Open Watcom Windows Programming Interface
(WPI)

Originally written by WATCOM International Corp.
Revised by Open Watcom contributors

Table of Contents

Open Watcom Windows Programming INterface (WPL)ooueeieeeeeene e

1 Open Watcom Windows Programming Interface (WPI) ..o
I YT 0 TS TS
1.2 Converting Windows APPHICALIONSccoieririeririerinie sttt sttt e
1.3 Differencesin PhilOSOPRIEScoiiiiiiiiiee e
LA PM WINOOWS ...oovvvieirereeresenese e sese et s e a s s s ne s s s ren et ren e es
1.5 Instances and ANCHOr BIOCKSccuiieieiriniieisre et
1.6 Coordinates and RECLANGIESccviiiiiice ettt s e e e ae e e aeerenne e
1.7 Presentation Spaces and DEVICE CONLEXLSc.cierierieiieireeeniese sttt s sbe e seen

1.8 Graphics

1.9 Colours ..

1.0 PENS AN BIUSNES ...ttt ettt ettt e et e s st e e e bt e s s ba e e s st e e s sbeessabaeessabeesenbeessranessrsnasan

1.11 Bitmaps

L. 12 USING WPH T0 DIBW .ttt ettt ettt sttt b ettt b bbb bbb sb s

1.13 Palettes

1.14 Fonts

L1.15 WINCOW FUNCLIONS ..ottt ettt ettt et e et sb e besbe et e sbeebesbeesbesnsesreensesaeensesaeesbesseens
SRV o (oY = SO OSR
L1.27 WINCAOW CIEALIOMN ...oecviiiiiiciieecee e ctee et et e site e st e ste e steeete e sbeeebeestessabeesseesabeesasesnseessseeseesaseentessssensenses
118 WINCAOW PrOCEAUIEScveieeeeeiee ittt ettt et ettt e s be et e s ate e sbaeeateesbasebeesseesnbeesaeesabeesanesnseessneans
LG RESOUICES ..ottt ettt e ettt e e et e e ettt e e ettt e e eateeesabeee e teeeeaseeaessseeaaabesasssesaasseesantesessseesasseasanbenaanns

1.20 Dialogs

1.21 OWNEI-DIraWn CONLIOISoviiieeiee ittt sttt e st e s et e e e s st e e s saaeesabesssaseessaseeessabeesssenesarenas

1.22 Menus ..

1.23 Other Platform CONSIAEIBLIONSccveviieeeeeeiieeeeeeeeeee e e ettt e seteeseeeesaeressseseessareessaseesasseessareessaseeesaeees
022 AN (o 1T T o A S

[

NRNRONNNNNNNNRE R R R R R R
NNNANNRPPRPOQOUONURPOODOOUTUololh ww

Open Watcom Windows Programming
Interface (WPI)

Open Watcom Windows Programming Interface (WPI)

1 Open Watcom Windows Programming Interface
(WPI)

Paul Fast, December 23, 1993

Open Watcom Windows Programming Interface (WPI) is a developerstool to aid in porting applications
from Microsoft Windows to IBM Presentation Manager (PM). The goal in the creation of WPI
(pronounced wippee) is to supply programmers with a set of macros and library routines which allow them
to quickly convert an application which aready existsin Windows code to PM. It should be mentioned
that this will not necessarily give avery efficient PM program; only aworking executable in short period of
time. Using WPI also alows the devel oper the luxury of having only one copy of the source instead of a
Windows version and a PM version. The WPI interface has evolved only as functionality is required;
future projects may use Windows features which require additional enhancementsto WPI.

WHPI is explicitly designed to port Windows functionality to OS2/PM (not the other way around). Because
of this, converted projects may require additional system dependent code to take advantage of native OS/2
features (such as drag and drop or notebooksin OS/2).

This document is intended to be used by devel opers porting applications from Windows to PM as an
introduction to using WPI. It notes situations which are similar to Windows code and some which are quite
different from Windows code.

1.1 What is WPI?

WHPI is a combination of macros and library routines. The WPI project isin ./bld/wpi and contains
subdirectories for source code, header files, and libraries. The header file wpi.h includes the type header
file wpitypes.h and either wpi_win.h or wpi_0s2.h depending on the platform for which you wish to
compile. The header fileswpi_0s2.h and wpi_win.h contain the macros and prototypes for functions which
correspond to Windows API calls when compiling under the Windows platform and PM API calls when
compiling for the OS2 platform. It should be noted that these files are not necessarily complete. These
fileswill constantly be modified and further macros will no doubt be added as their need arises. Therefore,
if aparticular function isrequired by the developer and it does not already exist, it isthe job of that
developer to add it to both wpi_win.h and wpi_o0s2.h. The source code for the library routines arein
wpi_win.c and wpi_0s2.c.

To distinguish between the Windows and PM platforms, the Open Watcom C compiler provides a

__0S2 PM__ macro which indicates that the program is being compiled for OS2 Presentation Manager.
To separate Windows and PM code something like the following is needed:

What is WPI? 3

Open Watcom Windows Programming Interface (WPI)

#ifdef __OS2_PM _
/1 PM code
#el se
/1 W ndows code

#endi f

The file wpitypes.h contains the conversion of types from Windowsto PM. There are some casesin which
Windows types have equivalent PM data types, such asHDC and HWND. These obviously are not
redefined. In other cases, a non existent equivalent can easily be added. For example the data type
ULONG in PM is defined as unsigned long for Windows in wpitypes.h. It should be noted that not all data
type definitions are as neat and clean as this; however, an attempt has been made to make this asinvisible
to the devel oper as possible.

Thefileswpi_win.h and wpi_win.c contain macros and routines which translate to Windows API calls
under the Windows platform and wpi_os2.h and wpi_o0s2.c translate to PM API calls under the PM
platform. Some of these routine will have the same parameter list as the Windows version of the APl and
others may appear drastically different than their Windows counterpart. Many of the Windows APIs do not
have corresponding PM APIs and in these cases, many lines of code are required to mimick the Windows
call. In cases where more than one line of code is required to convert the Windows code to PM, the
routines have been coded as library functions instead of macros. All WPI functions are prefixed by _wpi_
and contain no uppercase characters. Furthermore, an attempt has been made to keep the macro names as
similar to the Windows functions as possible. Hence, BeginPaint is called _wpi_beginpaint. In cases
where the Windows API has an exact equivalent in PM, the Windows function is defined asis for PM. For
example, GetClientRect has an PM equivalent of WinQueryWindowRect and hence GetClientRect has
been defined as WinQueryWindowRect for PM. This means that some Windows APl names can remain
the way they are. Even if an APl has an exact equivalent and is defined that way for PM, it is also defined
intheform _wpi_functionname for both Windows and PM. It isup to the developer asto whether they
wish to use the Windows name or the WPI name.

1.2 Converting Windows Applications

4

The nature of the application will dictate the amount of code reusability available through WPI (and hence
the usefulness of WPI). If the application deals with elements that are similar on both the Windows and
PM platform then perhaps the devel oper can reuse 90% or more of their code. In cases where Windows
and PM handle things quite differently, reuseability may only reach 70-80%. The developer should
determine places in their Windows application that may differ quite drastically in PM such asfile storage
formats or window classes or messages. These will be the most difficult modules of code to port.

The method the developer uses to port isreally up to him or her. The most straightforward way isto (after
reading this document) choose a module in the applications code that is small or has relatively few major
Windows/PM differences and begin there. The file wpi.h will need to be included (it includes the other
WPI header files) in every module that uses WPI macros. Every function call that is a Windows API will
need to be replaced with the equivalent _wpi_functionname macro. The simplest way to determine which
macro to useisto search for the API namein wpi.h. It should be relatively easy to determine the name of
the macro and whether or not the parameter list has changed. The OS2 Toolkit contains on-line help which
describesthe PM APIs. Thiswill also proveto be very useful since some macros may take parameters that
arerequired and only used in the PM calls.

Converting Windows Applications

Open Watcom Windows Programming Interface (WPI)

The user may find it easier to have separate code for the initialization of their program. While Windows
has aWinMain key word, PM applications simply begin with the normal C main. Moreover, PM requires
the user to initialize the windows and create a message queue. Although _wpi_createwindow and
_wpi_registerclass are provided in WP, the user may find the code to register and create windows different
enough to warrant separate Windows and PM code. It is safest to look at the WPI code to seeif it performs
asyou wish.

One fina word on converting code. Some applications have unique memory allocation functions they use
in order to track memory. Since WPI occassionally allocates memory, users may wish to use their own
memory allocation and freeing routines. They can do so by defining the symbol _wpi_malloc and
_wpi_freeto betheir own routines. If they are not defined, WPI sets them to the default of malloc and free.
All memory allocations and frees are performed with _wpi_malloc and _wpi_free (the exceptionisin
_wpi_selectobject which uses alloca. Thisroutineis discussed later).

1.3 Differences in Philosophies

Before beginning the PM conversion, you should become aquainted with a few differences between the
philosophies of Windows and PM. This document does not cover al of them; only the ones that pertain to
WPI.

1.4 PM Windows

To begin with, windows are put together sightly differently. A typical Windows window has atitle bar
with a system menu and application menu, border and aclient area. These are all part of the window
indicated by one HWND. In PM, each of these components has its own HWND and all are considered to
be children of the frame window HWND. Hence, the client area hasits own HWND as does the menu bar,
the scroll bars, etc. Drawing in the client area should be done by referencing the HWND of the client;
however, visibility, destruction and menu operations need to reference the HWND of the frame. To
overcome some of these problems, the macros _wpi_getclient(hwnd) and _wpi_getframe(hwnd) have been
defined which do nothing in Windows and return the client window handle of the supplied frame handle
and the frame handle of the given client (respectively). Moreover, through WPI, HMENU has been defined
as an HWND and routines have been created which allow the user to use an HMENU asiit isin Window.

1.5 Instances and Anchor Blocks

Windows programs have the concept of an instance which is required by some functions to differentiate
between possibly numerous instances of the program. PM does not have an instance identifier, however it
does have an anchor block. In WPI, instance handles and anchor blocks are associated in the data type
WPI_INST. Thistype should be used instead of the INSTANCE type for declaring INSTANCE variables
in Windows. For PM, it is defined as afollows:

typedef struct {

HAB hab;
HMODULE nod_handl e;
} WPl _I NST;

The hab is the anchor block that is required for many of the function like creating presentation spaces and
registering windows. The mod_handle field is required when working with DLLs. It isparticularly
required for loading accel erator tables, menus and other resources. If you are not working with DLLS, you

Instances and Anchor Blocks 5

Open Watcom Windows Programming Interface (WPI)

may ssimply set thisfield to NULL. PM functions that require HABs will have macros that accept a
WPI_INST and the hab field will be extracted from the structure. The following routines handle the
WPI_INST datatype:

_wpi_setwpiinst(hab, mod_handle, &wpi_instance)

Usethisfunction to initializea WPI_INST. For Windows set hab to the instance and set mod_handle
to NULL.

_wpi_issameinst(instl, inst2)

This compares the two instances and returns whether or not they are the same.
_wpi_setmodhandle(name, inst)

This sets the module handle only, of aWPI_INST. Thisfunction does nothing in Windows.
_wpi_setanchorblock(hwnd, inst)

This sets the anchor block only, of aWPI_INST given awindow handle. For Windows, this sets the
instance.

1.6 Coordinates and Rectangles

6

Another major difference between Windows and PM is the coordinate system used for the desktop. In
Windows the default for the origin is the top left of the screen with the axes extending positively to the
right and down. In PM, the origin is the bottom left and the axes extend positively to the right and up.
Therefore, the coordinates for Windows will differ from that of PM. In fact, PM has adlightly different
definition for their rectangle data type which also reflects its coordinate origin. Where Windows has:

typedef struct {

int left;
i nt top;
i nt right;
i nt bott om
} RECT;
PM has

typedef struct {
LONG xLeft;
LONG yBott om
LONG XRi ght ;
LONG yTop;

} RECTL;

Aside from the different type names the issues that needed resolving through WPI were the differencesin
field names and the different types for the fields. The different structure field names make accessing
individual fieldsin the rectangle structure awkward and the different types of the fields once they are
accessed isimportant to bear in mind. WPI defines a datatype WPI_RECT which is RECT in Windows
and RECTL in PM. To get and set the values of the structure, a call must be made to aroutine (see below)
supplying the rectangle structure and the values for thefields. A datatype called WPI_RECTDIM has been
created which isthe type of the fields of the structure. WPI_RECTDIM is defined as LONG in PM and int

Coordinates and Rectangles

Open Watcom Windows Programming Interface (WPI)

in Windows. The following routines handle rectangles and assume that |eft, top, right, and bottom are
defined as WPI_RECTDIM:

_wpi_setrectvalues(&r, left, top, right, bottom)

In Windows this simply sets the values of thefields. In PM thiswill set top to yBottom and bottom to
yTop. Thisfunction can be useful when you have Windows code which subtracts bottom from top to
get window heights.

_wpi_setwrectvalues(&r, left, top, right, bottom)

Thiswill set the values of the relative fields in both Windows and PM (ie no switching is performed
between top and bottom).

_wpi_getrectvalues(r, &left, &top, &right, & bottom)

Thiswill retrieve the values of the rectangle structure in Windows as expected and will assign the
value of yBottom to top and yTop to bottom. Again, thisis because of the difference in the coordinate
systems.

_wpi_getwrectvalues(r, &left, &top, &right, & bottom)

Thiswill retrieve the values of the fields in both Windows and PM as expected (ie no switching is
performed between top and bottom).

Because some developers may wish to work strictly with the int data type, the following equivalent
functions have been created which do the same as the above routines, but accept as parametersint instead
of WPI_RECTDIM:

_wpi_setintrectvalues(&r, |eft, top, right, bottom)
_wpi_setintwrectvalues(&r, left, top, right, bottom)
_wpi_getintrectvalues(r, &left, &top, &right, & bottom)
_wpi_getintwrectvalues(r, &left, &top, &right, & bottom)

Using these macros will at first be annoying; however the need to have aWPI_RECT liesin the fact that
many macros will require a Windows RECT for the Windows APl and a PM RECTL for the equivalent PM
API. Hence, thereisreally no getting around the matter. Note especially the difference between
_wpi_setrectvalues and _wpi_setwrectvalues, and _wpi_getrectvalues and _wpi_getwrectvalues. For
Windows, top < bottom is normal for arectangle. However, for PM bottom < top is normal for arectangle.
Hence by switching the values of top and bottom in the assignment, we guarantee that if top < bottom in
Windows, then bottom <top in PM. It isrecommended that coordinates that are saved be stored in the
windows format and then be converted to PM coordinates before displaying or drawing.

The WPI_RECT structure also has asister WPI_POINT datatype. Thisisdefined as POINT in Windows
and POINTL in PM. Thistype should be used to replace the POINT structure in the Windows code. This
will assure the user that Windows APIswill use the POINT structure and PM ones, the POINTL structure.
The fields of this structure are named the same (x and y); however, the types for Windows are int and for
PM, LONG. Whilethereisa_wpi_setpoint macro in WPI, it is not essential to use it because of the
common field names.

In addition, the following routines work with rectangles, points and coordinates:

Coordinates and Rectangles 7

Open Watcom Windows Programming Interface (WPI)

8

_wpi_getwidthrect(r)

Thiswill return the width of the rectangle.
_wpi_getheightrect(r)

Thiswill return the height of the rectangle.
_wpi_cvth_y(y, height)

Thiswill convert the value of y for awindow in Windows coordinates to PM coordinates. Height is
the height of the window and the new value is returned.

_wpi_cvth_pt(&pt, height)

This convertsthey value of aWPI_POINT in awindow from Windows coordinates to PM
coordinates. Height isthe height of the window.

_wpi_cvth_rect(&rect, height)

This converts the top and bottom values of aWPI_RECT from Windows coordinates to PM
coordinates. Height isthe height of the window and is assumed to be a LONG.

_wpi_cvth_wanchor('y, window_cy, parent_cy)
This converts an anchor point (y) from Windowsto PM coordinates. The anchor point isthe

coordinates at which awindow is displayed on the desk top (top left for Windows and bottom left for
PM). All values are assumed to be LONG.

_Wpi_cvts y(y)

This converts a value relative to the desktop in Windows coordinates to that of PM. The new valueis
returned (ie. sameas_wpi_cvth y except it is relative to the desktop).

_wpi_cvts pt(&pt)
Sameas_wpi_cvth_pt except that the point is assumed to be relative to the screen (desk top window).
_Wpi_cvts rect(&rect)

Same as_wpi_cvth_rect except that the values are assumed to be relative to the screen (desk top
window).

_wpi_cvts wanchor(y, window_cy)

Same as_wpi_cvth_wanchor except the anchor point is assumed to be relative to the screen (desk top
window). Values are expected to be LONG.

_wpi_cvtc_y(hwnd, y)

Same as_wpi_cvth_y except the routine only takes the window handle (it cal cul ates the window
height). The new valueisreturned andy is expected to be LONG.

Coordinates and Rectangles

Open Watcom Windows Programming Interface (WPI)

_wpi_cvtc_rect(hwnd, &rect)
Same as_wpi_cvth_rect except the routine cal cul ates the window height itself.

The _wpi_cvt* macros are used for converting coordinates between the two target systems. For PM,

calling the macros once will convert the y values passed in from Windows coordinates to the equivaent PM
coordinates. In some instances, coordinates may be stored differently for the different platforms (for
example when the coordinates are established by a detection of aWM_MOUSEMOVE). Be surethe
_wpi_cvt* routines are only used when the values will be in Windows coordinates. For example, drawing a
rectangle according to the coordinates determined from aWM_MOUSEMOVE would not warrant a
_wpi_cvt* call. For Windows, these macros do not alter they values. The _wpi_cvt* _wanchor macros can
be used to place awindow on the desktop. The point passed in can be in Windows coordinates and the
macro will convert the point to PM coordinates.

1.7 Presentation Spaces and Device Contexts

PM has the concept of a presentation space which can be used to display graphics. However, the
presentation space does not replace the notion of a device context, because PM also has device contexts.
Since Windows does not have a presentation space, a WPI_PRES has been introduced to allow the use of
presentation spaces. For Windows, aWPI_PRES issimply an HDC and for PM it is an HPS (presentation
space handle). The equivalent of creating a memory device context in Windows is to create a memory
presentation space. In creating a compatible presentation space in PM, an HDC is required and must be
deleted. WPI handles this. Throughout this document the term presentation space (or pres) is used and will
refer to an HPSin PM and an HDC in Windows. Hence when phrases such as "drawing on apres’ arise, it
isimplied that drawing is happening on an HPS in PM and an HDC in Windows. Moreover, acompatible
pres corresponds to a compatible HPS in PM and a compatible (memory) HDC in Windows. When HDC is
refered to (unless specifically for Windows) it will imply both HDC for Windows and HDC for PM.

The following are some common macros used with presentation spaces and device contexts:
_wpi_getpres(hwnd)

This returns the presentation space associated with the window handle. For Windows thisis simply
GetDC. hwnd can be HWND_DESKTOP (which isthe sameas NULL).

_wpi_releasepres(hwnd, pres)

This releases the presentation space associated with the given window. In Windowsthisisa
ReleaseDC.

_wpi_createcompatiblepres(pres, hab, &hdc)
For PM this macro creates and returns a presentation space that is compatible with the one given. It
also creates a device context which is required when deleting the presentation space. For normal
drawing, the hdc is not used. For Windows this simply performs a CreateCompatibleDC.
_wpi_deletecompatiblepres(mempres, hdc)

This function deletes the presentation space and for PM, the device context handle.

Creating a compatible presentation space handle may appear alittle confusing. First, recall that the
Windows steps to creating a compatible presentation space are as follows:

Presentation Spaces and Device Contexts 9

Open Watcom Windows Programming Interface (WPI)

hdc = GetDC(hwnd)

rrerrdc = CreateConpati bl eDC(hdc);
/*
* Either draw on the nmendc or the hdc
*/

Réi éaseDC(hwnd, hdc);

DeI éteDC(mendc);

When using WP, a presentation space handle and a device context appear to be created. In Windows, the
compatible DC is returned by the routine and hdc is simply set to NULL (ie. it isnot used). When deleting
the compatible pres in Windows, nothing happens to the hdc parameter since it has been set to NULLonly
the compatible DC is deleted (stored in mempres). In PM, the device context handleis only used when
deleting the presentation space handle. Under both platforms, the pres parameter passed into
_wpi_createcompatiblepres must be valid and al drawing must take place on the returned memory
presentation space handle, or pres. The equivalent to the above example would be:

pres = wpi_getpres(hwnd);

m.a.rriares = _wpi _createconpati bl epres(pres, Instance, &hdc);
/*
* Either draw on pres or menpres
*/

_\.Ni)i._rel easepres(hwnd, pres);

_Wpl _del et econpati bl epres(nenpres, hdc);

1.8 Graphics

In Windows, the graphics interface is known as the GDI (Graphics Device Interface). The equivalent in
PM isthe GPI (Graphical Programming Interface). The graphicsinterface includes objects such as pens,
brushes, fonts, bitmaps, palettes and presentation space attributes.

In PM asin Windows, each presentation space has its own set of attributes. When a presentation space is
created, it has adefault set of attributes which are used unless they are specifically changed. Among these
attributes are line, area, image, and character attributes. Each of these attribute types has a corresponding
structure which contains fields to describe the type. PM provides APIs to change the values of the
individua fields of the attributes. Also, there is a GpiSetAttrs API in which the attribute type (line, area,
etc.) must be specified and can be set.

1.9 Colours

Thereisadlight difference between colours in Windows and PM. In Windows, colours are usually
referenced by a COL ORREF variable which contains an RGB value. Moreover, Windows APIswith a
COL ORREF parameter expect the variable to be an RGB value. Thisisnot necessarily the casein PM. In
PM, a presentation space can either be in index mode or RGB mode. If a presentation spaceisin RGB
mode, all references are expected to be RGB values. However, thisis NOT the default mode. The default

10 Colours

Open Watcom Windows Programming Interface (WPI)

(index mode) impliesthat all referencesto colours are indices into a colour table associated with the
presentation space. When in index mode, all API referencesto colours are expected to contain indices and
when in RGB mode, al APIs expect RGB values. Attempting to use RGB values in index mode will
produce unpredictable results. Furthermore, PM will interpret index values as RGB values when in RGB
mode.

Since the user is converting from Windows to PM, their Windows code will contain RGB colour values.
Since RGB is not the default mode, the user will need to switch to RGB mode whenever RGB colour
values are used in anewly created presentation space. The WPI macro _wpi_torgbmode(pres) will set the
given presentation space to RGB mode. This macro does nothing in Windows. A very easy mistake to
make when converting code isto forget to set the presentation space to RGB mode.

WPI defines COLORREF to be ULONG for PM which is how colours are stored in that environment.
Hence, the user can leave Windows COLORREF variables as COLORREF variables (alternatively, they
can declare colour variables as WPI_COL OUR) in their converted code. Moreover, the RGB macro used
in Windows to create an RGB value is also available with WPl in PM. Occurrences like: RGB(red, green,
blue) need not change.

1.10 Pens and Brushes

Windows includes the data types HPEN and HBRUSH which PM does not. However, through WPI, HPEN
and HBRUSH can be used in PM. In order to create and use an HPEN or HBRUSH, WPI alocates
memory for astructure which describesiits attributes. When selecting an HPEN or HBRUSH into a
presentation space, space must be allocated to store the old pen or brush and the attributes of the pen or
brush being selected are set for the current pres. Upon deleting an HPEN or HBRUSH, WPI freesthe
memory it has allocated. When aWPI routine returns (or accepts as a parameter) an HPEN or HBRUSH, it
isrealy returning an address to the object structure (this address has been defined asaWPI_ HANDLE).

Creating a pen using WPI is the same as creating a pen in Windows. Certain attributes must be set such as
the pen type (solid or dashed), the pen thickness and the pen colour. The_wpi_createpen macro accepts the
same parameters as Windows' CreatePen and returns the newly created pen. The pen type should be
specified using the Windows pen type definitions (these are of the form PS_* and some types may not yet
be converted in WPI). After allocating memory for the object structure, the PM routine sets the field values
of the structure as indicated by the parameters to the function (the structure corresponding to an HPEN in
PM isa LINEBUNDLE; however, this should be invisible to the user).

Similarly, brushes are created as they are in Windows. The _wpi_createsolidbrush, for example accepts the
colour of the solid brush and returns the brush being created. Again, the PM version of the function
allocates memory for the object structure and then sets the fields of the structure asindicated by the
parameters to the function (the structure corresponding to an HBRUSH in PM isan AREABUNDLE;

again, thisisinvisible to the user).

Recall that both HPEN and HBRUSH are addresses of a object structuresin PM. Hence when a pen or
brush is created, WPI allocates space for the structure before setting the fields of the structure and returning
apointer to the structure. Naturally, when deleting an object WPI frees the memory associated with the
object. Moreover, when selecting an object into a presentation space, the normal Windows behaviour isto
return the old object. So WPI needs to allocate space for the old object and must know when to free that
memory. To accomplish this, WPI uses alloca which allocates enough space for the old object and the
automatically frees the memory when the routine selecting the object is exited. By employing this method,
most Windows code is convertable by simply using the _wpi_selectobject routine. The drawback to this
method is that the old object returned from _wpi_selectobject cannot be agloba variable. To
accommodate this problem, WPI aso has the following routines:

Pens and Brushes 11

Open Watcom Windows Programming Interface (WPI)

_wpi_selectpen(pres, hpen)

This routine selects the pen associated with hpen into the presentation space. Space for the old penis
allocated and returned from the function. The old pen can be global if necessary.

_wpi_getoldpen(pres, holdpen)

This routine sets the presentation space attributes for the old pen and frees the memory associated with
the old pen.

_wpi_selectbrush(pres, hbrush)
Thisroutineisthe same as_wpi_selectpen except for brushes.
_wpi_getoldbrush(pres, holdbrush)

This routine sets the presentation space attributes for the old brush and frees the memory associeated
with the old brush.

The difference between _wpi_selectobject and _wpi_selectpen cannot be over-emphasized! The pointsto
consider when using _wpi_selectaobject are:

it is more generic (the same function selects pens, brushes, bitmaps, old pens, old brushes etc...) and looks
more like windows code

the following code is possible because all old objects will be freed when myproc is exited:

void nyproc(void) {
ol dpen = _wpi _sel ectobject(hpres, hpenl);

_Wpl _sel ectobj ect(hpres, hpen2);

_vvp| _sel ectobject(hpres, oldpen);
}

if the old object isaglobal variable, set in one routine and selected back into the presin another routine,
_wpi_selectobject cannot be used because alloca will free the memory when exiting the routine in which
the old object was created.

The points to consider when using _wpi_selectpen or _wpi_selectbrush are:

the old object returned from the select can be used as a global variable because the select does a normal
allocate (using _wpi_malloc) and the memory will not be freed until a_wpi_getold*

each _wpi_selectpen (or _wpi_selectbrush) must have a corresponding _wpi_getoldpen before the next
_wpi_selectpen for that presentation space handle; so the following code is not correct because memory for
the second _wpi_selectpen will never be freed:

void nyproc(void) {
ol dpen = _wpi _sel ectpen(hpres, hpenl);

_vvp| _sel ectpen(hpres, hpen2);

._vvpi _getol dpen(hpres, ol dpen);

12 Pens and Brushes

Open Watcom Windows Programming Interface (WPI)

Onefinal note about selecting pens and brushes: the routines are not interchangable. So if a pen has been
selected with _wpi_selectobject the old pen should be selected with _wpi_selectobject, not with
_wpi_getoldpen! Similarly, selecting a pen with _wpi_selectpen necessitates _wpi_getoldpen to select the
old pen back into the presentation space.
Finally, deleting apen or brush is similar to deleting the object in Windows. For PM, the WPI macro frees
the space associated with the pointer to the structure. The following WPI routines handle creating and
deleting pens and brushes:
_wpi_createpen(type, width, colour)
In Windows, this creates a pen with the specified pen style (PS_*), width and colour. In PM this
allocates space for the object structure and sets the type, width and foreground colour for the pen. The
penisreturned by the function.
_wpi_createnullpen()

Creates and returnsaNULL pen (ie. invisible pen). Windows version simply getsthe NULL stock
pen.

_wpi_createnullbrush()
Creates and returnsa NULL brush. Windows version simply getsthe NULL stock brush.
_wpi_createsolidbrush(colour)

In Windows this returns a solid brush with colour colour. In PM this allocates space for the object
structure and sets the foreground colour for the brush.

_wpi_createpatternbrush(bitmap)

Returns a pattern brush using bitmap as the pattern.
_Wwpi_deletepen(pen)

In Windows this deletes the pen object. In PM this frees the memory associated with pen.
_wpi_deletebrush(brush)

In Windows this deletes the brush object. In PM this frees the memory associated with brush.
_wpi_deletenullpen(pen)

For PM this deletesthe NULL pen. This does nothing in Windows.
_wpi_deletenullbrush(brush)

For PM this deletesthe NULL brush. This does nothing in Windows.
_wpi_selectobject(pres, hobject)

This routine selects a pen, brush or bitmap into the presentation space. The PM version performs an
allocato allocate space for the old object which is returned.

Pens and Brushes 13

Open Watcom Windows Programming Interface (WPI)

There may be more functions than are presented here. If the desired routine does not appear in thislist,
search for it in wpi_os2.h and if it does not exist, add it. Hereisatypical example of selecting pens and
brushes into a presentation space.

Windows code:
penl CreatePen(PS SOLID, 0, BLACK);

CreatePen(PS SOLID, 0, WH TE);
brushl = CreateSolidBrush(RED);

oidben = Sel ect Obj ect(hdc, penl);
ol dbrush = Sel ect Obj ect(hdc, brushl);

Séi éct oj ect(hdc, pen2);

Sel ect Obj ect (hdc, ol dpen);
Sel ect Obj ect (hdc, ol dbrush);
Del et eCbj ect (penl);

Del et ethj ect(pen2);

Del et etnj ect (brushl);

WP code:
penl = wpi_createpen(PS SOLID, 0, BLACK);
pen2 = _wpi_createpen(PS SO.LID, 0, WH TE);

brushl = _wpi _createsolidbrush(RED);

oi aben _wpi _sel ectobject(pres, penl);
ol dbrush = wpi _sel ectobject(pres, brushl);

_Wpi. _sel ectobject(pres, pen2);

_wpi _sel ectobject(pres, oldpen);
_wpi _sel ectobject(pres, oldbrush);
_wpi _del etepen(penl);

_wpi _del etepen(pen2);

_wpi _del et ebrush(brushl);

If the old objects are global:

penl = _wpi_createpen(PS SO.ID, 0, BLACK);
pen2 = _wpi_createpen(PS SOLID, 0, WH TE);
brushl = _wpi _createsolidbrush(RED);

d dben = wpi _sel ectpen(pres, penl);
A dbrush = _wpi _sel ectbrush(pres, brushl);

_\.N.pi._getol dpen(pres, ddpen);
A dpen = _wpi _sel ectpen(pres, pen2);

_wpi _getol dpen(pres, ddpen);
_wpi _get ol dbrush(pres, A dbrush);
_wpi _del etepen(penl);

_wpi _del etepen(pen2);

_wpi _del etebrush(brushl);

Notice that with afew exceptions, the code looks very similar to that of Windows. In general, pensand
brushes can be used the same way they are in Windows.

14 Pens and Brushes

Open Watcom Windows Programming Interface (WPI)

1.11 Bitmaps

The use of bitmaps is quite similar between Windows and PM. Although both platforms have an
HBITMAP datatype, WPI stores bitmaps as object structures similar to HPENs and HBRUSHes. Hence
when abitmap is created and a handle returned, the returned value should not be used for pure PM code,
but only in WPI code. For example, the return value from _wpi_createcompatiblebitmap is an addressto a
structure describing the bitmap (this address is defined asaWPI_HANDLE). This return value (the
WPI_HANDLE) can be passed to WPI functions expecting a bitmap handle, but the return value should not
be used in PM specific code (because the return valueisa WPI_HANDLE and not an HBITMAP). The
bitmap data types declared in WPI are as follows:

WPl Data Type W ndows Data Type PM Dat a Type

WPl _HBI TVAP HBI TMVAP WPl _HANDLE

Like HPEN and HBRUSH, bitmaps can be selected into memory presentation spaces with the
_wpi_selectobject routine and the old bitmap will be allocated and returned from the routine. For example:

ol dbitmap = _wpi _sel ectobject(nmenpres, hbitmap);

_Wpl _sel ectobject(nenmpres, oldbitmap);
Again, if the old bitmap is used outside the routine selecting the bitmap into the space, _wpi_selectbitmap
and _wpi_getoldbitmap can be used. Note once again that each _wpi_selectbitmap must have a
corresponding _wpi_getoldbitmap before another bitmap can be selected into the presentation space. So if
the old bitmap was global the code would look like:

A dbitmap = _wpi _sel ectbit map(nmenpres, hbitmap);

_wp| _getol dbi tmap(nenmpres, A dbitmap);
The following WPI routines handle bitmaps:

_wpi_createcompatiblebitmap(pres, width, height)

This routine returns a bitmap compatible with the given presentation space (HDC for Windows) and
having the specified dimensions.

_wpi_createbitmap(width, height, planes, bitcount, & bits)

This routine returns a bitmap with the attributes given in the parameter list. Like Windows, if bitsis
NULL then the bitmap is left uninitialized.

_wpi_deletebitmap(bmp)
Deletes the given bitmap. The bitmap must have been created by a WPI function.
_wpi_gethitmapbits(hbitmap, size, &bits)

Performs the same action as the Windows GetBitmapBits. The bitmap must be created by a WP
routine.

_wpi_setbitmapbits(hbitmap, size, & bits)

Bitmaps 15

Open Watcom Windows Programming Interface (WPI)

Performs the same action as the Windows SetBitmapBits. The bitmap must be created by a WP
routine.

_wpi_selectobject(hpres, hobj)

Thiswill select the bitmap (or pen or brush) into the presentation space. For PM, the old bitmap gets
space alocated for it and is returned. It will be freed when the routine is exited.

_wpi_selecthitmap(hpres, hbitmap)

Thiswill select the bitmap into the presentation space. 1n PM, spaceis alocated for the old bitmap
handle (which is return) and will not be freed until a call to _wpi_getol dbitmap.

_wpi_getoldbitmap(hpres, holdbitmap)

Thiswill select the old bitmap into the presentation space. For PM this frees the memory associated
with the old bitmap.

Thisagain, is merely a subset of the bitmap functions availablein WPI. Many other Windows APIs have
been converted to WPI. If the desired function is not present in thislist then search wpi_os2.h.

Mention should be made here of how monochrome bitmaps are converted to colour bitmaps. The user
should read the section on BitBIt (Windows) and GpiBitBIt (PM) to find out how the conversion is done for
each platform. Unfortunately Windows and PM perform in the opposite manner. Windows converts all
white pixels (1's) in the monochrome bitmap to the destination DC background colour and all black pixels
(0's) in the monochrome bitmap to the destination DC foreground colour. PM converts all white pixelsto
the destination presentation space foreground colour and black pixels to the background colour. Hencein
WHPI, amacro called _wpi_preparemono can be used to prepare the destination background and foreground
colours to allow the user to copy a monochrome bitmap to a colour bitmap. The macro is used as follows:

_wpi _preparenono(destpres, black pixel _col our, white_ pixel _col our

Thiswill allow the user to set the presentation space to its proper colours for both platforms. The Windows
default DC attributes should be such that a monochrome bitmap copied to a colour bitmap will in fact bea
colour bitmap appearing the same as the monochrome bitmap. These default settings cannot be assumed
for PM. Hence this macro should be used whenever copying from a monochrome to a colour bitmap.

A few new types have been declared in wpitypes.h that relate to bitmaps. They are as follows and can be
used to pass to some of the macros that require different types for Windows and PM:

WPl Data Type W ndows Data Type PM Dat a Type

WPl _BI TMAP Bl TVAP PML632_BI TMAPI NFOHEADER2
WPl Bl TMAPI NFO Bl TMAPI NFO PML632_BI TMAPI NFC2

WP _ Bl TMAPI NFOHEADER Bl TMAPI NFOHEADER PML632_BI TMAPI NFOHEADER2
WPl _BMPBI TS LPSTR PBYTE

Since the bitmap structures for 16 bit PM are different than that for 32 bit PM, afile called pm1632.h
handles the differences (pm1632.h will be discussed later). There are also functions available to retrieve
bitmap information:

16 Bitmaps

Open Watcom Windows Programming Interface (WPI)

_wpi_gethitmapparms(hbitmap, & cx, &cy, & planes, & bitcount, & bitspixel)
Takes the bitmap handle and returns the information about the bitmap. NULL can be passed to any
parameters not desired. The bitspixel parameter will always be set to 0 in PM because that
information is not available under PM.

_wpi_gethitmapstruct(hbitmap, & bitmap_info)
Thisroutine fills the bitmap_info structure (should be type WPI_BITMAP) according to the attributes

of the given bitmap handle. This routine may be usefull when a structure is needed to pass to another
WHPI routine.

1.12 Using WPI to Draw

Once pens, brushes and bitmaps have been selected into their proper presentation spaces, drawing can
begin. Many of the Windows drawing functions have been converted in WPI to provide functionality for
PM. While some of these routine are quite similar to the Windows versions, others differ dramatically.
Thefollowingisalist of some of these routines:
_wpi_moveto(pres, &pt)

Moves to the point on pres indicated by pt.
_wpi_lineto(pres, &pt)

Draws a line from the current position to the indicated point.
_wpi_setpixel(pres, X, y, colour)

Performs the same as the Windows SetPixel routine.
_Wpi_getpixel (pres, X, y)

Performs the same as the Windows GetPixel.

_wpi_rectangle(pres, l€eft, top, right, bottom)

Draws arectangle. Note that top is both top in Windows and PM (ie not bottom in PM). Hence
_wpi_cvt* macros may prove useful before using this macro.

_wpi_ellipse(pres, left, top, right, bottom)

Draws an €ellipse inside the box implied by the dimensions. Note again that top < bottom for
Windows and top > bottom for PM is assumed.

_wpi_arc(pres, X1, y1, X2, y2, X3, y3, x4, y4)
Draws an arc (asit doesin Windows) defined by the given points.

_wpi_bitblt(dest, x1, y1, cx, ¢y, Src, X2, y2, rop)

Using WPI to Draw 17

Open Watcom Windows Programming Interface (WPI)

Identical to Windows BitBIt. PM version assumes (x1, y1) is actually the bottom left corner of the
area and uses Windows predefined ROP codes.

_wpi_patblt(dest, x1, y1, cx, cy, rop)

Identical to Windows PatBIt. Same comments as_wpi_bitblt.
_wpi_stretchblt(dest, x1, y1, cx1, cyl, src, X2, y2, Cx2, cy2, rop)

Identical to Windows StretchBlIt. Same commentsas_wpi_bitblt.
Note the difference in the first two routines listed. They take a WPI_POINT instead of x and y values. It
should also be emphasized that the rectangle and ellipse macros for PM expect top > bottom. Thisis
important because of the way PM draws these images. Windows draws up to but not including the right
and bottom coordinates. PM actually includes the right and bottom coordinates. WPI attemptsto handle
this difference and in so doing, requires that top actually be the top. Note the difference between the
Windows code and converted code in this example;

Windows Code:

Rect angl e(hdc, 10, 0, 100, 50);

WPI Code:
top = O;
bott om = 50;

/1 Assume hei ght has been set to the height of pres
top = _wpi_cvth y(0, height);

bottom = _wpi _cvth_y(50, height);

_wpi _rectangl e(pres, 10, top, 100, bottom);

The user will be required to add the conversion of the height (depending on the circumstances) in order to
assure that top > bottom. Currently, ellipses are not drawn very accurately in PM. Thisis dueto theway in
which PM draws ellipses. The most trouble occurs when the dimensions of the bounding rectangle of the
ellipse contain even values. Work is underway to rectify this problem.

Since the blt functions take only an origin and then the width and height, the origin is assumed to bein PM

format for PM and Windows format for Windows. Thisis particularly useful in copying bitmaps since the
origin (0, 0) can be used under both platforms.

1.13 Palettes

Currently, WPI does not support many palette operations. The macro _wpi_selectpal ette(pres, hpal) will
select a palette into the given presentation space. Moreover, the datatype HPALETTE in PM is defined to
be HPAL. If the code being converted contains references to palettes, expect to make additionsto WPI.

18 Palettes

Open Watcom Windows Programming Interface (WPI)

1.14 Fonts

Fonts can be complicated objectsto deal within PM. PM does not have an HFONT data type nor a
LOGFONT datatype. The font datatypes declared in WPI are as follows:

WPl Data Type W ndows Data Type PM Dat a Type

HFONT HFONT LONG

WPl _FONT HFONTF ATTRS*

WPl _ LOGFONT LOGFONT FONTMETRI CS
WPl _TEXTMETRI C TEXTMETRI C FONTMETRI CS

In Windows, one can create afont and once afont handle is acquired, use that font handle as a parameter
(or any other kind of variable) to be selected into a device context for text output. However, creating afont
in PM requires a presentation space and once that presentation space is released, the created font is gone.
So, adivision arises between the two cases. When afont is desired and a presentation space exists, the
following macros can be used:
_wpi_createfont(pres, &wlfont, & hfont)
For Windows this is the same as CreateFontIndirect with wifont as the logfont. The font handleis
returned in hfont. For PM this creates a font from the specifed WPI_LOGFONT and returns the font
handle (the value: 1) in hfont. The font can only be used in the given presentation space.
_wpi_getdeffm(wifont)
Setsthe WPI_LOGFONT to its default values.
_wpi_deletefont(hfont)
Deletes the font for Windows and resets the font identifier for PM.
_wpi_getsystemfont()
Returns the system font for Windows and the default font identifier for PM.
_wpi_selectfont(pres, hfont, & oldfont)
Selects the given font into the given presentation space.
_wpi_getoldfont(pres, oldfont)
Selects the old font into the given presentation space.
In addition to these macros, there are macros to set the font to italics, bold, strikeout, and more. Moreover,
macros exist to set the font height, width and pointsize. Due to the number of macros available, they are
not all listed here. To find the proper macro, search for _wpi_setfont in wpi_o0s2.h until the required macro
has been found.
All of the above macros work with the HFONT datatype. They all assume that text output will occur with
the presentation space used in the macro calls. However, there may be situations in which the user wishes

to create afont and use it with a presentation space created at alater time. Thisisthe purpose of the
WPI_FONT datatype. The following macros handle WPI_FONTS:

Fonts 19

Open Watcom Windows Programming Interface (WPI)

_wpi_createwpifont(&wifont, wfont)
CreatesaWPI_FONT. For Windows, thisis the same as anormal font creation.
_wpi_selectwpifont(pres, wfont)

Windows version selects the font into the DC. PM allocates memory for the old font and sets the font
of the given presto be that of wfont.

_wpi_getoldwpifont(pres, oldfont)

Restores the font of presto be the old font and frees the old font memory.
_wpi_deletewpifont(wfont)

Deletes the font associated with wfont.

A WPI_FONT for PM isactually apointer. The creation macro allocates space for the structure on the PM
platform and the deletion frees the space. Aswith pens and brushes, selecting the font into the presentation
space allocates space for the old font structure so it is essential that the old font be selected back into the
presentation space to free the memory associated with it. A quick look at _wpi_selectwpifont for PM will
show that the font is actually being created in thisroutine. Thisis because the font is alwaystied to the
presentation space. Once again, before calling the creation macro, the user may usethe _wpi_setfont*
macros to set the attributes of the desired font.

1.15 Window Functions

There are some similarities between Windows window procedures and PM window procedures and hence
converting these is relatively straightforward. The format and main philosophy of windows proceduresis
the same on both platforms and much is accomplished by simply defining a new set of types or function
names.

1.16 Window APIs

20

Since many of the windows related functions differ only in name between the two platforms, WPI allows
the user to use the Windows name when calling the API. The following is alist of some of the window
related macros and the names available to the user:

Def W ndowPr oc(hwnd, nsg, wp, |p) _wpi _def wi ndowpr oc(hwnd, msg,
wp, | p)

Takes default window procedure action.
ShowW ndow(hwnd, st ate) _wpi _showwi ndow hwnd, state)

Shows the window according the given state. Windows predefined states are used.
CGet d i ent Rect (hwnd, &wect) _wpi _getclientrect(hwnd, &wect)

Gets the rectangle dimensions of the given window. The function fillsthe WPI_RECT variable.
Dest r oyW ndow(hwnd) _wpi _destroyw ndow(hwnd)

Destroys the given window.

Window APIs

Open Watcom Windows Programming Interface (WPI)

Set W ndowText (hwnd, str) _wpi _setw ndowt ext (hwnd, str)

Sets the caption of the given window.
MessageBox(hpar, txt, title, style) _wpi_nessagebox(hpar, txt,
title, style)

Displays a message box asit doesin Windows. Most of the MB_* styles have been converted, using the
Windows naming convention.
Cet Menu(hwnd) _wpi _get nenu(hwnd)

Gets the menu of the window. For PM this window handle must be a frame window.

The user may decide whether or not to keep the Windows names or use the available WPI names.

1.17 Window Creation

Window creation is somewhat different in PM than Windows. The user may wish to use separate PM code
from their Windows code in order to gain clarity and the flexibility when creating windows. In WPI
however, an attempt has been made to convert the window creation routines. The two main macros are
_wpi_registerclassand _wpi_createwindow. The wpi_createwindow routine may prove useful for
creating a standard window style, however it islimiting in some areas including the fact that it will not
allow initialization data to be passed in the WM _CREATE message. The user should examine this routine
to verify its usefulness for the situation at hand.

1.18 Window Procedures

Window procedures are also similar in both Windows and PM. Under the WPI scheme, windows functions
should be declared as follows:

MRESULT CALLBACK W ndowsProc(HWD hwnd,
WPl _MSG nsg,
WPl _PARAML wpar am
WPl _PARAMZ | param);

Most of the messages are similar in name and where they differ, the Windows convention has been used.
The user should note that messages such as WM_MOUSEMOVE that store coordinates will store the
coordinates according to the platform under which they are running (ie Windows will return the mouse
coordinates with the top left as the origin and PM with the bottom left asthe origin).

When creating windows, PM does not specify the background colour of the window. This suggests that no
default painting goes on when a PM window procedure receivesaWM_PAINT. The user may be required
to add the following to their WM_PAINT messages:

case WM _PAI NT:
_wpi _begi npai nt (hps, NULL, &wrect);

#ifdef OS2 PM
WnFill Rect(hps, wect, background clr);
#endi f

_wp| _endpaint(hwnd, pres, &wect);

Window Procedures 21

Open Watcom Windows Programming Interface (WPI)

1.19 Resources

Open Watcom has its own resource compiler, so Open Watcom does not require the use of the OS2 toolkit
resource compiler. RC filesin PM look similar to those of Windows. The user should look at the PM help
files or an available example in order to convert their RC files.

1.20 Dialogs

Dialogs, like other windows have some definite similarities between Windows and PM. Because of these
similarities, a program has been created to transform Microsoft Dialog Editor DLG filesto PM DLG files.
Thisprogramis called parsedlg.exe and can be found in r:\cmds. To use this program simply type:

parsedig infile.dlg outfile.dlg

The user will need to compile their PM application with the newly parsed DLG file. Note that this new
dialog should look the same as the Windows dialog. The user does not need to convert any coordinates.
One should also note that in Windows a dialog can either be referenced by either a unique string name or a
unique integer (this gets passed into the DialogBox API). In PM however, adialog box can be referenced
only by aunique integer. If astringis currently used, the user will need to change thisto an integer.

Once the dialog file is parsed, the user can convert the code generating the dialog procedure. Initializing a
dialog box procedure would look like the following under WP :

fp = _wpi _makeproci nstance((Wl _PROC) D gProc, I|nstance);
ret _val = _wpi_di al ogbox(hparent, fp, Instance, DLG ID, OL);
_wpi _freeprocinstance(fp);

The dialog procedure itself looks much like a Windows dialog procedure excluding the WPI conversion
names:

DLG RESULT CALLBACK DI gProc(HWND hwnd,
WPl _MSG nsg,
WPl _PARAML wpar am
WPl _PARAM? | param) ;

The user may continue to use the constants IDOK and IDCANCEL since they are defined in WPI to be
consistent with the constants used by the parsedlg.exe program. Unique to PM isthe use of a default dialog
procedure. Where Windows usually returns FALSE, PM returns WinDefDIgProc with the same parameters
as the procedure from which it is returned. Hence the user will want to return _wpi_defdlgproc(hwnd, msg,
wparam, Iparam) for unprocessed dialog messages. Thiswill simply return FALSE for Windows.

The following is an example of a dialog procedure for which there are a number of tricky points between

Windows and PM. Thisisdone to illustrate some of the differences between Windows and PM as well as
where to spot trouble.

22 Dialogs

Open Watcom Windows Programming Interface (WPI)

WPl DLGRESULT CALLBACK dl g_sanpl e(HWND dl g _hl d,

i nt
i nt

i f(

WPl _MSG nsg,
WPl _PARAML par nl,
WPl _PARAMR2 parn?)

initial _col;
tnp;

msg == WM I NI TDI ALOG) {

/* PM expects a pointer to the data */
/[* while Wndows just expects the data */

#ifdef __OS2_PM__

#el se

#endi f

{

i nt *ptr;
ptr = (int *) parn®;

initial _col = *ptr;

initial _col = parng;

return((WPl _DLGRESULT) TRUE);

/* The following line is necessary because for PM */
/* because sone nessages which are caught under */
/* WM COVMWAND in PMare not in Wndows and vice */
/* versa. Hence, use this routine to trap the */
/* WM COVMAND nessage. */

se if(_wpi_dlg coomand(dlg hld, &rsg, &parml, &parn?)) {
if(_wpi_getid(parnl) == 1DK)
_wpi _enddi al og(dl g _hld, TRUE);
return((WPl _DLGRESULT) TRUE);
} else if(_wpi_getid(parnl) == | DCANCEL) {
_wpi _enddi al og(dlg_hld, FALSE);
return((WPl _DLGRESULT) TRUE);
} else if(_wpi_isbuttoncode(parml, parn2, LBN SELCHANGE)

_wpi _getid(parnl) == DLG SAVPLE_BUTTON

/* Many nessages in PM pack the information */

/* in different places than in W ndows */
/* hence the need for _wpi_getid, and new */
/* paraneters for the foll owi ng nessages */
[* cf. _wpi_getdlgitem btext etc. as well */

tnp = (int) _wpi_senddl gi tenmessage(dl g_hld,
DLG GPCWN_GROUP, LB GETCURSEL, LIT_FIRST, NULL

_wpi _senddl gi t emmessage(dlg_hld, DLG GPCVN_GROUP,
LB _SETCURSEL, initial_col, LIT_SELECT);

Dialogs 23

Open Watcom Windows Programming Interface (WPI)

initial _col = tnp;

}

} else {
return(_wpi _defdlgproc(dlg_hld, msg, parml, parn?));
}

return((WPl _DLGRESULT) FALSE);

/* PM expects a pointer to the data */
/[* while Wndows just expects the data */

#ifdef __0S2_PM__

dlg_ret = _wpi_dial ogbox(frame_wi n_hld, proc, Inst,
tpl,
&d);
#el se
dlg ret = wpi_dial ogbox(frame_wi n_hld, proc, Inst,
tpl,
id);
#endi f

1.21 Owner-Drawn Controls

This section covers only buttons and listboxes since menus have not been researched or tested. Thereis
some fully functioning code in the datactl library (cf. Dan Pronovost).

To begin with, owner-drawn buttons get drawn by responding to aWM_CONTROL

(WM_DLGCOMMAND) message while everything else should respond to aWM_DRAWITEM message.
The following section of code illustrates how to determine what type to draw:

24 Owner-Drawn Controls

Open Watcom Windows Programming Interface (WPI)

_wpi _getcursorpos(&g pt);

_wpi _setanchorbl ock(hwnd, inst);

time = wpi _getcurrenttine(inst);

_wpi _setgnmsgval ues(&qnsg, hwnd, msg, parml, parn?, time, g_pt

/*

* make absol utely sure that any buttons handl e the
WV_QUERYDL GCODE

* message and return DLGC BUTTON

*/

is_button = ((int)_wpi_sendnessage(hwnd, WM QUERYDLGCODE, &qnsg,
oL)

& DLGC BUTTON) ;
is button = is button &&
(SHORT2FROMMP(parnl) == BN _PAINT) && (nsg ==
WV_DLGCOMVAND) ;
if(is_button) {
< drawthe button >

} else if(msg == WM DRAWTEM) {

< draw the |istbox >

Buttons are sent a USERBUTTON structure in the second parameter. The following section of code
illustrates how to obtain information from this structure;

Owner-Drawn Controls 25

Open Watcom Windows Programming Interface (WPI)

USERBUTTON *b2:

b2 = (USERBUTTON *) par n®;
wi n_hld = b2->hwnd;

pres = b2->hps;

id = SHORT1FROMVP(parntl);

tnmp_word = LOAMDRD(b2->fsState);
disabled = (tnp_word == BDS DI SABLED);
selected = (tnp_word == BDS H LI TED);

tmp_word = LONMORD(b2->fsStated d);

old selected = (tnp_word == BDS HI LI TED);
sel ect _changed = (selected == ol d_selected);
has focus = (GetFocus() == win_hld);

_wpi _getclientrect(win_hld, &ect);

< draw t he button based on above information >

/1 teIIs.the system you did the highlighting
b2->fsStated d = b2->fsState;

/1 tells the systemyou drew the item
to_ret = (WPl _DLGRESULT) TRUE;

Listboxes are sent an OWNERITEM structure in the second parameter. The following section of code
illustrates how to obtain information from this structure:

poi = (OMNNERI TEM *) parn®;

wi n_hld = poi->hwnd;

pres = poi - >hps;

id = poi->idlitem

rect = poi->rclltem

di sabl ed = ! Wnl sControl Enabl ed(win_hld, id);

sel ected = poi->fsState;

focus_changed = ! (poi->fsState == poi->fsStated d);
sel ect _changed = !focus_changed,;

< draw the |istbox based on above information >

/1 tells the systemyou did the highlighting
poi ->fsState = poi->fsStatedd = O;

/1 tells the systemyou drew the item
to_ret = (WPl _DLGRESULT) TRUE;

26 Owner-Drawn Controls

Open Watcom Windows Programming Interface (WPI)

1.22 Menus

Menus are handled in the WM_DRAWITEM message, similar to listboxes, and also use the OWNERITEM
structure but take advantage of the attribute and old attribute fields (MIA). The following routines handle
menu operations:
_wpi_getmenu(hwnd)
This returns the handl e of the menu. Note that for PM, hwnd must be a frame window handle.
_wpi_getcurrentsysmenu(hwnd)
Returns the current system menu for the given frame window handle.
_wpi_checkmenuitem(hmenu, id, fchecked, fby pos)
This checks a menu item identified by id. The fchecked variable should be either TRUE or FALSE
(whether the item should be checked or unchecked) and by _pos indicates whether the id indicates the
position (TRUE) or the actual identifier.
_wpi_enablemenuitem(hmenu, id, fenabled, fby pos)

Similar to _wpi_checkmenuitem except it indicates whether the item should be enabled (TRUE) or
grayed (FALSE).

Once again, thisis only a subset of the available menu functions.

1.23 Other Platform Considerations

Thereisagood possibility that the Windows program being converted to PM has already been converted to
32 or 64 bit Windows (or will be converted to 32 or 64 bit Windows). Furthermore, thereis the possibility
that a PM application is desired for both 16 and 32 bit platforms. These can produce somewhat precarious
situations; however, there should not be too many problems if the user is careful. To begin with,
wpitypes.h includes wil63264.h if compiling for Windows and pm1632.h if compiling for PM. These
header files contain macros which trand ate between 16 and 32 and 64 bit Windows; and 16 and 32 bit PM.

Where possible, if adding to WPI the user should be certain that the Windows version will be compatible

with wi163264.h and the PM version with pm1632.h. This means for example, that it may be appropriate
for aWPI macro on the Windows side to refer to another macro defined in wi163264.h.

1.24 Adding To WPI

A few considerations should be made when modifying WPI.

Note first of all that all references to malloc should use the _wpi_malloc symbol since the user may decide
to define their own memory allocating routine.

Remember that if aroutine is changing there could be several parties affected by the change.

Adding To WPI 27

Open Watcom Windows Programming Interface (WPI)

When adding routines, be sure to consider how the code may affect 32 or 64 bit Windows or may be
different for 16 and 32 bit PM. Be sure to check wi163264.h and pm1632.h to make sure one of the
contained macrosis not needed. It is best after adding aroutine to WPI to create the library for all of 16
and 32 and 64 bit Windows, and 16 bit PM, and 32 bit PM, even if you are not using all levels.

One should be certain when adding macros to WPI that no size values are hard coded. Whenever possible
the sizeof operator should be used since structures may be different sizesin 16 and 32 and 64 bit Windows;
and 16 and 32 bit PM.

When using macros be generousin the use of parentheses. Bracket pointers and structuresin case
expressions are passed to the macros. In general, if the macro requires more than 1 line of code or if the
routine needs to return avalue, add the routine to the library.

28 Adding To WPI

