ARTIFICIAL
[NOJCACHE
[NOJCASEEXACT
CVPACK

DOSSEG
ELIMINATE
[NOJFARCALLS
INCREMENTAL
MANGLEDNAMES
MAP[=map _fil€]
MAXERRORS=N
NAMELEN=n
NODEFAULTLIBS
NOEXTENSION
OSNAME="string’
QUIET
REDEFSOK
STACK=n

The ZDOS Executable File Format 197

The Open Watcom Linker

START=symbol _name
STATICS
SYMFILE[=symboal_file]
[NOJUNDEFSOK
VERBOSE
VFREMOVAL
OPTLIB library file{ library_file}
PATH path_name{; path_name}
REFERENCE symbol _name{,symbol_name}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system _name
comment
@directive file

You can view all the directives specific to ZDOS executable files by simply typing the following:

wink ? zdos

5.1 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1. al segments not belonging to group "DGROUP" with class"CODE"

2. all other segments not belonging to group "DGROUP"

3. al segments belonging to group "DGROUFP" with class "BEGDATA"

4. dl segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"

5. al segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class"STACK"
A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. Thissegment isinitialized with the hexadecimal byte pattern "01" and isthe first segment in
group "DGROUP" so that storing data at location O can be detected.
Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes "BSS" and

"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable
file

198 Memory Layout

The ZDOS Executable File Format

5.2 The Open Watcom Linker Memory Requirements

The Open Watcom Linker uses all available memory when linking an application. For DOS-hosted
versions of the Open Watcom Linker, this includes expanded memory (EMS) and extended memory. Itis
possible for the size of the image being linked to exceed the amount of memory available in your machine,
particularly if the image fileisto contain debugging information. For this reason, atemporary disk fileis
used when all available memory is used by the Open Watcom Linker.

Normally, the temporary fileis created in the current working directory. However, by defining the "tmp"
environment variable to be a directory, you can tell the Open Watcom Linker where to create the temporary
file. Thiscan be particularly useful if you have a RAM disk. Consider the following definition of the
"tmp" environment variable.

set tnmp=\tnp

The Open Watcom Linker will create the temporary file in the directory "\tmp".

5.3 Converting Microsoft Response Files to Directive Files

A utility called MS2WLINK can be used to convert Microsoft linker response files to Open Watcom Linker
directive files. The response files must correspond to the linker found in version 7 or earlier of Microsoft
C. Later versions of response files such as those used with Microsoft Visual C++ are not entirely
supported.

The same utility can also convert much of the content of IBM OS/2 LINK 386 response files since the
syntax issimilar.

Input to MS2WLINK is processed in the same way as the Microsoft linker processesitsinput. The
differenceisthat MS2WLINK writes the corresponding Open Watcom Linker directive file to the standard
output device instead of a creating an executable file. The resulting output can be redirected to adisk file
which can then be used as input to the Open Watcom Linker to produce an executable file.

Suppose you have a Microsoft linker response file called "test.rsp". Y ou can convert thisfile to a Open
Watcom Linker directive file by issuing the following command.

Example:
ms2wW i nk @est.rsp >test. | nk

Y ou can now use the Open Watcom Linker to link your program by issuing the following command.

Example:
W ink @ est

An aternative way to link your application with the Open Watcom Linker from a Microsoft responsefileis
to issue the following command.

Converting Microsoft Response Files to Directive Files 199

The Open Watcom Linker

Example:
ne2wW i nk @est.rsp | wink

Since the Open Watcom Linker gets its input from the standard input device, you do not have to create a
Open Watcom Linker directivefile to link your application.

Note that MS2WLINK can also process module-definition files used for creating OS/2 applications.

200 Converting Microsoft Response Files to Directive Files

6 The RAW File Format

This chapter deals specifically with aspects of RAW executable files.

Input to the Open Watcom Linker is specified on the command line and can be redirected to one or more
files or environment strings. The Open Watcom Linker command line format is as follows.

WLINK {directive}

where directiveis any of the following:

ALIAS alias_name=symbol_name{,alias_name=symbol_name}
DEBUG dbtype [dblist] | DEBUG [dblist]
DISABLE msg_num{,msg_num}
ENDLINK

FILE obj_spec{,obj _spec}

FORMAT RAW [BIN | HEX]
LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{; path_name}
LIBRARY library file{ library file}
MODFILE obj_file{,obj_file}
MODTRACE obj_module{,obj_module}
NAME exe file

OPTION option{,option}

ARTIFICIAL
[NOJCACHE
[NO]JCASEEXACT
CVPACK

DOSSEG
ELIMINATE
[NOJFARCALLS
INCREMENTAL
MANGLEDNAMES
MAP[=map _fil€]
MAXERRORS=n
NAMELEN=n
NODEFAULTLIBS
NOEXTENSION
OFFSET=n
OSNAME-='"string’
QUIET
REDEFSOK
STACK=n

The RAW File Format 201

The Open Watcom Linker

START=symbol _name
STATICS
SYMFILE[=symboal_file]
[NOJUNDEFSOK
VERBOSE
VFREMOVAL
OPTLIB library file{ library_file}
PATH path_name{; path_name}
REFERENCE symbol _name{,symbol_name}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system _name
comment
@directive file

You can view all the directives specific to RAW executable files by simply typing the following:

wink ? raw

6.1 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1. al segments not belonging to group "DGROUP" with class"CODE"

2. all other segments not belonging to group "DGROUP"

3. al segments belonging to group "DGROUFP" with class "BEGDATA"

4. dl segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"

5. al segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class"STACK"
A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. Thissegment isinitialized with the hexadecimal byte pattern "01" and isthe first segment in
group "DGROUP" so that storing data at location O can be detected.
Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes "BSS" and

"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable
file

202 Memory Layout

The RAW File Format

6.2 The Open Watcom Linker Memory Requirements

The Open Watcom Linker uses all available memory when linking an application. For DOS-hosted
versions of the Open Watcom Linker, this includes expanded memory (EMS) and extended memory. Itis
possible for the size of the image being linked to exceed the amount of memory available in your machine,
particularly if the image fileisto contain debugging information. For this reason, atemporary disk fileis
used when all available memory is used by the Open Watcom Linker.

Normally, the temporary fileis created in the current working directory. However, by defining the "tmp"
environment variable to be a directory, you can tell the Open Watcom Linker where to create the temporary
file. Thiscan be particularly useful if you have a RAM disk. Consider the following definition of the
"tmp" environment variable.

set tnmp=\tnp

The Open Watcom Linker will create the temporary file in the directory "\tmp".

6.3 Converting Microsoft Response Files to Directive Files

A utility called MS2WLINK can be used to convert Microsoft linker response files to Open Watcom Linker
directive files. The response files must correspond to the linker found in version 7 or earlier of Microsoft
C. Later versions of response files such as those used with Microsoft Visual C++ are not entirely
supported.

The same utility can also convert much of the content of IBM OS/2 LINK 386 response files since the
syntax issimilar.

Input to MS2WLINK is processed in the same way as the Microsoft linker processesitsinput. The
differenceisthat MS2WLINK writes the corresponding Open Watcom Linker directive file to the standard
output device instead of a creating an executable file. The resulting output can be redirected to adisk file
which can then be used as input to the Open Watcom Linker to produce an executable file.

Suppose you have a Microsoft linker response file called "test.rsp". Y ou can convert thisfile to a Open
Watcom Linker directive file by issuing the following command.

Example:
ms2wW i nk @est.rsp >test. | nk

Y ou can now use the Open Watcom Linker to link your program by issuing the following command.

Example:
W ink @ est

An aternative way to link your application with the Open Watcom Linker from a Microsoft responsefileis
to issue the following command.

Converting Microsoft Response Files to Directive Files 203

The Open Watcom Linker

Example:
ne2wW i nk @est.rsp | wink

Since the Open Watcom Linker gets its input from the standard input device, you do not have to create a
Open Watcom Linker directivefile to link your application.

Note that MS2WLINK can also process module-definition files used for creating OS/2 applications.

204 Converting Microsoft Response Files to Directive Files

/ The ELF Executable File Format

This chapter deals specifically with aspects of ELF executable files. The ELF executable file format will
only run under the operating systems that support the ELF executable file format.

Input to the Open Watcom Linker is specified on the command line and can be redirected to one or more
files or environment strings. The Open Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_ name=symbol_name{,alias_name=symbol_name}
DEBUG dbtype [dblist] | DEBUG [dhblist]
DISABLE msg_num{,msg_num}
ENDLINK

EXPORT entry_name {,entry_name}

FILE obj_spec{,obj_spec}

FORMAT ELF [DLL]

IMPORT external_name {,external_name}
LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{; path_name}
LIBRARY library file{ library file}
MODFILE obj_file{,obj_file}
MODTRACE obj_module{,obj_module}
MODULE module_name {,module_name}
NAME exe file

OPTION option{,option}

ALIGNMENT=n
ARTIFICIAL
[NOJCACHE
[NOJCASEEXACT
CVPACK

DOSSEG
ELIMINATE
[NOJFARCALLS
INCREMENTAL
MANGLEDNAMES
MAP[=map _fil€]
MAXERRORS=n
NAMELEN=n
NODEFAULTLIBS
NOEXTENSION

The ELF Executable File Format 205

The Open Watcom Linker

OFFSET=n
OSNAME="string’
QUIET

REDEFSOK
SHOWDEAD
STACK=n
START=symbol_name
STATICS
SYMFILE[=symboal file]
[NOJUNDEFSOK
VERBOSE
VFREMOVAL

OPTLIB library_file{ library file}

PATH path_name{; path_name}
REFERENCE symbol _name{,symbol_name}
RUNTIME run_option

SORT [GLOBAL] [ALPHABETICAL]
STARTLINK

SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system _name {directive} END
SYSTEM system _name

comment

@directive file

You can view all the directives specific to ELF executable files by simply typing the following:

wink ? elf

7.1 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1

2.

5.

6.

all segments not belonging to group "DGROUP" with class "CODE"

all other segments not belonging to group "DGROUP'

all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"
all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. Thissegment isinitialized with the hexadecimal byte pattern "01" and isthe first segment in
group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes"BSS" and

206 Memory Layout

The ELF Executable File Format

"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable
file.

Memory Layout 207

The Open Watcom Linker

208 Memory Layout

8 The NetWare O/S Executable File Format

This chapter deals specifically with aspects of NetWare executable files. The Novell NetWare executable
file format will only run under NetWare operating systems.

Input to the Open Watcom Linker is specified on the command line and can be redirected to one or more
files or environment strings. The Open Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_ name=symbol_name{,alias_name=symbol_name}
AUTOUNLOAD

DEBUG dbtype [dblist] | DEBUG [dhblist]

DISABLE msg_num{,msg_num}

ENDLINK

EXPORT entry_name {,entry_name}

FILE obj_spec{,obj _spec}

FORMAT NOVELL [NLM | LAN | DSK | NAM | 'number’] 'description’
IMPORT external_name {,external_name}

LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{;path_name}

LIBRARY library file{,library file}

MODTRACE obj_module{,obj_module}

MODULE module_name {,module_name}

NAME exe file

OPTION option{,option}

ARTIFICIAL
[NOJCACHE
[NO]CASEEXACT
CHECK=symbol _name
COPYRIGHT 'string’
CUSTOM=file_name
CVPACK

DOSSEG
ELIMINATE
EXIT=symbol_name
[NOJFARCALLS
HELP=help file
IMPFILE[=imp_fil€]
IMPLIB[=imp_lib]
MANGLEDNAMES

The NetWare O/S Executable File Format 209

The Open Watcom Linker

MAP[=map_fil€]
MAXERRORS=N
MESSAGES=mgg_file
MULTILOAD
NAMELEN=n
NLMFLAGS=some value
NODEFAULTLIBS
NOEXTENSION
OSDOMAIN
OSNAME="¢tring’
PSEUDOPREEMPTION
QUIET
REDEFSOK
SHOWDEAD
REENTRANT
SCREENNAME 'name’
SHARELIB=shared nim
STACK=n
START=symbol_name
STATICS
SYMFILE[=symboal_file]
SYNCHRONIZE
THREADNAME 'thread name’
[NOJUNDEFSOK
VERBOSE
VERSI ON=major[.minor[.revision]]
VFREMOVAL
XDCDATA=rpc file

OPTLIB library_file{ library file}

PATH path_name{; path_name}

REFERENCE symbol_name{,symbol _name}

SORT [GLOBAL] [ALPHABETICAL]

STARTLINK

SYMTRACE symbol_name{,symbol_name}

SYSTEM BEGIN system_name {directive} END

SYSTEM system _name

comment

@directive file

You can view all the directives specific to NetWare executabl e files by simply typing the following:

W ink ? nov

8.1 NetWare Loadable Modules

NetWare L oadable Modules (NLMs) are executable files that run in file server memory under the NetWare
operating system. NLMs can be loaded and unloaded from file server memory while the server is running.

When running they actually become part of the operating system thus acting as building blocks for a server
environment tailored to your needs.

There are multiple types of NLMs, each identified by the file extension of the executable file and the
internal module type number.

210 NetWare Loadable Modules

The NetWare O/S Executable File Format

« Utility and server applications (executable files with extension "nim").

* LAN drivers (executable files with extension "lan").

* Disk drivers (executable files with extension "dsk").

» Modules that define file system name spaces (executable files with extension "nam™).

* Custom Device modules (executable files with extension "cdm™).

* Host Adapter modules (executable files with extension "ham").

* Mirrored server link modules (executable files with extension "mdl").

» Module types specified by number. These are the current defined values:

0

1

10

11

12

13

14

15

16

21

22

Specifies astandard NLM (default extension .NLM)
Specifies adisk driver module (default extension .DSK)
Specifies a namespace driver module (default extension .NAM)
Specifiesa LAN driver module (default extension .LAN)
Specifiesa utility NLM (default extension .NLM)
SpecifiesaMirrored Server Link module (default .MSL)
Specifies an Operating System module (default .NLM)
Specifies a Page High OS module (default .NLM)
Specifies a Host Adapter module (default . HAM)
Specifies a Custom Device module (default .CDM)
Reserved for Novell usage

Reserved for Novell usage

Specifies a Ghost module (default .NLM)

Specifies an SMP driver module (default .NLM)
Specifiesa NIOS module (default .NLM)
Specifies a ClOS CAD type module (default .NLM)
Specifies a ClOS CL S type module (default .NLM)
Reserved for Novell NICI usage

Reserved for Novell NICI usage

NetWare Loadable Modules 211

The Open Watcom Linker

23 Reserved for Novell NICI usage
24 Reserved for Novell NICI usage
25 Reserved for Novell NICI usage
26 Reserved for Novell NICI usage
27 Reserved for Novell NICI usage
28 Reserved for Novell NICI usage

The Open Watcom Linker can generate all types of NLMs by utilising the numerical value of the module
type.

8.2 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1. al segments not belonging to group "DGROUP" with class"CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. al segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class"STACK"
A special segment belonging to class"BEGDATA" is defined when linking with Open Watcom run-time
libraries. Thissegment isinitialized with the hexadecimal byte pattern "01" and isthe first segment in
group "DGROUP" so that storing data at location 0 can be detected.
Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes"BSS" and

"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable
file

212 Memory Layout

9 The 0S/2 Executable and DLL File Formats

This chapter deals specifically with aspects of OS/2 executable files. The OS/2 16-bit executablefile
format will run under the following operating systems.

1. 16-hit OS2 1.x
2. 32-bit 0S5/2 2.x, 3.x (Warp) and 4.x
3. Phar Lap’s 286|DOS-Extender

The OS/2 32-hit linear executable file format will run under the following operating systems.

1. 0S/22.xandlater (LX format only)

2. CauseWay DOS extender, Tenberry Software’s DOS/AG and DOS/AGW DOS extenders, and
compatible products (LE format only)

3. FlashTek’s DOS Extender (LX format only)

Input to the Open Watcom Linker is specified on the command line and can be redirected to one or more
files or environment strings. The Open Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_ name=symbol_name{,alias_name=symbol_name}
DEBUG dbtype [dblist] | DEBUG [dblist]
DISABLE msg_num{,msg_num}

ENDLINK

EXPORT export{,export}

EXPORT =lbc_file

FILE obj_spec{,obj_spec}

FORMAT OS2 [exe_type] [dIl_form | exe_attrs]
IMPORT import{,import}

LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{;path_name}

LIBRARY library file{,library file}
MODFILE obj_file{,obj_file}

MODTRACE obj_module{,obj _module}

NAME exe file

NEWSEGMENT

PATH path_name{; path_name}

OPTION option{,option}

The 0S/2 Executable and DLL File Formats 213

The Open Watcom Linker

ALIGNMENT=n
ARTIFICIAL
[NOJCACHE
[NOJCASEEXACT
CVPACK
DESCRIPTION 'string’
DOSSEG
ELIMINATE
[NOJFARCALLS
HEAPSIZE=n
IMPFILE[=imp_fil€]
IMPLIB[=imp_lib]
INCREMENTAL
INTERNALRELOCS
MANGLEDNAMES
MANYAUTODATA
MAP[=map _fil€]
MAXERRORS=N
MIXED1632
MODNAME=module_name
NAMELEN=n
NEWFILES
NOAUTODATA
NODEFAULTLIBS
NOEXTENSION
NOSTUB
OFFSET
OLDLIBRARY=dll_name
ONEAUTODATA
OSNAME="string’
PACKCODE=n
PACKDATA=nN
PROTMODE
QUIET
REDEFSOK
RESOURCE-=resource file
SHOWDEAD
STACK=n
START=symbol_name
STATICS
STUB=stub_name
SYMFILE[=symboal_file]
TOGGLERELOCS
[NOJUNDEFSOK
VERBOSE
VERSION=major[.minor]
VFREMOVAL

OPTLIB library_file{ library file}

REFERENCE symbol _name{,symbol_name}

SEGMENT seg_desc{,seg_desc}

SORT [GLOBAL] [ALPHABETICAL]

STARTLINK

214 The 0S/2 Executable and DLL File Formats

The 0S/2 Executable and DLL File Formats

SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system_name

comment

@directive file

Y ou can view al the directives specific to OS/2 executable files by simply typing the following:

wink ? os2

9.1 Dynamic Link Libraries

The Open Watcom Linker can generate two forms of executable files; program modules and Dynamic Link
Libraries. A program module is the executable file that gets |loaded by the operating system when you run
your application. A Dynamic Link Library isreally alibrary of routines that are called by a program
module but not linked into the program module. The executable codein a Dynamic Link Library isloaded
by the operating system during the execution of a program module when a routine in the Dynamic Link
Library iscalled.

Program modules are contained in files whose name has afile extension of "exe". Dynamic Link Libraries
are contained in files whose name has afile extension of "dII". The Open Watcom Linker "FORMAT"
directive can be used to select the type of executable file to be generated.

Let us consider some of the advantages of using Dynamic Link Libraries over standard libraries.

1. Functionsin Dynamic Link Libraries are not linked into your program. Only referencesto the
functionsin Dynamic Link Libraries are placed in the program module. These references are
called import definitions. Asaresult, the linking timeis reduced and disk spaceis saved. If
many applications reference the same Dynamic Link Library, the saving in disk space can be
significant.

2. Since program modules only reference Dynamic Link Libraries and do not contain the actual
executable code, a Dynamic Link Library can be updated without re-linking your application.
When your application is executed, it will use the updated version of the Dynamic Link Library.

3. Dynamic Link Libraries also allow sharing of code and data between the applications that use
them. If many applications that use the same Dynamic Link Library are executing concurrently,
the sharing of code and data segments improves memory utilization.

9.1.1 Creating a Dynamic Link Library

To create aDynamic Link Library, you must placethe"DLL" keyword following the system name in the
"SYSTEM" directive.

system os2v2 _dl |
In addition, you must specify which functionsin the Dynamic Link Library are to be made available to
applications which useit. Thisisachieved by using the "EXPORT" directive for each function that can be
called by an application.

Dynamic Link Libraries can reference other Dynamic Link Libraries. Referencesto other Dynamic Link
Libraries are resolved by specifying "IMPORT" directives or using import libraries.

Dynamic Link Libraries 215

The Open Watcom Linker

9.1.2 Using a Dynamic Link Library

To use aDynamic Link Library, you must tell the Open Watcom Linker which functions are contained in a
Dynamic Link Library and the name of the Dynamic Link Library. Thisisachieved in two ways.

Thefirst method isto usethe "IMPORT" directive. The"IMPORT" directive names the function and the
Dynamic Link Library it belongs to so that the Open Watcom Linker can generate an import definition in
the program module.

The second method is to use import libraries. Animport library is a standard library which contains object
modules with special object records that define the functions belonging to a Dynamic Link Library. An
import library is created from a Dynamic Link Library using the Open Watcom Library Manager. The
resulting import library can then be specified in a"LIBRARY" directive in the same way one would specify
astandard library. Seethe chapter entitled "The Open Watcom Library Manager” in the Open Watcom
C/C++ Tools User’s Guide or the Open Watcom FORTRAN 77 Tools User’s Guide for more information
on creating import libraries.

Using an import library is the preferred method of providing references to functionsin Dynamic Link
Libraries. When aDynamic Link Library is modified, typically the import library corresponding to the
modified Dynamic Link Library is updated to reflect the changes. Hence, any directive file that specifies
theimport library in a"LIBRARY" directive need not be modified. However, if you are using "IMPORT"

directives, you may have to modify the "IMPORT" directives to reflect the changesin the Dynamic Link
Library.

9.2 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1. al segments not belonging to group "DGROUP" with class"CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. dl segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"

5. al segments belonging to group "DGROUFP" with class "BSS"

6. all segments belonging to group "DGROUP" with class"STACK"
A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. Thissegment isinitialized with the hexadecimal byte pattern "01" and isthe first segment in
group "DGROUP" so that storing data at location 0 can be detected.
Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes"BSS* and

"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable
file.

216 Memory Layout

The 0S/2 Executable and DLL File Formats

9.3 Converting Microsoft Response Files to Directive Files

A utility called MS2WLINK can be used to convert Microsoft linker response files to Open Watcom Linker
directive files. The response files must correspond to the linker found in version 7 or earlier of Microsoft
C. Later versions of response files such as those used with Microsoft Visual C++ are not entirely
supported.

The same utility can also convert much of the content of IBM OS/2 LINK 386 response files since the
syntax issimilar.

Input to MS2WLINK is processed in the same way as the Microsoft linker processesitsinput. The
differenceisthat MS2WLINK writes the corresponding Open Watcom Linker directive file to the standard
output device instead of a creating an executable file. The resulting output can be redirected to adisk file
which can then be used as input to the Open Watcom Linker to produce an executable file.

Suppose you have a Microsoft linker response file called "test.rsp". Y ou can convert thisfile to a Open
Watcom Linker directive file by issuing the following command.

Example:
nms2wW i nk @est.rsp >test.|nk

Y ou can now use the Open Watcom Linker to link your program by issuing the following command.

Example:
W ink @ est

An aternative way to link your application with the Open Watcom Linker from a Microsoft responsefileis
to issue the following command.

Example:
ms2wWl i nk @est.rsp | wink

Since the Open Watcom Linker gets its input from the standard input device, you do not have to create a
Open Watcom Linker directive file to link your application.

Note that MS2WLINK can also process module-definition files used for creating OS/2 applications.

Converting Microsoft Response Files to Directive Files 217

The Open Watcom Linker

218 Converting Microsoft Response Files to Directive Files

10 The Phar Lap Executable File Format

This chapter deals specifically with aspects of Phar Lap 386|DOS-Extender executable files. The Phar Lap
executable file format will run under the following operating systems.

1. Phar Lap’'s 386|DOS-Extender
2. Open Watcom's 32-bit Windows supervisor (relocatable format only)

Input to the Open Watcom Linker is specified on the command line and can be redirected to one or more
files or environment strings. The Open Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias name=symbol_name{,alias_ name=symbol _name}
DEBUG dbtype [dblist] | DEBUG [dblist]

DISABLE msg_num{,msg_num}

ENDLINK

FILE obj_spec{,obj_spec}

FORMAT PHARLAP [EXTENDED | REX | SEGMENTED]
LANGUAGE lang

LIBFILE obj_file{,obj file}

LIBPATH path_name{;path_name}

LIBRARY library file{,library file}

MODFILE obj_file{,obj file}

MODTRACE obj_module{,obj _module}

NAME exe file

OPTION option{,option}

ARTIFICIAL
[NOJCACHE
[NOJCASEEXACT
CVPACK

DOSSEG
ELIMINATE
[NOJFARCALLS
INCREMENTAL
MANGLEDNAMES
MAP[=map_fil€]
MAXDATA=n
MAXERRORS=n
MINDATA=N
NAMELEN=n
NODEFAULTLIBS

The Phar Lap Executable File Format 219

The Open Watcom Linker

NOEXTENSION
OFFSET=n
OSNAME="string’
QUIET
REDEFSOK
SHOWDEAD
STACK=n
START=symbol_name
STATICS
SYMFILE[=symboal filg]
[NOJUNDEFSOK
VERBOSE
VFREMOVAL
OPTLIB library file{ library_file}
PATH path_name{; path_name}
REFERENCE symbol _name{,symbol_name}
RUNTIME run_option{,run_option}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system_name
comment
@directive file

Y ou can view al the directives specific to Phar Lap 386|DOS-Extender executable files by simply typing
the following:

W ink ? phar

10.1 32-bit Protected-Mode Applications

The Open Watcom Linker generates executable files that run under Phar Lap’ s 386|DOS-Extender.
386|DOS-Extender provides a 32-bit protected-mode environment for programs running under PC DOS.
Running in 32-bit protected mode alows your program to access al of the memory in your machine.

Essentially, what 386|DOS-Extender does is provide an interface between your application and DOS
running in real mode. Whenever your program issues a software interrupt (DOS and BIOS system calls),
386|DOS-Extender intercepts the requests, transfers data between the protected-mode and real-mode
address space, and calls the corresponding DOS system function running in real mode.

10.2 Memory Usage

When running a program under 386|DOS-Extender, memory for the program is allocated from
conventional memory (memory below one megabyte) and extended memory. Conventional memory is
allocated from a block of memory that is obtained from DOS by 386|DOS-Extender at initialization time.
By default, all available memory is allocated at initialization time; no conventional memory remains free.
The"MINREAL" and "MAXREAL" options of the "/RUNTIME" directive control the amount of
conventional memory initially left free by 386|DOS-Extender.

220 Memory Usage

The Phar Lap Executable File Format

Part of the conventional memory allocated at initialization is required by 386|DOS-Extender. The
following is allocated from conventional memory for use by 386|DOS-Extender.

1

A data buffer is allocated and is used to pass datato DOS and BIOS system functions. The size
alocated is controlled by the "MINIBUF" and "MAXIBUF" options of the "RUNTIME"
directive.

Stack spaceis allocated and is used for switching between 32-bit protected mode and real mode.
The size dlocated is controlled by the "NISTACK" and "ISTKSIZE" options of the
"RUNTIME" directive.

A call buffer isallocated and is used for passing data on function calls between 32-bit protected
mode and real mode. The size alocated is controlled by the "CALLBUFS' option of the
"RUNTIME" directive.

When aprogram is loaded by 386|DOS-Extender, memory to hold the entire program is allocated. In
addition, memory beyond the end of the program is allocated for use by the program. By default, all extra
memory is allocated when the program isloaded. It isassumed that any memory not required by the
program is freed by the program. The amount of memory allocated at the end of the program is controlled
by the"MINDATA" and "MAXDATA" options.

10.3 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1.

6.

7.

all "USE16" segments. These segments are present in applications that execute in both real
mode and protected mode. They are first in the segment ordering so that the "REALBREAK"
option of the"RUNTIME" directive can be used to separate the real-mode part of the application
from the protected-mode part of the application. Currently, the "RUNTIME" directiveisvalid
for Phar Lap executables only.

all segments not belonging to group "DGROUP" with class "CODE"

all other segments not belonging to group "DGROUP"

all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"
all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes"BSS* and
"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable

file.

Memory Layout 221

The Open Watcom Linker

10.4 The Open Watcom Linker Memory Requirements

The Open Watcom Linker uses all available memory when linking an application. For DOS-hosted
versions of the Open Watcom Linker, this includes expanded memory (EMS) and extended memory. Itis
possible for the size of the image being linked to exceed the amount of memory available in your machine,
particularly if the image fileisto contain debugging information. For this reason, atemporary disk fileis
used when all available memory is used by the Open Watcom Linker.

Normally, the temporary fileis created in the current working directory. However, by defining the "tmp"
environment variable to be a directory, you can tell the Open Watcom Linker where to create the temporary
file. Thiscan be particularly useful if you have a RAM disk. Consider the following definition of the
"tmp" environment variable.

set tnmp=\tnp

The Open Watcom Linker will create the temporary file in the directory "\tmp".

222 The Open Watcom Linker Memory Requirements

11 The QNX Executable File Format

This chapter deals specifically with aspects of QNX executable files. The QNX executable file format will
only run under the QNX operating system.

Input to the Open Watcom Linker is specified on the command line and can be redirected to one or more
files or environment strings. The Open Watcom Linker command line format is as follows.

wlink {directive}

where directive is any of the following:

ALIAS symbol_name=symbol_name{,symbol_name=symbol _name}
DEBUG dbtype [dblist] | DEBUG [dhblist]
DISABLE msg_num{,msg_num}
ENDLINK

FILE obj_spec{,obj spec}

FORMAT QNX [FLAT]

LANGUAGE

LIBFILE obj_file{,obj_file}

LIBPATH path_name{; path_name}
LIBRARY library_file{ library file}
MODFILE obj_file{,obj_file}
MODTRACE obj_spec{,obj_spec}

NAME exe file

NEWSEGMENT

OPTION option{,option}

ARTIFICIAL
[NOJCACHE
[NO]JCASEEXACT
CVPACK

DOSSEG
ELIMINATE
[NOJFARCALLS
HEAPSIZE=n
INCREMENTAL
LINEARRELOCS
LONGLIVED
MANGLEDNAMES
MAP[=map _fil€]
MAXERRORS=n
NAMELEN=n
NODEFAULTLIBS
NOEXTENSION

The QNX Executable File Format 223

The Open Watcom Linker

NORELOCS
OFFSET=n
OSNAME="string’
PACKCODE=n
PACKDATA=n
PRIVILEGE=n

QUIET

REDEFSOK
RESOURCE[=resource file|’string’]
SHOWDEAD

STACK=n
START=symbol_name
STATICS
SYMFILE[=symbol_fil€]
[NOJUNDEFSOK
VERBOSE
VFREMOVAL

OPTLIB library_file{ library file}

PATH path_name{; path_name}
REFERENCE symbol _name{,symbol_name}
SEGMENT seg_desc{,seg_desc}

SORT [GLOBAL] [ALPHABETICAL]
STARTLINK

SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system _name

comment

@directive file

You can view all the directives specific to QNX executable files by simply typing the following:

wink ? gnx

11.1 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1

2.

all segments not belonging to group "DGROUP" with class "CODE"

all other segments not belonging to group "DGROUP"

all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"
all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

224 Memory Layout

The QNX Executable File Format

A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. Thissegment isinitialized with the hexadecimal byte pattern "01" and is the first segment in
group "DGROUP" so that storing data at location O can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes"BSS" and

"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable
file.

Memory Layout 225

The Open Watcom Linker

226 Memory Layout

12 The Win16 Executable and DLL File Formats

This chapter deals specifically with aspects of Win16 executable files. The Winl16 executable file format
will run under Windows 3.x, Windows 95, and Windows NT.

Input to the Open Watcom Linker is specified on the command line and can be redirected to one or more
files or environment strings. The Open Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_ name=symbol_name{,alias_name=symbol_name}
ANONYMOUSEXPORT export{,export} | =lbc_file
DEBUG dbtype [dblist] | DEBUG [dhblist]

DISABLE msg_num{,msg_num}

ENDLINK

EXPORT export{,export}

EXPORT =lbc_file

FILE obj_spec{,obj_spec}

FORMAT WINDOWS [dIl_form] [MEMORY] [FONT]
IMPORT import{,import}

LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{;path_name}

LIBRARY library file{,library file}

MODFILE obj_file{,obj_file}

MODTRACE obj_module{,obj _module}

NAME exe file

NEWSEGMENT

PATH path_name{; path_name}

OPTION option{,option}

ALIGNMENT=n
ARTIFICIAL
[NOJCACHE
[NO]JCASEEXACT
CVPACK
DESCRIPTION ’'string’
DOSSEG
ELIMINATE
[NOJFARCALLS
HEAPSIZE=n
IMPFILE[=imp_fil€]
IMPLIB[=imp_lib]

The Win16 Executable and DLL File Formats 227

The Open Watcom Linker

INCREMENTAL
MANGLEDNAMES
MANYAUTODATA
MAP[=map _fil€]
MAXERRORS=n
MODNAME=module_name
NAMELEN=n
NOAUTODATA
NODEFAULTLIBS
NOEXTENSION
NOSTUB
OLDLIBRARY=dll_name
ONEAUTODATA
OSNAME="string’
PACKCODE=n
PACKDATA=N
QUIET
REDEFSOK
RESOURCE-=resource file
RWRELOCCHECK
SHOWDEAD
STACK=n
START=symbol_name
STATICS
STUB=stub_name
SYMFILE[=symbol_fil€]
[NOJUNDEFSOK
VERBOSE
VERSI ON=major[.minor]
VFREMOVAL
OPTLIB library_file{ library file}
REFERENCE symbol_name{,symbol_name}
SEGMENT seg_desc{,seg_desc}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system_name
comment
@directive file

You can view all the directives specific to Winl16 executable files by simply typing the following:

wink ? win

12.1 Fixed and Moveable Segments

All segments have attributes that tell Windows how to manage the segment. One of these attributes
specifies whether the segment is fixed or moveable. Moveable segments can be moved in memory to
satisfy other memory requests. When a segment is moved, all near pointers to that segment are still valid
since anear pointer references memory relative to the start of the segment. However, far pointers are no
longer valid once a segment has been moved. Fixed segments, on the other hand, cannot be moved in

228 Fixed and Moveable Segments

The Win16 Executable and DLL File Formats

memory. A segment must be fixed if there exists far pointers to that segment that Windows cannot adjust if
that segment were moved.

Thisis a memory-management issue for real-mode Windows only. However, if aDLL is marked as
"fixed", Windows 3.x will placeit in the lower 640K real-mode memory (regardless of the mode in which
Windows 3.x isrunning). Since the lower 640K isalimited resource, you normally would want aDLL to
be marked as "moveable".

Most segments, including code and data segments, are moveable. Some exceptions exist. |f your program
contains a far pointer, the segment which it references must be fixed. If it were moveable, the segment
address portion of the far pointer would be invalid when Windows moved the segment.

All non-Windows programs are assigned fixed segments when they run under Windows. These segments
must be fixed since there is no information in the executable file that describes how segments are
referenced. Whenever possible, your application should consist of moveable segments since fixed
segments can cause memory management problems.

12.2 Discardable Segments

Moveable segments can a so be discardable. Memory allocated to a discardable segment can be freed and
used for other memory requests. A "least recently used" (LRU) algorithm is used to determine which
segment to discard when more memory is required.

Discardable segments are usually segments that do not change once they are loaded into memory. For
example, code segments are discardable since programs do not usually modify their code segments. When
asegment is discarded, it can be reloaded into memory by accessing the executablefile.

Discardable segments must be moveable since they can be rel oaded into a different areain memory than the
areathey previously occupied. Note that moveable segments need not be discardable. Obviously, data
segments that contain read/write data cannot be discarded.

12.3 Dynamic Link Libraries

The Open Watcom Linker can generate two forms of executable files; program modules and Dynamic Link
Libraries. A program module is the executable file that gets |oaded by the operating system when you run
your application. A Dynamic Link Library isreally alibrary of routines that are called by a program
module but not linked into the program module. The executable codein a Dynamic Link Library isloaded
by the operating system during the execution of a program module when a routine in the Dynamic Link
Library is called.

Program modules are contained in files whose name has afile extension of "exe". Dynamic Link Libraries
are contained in files whose name has afile extension of "dlI". The Open Watcom Linker "FORMAT"
directive can be used to select the type of executable file to be generated.

Let us consider some of the advantages of using Dynamic Link Libraries over standard libraries.

1. Functionsin Dynamic Link Libraries are not linked into your program. Only referencesto the
functionsin Dynamic Link Libraries are placed in the program module. These references are
called import definitions. Asaresult, the linking timeis reduced and disk spaceis saved. If
many applications reference the same Dynamic Link Library, the saving in disk space can be
significant.

Dynamic Link Libraries 229

The Open Watcom Linker

2. Since program modules only reference Dynamic Link Libraries and do not contain the actual
executable code, a Dynamic Link Library can be updated without re-linking your application.
When your application is executed, it will use the updated version of the Dynamic Link Library.

3. Dynamic Link Libraries also allow sharing of code and data between the applications that use
them. If many applications that use the same Dynamic Link Library are executing concurrently,
the sharing of code and data segments improves memory utilization.

12.3.1 Creating a Dynamic Link Library

To create aDynamic Link Library, you must placethe"DLL" keyword following the system name in the
"SYSTEM" directive.

system wi ndows_dl |

In addition, you must specify which functionsin the Dynamic Link Library are to be made available to
applications which useit. Thisisachieved by using the "EXPORT" directive for each function that can be
called by an application.

Dynamic Link Libraries can reference other Dynamic Link Libraries. Referencesto other Dynamic Link
Libraries are resolved by specifying "IMPORT" directives or using import libraries.

12.3.2 Using a Dynamic Link Library

To useaDynamic Link Library, you must tell the Open Watcom Linker which functions are contained in a
Dynamic Link Library and the name of the Dynamic Link Library. Thisisachieved in two ways.

The first method isto use the "IMPORT" directive. The "IMPORT" directive names the function and the
Dynamic Link Library it belongs to so that the Open Watcom Linker can generate an import definition in
the program module.

The second method is to use import libraries. Animport library is a standard library which contains object
modules with special object records that define the functions belonging to a Dynamic Link Library. An
import library is created from a Dynamic Link Library using the Open Watcom Library Manager. The
resulting import library can then be specified in a"LIBRARY" directive in the same way one would specify
astandard library. Seethe chapter entitled "The Open Watcom Library Manager" in the Open Watcom
C/C++ Tools User’s Guide or the Open Watcom FORTRAN 77 Tools User’s Guide for more information
on creating import libraries.

Using an import library is the preferred method of providing references to functionsin Dynamic Link
Libraries. When aDynamic Link Library is modified, typically the import library corresponding to the
modified Dynamic Link Library is updated to reflect the changes. Hence, any directive file that specifies
theimport library in a"LIBRARY" directive need not be modified. However, if you are using "IMPORT"
directives, you may have to modify the "IMPORT" directivesto reflect the changes in the Dynamic Link
Library.

230 Dynamic Link Libraries

The Win16 Executable and DLL File Formats

12.4 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1. al segments not belonging to group "DGROUP" with class"CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. dl segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"

5. all segments belonging to group "DGROUFP" with class "BSS"

6. all segments belonging to group "DGROUP" with class"STACK"
A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. Thissegment isinitialized with the hexadecimal byte pattern "01" and isthe first segment in
group "DGROUP" so that storing data at location 0 can be detected.
Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes"BSS* and

"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable
file.

12.5 Converting Microsoft Response Files to Directive Files

A utility called MS2WLINK can be used to convert Microsoft linker response files to Open Watcom Linker
directive files. The response files must correspond to the linker found in version 7 or earlier of Microsoft
C. Later versions of response files such as those used with Microsoft Visual C++ are not entirely
supported.

The same utility can also convert much of the content of IBM OS/2 LINK 386 response files since the
syntax issimilar.

Input to MS2WLINK is processed in the same way as the Microsoft linker processesitsinput. The
differenceisthat MS2WLINK writes the corresponding Open Watcom Linker directive file to the standard
output device instead of a creating an executable file. The resulting output can be redirected to adisk file
which can then be used as input to the Open Watcom Linker to produce an executable file.

Suppose you have a Microsoft linker response file called "test.rsp". Y ou can convert thisfile to a Open
Watcom Linker directive file by issuing the following command.

Converting Microsoft Response Files to Directive Files 231

The Open Watcom Linker

Example:
ns2wW i nk @est.rsp >test.|nk

Y ou can now use the Open Watcom Linker to link your program by issuing the following command.

Example:
W ink @ est

An dternative way to link your application with the Open Watcom Linker from a Microsoft responsefileis
to issue the following command.

Example:
nms2wW i nk @est.rsp | wink

Since the Open Watcom Linker gets its input from the standard input device, you do not have to create a
Open Watcom Linker directivefile to link your application.

Note that MS2WLINK can also process module-definition files used for creating OS/2 applications.

232 Converting Microsoft Response Files to Directive Files

13 The Windows Virtual Device Driver File Format

This chapter deals specifically with aspects of WinVxD executable files.

Input to the Open Watcom Linker is specified on the command line and can be redirected to one or more
files or environment strings. The Open Watcom Linker command line format is as follows.

WLINK {directive}

where directiveis any of the following:

ALIAS alias_name=symbol_name{,alias_name=symbol_name}
DISABLE msg_num{,msg_num}

ENDLINK

EXPORT export{,export}

EXPORT =lbc file

FILE obj_spec{,obj_spec}

FORMAT WINDOWS VXD [STATIC | DYNAMIC]
LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{; path_name}

LIBRARY library_file{ library file}

MODFILE obj_file{,obj_file}

MODTRACE obj_module{,obj_module}

NAME exe file

PATH path_name{; path_name}

OPTION option{,option}

ALIGNMENT=n
ARTIFICIAL
[NOJCACHE
[NOJCASEEXACT
DESCRIPTION ’string’
ELIMINATE
[NOJFARCALLS
HEAPSI ZE=n
IMPFILE[=imp_fil€]
IMPLIB[=imp_lib]
INCREMENTAL
MANGLEDNAMES
MAP[=map_fil€]
MAXERRORS=N
MODNAME=module_name
NAMELEN=n
NODEFAULTLIBS

The Windows Virtual Device Driver File Format 233

The Open Watcom Linker

NOEXTENSION
NOSTUB
OSNAME="string’
QUIET

REDEFSOK
RESOURCE-=resource file
SHOWDEAD

STACK=n
START=symbol_name
STATICS
STUB=stub_name
SYMFILE[=symboal_file]
[NOJUNDEFSOK
VERBOSE

VERSI ON=major[.minor]
VFREMOVAL

OPTLIB library file{ library_file}
REFERENCE symbol _name{,symbol_name}
SEGMENT seg_desc{,seg_desc}

SORT [GLOBAL] [ALPHABETICAL]
STARTLINK

SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system_name

comment

@directive file

You can view all the directives specific to WinVxD executable files by simply typing the following:

wink ?2 win vxd

13.1 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1

2.

5.

6.

all segments not belonging to group "DGROUP" with class "CODE"

all other segments not belonging to group "DGROUP'

al segments belonging to group "DGROUP" with class "BEGDATA™

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"
all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. Thissegment isinitialized with the hexadecimal byte pattern "01" and isthe first segment in
group "DGROUP" so that storing data at location O can be detected.

234 Memory Layout

The Windows Virtual Device Driver File Format

Segments belonging to class "BSS' contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes"BSS" and
"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable
file.

Memory Layout 235

The Open Watcom Linker

236 Memory Layout

14 The Win32 Executable and DLL File Formats

This chapter deals specifically with aspects of Win32 executable files. The Win32 executable file format
will run under Windows 95, Windows NT, Phar Lap’s TNT DOS extender and RDOS. It may also run
under Windows 3.x using the Win32S subsystem (you are restricted to a subset of the Win32 AP).

Input to the Open Watcom Linker is specified on the command line and can be redirected to one or more
files or environment strings. The Open Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_ name=symbol_name{,alias_name=symbol_name}
ANONYMOUSEXPORT export{,export} | =lbc_file
COMMIT mem_type

DEBUG dbtype [dblist] | DEBUG [dblist]
DISABLE msg_num{,msg_num}

ENDLINK

EXPORT export{,export}

EXPORT =lbc file

FILE obj_spec{,obj_spec}

FORMAT WINDOWSNT [TNT] [dll_form]
IMPORT import{,import}

LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{;path_name}

LIBRARY library file{ library file}

MODFILE obj_file{,obj_file}

MODTRACE obj_module{,obj_module}

NAME exe file

PATH path_name{; path_name}

OPTION option{,option}

ALIGNMENT=n
ARTIFICIAL
[NOJCACHE
[NOJCASEEXACT
CHECKSUM
CVPACK
DESCRIPTION 'string’
DOSSEG
ELIMINATE
[NOJFARCALLS
HEAPSI ZE=n

The Win32 Executable and DLL File Formats 237

The Open Watcom Linker

IMPFILE[=imp_fil€]
IMPLIB[=imp_lib]
INCREMENTAL
LINKVERSION=major[.minor]
MANGLEDNAMES
MAP[=map _fil€]
MAXERRORS=N
MODNAME=module_name
NAMELEN=n
NODEFAULTLIBS
NOEXTENSION
NORELOCS
NOSTDCALL
NOSTUB
OBJALIGN=n
OFFSET
OLDLIBRARY=dIl_name
OSNAME="gtring’
OSVERSION=major[.minor]
QUIET
REDEFSOK
RESOURCE=resource file
SHOWDEAD
STACK=n
START=symbol_name
STATICS
STUB=stub_name
SYMFILE[=symbol filg]
[NOJUNDEFSOK
VERBOSE
VERSION=major[.minor]
VFREMOVAL

OPTLIB library_file{ library file}

REFERENCE symbol_name{,symbol_name}

RUNTIME run_option

SEGMENT seg_desc{,seg_desc}

SORT [GLOBAL] [ALPHABETICAL]

STARTLINK

SYMTRACE symbol_name{,symbol_name}

SYSTEM BEGIN system _name {directive} END

SYSTEM system _name

comment

@directive file

Y ou can view all the directives specific to Win32 executabl e files by simply typing the following:

wink ? nt

238 The Win32 Executable and DLL File Formats

The Win32 Executable and DLL File Formats

14.1 Dynamic Link Libraries

The Open Watcom Linker can generate two forms of executable files; program modules and Dynamic Link
Libraries. A program module is the executable file that gets |oaded by the operating system when you run
your application. A Dynamic Link Library isreally alibrary of routinesthat are called by a program
module but not linked into the program module. The executable code in aDynamic Link Library isloaded
by the operating system during the execution of a program module when a routine in the Dynamic Link
Library is called.

Program modules are contained in files whose name has afile extension of "exe". Dynamic Link Libraries
are contained in files whose name has afile extension of "dlI". The Open Watcom Linker "FORMAT"
directive can be used to select the type of executable file to be generated.

Let us consider some of the advantages of using Dynamic Link Libraries over standard libraries.

1. Functionsin Dynamic Link Libraries are not linked into your program. Only referencesto the
functionsin Dynamic Link Libraries are placed in the program module. These references are
called import definitions. Asaresult, the linking timeis reduced and disk spaceis saved. If
many applications reference the same Dynamic Link Library, the saving in disk space can be
significant.

2. Since program modules only reference Dynamic Link Libraries and do not contain the actual
executable code, a Dynamic Link Library can be updated without re-linking your application.
When your application is executed, it will use the updated version of the Dynamic Link Library.

3. Dynamic Link Libraries also allow sharing of code and data between the applications that use
them. If many applications that use the same Dynamic Link Library are executing concurrently,
the sharing of code and data segments improves memory utilization.

14.1.1 Creating a Dynamic Link Library

To create aDynamic Link Library, you must placethe"DLL" keyword following the system name in the
"SYSTEM" directive.

system nt _dl |
In addition, you must specify which functionsin the Dynamic Link Library are to be made available to
applications which useit. Thisisachieved by using the "EXPORT" directive for each function that can be
called by an application.
Dynamic Link Libraries can reference other Dynamic Link Libraries. References to other Dynamic Link
Libraries are resolved by specifying "IMPORT" directives or using import libraries.

14.1.2 Using a Dynamic Link Library

To useaDynamic Link Library, you must tell the Open Watcom Linker which functions are contained in a
Dynamic Link Library and the name of the Dynamic Link Library. Thisisachieved in two ways.

Thefirst method isto use the "IMPORT" directive. The"IMPORT" directive names the function and the

Dynamic Link Library it belongs to so that the Open Watcom Linker can generate an import definition in
the program module.

Dynamic Link Libraries 239

The Open Watcom Linker

The second method is to use import libraries. Animport library is a standard library which contains object
modules with special object records that define the functions belonging to a Dynamic Link Library. An
import library is created from a Dynamic Link Library using the Open Watcom Library Manager. The
resulting import library can then be specified in a"LIBRARY" directive in the same way one would specify
astandard library. Seethe chapter entitled "The Open Watcom Library Manager" in the Open Watcom
C/C++ Tools User’s Guide or the Open Watcom FORTRAN 77 Tools User’s Guide for more information
on creating import libraries.

Using an import library isthe preferred method of providing references to functionsin Dynamic Link
Libraries. When aDynamic Link Library is modified, typically the import library corresponding to the
modified Dynamic Link Library is updated to reflect the changes. Hence, any directive file that specifies
theimport library in a"LIBRARY" directive need not be modified. However, if you are using "IMPORT"

directives, you may have to modify the "IMPORT" directives to reflect the changes in the Dynamic Link
Library.

14.2 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1. al segments not belonging to group "DGROUP" with class"CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. dl segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class"STACK"
A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. Thissegment isinitialized with the hexadecimal byte pattern "01" and isthe first segment in
group "DGROUP" so that storing data at location 0 can be detected.
Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes"BSS" and

"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable
file

240 Memory Layout

15 Open Watcom Linker Diagnostic Messages

The Open Watcom Linker issues three classes of messages; fatal errors, errors and warnings. Each message
has a 4-digit number associated with it. Fatal messages start with the digit 3, error messages start with the
digit 2, and warning messages start with the digit 1. It is possible for a message to be issued as awarning

or an error.

If afatal error occurs, the linker will terminate immediately and no executable file will be generated.

If an error occurs, the linker will continue to execute so that all possible errors are issued. However, no
executable file will be generated since these errors do not permit a proper executable file to be generated.

If awarning occurs, the linker will continue to execute. A warning message is usually informational and
does not prevent the creation of a proper executable file. However, all warnings should eventually be
corrected.

The messages listed contain referencesto %, %5, %, %, %, % , and % . They represent strings that are
substituted by the Open Watcom Linker to make the error message more precise.

1. % representsastring. This may be a segment or group name, or the name of alinker directive
or option.

2. YS represents the name of asymbol.

3. % represents an address. The format of the address depends on the format of the executable file
being generated.

4. Y% represents a hexadecimal number.
5. %l representsintegersin the range -32768 and 32767.
6. 9% representsintegersin the range -2147483648 and 2147483647.

7. 9% represents an executable file format such as DOS, ZDOS, WINDOWS, PHARLAP,
NOVELL, OS2, QNX or ELF.

Thefollowingisalist of all warning and error messages produced by the Open Watcom Linker followed
by a description of the message. A message may contain more than one reference to "%s". In such acase,
the description will reference them as "%sn" where n is the occurrence of "%s" in the message.
MSG 2002 ** internal ** - %s

If this message occurs, you have found a bug in the linker and should report it.
MSG 2008 cannot open %sl : %s2

An error occurred while trying to open the file "%s1". The reason for the error is given by

"%s2". Generaly thiserror message isissued when the linker cannot open afile (e.g., an
object file or an executable file).

Open Watcom Linker Diagnostic Messages 241

The Open Watcom Linker

MSG 3009 dynamic memory exhausted

The linker uses all available memory when linking an application. For DOS-hosted
versions of the linker, thisincludes expanded memory (EMS) and extended memory.

When all available memory is used, a spill filewill be used. Therefore, unlessyou are low
on disk space, the linker will always be able to generate the executable file. Dynamic
memory is the memory the linker uses to build itsinternal data structures and symbol table.
Dynamic memory is the amount of unallocated memory available on your machine
(including virtual memory for those operating systems that support it). A spill fileis not
used for dynamic memory. If the linker issues this message, it cannot link your application.
The following are suggestions that may help you in this situation.

1. Concatenate all your object files into one and specify only the resulting object
fileasinput to the linker. For example, if you arelinkingin a (Z)DOS
environment, you can issue the following DOS command.

C>copy/b *.obj all. obj

This technique only works for OMF-type object files. This significantly reduces
the size of the filelist the linker must maintain.

2. Object files may contain arecord which specifies the module name. This
information is used by Open Watcom Debugger to locate modules during a
debugging session and usually contains the full path of the source file. Thiscan
consume a significant amount of memory when many such object files are being
linked. If your sourceis being compiled by the Open Watcom C or C++
compiler, you can use the "nm" option to set the module name to just the file
name. This reduces the amount of memory required by thelinker. If your are
using Open Watcom Debugger to debug your application, you may have to use
the "set source” command so that the source corresponding to a module can be
located.

3. Typically, when you are compiling a program for alarge code model, each
module defines adifferent "text" segment. If you are compiling your application
using the Open Watcom C or C++ compiler, you can reduce the number of "text"
segments that the linker has to process by specifying the "nt" option. The "nt"
option allows you to specify the name of the "text" segment so that a group of
object files define the same "text" segment.

MSG 2010,3010 /O error processing %sl : %s2
An error has occurred while processing the file "%s1". The cause of the error is given by
"%s2". Thiserror isusually detected while reading from object and library files or writing
to the spill file or executable file. For example, this error would be issued if a"disk full"”
condition existed.

MSG 2011 invalid object file attribute
The linker encountered an object file that was not of the format required of an object file.

MSG 2012 invalid library file attribute

The linker encountered alibrary file that was not of the format required of alibrary file.

242 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 3013

MSG 1014

MSG 2015

MSG 2016

MSG 2017

MSG 2018

MSG 1019

MSG 2020

break key detected
The linking process was interrupted by the user from the keyboard.
stack segment not found

The linker identifies the stack segment by a segment defined as having the "STACK"
attribute. This message isissued if no such segment is encountered. This usually happens
if the linker cannot find the run-time libraries required to link your application.

bad relocation type specified

Thismessageisissued if aarelocation isfound in an object file which the linker does not
support.

%a: absolutetarget invalid for self-relative relocation

This message isissued, for example, if anear call or jump is made to an external symbol
which is defined using the "EQU" assembler directive. "%a" identifies the location of the
near call or jump instruction.

bad location specified for self-relativerelocation at %a

This message isissued if abad fixup is encountered. "%a" defines the location of the
fixup.

relocation offset at %ais out of range

This message isissued when the offset part of arelocation exceeds 64K in a 16-hit
executable or an Alphaexecutable. "%a" definesthe location of the fixup. The error is
most commonly caused by errors in coding assembly language routines. Consider a
module that references an external symbol that is defined in a segment different from the
one in which the reference occurred. The module, however, specifies that the segment in
which the symbol is defined is the same segment as the segment that references the symbol.
This error is most commonly caused when the "EXTRN" assembler directiveis placed after
the "SEGMENT" assembler directive for the segment referencing the symbol. If the
segment that references the symbol is allocated far enough away from the segment that
defines the symboal, the linker will issue this message.

segment relocation at %a

This message is issued when a 16-bit segment relocation is encountered and "FORMAT
DOS COM", "FORMAT PHARLAP' or "FORMAT NOVELL" has been specified. None
of the above executable file formats allow segment relocation. "%a" identifies the location
of the segment relocation.

size of group % s exceeds 64k by %l bytes
The group "%s" has exceeded the maximum size (64K) allowed for agroup in a 16-bit
executable by "%l" bytes. Usually, the group is "DGROUP" (the default data segment) and

your application has placed too much data in this group. One of the following may solve
this problem.

Open Watcom Linker Diagnostic Messages 243

The Open Watcom Linker

MSG 2021

MSG 2022

MSG 1023

MSG 2024

MSG 2025

MSG 2026

1. If you are using the Open Watcom C or C++ compiler, you can place some of
your datain afar segment by using the "far" keyword when defining data. Y ou
can also decrease the value of the data threshold by using the "zt" compiler
option. Any datum whose size exceeds the value of the data threshold will be
placed in afar segment.

2. If you are using the Open Watcom FORTRAN 77 compiler, you can decrease
the value of the data threshold by using the "dt" compiler option. Any datum
whose size exceeds the value of the data threshold will be placed in afar
segment.

size of segment % s exceeds 64k by %! bytes

The segment "%s" has exceeded the maximum size (64K) for a segment in a 16-bit
executable. Thisusually occursif you are linking a 16-bit application that has been
compiled for asmall code model and the size of the application has grown in such away
that the size of the code segment ("_TEXT") has exceeded 64K. Y ou can overlay your
application or compileit for alarge code model if you cannot reduce the amount of codein
your application.

cannot have a starting address with an imported symbol

When generating an OS/2 executable file, a symbol imported from aDLL cannot be a start
address. When generating a NetWare executable file, a symbol imported from an NLM
cannot be a start address.

no starting addressfound, using % a

The starting address defines the location where execution is to begin and must be defined
by a specia "module end" record in one of the object files linked into your application.
This message isissued if no such record is encountered in which case a default starting
address, namely "%a", will be used. Thisusualy happensif the linker cannot find the
run-time libraries required to link your application.

missing over lay loader

This message isissued when an overlayed 16-bit DOS executable is being linked and the
overlay manager has not been encountered. This usually happens if the linker cannot find
the run-time libraries required to link your application.

short vector %d isout of range

This message isissued when the linker is creating an overlayed 16-bit DOS executable and
"OPTION SMALL" isspecified. Since an overlay vector contains anear call to the overlay
loader followed by a near jump to the routine corresponding to the overlay vector, al code
including the overlay manager and al overlay vectors must be less than 64K. This message
isissued if the offset of an overlay vector from the overlay loader or the corresponding
routine exceeds 64K.

redefinition of reserved symbol %s

The linker defines certain reserved symbols. These symbolsare”_edata’, "_end",
" _OVLTAB_"," OVLSTARTVEC_ "," OVLENDVEC "," LOVLLDR_ ",
"_NOVLLDR_","_SOVLLDR_","_LOVLINIT__","_NOVLINIT__"and

244 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

" SOVLINIT_". Thesymbols" _OVLTAB_"," OVLSTARTVEC ",
" OVLENDVEC_"," LOVLLDR_"," NOVLLDR_"," SOVLLDR_ ",
" LOVLINIT_"," NOVLINIT_"and"__SOVLINIT__" aredefined only if you are

using overlaysin 16-bit DOS executables. The symbols"_edata’ and"_end" are defined
only if the "DOSSEG" option is specified. Y our application must not attempt to define
these symbols. "%s" identifies the reserved symbol.

MSG 1027 redefinition of % Signored
The symbol "%S" has been defined by more that one module; the first definition is used.
Thisisonly awarning message. Note that if a symbol is defined more than once and its
addressis the same in both cases, no warning will beissued. This prevents the warning
message from being issued when linking FORTRAN 77 modules that contain common
blocks.

MSG 1028,2028 % Sis an undefined reference
The symbol "%S" has been referenced but not defined. Check that the spelling of the
symbol is consistent. If you wish the linker to ignore undefined references, use the
"UNDEFSOK" option.

MSG 2029 premature end of file encountered
This error isissued while processing object files and object modules from libraries and is

caused if the end of the file or module is reached before the "module end" record is
encountered. The probable cause is atruncated object file.

MSG 2030 multiple starting addr esses found
The starting address defines the location where execution is to begin and is defined by a
"module end" record in a particular object file. This messageisissued if more than one
object file contains a"module end" record that defines a starting address.

MSG 2031 segment %sisin group %sand group %s

The segment "%s1" has been defined to be in group "%s2" in one module and in group
"%s3" in another module. A segment can only belong to one group.

MSG 1032 record (type 0x% x) not processed
An object record type not supported by the linker has been encountered. This messageis
issued when linking object modules created by other compilers or assemblersthat create
object fileswith records that the linker does not support.

MSG 2033,3033 directiveerror near '%s

A syntax error occurred while the linker was processing directives. "%s" specifies where
the error occurred.

MSG 2034 % a cannot have an offset with an imported symbol
An imported symbol is one that was specified in an "IMPORT" directive. Imported

symbols are defined in Windows or OS/2 16-bit DLLs and in Netware NLMs. References
to imported symbols must always have an offset value of 0. If "DosWrite" is an imported

Open Watcom Linker Diagnostic Messages 245

The Open Watcom Linker

MSG 1038

MSG 2039

MSG 2040

MSG 2041

MSG 2042

MSG 1043

symbol, then referencing "DosWrite+2" isillegal. "%a" defines the location of theillegal
reference.

DEBUG directive appears after object files

This messageisissued if the first "DEBUG" directive appears after a"FILE" directive. A
common error isto specify a"DEBUG" directive after the "FILE" directivesin which case
no debugging information for those object filesis generated in the executable file.

ALIGNMENT value too small

The value specified in the "TALIGNMENT" option refers to the alignment of segmentsin
the executablefile. For 16-bit Windows or 16-bit OS/2, segments in the executable file are
pointed to by a segment table. An entry in the segment table contains a 16-bit value which
isamultiple of the alignment value. Together they form the offset of the segment from the
start of the segment table. The smaller the alignment, the bigger the value required in the
segment table to point to the segment. |If this value exceeds 64K, then alarger alignment
value is required to decrease the size that goes in the segment table.

ordinal in IMPORT directive not valid

The specified ordinal in the "IMPORT" directiveisincorrect (e.g., -1). An ordinal number
must be in the range 0 to 65535.

ordinal in EXPORT directive not valid

The specified ordinal in the "EXPORT" directiveisincorrect (e.g., -1). Anordina number
must be in the range 0 to 65535.

too many |OPL wordsin EXPORT directive

The maximum number of IOPL words for an OS/2 executableis 31, i.e. 62 bytes.
duplicate exported ordinal

This message isissued for ordinal numbers specified in an "EXPORT" directive for
symbolsbelonging to DLLs. Thismessageisissued if an ordinal number is assigned to

two different symbols. A warning isissued and the linker assigns a non-used ordinal
number to the symbol that caused the warning.

MSG 1044,2044 exported symbol % s not found

MSG 1045

MSG 1046

This message isissued when generating aDLL or NetWare NLM. An attempt has been
made to define an entry point into aDLL or NLM that does not exist.

segment attribute defined morethan once

A segment appearing in a"SEGMENT" directive has been given conflicting or duplicate
attributes.

segment name % s not found

The segment name specified in a"SEGMENT" directive has not been defined.

246 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 1047

MSG 1048

MSG 2049

MSG 1050

MSG 2051

MSG 2052

MSG 2053

MSG 1054

MSG 2055

MSG 2056

MSG 3057

class name %snot found

The class name specified in a"SEGMENT" directive has not been defined.

inconsistent attributesfor automatic data segment

This message isissued for Windows or OS/2 16-bit executable files. Two conflicting
attributes were specified for the automatic data segment. For example, "LOADONCALL"
and "PRELOAD" are conflicting attributes. Only the first attribute is used.

invalid STUB file

The stub fileis not avalid executable file. The stub fileis only used for OS/2 executable
files and Windows (both Win16 and Win32) executable files.

invalid DLL specified in OLDLIBRARY option
The DLL specified inan "OLDLIBRARY" option is not avalid dynamic link library.
STUB file name same as executable file name

When generating an OS/2 or Windows (Win16, Win32) executablefile, the stub file name
must not be same as the executable file name.

relocation at %a not in the same segment

This message is only issued for Windows (Winl16), OS/2, Phar Lap, and QNX executables.
A relative fixup must relocate to the same segment. "%a" defines the location of the fixup.

%a: cannot reach aDLL with arelativereocation

A reference to a symbol in an OS/2 or Windows 16-bit DLL must not be relative. "%a"
defines the location of the reference.

debugging information incompatible: using line numbers only

An attempt has been made to link an object file with out-of-date debugging information.
%a: framemust bethe sameasthetarget in protected mode

Each relocation consists of three components; the location being relocated, the target (or
address being referenced), and the frame (the segment to which the target is adjusted). In
protected mode, the segment of the target must be the same as the frame. "%a" defines the
location of the fixup. This message does not apply to 32-bit OS/2 and Windows (Win32).

cannot find library member % (%)

Library member "%s2" in library file "%s1" could not be found. This message isissued if
the library file could not be found or the library file did not contain the specified member.

executable format has been established

Thismessage isissued if there is more than one "FORMAT" directive.

Open Watcom Linker Diagnostic Messages 247

The Open Watcom Linker

MSG 1058

% s option not valid for %s executable

The option "%s1" can only be specified if an executable file whose format is "%s2" is
being generated.

MSG 1059,2059 value for % stoo large

MSG 1060

MSG 1061

MSG 1062

MSG 2063

MSG 2064

MSG 2065

MSG 2066

MSG 2067

MSG 2068

The value specified for option "%s" exceedsits limit.

valuefor %sincorrect

The value specified for option "%s" is not in the allowable range.
multiple values specified for REALBREAK

The"REALBREAK" option for Phar Lap executables can only be specified once.
export and import records not valid for %f

Thismessageisissued if areferenceto aDLL isencountered and the executable file format
isnot one that supports DLLs. Thefile format is represented by "%f".

invalid relocation for flat memory model at % a

A segment relocation in the flat memory model was encountered. "%a" defines the
location of the fixup.

cannot combine 32-bit segments (% sl1) with 16-bit segments (% s2)

A 32-hit segment "%s1" and a 16-bit segment "%s2" have been encountered. Mixing
object files created by a 286 compiler and object files created by a 386 compiler is the most
probable cause of this error.

REALBREAK symbol %snot found

The symbol specified in the "REALBREAK" option for Phar Lap executables has not been
defined.

invalid relativerelocation typefor an import at %a

Thismessage isissued only if a NetWare executable file is being generated. Animported
symbol is one that was specified in an "IMPORT" directive or an import library. Any
reference to an imported symbol must not refer to the segment of the imported symbol.
"%a" defines the location of the reference.

%a: cannot relocate between code and data in Novell for mats

Thismessageisissued only if a NetWare executable file is being generated. Segment
relocation is not permitted. "%a" defines the location of the fixup.

absolute segment fixup not valid in protected mode

A reference to an absolute location is not allowed in protected mode. A protected-mode
application isonethat is being generated for ZDOS, 0OS/2, CauseWay DOS extender,

248 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 1069

MSG 2070

MSG 2071

MSG 1072

MSG 2073

MSG 2074

MSG 2075

MSG 1076

MSG 1080

MSG 2082

Tenberry Software’'s DOS/AG or DOS/4GW DOS extender, FlashTek’s DOS extender,

Phar Lap’s 386|DOS-Extender, Novell’s NetWare operating systems, Windows NT, or

Windows 95. An absolute location is most commonly defined by the "EQU" assembler
directive.

unload CHECK procedure not found

Thismessage isissued only if a NetWare executable file is being generated. The symbol
specified in the "CHECK" option has not been defined.

START procedure not found

Thismessageisissued only if a NetWare executable file is being generated. The symbol
specified in the "START" option has not been defined. The default "START" symbol is
" Prelude’.

EXIT procedure not found

Thismessageisissued only if a NetWare executable file is being generated. The symbol
specified in the "EXIT" option has not been defined. The default "STOP" symbol is
"_Stop".

SECTION directive not allowed in root

When describing 16-bit overlays, "SECTION" directives must appear between a"BEGIN"
directive and its corresponding "END" directive.

bad Novell file format specified

Aninvalid NetWare executable file format was specified. Valid formatsare NLM, DSK,
NAM, LAN, MSL, HAM, CDM or anumerical module type.

circular aliasfound for %s

An attempt was made to circularly define the symbol name specified in an ALIAS
directive. For example:

ALl AS fool=foo02, foo2=fool
expecting an END directive
A "BEGIN" directive is missing its corresponding "END" directive.
% s option multiply specified
The option "%s" can only be specified once.
file%sisa%d-bit object file

A 32-hit attribute was encountered while generating a 16-bit executable file format, or a
16-hit attribute was encountered while generating a 32-bit executable file format.

invalid record type 0x% x

Open Watcom Linker Diagnostic Messages 249

The Open Watcom Linker

MSG 2083

MSG 2084

MSG 2086

MSG 1087

MSG 3088

MSG 2089

MSG 1090

MSG 2091

MSG 2092

An object record type not recognized by the linker has been encountered. This messageis
issued when linking object modules created by other compilers or assemblersthat create
object files with records that the linker does not recognize.

cannot reference address % a from frame %x

When generating a 16-bit executable, the offset of a referenced symbol was greater than
64K from the location referencing it.

target offset exceeds 64K at %a

When generating a 16-bit executable, the computed offset for a symbol exceeds 64K. "%a"
defines the location of the fixup.

invalid starting addressfor .COM file

The value of the segment of the starting address for a 16-bit DOS "COM" file, as specified
in the map file, must be 0.

stack segment ignored in .COM file

A stack segment must not be defined when generating a 16-bit DOS "COM™" file. Only a
single physical segment isallowed in aDOS"COM" file. The stack is allocated from the
high end of the physical segment. That is, the initial value of SP is hexadecimal FFFE.
virtual memory exhausted

This message is similar to the "dynamic memory exhausted" message. The DOS-hosted
version of the linker has run out of memory trying to keep track of virtual memory blocks.
Virtual memory blocks are allocated from expanded memory, extended memory and the
spill file.

program too largefor a .COM file

Thetotal size of a16-bit DOS"COM" program must not exceed 64K. That is, the total
amount of code and data must be less than 64K since only a single physical segment is
allowed inaDOS"COM" file. You must decrease the size of your program or generate a
DOS"EXE" file.

redefinition of % sby %signored

The symbol "%s1" has been redefined by module "%s2". This message isissued when the
size specified in the "NAMELEN" option has caused two symbols to map to the same
symbol. For example, if the symbols routinel and routine2 are encountered and "OPTION
NAMELEN=7" is specified, then this message will be issued since the first seven
characters of the two symbols are identical.

group %sisin morethan one overlay

A group that spans more than one section in a 16-bit DOS executable has been detected.
NEWSEGMENT directive appear s befor e object files

The 16-bit "NEWSEGMENT" directive must appear after a"FILE" directive.

250 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 2093

MSG 2094

MSG 3097

MSG 1098

MSG 2099

MSG 1101

MSG 1102

MSG 1103

MSG 1105

MSG 1107

cannot open %s

This message isissued when the linker is unable to open afile and is unable to determine
the cause.

i/oerror processing %s

This message is issued when the linker has encountered an i/o error while processing the
file and is unable to determine the cause. This message may be issued when reading from
object and library files, or writing to the executable and spill file.

too many library modules

This message is similar to the "dynamic memory exhausted" message. This message if
issued when the "DISTRIBUTE" option for 16-bit DOS executablesis specified. The
linker has run out of memory trying to keep track of the relationship between object
modules extracted from libraries and the overlays they should be placed in.

Offset option must be a multiple of %dK

The value specified with the "OFFSET" option must be a multiple of 4K (4096) for Phar
Lap and QNX executables and a multiple of 64K (65536) for OS2 and Windows 32-bit
executables.

symbol nametoo long: %s

The maximum size (approximately 2048) of a symbol has been exceeded. Reduce the size
of the symbol to avoid this error.

invalid incremental infor mation file

Theincremental information file is corrupt or from an older version of the compiler. The
old information file and the executable will be deleted and new ones will be generated.

object file % s not found for tracing

A "SYMTRACE" or "MODTRACE" directive contained an object file (namely %os) that
could not be found.

library module % s(%s) not found for tracing

A "SYMTRACE" or "MODTRACE" directive contained an object module (namely module
%s2 in library %s1) that could not be found.

cannot reserve %l bytes of extra overlay space

The value specified with the "AREA" option for 16-bit DOS executables resultsin an
executable file that requires more than 1 megabyte of memory to execute.

undefined system name: %s

The name %s was referenced in a"SY STEM" directive but never defined by a system
block definition.

Open Watcom Linker Diagnostic Messages 251

The Open Watcom Linker

MSG 1108

MSG 1109

MSG 1110

MSG 1111

MSG 3114

MSG 1115

MSG 1116

MSG 1117

MSG 1118

MSG 2119

MSG 2120

system % s defined more than once
The name %s has appeared in a system definition block more than once.
OFFSET option islessthan the stack size

For the QNX operating system, the stack is placed at the front of the executable image and
thustheinitial load address must leave enough room for the stack.

library membersnot allowed in libfile

Only object filesare allowed in a"LIBFILE" directive. This message will beissued if a
module from alibrary fileis specified ina"LIBFILE" directive.

error in default system block

The default system block definition (system name "286" for 16-bit applications) and
(system name "386" for 32-bit applications) contains adirective error. The system name
"286" or "386" isautomatically referenced by the linker when the format of the executable
cannot be determined (i.e. no "FORMAT" directive has been specified).

environment name specified incorrectly

This message is specified if the environment variable is not properly enclosed between two
percent (%) characters.

environment name %snot found
The environment variable %s has not been defined in the environment space.
overlay area must be at least %1 bytes

Thismessage isissued if the size of the largest overlay exceeds the size of the overlay area
specified by the "AREA" option for 16-bit DOS executables.

segment number too high for a movable entry point

The segment number of a moveable segment must not exceed 255 for 16-bit executables.
Reduce the number of segments or use the "PACKCODE" option.

heap sizetoo large

This messageisissued if the size of the heap, stack and the default data segment (group
DGROUP) exceeds 64K for 16-bit executables.

wlib import statement incorrect

The "EXPORT" directive allows you to specify alibrary command file. This command file
is scanned for any librarian commands that create import library entries. Aninvalid
command was detected. See the section entitled "The EXPORT Directive" for the correct
format of these commands.

application too largeto run under DOS

252 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 1121

MSG 3122

MSG 3123

MSG 1124

MSG 1125

MSG 1126

MSG 2127

MSG 3128

MSG 3129

MSG 1130

Thismessageisissued if the size of the 16-bit DOS application exceeds 1M.

"%$S hasalready been exported

The linker has detected an attempt to export a symbol more than once. For example, a
name appearing in more than one "EXPORT" directive will cause this message to be
issued. Also, if you have declared a symbol as an export in your source and have also
specified the same symbol in an "EXPORT" directive, this message will beissued. This
message is only awarning.

no FILE directivesfound

Thismessageisissued if no "FILE" directive has been specified. In other words, you have
specified no object filesto link.

overlaysarenot supported in thisversion of the linker

This version of the linker does not support the creation of overlaid 16-bit executables.
lazy referencefor % S has different default resolutions

A lazy external reference is one which has two resolutions: a preferred one and a default
one which isused if the preferred one is not found. In this case, the linker has found two
lazy references that have the same preferred resolution but different default resolutions.
multiple aliases found for %S

The linker has found a name which has been aliased to two different symbols.

% s has been modified: doing full relink

The linker has determined that the time stamps on the executable file and symbolic
information file (.sym) are different. Anincremental link will not be done.

cannot export symbol % S

An attempt was made to export a symbol defined with an absolute address or to export an
imported symbol. It isnot possible to export these symbols with the "EXPORT" directive.

directive error near beginning of input

The linker detected an error at the start of the command line.

addressinformation too large

The linker has encountered a segment that appears in more than 11000 object files. An
empty segment does not affect thislimit. This can only occur with Watcom debugging
information. If this message appears, switch to DWARF debugging information.

%sisan invalid shared nlm file

The NLM specified in a"SHAREDNLM" option is not valid.

Open Watcom Linker Diagnostic Messages 253

The Open Watcom Linker

MSG 3131

MSG 2132

MSG 1133

MSG 1134

MSG 3135

MSG 1136

MSG 3137

MSG 3138

MSG 3139

MSG 1140

MSG 1141

cannot open spill file: file already exists

All 26 of the DOS-hosted linker’ s possible spill file names arein use. Spill files can
accumulate when linking on a multi-tasking system and the directory in which the spill file
is created isidentical for each invocation of the linker.

curly brace delimited list incorrect

A list delimited by curly bracesis not correct. The most likely cause is a missing right
brace.

no realbreak specified for 16-bit code

While generating a Phar Lap executable file, both 16-bit and 32-bit code was linked
together and no "REALBREAK" option has been specified. A warning messageisissued
since this may be a potential problem.

%sisan invalid messagefile

Thefile specified in a"MESSAGE" option for NetWare executable filesisinvalid.

need exactly 1 overlay area with dynamic overlay manager

Only asingle overlay areais supported by the 16-bit dynamic overlay manager.

segment relocation to a read/write data segment found at % a(% S)

The "RWRELOCCHECK" option for 16-bit Windows (Win16) executables has been
specified and the linker has detected a segment relocation to a read/write data segment.
Where the name of the offending symbol is not available, "identifier unavailable" is used.

too many errorsencountered

This message is issued when the number of error messages issued by the linker exceeds the
number specified by the "MAXERRORS" option.

invalid filename'%s

The linker performs a simple filename validation whenever afilename is specified to the
linker. For example, adirectory specification is not avalid filename.

cannot have both 16-bit and 32-bit object files

It isimpossible to mix 16-bit code and 32-bit code in the same executable when generating
aQNX executablefile.

invalid message number
An invalid message number has been specified in a"DISABLE" directive.
virtual function tablerecord for % s mismatched

The linker performs a consistency check to ensure that the C++ compiler has not generated
incorrect virtual function information. 1f the message isissued, please report this problem.

254 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 1143

MSG 1145

MSG 2146

MSG 3147

MSG 1148

MSG 1149

MSG 1150

MSG 2151

MSG 2152

MSG 2154

MSG 2155

not enough memory to sort map file symbols

There was not enough memory for the linker to sort the symbols in the "Memory Map"
portion of the map file. Thiswill only occur when the"SORT GLOBAL" option has been
specified.

% Sisboth purevirtual and non-pure virtual

A function has been declared both as "pure" and "non-pure” virtual.

%sisan invalid object file

Something was encountered in the object file that cannot be processed by the linker.

Ambiguous format specified

Not enough of the FORMAT directive attributes were specified to enable the linker to
determine the executable file format. For example,

FORMAT OS2
will generate this message.
Invalid segment type specified
The segment type must be one of CODE or DATA.
Only one debugging format can be specified

The debugging format must be one of Watcom, CodeView, DWARF (default), or Novell.
Y ou cannot specify multiple debugging formats.

file % shas code for a different processor

An object file has been encountered which contains code compiled for a different processor
(e.g., an Intel application and an Alpha object file).

big endian code not supported

Big endian code is not supported by the linker.

no dictionary found

No symbol search dictionary was found in alibrary that the linker attempted to process.
cannot execute %sl: %s2

An attempt by the linker to spawn another application failed. The application is specified
by "%s1" and the reason for the failureis specified by "%s2".

relocation at % ato an improperly aligned tar get

Some relocations in Alpha executables require that the object be aligned on a4 byte
boundary.

Open Watcom Linker Diagnostic Messages 255

The Open Watcom Linker

MSG 2156

MSG 3157

MSG 1158

MSG 3159

MSG 3160

MSG 1162

MSG 1163

MSG 3164

MSG 1165

MSG 2166

MSG 1167

OPTION INCREMENTAL must be one of thefirst directives specified

The option must be specified before any option or directive which modifies the linker’s
symbol table (e.g., IMPORT, EXPORT, REFERENCE, ALIAS).

no code or data present

Thelinker requires that there be at least 1 byte of either code or data in the executable.
problem adding resour ce infor mation

Theresourcefileisinvalid or corrupt.

incremental linking only supports DWARF debugging information

When OPTION INCREMENTAL is used, you cannot specify non-DWARF debugging
information for the executable. Y ou must specify DEBUG DWARF when requesting
debugging information.

incremental linking does not support dead code elimination

When OPTION INCREMENTAL isused, you cannot specify OPTION ELIMINATE.

relocations on iterated data not supported

An object file was encountered that contained an iterated data record that requires
relocation. Thisis most commonly caused by a module coded in assembly language.

module has not been compiled with the" zv" option

When OPTION VFREMOVAL isused, al object files must be compiled with the "zv"
option. Thelinker has detected an object file that has not been compiled with this option.

incremental linking does not support virtual function removal

When OPTION INCREMENTAL is used, you cannot also specify OPTION
VFREMOVAL.

resour ce file % stoo big

The resource file specified in OPTION RESOURCE was too big to fit inside the QN X
executable. The maximum size is approximately 32000 bytes.

both %s1 and % s2 marked as starting symbols

If the linker seesthat there is more than one starting address specified in the program and
they have symbol names associated with them, it will emit this error message. If thereis
more than one starting address specified and at |east one of them is unnamed, it will issue
message 2030.

NLM internal name (%) truncated

This message isissued when generating a NetWare NLM. The output file name as
specified by the NAME directive has specified along file name (exceeds 8.3). The linker

256 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 3168

MSG 2169

MSG 1170

MSG 1171

MSG 1172

MSG 3173

MSG 1174

MSG 1175

will truncate the generated file name by using the first eight characters of the specified file
name and the first three characters of the file extension (if supplied), separated by a period.

exactly one export must exist for VxD for mat

The Windows VxD format requires exactly one export to be present, but an attempt was
made to build a VxD module with no exports or more than one export.

location counter already beyond fixed segment address % a

When creating an image using the OUTPUT directive, a segment was specified with an
address lower than the current location counter. Thiswould overlay the segment data with
already existing data at the same address, and is not allowed.

directive % s can only occur once

A directive was specified more than once on the Open Watcom Linker command line and
was ignored. Remove the redundant instances of the directive.

locally defined symbol % simported

An imported symbol (intended to be imported from a DLL) was resolved locally. The
linker will ignore the symbol definedinaDLL, if provided, and the local reference will be
used. Ensure that thisisthe intended behaviour.

stack sizeislessthan %d bytes.

The stack size for an executable specified through OPTION STACK isvery small. Thereis
a high probability that the program will not work correctly. Consider specifying a greater
stack size.

default data segment exceeds maximum size by %/ bytes

The default data segment sizein a NE format executable (16-bit OS/2 or Windows)
exceeds the maximum allowed size. The default data segment includes the data segment
plus default stack size plus default heap size. The total size must be 64K or less for OS/2
executables and 65,533 bytes or less for Windows executables.

IOPL bytesin EXPORT directive odd, ignoring low bit

The EXPORT directive accepts the number of IOPL bytes, but the OS/2 executable
formats, aswell as the CPU, only work with the number of words. If the specified number
of IOPL bytesisan odd number, the lowest bit will be ignored.

symbol % snot found for tracing

A "SYMTRACE" directive contained an symbol name (namely %s) that could not be
found.

Open Watcom Linker Diagnostic Messages 257

Index

directive 33

16-bit DOS.COM 8

16-bit DOS executables 8

16-bit executables 8

16-bit OS/2DLLs 9

16-bit OS/2 executables 8

16-bit QNX executables 9

16-bit Windows 3.x DLLs 9
16-bit Windows 3.x executables 9

32-hit CauseWay DLL 10

32-bit CauseWay executables 10
32-bit DOS/AGW executables 10
32-bit executables 10

32-bit FlashTek executables 10
32-bit Netware NLMs 11

32-bit OS/2DLLs 12

32-hit OS/2 executables 11

32-hit OS/2 PM executables 12
32-bit Phar Lap executables 12
32-bit QNX executables 13

32-bit RDOSDLLs 13

32-bit RDOS executables 13
32-bit TNT executables 12

32-bit Win NT character-mode executables 15
32-bit Win NT DLLs 15

32-bit Win NT windowed executables 15
32-bit Windows 3.x DLLs 14
32-bit Windows 3.x executables 13
32-bit Windows 95 DLLs 15
32-bit Windows 95 executables 14
32-bit Windows VxD 14
386|DOS-Extender 220

ABIVER runtime option 152
ALIAS directive 20
ALIGNMENT option 21
ANONYMOUSEXPORT directive 22
apostrophes 18, 76
applications
creating for 16-bit OS2 213
creating for 32-bit OS2 213
creating for 32-bit Windows 237
creating for CauseWay 213
creating for DOS 185
creating for DOS/4G 213
creating for ELF 205
creating for FlashTek 213
creating for NetWare 209
creating for Phar Lap 286|Dos-Extender 213
creating for Phar Lap 386|Dos-Extender 219
creating for QNX 223
creating for Win32 237
creating for Windows 3.x 227
creating for Windows NT 237
creating for ZDOS 197
AR-format 3
AREA option 24
ARTIFICIAL option 25
AUTOSECTION directive 26
AUTOUNLOAD option 27

BEGIN directive 28
blanksin file names 18

CACHE option 29
CALLBUFS runtime option 150
CASEEXACT option 30
CauseWay applications

creating 213
CHECK option 31

259

Index

CHECKSUM option 32
class name 135
CodeView 37

COFF 3

command line format

WLINK 5, 185, 197, 201, 205, 209, 213, 219, 223,

227,233, 237
comment (#) directive 33
COMMIT directive 34
Compactor 37
CONSOLE runtime option 149
COPYRIGHT option 35
CUSTOM option 36
Cv4 37
CVPACK 37-38
CVPACK option 37

DBCS
Chinese 83
Japanese 83
Korean 83
dead code elimination 48, 146, 161
DEBUG directive 38
DEBUG options
ALL 39
CODEVIEW 38
DWARF 38
LINES 39
LOCALS 39
NOVELL 38
ONLYEXPORTS 39, 41
REFERENCED 39
TYPES 39
Watcom 38
debugging information
al 41
for NetWare debugger 41
global symbol 38, 41
line numbering 38, 40
local symbol 38, 40
NetWare globa symbol 38
strip from "EXE" file 42
typing 38, 40
Debugging Information Compactor 37-38
default directivefile 7,17, 30, 55, 174
wlink.Ink 30, 55
DESCRIPTION option 43
directives 17

260

33
ALIAS 20
ANONYMOUSEXPORT 22
AUTOSECTION 26
BEGIN 28
comment 33
COMMIT 34
DEBUG 38
DISABLE 44
END 49
ENDLINK 50
EXPORT 52
FILE 56
FIXEDLIB 59
FORCEVECTOR 60
FORMAT 61
IMPORT 76
include 78
LANGUAGE 83
LIBFILE 85
LIBPATH 86
LIBRARY 87
MODFILE 101
MODTRACE 102
MODULE 103
NAME 105
NEWSEGMENT 108
NOVECTOR 117
OPTION 124
OPTLIB 125
ORDER 127
OUTPUT 133
OVERLAY 135
PATH 139
REFERENCE 146
RESOURCE 147
RUNTIME 149
SECTION 155
SEGMENT 156
SORT 163
STARTLINK 167
SYMTRACE 171
SYSTEM 173
VECTOR 179
DISABLE directive 44
DISTRIBUTE option 45
DOS applications
creating 185
DOS/4G applications
creating 213
DOSSEG option 46
DOSSTY LE runtime option 149
DYNAMIC option 47
dynamic overlay manager

Index

increasing dynamic overlay area at run-time 195

_edata linker symbol 46
EFIBOOT runtime option 150
ELF 3
ELF applications
creating 205
ELIMINATE option 48
END directive 49
_end linker symbol 46
ENDLINK directive 50
environment variables
LIB 87,111, 125
LIBDIR 17
PATH 7, 17, 30, 55, 169, 174
tmp 187, 199, 203, 222
WATCOM 7, 17, 30, 55, 175
WLINK_LNK 7,17, 30, 55, 175
errors 44, 241
executable formats 3
EXIT option 51
EXPORT directive 52
__export 53

FARCALLS option 55
fatal errors 44, 241
FILE directive 56
FILLCHAR option 58
FIXEDLIB directive 59
FlashTek applications

creating 213
FORCEVECTOR directive 60
FORMAT directive 61
FREEBSD runtime option 152
FULLHEADER option 70

general directives/options 17

HEAPSIZE option 71
HELP option 72

host 4

host operating system 4
HSHIFT option 73

|

IMPFILE option 74

IMPLIB option 75

import definitions 215, 229, 239

IMPORT directive 76

import library 74-75, 216, 230, 240

import library command file 74

include directive 78

incremental linking 81

INCREMENTAL option 81

Intel OMF 3

internal relocation 82, 177

INTERNALRELOCS option 82

invoking Open Watcom Linker 5, 185, 197, 201, 205,
209, 213, 219, 223, 227, 233, 237

ISTKSIZE runtime option 151

LANGUAGE directive 83
LANGUAGE options

CHINESE 83

JAPANESE 83

KOREAN 83
LARGEADDRESSAWARE option 84
LIB environment variable 87, 111, 125
LIBDIR environment variable 17
LIBFILE directive 85
LIBPATH directive 86
LIBRARY directive 87
library file 74-75
LINEARRELOCS option 89
linker symbols

_edata 46

261

Index

_end 46
__ LOVLINIT__ 194
_LOVLLDR__ 194
__ NOVLINIT__ 194
__NOVLLDR__ 194
__OVLENDVEC__ 194
__OVLSTARTVEC _ 194
__OVLTAB__ 194
__SOVLINIT__ 194
__SOVLLDR__ 194
linking notation 18
LINKVERSION option 90
LINUX runtime option 152
LONGLIVED option 91
_ LOVLINIT__ linker symbol 194
_ LOVLLDR__ linker symbol 194

M

mangled namesin C++ 92, 163
MANGLEDNAMES option 92
MANYAUTODATA option 93
map file 94
MAP option 94
MAXDATA option 95
MAXERRORS option 96
MAXIBUF runtime option 151
MAXREAL runtime option 150
memory layout 46, 186, 198, 202, 206, 212, 216, 221
224, 231, 234, 240

memory requirements 187, 199, 203, 222
message

1014 243

1019 243

1023 244

1027 245

1028,2028 245

1032 245

1038 246

1043 246

1044,2044 246

1045 246

1046 246

1047 247

1048 247

1050 247

1054 247

1058 248

1059,2059 248

1060 248

262

1061 248
1062 248
1069 249
1072 249
1076 249
1080 249
1087 250
1090 250
1098 251
1101 251
1102 251
1103 251
1105 251
1107 251
1108 252
1109 252
1110 252
1111 252
1115 252
1116 252
1117 252
1118 252
1121 253
1124 253
1125 253
1126 253
1130 253
1133 254
1134 254
1136 254
1140 254
1141 254
1143 255
1145 255
1148 255
1149 255
1150 255
1158 256
1162 256
1163 256
1165 256
1167 256
1170 257
1171 257
1172 257
1174 257
1175 257
2002 241
2008 241
2010,3010 242
2011 242
2012 242
2015 243
2016 243

Index

2017
2018
2020
2021
2022
2024
2025
2026
2029
2030
2031

2033,3033 245

2034
2039
2040
2041
2042
2049
2051
2052
2053
2055
2056
2063
2064
2065
2066
2067
2068
2070
2071
2073
2074
2075
2082
2083
2084
2086
2089
2091
2092
2093
2094
2099
2119
2120
2127
2132
2146
2151
2152
2154
2155
2156

243
243
243
244
244
244
244
244
245
245
245

245
246
246
246
246
247
247
247
247
247
247
248
248
248
248
248
248
249
249
249
249
249
249
250
250
250
250
250
250
251
251
251
252
252
253
254
255
255
255
255
255
256

2166 256

2169 257

3009 242

3013 243

3057 247

3088 250

3097 251

3114 252

3122 253

3123 253

3128 253

3129 253

3131 254

3135 254

3137 254

3138 254

3139 254

3147 255

3157 256

3159 256

3160 256

3164 256

3168 257

3173 257
MESSAGES option 97
Microsoft OMF 3
MINDATA option 98
MINIBUF runtime option 151
MINREAL runtime option 150
MIXED1632 option 99
MODFILE directive 101
MODNAME option 100
MODTRACE directive 102
MODULE directive 103

MS2WLINK command 196, 199, 203, 217, 231

MULTILOAD option 104

NAME directive 105
NAMELEN option 106
NATIVE runtime option 149
NETBSD runtime option 152
NetWare applications

creating 209
NetWare debugger 41
NEWFILES option 107
NEWSEGMENT directive 108
NISTACK runtime option 151
NLMFLAGS option 109

263

Index

NOAUTODATA option 110
NODEFAULTLIBS option 111
NOEXTENSION option 112
NOINDIRECT option 113
NOREDEFSOK option 144
NORELOCS option 114
NOSTDCALL option 115
NOSTUB option 116
notation 18

NOUNDEFSOK option 178
NOVECTOR directive 117

__NOVLINIT__ linker symbol 194
__NOVLLDR__ linker symbol 194

OBJALIGN option 118

OFFSET option 120

OLDLIBRARY option 119

OMF 3

OMF library 3

ONEAUTODATA option 123

Open Watcom C/C++ options
zm 48

operating system
host 4

OPTION directive 124

options
ALIGNMENT 21
AREA 24
ARTIFICIAL 25
AUTOUNLOAD 27
CACHE 29
CASEEXACT 30
CHECK 31
CHECKSUM 32
COPYRIGHT 35
CUSTOM 36
CVPACK 37
DESCRIPTION 43
DISTRIBUTE 45
DOSSEG 46
DYNAMIC 47
ELIMINATE 48
EXIT 51
FARCALLS 55
FILLCHAR 58
FULLHEADER 70
HEAPSIZE 71
HELP 72

264

HSHIFT 73

IMPFILE 74

IMPLIB 75
INCREMENTAL 81
INTERNALRELOCS 82
LARGEADDRESSAWARE 84
LINEARRELOCS 89
LINKVERSION 90
LONGLIVED 91
MANGLEDNAMES 92
MANYAUTODATA 93
MAP 94

MAXDATA 95
MAXERRORS 96
MESSAGES 97
MINDATA 98
MIXED1632 99
MODNAME 100
MULTILOAD 104
NAMELEN 106
NEWFILES 107
NLMFLAGS 109
NOAUTODATA 110
NODEFAULTLIBS 111
NOEXTENSION 112
NOINDIRECT 113
NOREDEFSOK 144
NORELOCS 114
NOSTDCALL 115
NOSTUB 116
NOUNDEFSOK 178
OBJALIGN 118
OFFSET 120
OLDLIBRARY 119
ONEAUTODATA 123
OSDOMAIN 130
OSNAME 131
OSVERSION 132
PACKCODE 137
PACKDATA 138
PRIVILEGE 140
PROTMODE 141
PSEUDOPREEMPTION 142
QUIET 143
REDEFSOK 144
REENTRANT 145
RESOURCE 148
RWRELOCCHECK 153
SCREENNAME 154
SHARELIB 160
SHOWDEAD 161
SMALL 162

STACK 164
STANDARD 165

Index

START 166
STATICS 168
STUB 169
SYMFILE 170
SYNCHRONIZE 172
THREADNAME 176
TOGGLERELOCS 177
UNDEFSOK 178
VERBOSE 180
VERSION 181
VFREMOVAL 182
XDCDATA 183
OPTLIB directive 125
ORDER directive 127
0S/2 16-bit applications
creating 213
0S/2 32-bit applications
creating 213
0S/2 Dynamic Link Libraries 215
0S/2 program modules 215
OS2 runtime option 149
OSDOMAIN option 130
OSNAME option 131
OSVERSION option 132
OUTPUT directive 133
overlay
ancestor of 193
descendant of 193
overlay area 187
overlay classes 135
OVERLAY directive 135
overlay loader 194
overlaying data 135
overlaying segmentsin "FAR_DATA" class 135
overlays 187
increasing dynamic overlay area at run-time 195
overlaysparalel 189
__ OVLENDVEC __ linker symbol 194
__ OVLSTARTVEC _ linker symbol 194
__OVLTAB__ linker symbol 194

PACKCODE option 137

PACKDATA option 138

paralel overlays 189

PATH directive 139

PATH environment variable 7, 17, 30, 55, 169, 174
PE format executable 63

Phar Lap 286|Dos-Extender applications

creating 213
Phar Lap 386|Dos-Extender applications
creating 219
Phar Lap OMF-386 3
Phar Lap TNT 63
PL format executable 63
POSIX runtime option 149
privilege
ring0 151
ring3 151
PRIVILEGE option 140
PRIVILEGED runtime option 151
PROTMODE option 141
PSEUDOPREEMPTION option 142
punctuation characters 18

QNX applications
creating 223
QUIET option 143

RDOS runtime option 149
REALBREAK runtime option 151
REDEFSOK option 144
REENTRANT option 145
REFERENCE directive 146
relocation

internal 82, 177
RESOURCE directive 147
resource file 148
RESOURCE option 148
response files

conversion 196, 199, 203, 217, 231
ring 0 151
ring 3 151
root 187
running in 32-bit protected mode 220
RUNTIME directive 149
RUNTIME options

ABIVER 152

CALLBUFS 150

CONSOLE 149

DOSSTYLE 149

EFIBOOT 150

265

Index

FREEBSD 152 SYNCHRONIZE option 172

ISTKSIZE 151 SYSTEM directive 5, 173

LINUX 152 system name 173

MAXIBUF 151

MAXREAL 150

MINIBUF 151

MINREAL 150 T

NATIVE 149

NETBSD 152

NISTACK 151 ,

POSIX 149 tmp environment variable 187, 199, 203, 222

REALBREAK 151

SOLARIS 152

SVR4 152

UNPRIVILEGED 151 u

version 149, 152

WINDOWS 149
runtime version option 149, 152 UNDEFSOK option 178
RWRELOCCHECK option 153 UNPRIVILEGED runtime option 151

USE16 segments 221
usemsg 148

S using environment variablesin directives 17
SCREENNAME option 154 4
SECTION directive 155

SEGMENT directive 156

%gmmézolrdgrzizgzgle ' 212513 2123 202, 206, 212, 216, VECTOR directive 179
S ontion 160 VERBOSE option 180
gﬂg\?\%&igm'iﬂ 161)61 VERSION option 181
SMALL opti oplg)zn VFREMOVAL option 182
o ; virtual functions 161, 182
SOLARIS runtime option 152 VD formet executeble 63

SORT directive 163

__ SOVLINIT__ linker symbol 194
__SOVLLDR__ linker symbol 194
space character 18 w
specia characters 18
STACK option 164
STANDARD option 165

START option 166 warnings 44, 241

STARTLINK directive 167 WATCOM environment variable 7, 17, 30, 55, 175
STATICS option 168 Win16 applications

_ stdcall 115 creating 227

STUB option 169 Win16 Dynamic Link Libraries 229

SVR runtime option 152 Winl16 program modules 229

symbol file 170 Win32 applications

SYMFILE option 170 creating 237

SYMTRACE directive 171 Win32 Dynamic Link Libraries 239

266

Index

Win32 program modules 239
window function 52, 78
Windows 3.x applications
creating 227
Windows 32-bit applications
creating 237
Windows NT applications
creating 237
WINDOWS runtime option 149
WLINK
command lineformat 5, 185, 197, 201, 205, 209,
213, 219, 223, 227, 233, 237
WLINK command line
invoking WLINK 5, 185, 197, 201, 205, 209, 213,
219, 223, 227, 233, 237
WLINK notation 18
wlink.Ink
default directivefile 7, 17, 30, 55, 174
WLINK_LNK environment variable 7, 17, 30, 55, 175
wlsystem.Ink
directivefile 7,17, 30, 55, 174
WSTRIP 41-42
WSTRIP command 42

x32r 11
x32rv 11
XDCDATA option 183

ZDOS applications
creating 197
zm compiler option (Open Watcom C/C++) 48

267

