### **High Integrity Software for CubeSats and Other Space Missions**

**Copyright 2015 Carl Brandon** 

Dr. Carl Brandon & Dr. Peter Chapin

Vermont Technical College

Randolph Center, VT 05061 USA


carl.brandon@vtc.edu

+1-802-356-2822 (Voice)

http://www.cubesatlab.org



### CubeSat Lab



### SPARK/Ada is used in:

#### **Commercial aviation:**

- Rolls-Royce Trent jet engines
- ARINC ACAMS system

### Military aviation:

- EuroFighter Typhoon
- Harrier GR9
- AerMacchi M346
- Lockheed Martin C130J

Air-traffic management: (UK NATS iFACTS system)

Rail: (numerous signaling applications)

Medical: (LifeFlow ventricular assist device)

### Our current SPARK 2005 CubeSat software:

- 5991 lines of code
- 4095 lines of comments (2843 are SPARK annotations)
- a total of 10,086 lines (not including blank lines)
- The Examiner generated 4542 verification conditions
- all but 102 were proved automatically (98%)
- we attempted to prove the program free of runtime errors
- which allowed us to suppress all checks
- The C portion consisted of 2239 lines (including blank lines)
- Additional provers in SPARK 2014 would allow 100%
   proofs
   Brandon & Chapin IAC 2015

### Our new SPARK 2014 CubedOS CubeSat software:

- General purpose CubeSat software system
- Written in SPARK/Ada & proven free from runtime errors
- Currently in development for use in our Lunar IceCube flight software
- Can integrate existing Ada or C runtime libraries
- Uses a Low Level Abstraction Layer (LLAL)
- LLAL allows running on bare hardware, or OS such as Linux or VxWorks, easily modified for new hardware
- Provides inter module communication
- All modules are completely independent

### Our new SPARK 2014 CubedOS CubeSat software:

- An asynchronous message passing system with mailboxes. This, together with the underlying Ada runtime system constitutes the "kernel" of CubedOS.
- A runtime library of useful packages, all verified with SPARK.
- •A real time clock module.
- •A file system interface.
- •A radio communications interface.
- •Modules providing support for CCSDS (Consultative Committee for Space Data Systems) protocols.
- A general driver model that allows components to communicate with drivers fairly generically

# CubedOS provides several advantages over "home grown" frameworks:

- The message passing architecture is highly concurrent and allows many overlapping activities to be programmed in a natural way.
- For example, our implementation of the CCSDS File Delivery Protocol (CFDP) used in the Deep Space Network takes advantage of this.
- The architecture provides a lot of runtime flexibility; programs can adapt their communication patterns at runtime.
- The architecture is consistent with the restrictions of Ada's Ravenscar profile (for safe concurrency).

### **CubedOS:**

- CubedOS is an ongoing effort and should be considered experimental at this time.
- However, we hope to refine the architecture and implement enough non-trivial services to make CubedOS useful to other groups.
- Our long term goal is to distribute CubedOS to others working on CubeSat software or, for that matter, other similar embedded systems.

# Some errors that verification condition proofs prevent with SPARK/Ada:

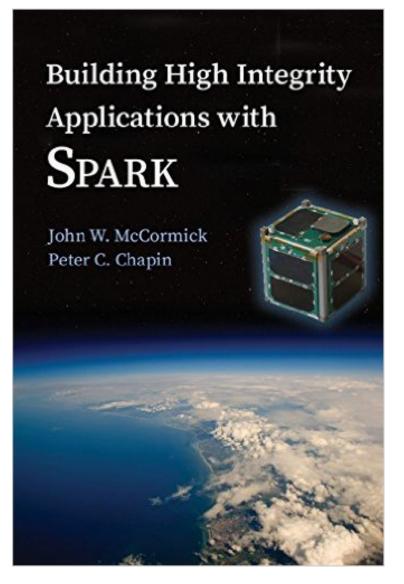
- array index out of range
- type range violation (see Ariane 5 below)
- division by zero
- numerical overflow (see Boeing 787 below)

# Some examples of SPARK annotations (which are Ada comments):

```
--# global in out Counter;
--# derives Counter from Counter, Table, Value &
--# Found, Index from Table, Value;
--# pre Counter < Integer'Last;
--# post Found -> (Table(Index) = Value and
Counter = Counter~ + 1);
```

- -- precedes an Ada comment
- -- # indicates a SPARK annotation
- indicates the initial value

### **Ariane 5 initial flight failure:**


- Software reused from Ariane 4, written in Ada
- The greater horizontal acceleration caused a data conversion from a 64-bit floating point number to a 16-bit signed integer value to overflow and cause a hardware exception.
- Efficiency considerations had omitted range checks for this particular variable, though conversions of other variables in the code were protected.
- The exception halted the reference platforms, resulting in the destruction of the flight.
- Financial loss close to \$500,000,000.
- SPARK/Ada would have prevented this failure

### Boeing 787 generator control computer:

- There are two generators for each of two engines, each with its own control computer programmed in Ada
- The computer keeps count of power on time in centiseconds in a 32 bit register
- Just after 8 months elapses, the register overflows
- Each computer goes into "safe" mode shutting down its generator resulting in a complete power failure, causing loss of control of the aircraft
- The FAA Airworthiness Directive says to shut off the power before 8 months as the solution
- SPARK/Ada would have prevented this

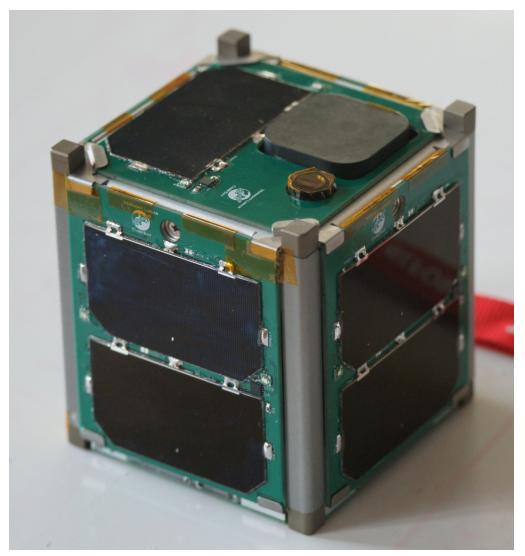



### A SPARK 2014 book is now available:



Brandon & Chapin - IAC 2015

#### **VERMONT TECH**

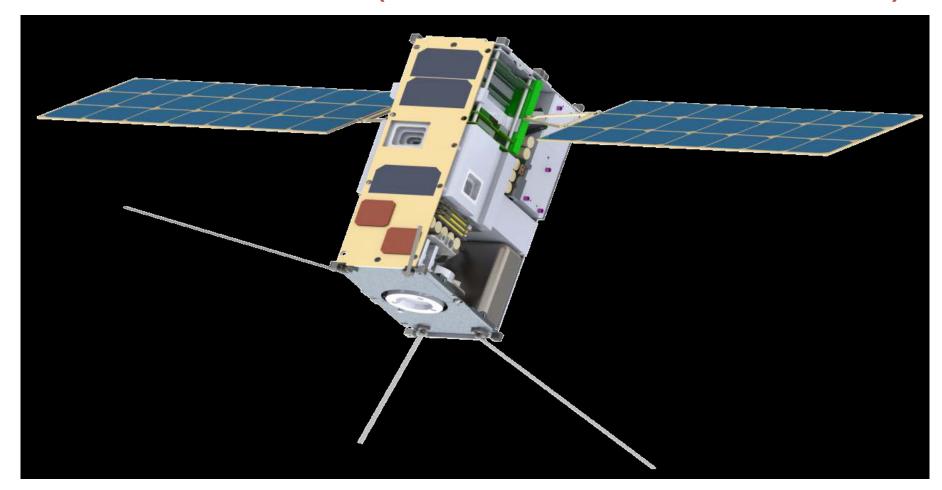

### Vermont Lunar CubeSat



Clouds over the ocean, June 2015.

Brandon & Chapin - IAC 2015

# Vermont Lunar CubeSat VERMONT TECH




Vermont Lunar CubeSat (10 cm cube)

Brandon & Chapin - IAC 2015

#### VERMONT TECH

## Lunar IceCube (10cm x 20cm x 30cm)



Lunar IceCube 6U CubeSat, Morehead State University, PI., Goddard (BIRCHES IR Spectrometer), JPL (Iris 2 data & nav radio) & Vermont Tech (Flight software). Busek ion drive with 1.5 kg Iodine propellant.