
9

Authorization in Trust Management: Features and Foundations

PETER C. CHAPIN, CHRISTIAN SKALKA, and X. SEAN WANG

University of Vermont

Trust management systems are frameworks for authorization in modern distributed systems, allowing re-
motely accessible resources to be protected by providers. By allowing providers to specify policy, and access
requesters to possess certain access rights, trust management automates the process of determining whether
access should be allowed on the basis of policy, rights, and an authorization semantics. In this paper we survey
modern state-of-the-art in trust management authorization, focusing on features of policy and rights lan-
guages that provide the necessary expressiveness for modern practice. We characterize systems in light of a
generic structure that takes into account components of practical implementations. We emphasize systems
that have a formal foundation, since security properties of them can be rigorously guaranteed. Underlying
formalisms are reviewed to provide necessary background.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—Security
and protection

General Terms: Security, Design, Languages

Additional Key Words and Phrases: Distributed authorization, trust management systems

ACM Reference Format:
Chapin, P. C., Skalka, C., and Wang, X. S. 2008. Authorization in trust management: Features and
foundations. ACM Comput. Surv., 40, 3, Article 9 (August 2008), 48 pages DOI = 10.1145/1380584.1380587
http://doi.acm.org/10.1145/1380584.1380587

1. INTRODUCTION

Distributed applications that span administrative domains have become commonplace
in today’s computing environment. Electronic commerce, high performance scientific
computing, groupware, and multimedia applications all require collaborations between
distinct social entities. In such systems each administrative domain, also called a
security domain, controls access to its own resources and operates independently of
other administrative domains. The problem of how to best specify and implement
access control in such an environment has been a topic of considerable research.
To address this problem the idea of trust management was introduced [Blaze et al.
1996] and subsequently developed by many authors, providing frameworks in which

This research was sponsored by the United States Air Force Office of Scientific Research (AFOSR).
Authors’ addresses: P. C. Chapin, University of Vermont, Department of Computer Science, Burlington, VT
05405; email: pchapin@cs.uvm.edu; C. Skalka, University of Vermont, Department of Computer Science,
Burlington, VT 05405; email: skalka@cs.uvm.edu; X. S. Wang, University of Vermont, Department of Com-
puter Science, Burlington, VT 05405; email: xywang@cs.uvm.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c©2008 ACM 0360-0300/2008/08-ART9 $5.00. DOI 10.1145/1380584.1380587 http://doi.acm.org/10.1145/

1380584.1380587

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:2 P. C. Chapin et al.

entities can specify independent access control policies that are enforced upon access
request.

At the heart of trust management systems is the authorization procedure, which
determines whether resource access should be granted or not based on a number of
conditions. The semantics of authorization provide meaning to the features supported
by trust management systems, for both the policy maker and the resource requester.
While a number of techniques have been proposed to characterize authorization in
trust management systems, we argue that the most promising are those based on rig-
orous formal foundations. This argument is not new, in fact it has motivated trust
management research since its inception [Woo and Lam 1993]. In a security setting,
entities should be able to specify policies precisely, to have an absolutely clear idea of
the meaning of their policies, and to have confidence that they are correctly enforced by
authorization mechanisms. Formally well-founded trust management systems achieve
this, providing a setting in which reliability can be rigorously established by math-
ematical proof. In particular, various logics have served as the foundation for trust
management [Abadi 2003; Bertino et al. 2003]. In this article we survey state-of-the-
art in trust management authorization, with an emphasis on formally well-founded
systems. These systems are compared to each other with respect to desirable high-level
features of trust management.

Our focus is the foundations and features of trust management systems, not their
application, though we note that trust management systems have been shown to enforce
security in many real applications. For example, the KeyNote system has been shown
capable of enforcing the IPsec network protocol [Blaze et al. 2002, 2003]. SPKI/SDSI has
been used to provide security in component based programming language design [Liu
and Smith 2002]. Cassandra has been examined in the context of the United Kingdom’s
proposed nationwide electronic health records system [Becker and Sewell 2004b]. In
addition, the Extensible Access Control Markup Language (XACML) [OASIS 2006a]
and the Security Assertion Markup Language (SAML) [OASIS 2006b], both OASIS
standards, define XML policy and assertion languages that makes use of many trust
management concepts.

1.1. Authorization Frameworks

The trust management systems we survey are primarily concerned with authoriza-
tion, as opposed to authentication. The latter addresses how to determine or verify the
identity of actors or message signers in a distributed transaction with a high degree
of confidence. Authorization, on the other hand, is based on calculi of principals whose
identities are taken for granted. Although any real implementation of an authorization
system will rely on authentication to establish these identities, and key-to-identity bind-
ings may even have an abstract representation in the system, authorization generally
treats authentication and public key infrastructure as orthogonal issues. Authorization
is more properly concerned with nontrivial access control policies—how to specify them,
what they mean, and how to endow trusted principals with the credentials necessary
to satisfy them.

Authorization in trust management systems is more expressive than in traditional
access control systems such as role based access control (RBAC) [Sandhu et al. 1996]. In
such simpler models, access is based directly on identities of principals. But in a large
distributed environment such as the Internet, creating a single local database of all
potential requesters is untenable. Where there are multiple domains of administrative
control, no single authorizer can be expected to have direct knowledge of all users of
the system. Furthermore, the Internet is a highly dynamic and volatile environment,
and no single entity can be expected to keep pace with changes in an authoritative

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:3

manner. Finally, basing authorization purely on identity is not a sufficiently expressive
or flexible approach, since security in modern distributed systems utilizes more sophis-
ticated features (e.g., delegation) and policies (e.g., separation of duty [Simon and Zurko
1997]). These problems are addressed by the use of trust management systems. We now
return to some of the applications mentioned already, to illustrate how authorization
in trust management systems is suited to enforcing security in practical computing
scenarios.

IPsec. Blaze and Ioannidis [Blaze et al. 2002] describe an extension to the IPsec ar-
chitecture that uses KeyNote to check if packet filters proposed by a remote host comply
with a local policy for the creation of such filters. This allows a system administrator to
prevent an attacker from negotiating a secure connection and then using that connec-
tion to attack vulnerable services. This application is an instance of the more general
idea of using a trust management system for firewall management.

Web Page Content Ratings. Several authors describe the use of trust management
systems to implement Web page content rating schemes [Gunter et al. 1997; Chu et al.
1997]. This is of significant practical interest; the World Wide Web Consortium has con-
sidered using trust management concepts in its Platform for Internet Content Selection
[Resnick and Miller 1996]. In a rating scheme a client delegates the authority to rate
Web pages to a suitable ratings server. The server issues certificates that bind a Web
page (via its hash value) to a rating. When a page is fetched, the Web server delivers
this certificate to the browser where the browser’s policy is consulted to determine if
the page should be displayed.

Medical Records. Several trust management systems have been applied to main-
taining integrity and privacy in electronic health records [Bacon et al. 2002; Becker
and Sewell 2004b], a topic of considerable importance in modern health care [Office
of Technology Assessment 1993]. Security in this setting involves policies spanning
many loosely coupled domains such as clinics, hospitals, laboratories, and emergency
services.

1.2. Goals and Outline of the Paper

A summary and comparison of the features and formal underpinnings of authorization
procedures in trust management systems is a primary goal of this paper, grounded
in a review of their foundations in authorization logics such as ABLP [Abadi et al.
1993]. This summary provides a useful explanation and overview of modern state of
the art in trust management authorization technology. Another contribution of this sur-
vey is the characterization of authorization frameworks as systems that include other
components in addition to the core authorization semantics. This distinguishes our pre-
sentation from a previous survey of authorization logics [Abadi 2003]. It is important
to consider these components, since some features of trust management systems may
be reflected in them rather than in the authorization semantics, for example certificate
expiration dates may be checked when parsing wire format certificates but ignored
by the authorization semantics. This also sheds light on how much formal support is
provided for these features in various systems. We summarize the components of trust
management systems, and compare them in light of which features are supported by
which components.

Because trust management is a broad and active field, it is important to restrict the
scope of our survey to provide sufficient depth as well as breadth. As the title suggests,
we are mainly concerned with the semantics and implementation of authorization in
trust managements systems, versus other components such as certificate storage and
retrieval. We delineate our scope more precisely below in Section 2.1.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:4 P. C. Chapin et al.

The remainder of this survey is organized as follows. In Section 2 we introduce impor-
tant concepts and terminology, summarize the method we use to compare and contrast
various systems, and introduce a running example. In Section 3 we highlight several
features offered by trust management systems. Section 4 reviews in more detail the
logical basis of trust management. Section 5 reviews several trust management sys-
tems with a focus on those that are logically well founded. Section 6 gives an overview
of trust negotiation, an important component of some trust management applications.
Finally we conclude in Section 7.

2. OVERVIEW

In this section we provide background in trust management systems for the general
reader. We also clarify which trust management system components are relevant to the
authorization decision—there turn out to be some important subtleties in this regard.
In light of the structure of authorization decisions so described, we outline our approach
to comparing trust management systems. We also provide a longer running example,
which serves to illustrate the concepts introduced and later serves as an explicit point
of comparison for the systems we survey.

2.1. Components of Full Implementations

Trust Management Systems (TMSs) in practice comprise a number of functions and
subsystems, which we divide into three major components: the authorization decision,
certificate storage and retrieval, and trust negotiation. Authorization decisions are rele-
vant to the elements and semantics of the access control decision itself. Certificate stor-
age and retrieval is relevant to the physical location of certificates that are the low-level
representation of access control elements such as credentials and policies. For exam-
ple, systems have been proposed for storing SPKI certificates using DNS [Nikander and
Viljanen 1998] and for storing SDSI certificates using a peer-to-peer file server [Ajmani
et al. 2002]. Trust negotiation [Winsborough et al. 2000; Yu et al. 2000; Seamons et al.
2001; Yu et al. 2001; Winsborough and Li 2002; Winsborough and Li 2004] is necessary
for access control decisions where some elements of access policies or the credentials
used to prove authorization with those polices should not be arbitrarily disclosed. For
example, in Winsborough et al. [2000] a scheme is proposed whereby access rights held
by requesters are protected by their own policies, and both authorizers and requesters
must show compliance with policies (i.e., negotiate) during authorization. We provide a
brief summary and overview of trust negotation in Section 6, to provide a more complete
view of trust management functionality and challenges in modern practice.

The importance of these other components notwithstanding, in this survey our focus
will be on authorization decisions. This is because the authorization decision is the basis
of any trust management system. Furthermore, not all the systems proposed in the lit-
erature have been developed sufficiently to include certificate storage implementations,
nor trust negotiation strategies in the presence of confidentiality. Focusing on autho-
rization decisions allows us to sufficiently narrow our scope, and thoroughly review
components that endow systems with their characteristic features. When we say that
we consider only those TMSs with a formal foundation in this survey as in Section 1,
we mean that the authorization decision is based on a mathematically well-founded
semantics of some sort, for example propositional logic or relational algebra.

2.2. Elements of Authorization: Glossary

To clarify the remaining presentation and identify fundamental elements of trust man-
agement authorization decisions, we now provide a glossary of relevant terms. More

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:5

in-depth discussion of these terms occurs throughout the rest of the article; this section
is intended as a succinct reference.

Entity: an individual actor in a distributed system, also frequently called a principal.

Resource: anything that a local system might regard as worthy of access control—file
access, database lookup, web browser display area, etc.

Policy: a specification of rules for accessing a particular resource. Policy is usually
defined locally at least in part, but TMSs sometimes allow policy to be defined nonlocally
as well.

Authorizer: the local authority that protects a resource, by automatically allowing
access only after an appropriate proof of authorization has been shown. Authorizers
also specify policy.

Requester: an entity (usually nonlocal) seeking to access a resource.

Attribute: a property of interest in some security domain, for example a role mem-
bership.

Credential: endows entities with certain attributes. Local policy usually specifies that
requesters must be endowed with certain attributes before resource access is allowed,
so credentials are essential to establish access rights to resources.

Issuer: the authority that issues a particular credential.

Certificate: a certified wire format representation of a credential.

Certificate revocation: the removal of a requester’s credential, typically by the issuer.

Credential negation: Policy languages sometimes allow policy makers to specify that
a credential not be held. Logically, this is expressed as credential negation.

Delegation of authority: the (usually temporary) logical transfer of authority over
policy from one entity to another.

Delegation of rights: the (usually temporary) logical transfer of an access right from
one entity to another.

Authorization decision: the determination of whether a given requester possesses the
necessary attributes to access a particular resource as mediated by local policy, based
on a preferably well-defined semantics of policies and credentials.

Authorization mechanism: the automated means by which an authorization decision
is reached. Depending on context this refers to an algorithm or a module of software
executed by the authorizer.

Core authorization semantics: the mathematically well-founded theory that consti-
tutes the meaning of authorization decisions.

Role: an attribute that requesters can activate when requesting authorization.
Authorization is often based on the role a requester is able to assume.

Role membership: an entity is said to be a member of a role if that entity is among
the group of entities that can activate the role.

Threshold policy: threshold policies require a minimum specified number of entities to
agree on some fact. Threshold policies usually support separation of duty authorization
schemes [Li et al. 2002].

Domain: the security locality administered by a given authority.

Name space: the names defined in a particular domain.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:6 P. C. Chapin et al.

Fig. 1. Structure of an authorization decision.

2.3. Structure of an Authorization Decision

The subsystem of a trust management system that constitutes its authorization deci-
sion includes more than just a core authorization semantics. By system we mean the
set of components that provide an implementation, not just an abstract specification of
the authorization semantics. This distinguishes our presentation from a survey of au-
thorization logics [Abadi 2003]. In this section we identify the components of a generic
authorization decision and characterize its structure. This provides a better under-
standing of authorization decisions in general, and also a means to better categorize
features of particular systems later in the paper.

In Figure 1 we illustrate the components of a generic authorization decision. This
graphic is meant as a rough sketch, not a formal specification, and not all TMSs con-
tain all the components we describe. Nevertheless, the illustration is a useful tool for
categorizing systems. The graphic is read top to bottom, and shows the flow of informa-
tion through a particular authorization process, with output computed in response to
an authorization request. The diagram is intentionally vague about the nature of the
output: in the simplest case, the output is a simple “yes” or “no” decision as to whether
or not to grant resource access, but in systems that support trust negotiation, the out-
put could be a partial answer that provides direction for additional input. This issue is
better discussed in Section 6. Within the scope of this survey, we mainly consider the
case where the output is a Boolean value, hence our terminology authorization decision.
The core authorization semantics L implement the authorization decision, and may be
a specialized inference system, or a proof search in a generic programming logic such
as Prolog, for example. The authorization semantics takes as input parameters from
C, P , and Q , which we now describe in detail.

Local policy P is defined in some specification language, that is transformed into
terms understood by the core semantics by the transformation function TP . This trans-
lation may just consist of parsing from concrete to abstract syntax, or TP may compile
statements in a high-level policy language into lower level terms for the core semantics.
For example, TPL [Herzberg et al. 2000] provides an XML-based “trust policy language”
that is compiled into Prolog.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:7

Credentials for a particular requester may be defined as part of local policy. But an
earmark of TMSs is their ability to extend local policies with credentials conferred by
nonlocal authorities. This is realized as set of available certificates C that are trans-
formed by a function TC into credentials defined in terms understood by the core se-
mantics. The transformation TC provides a level of indirection allowing systems to
choose between various certificate wire formats and PKIs, though X.509 [International
Telecommunications Union 2000] or WS-Security [OASIS 2006c] are obvious choices
for Internet and Web Services settings.

The transformation TC also has special significance for the semantics of TMSs, since
it is often not a straight parsing or compilation procedure. Rather, certificates may be
rejected, or their credential representations enhanced, by certificate validity informa-
tion. Validity information is external to the authorization semantics in some systems,
but internal to it in others, so we represent the certificate validation component of the
authorization decision V as dashed box. For example, any given certificate c ∈ C al-
most always defines a finite lifetime for the certification, also called a validity interval
[Winslett et al. 1997]. Some TMSs such as PCA [Bauer et al. 2002] support lifetime
information in the authorization semantics, and in such a case TC can map the life-
time information in c to its credential representation. However, other systems do not
represent lifetimes in the authorization semantics per se (that is, in L), and in such
cases the onus is on TC to filter out expired certificates. For example, SPKI provides a
mechanism for certificates to be checked online to see if they have been revoked [Elli-
son et al. 1999], but this mechanism is not part of SPKI’s formal structure. This means
on the one hand SPKI’s revocation policy cannot be expressed in the SPKI policy lan-
guage itself, nor enforced by its authorization semantics. On the other hand it allows
a SPKI implementation to apply a different revocation policy without changing their
underlying logical structure, and in general the difficulties associated with formalizing
certificate revocation [Stubblebine 1995; Stubblebine and Wright 1996; Rivest 1998]
can be avoided, while a means for certificate revocation in the system is still available.

In addition to policy P and certificates C, the authorization decision takes as input
a question or goal Q that is specialized for a particular access request. As an example,
some trust management systems, such as SDSI and RT0 [Li et al. 2002; Li and Mitchell
2003b], define roles. These systems allow one to prove that a particular principal is in
a particular role. Resources are associated with roles, and the authorization decision is
based on whether the requester is a member of the relevant role. The transformation
TQ translates the goal into terms understood by the core semantics. Finally, the core
semantics combines policies and credentials established by input certificates to deter-
mine whether the authorization goal is satisfied, and outputs “yes” or “no” based on
this determination.

However, as denoted by the dotted line, some systems also provide a “feedback” mech-
anism D between the semantics of authorization and certificate collection. Rather than
merely answering “no” outright in case an authorization goal cannot be reached, the
system might identify credentials that are missing and attempt to collect them. This
functionality is sometimes called distributed certificate chain discovery [Li et al. 2003]
or policy directed certificate retrieval [Gunter and Jim 2000b]. Whatever the specifics,
it is clear that this functionality makes for a more flexible system in terms of certificate
distribution and storage, but presents a significant challenge to system designers.

2.4. Comparing Trust Management Systems

A basis for comparing the features and functionality supported by trust management
systems is fundamental to our survey. Since the systems we consider have a formal
foundation, some sort of formal comparison seems appealing. Indeed, in Weeks [2001]

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:8 P. C. Chapin et al.

a framework is presented for describing a variety of authorization semantics, including
KeyNote and SPKI/SDSI. This uniform specification of various semantics allows them
to be compared on a completely formal basis, so for example it can be shown how
credentials in one system can be faithfully encoded in another.

However, as we observe above, features of TMS authorization decisions are not en-
tirely realized in the authorization semantics L, but may be realized in other compo-
nents, as for example certificate revocation is sometimes implemented as part of the
translation TC from certificates to credentials. Since the definition of these components
is not included in the formal specification of the authorization semantics, these system
features can only be compared on an informal basis. We will therefore compare systems
in light of the features they possess. In addition, we will observe whether the features
are realized formally as part of the authorization semantics, or whether they are im-
plemented by some other system component; this will clarify in what sense particular
TMSs “possess” a certain feature. As a concrete point of comparison, we will also show
how various systems encode the running example introduced next.

2.5. A Running Example

Suppose Alice is a cancer patient at a hospital being treated by Bob, a doctor. Alice
grants Bob access to her medical records and also allows Bob to delegate such access
to others as he sees fit.

Bob defines his team as a particular collection of individuals together with the peo-
ple supporting them. A person supporting one of Bob’s team members becomes a team
member herself, so Bob’s definition is open-ended and can potentially refer to a large
number of people he does not know directly. Here we assume that Bob’s team includes
both medical and nonmedical personnel (for example other doctors as well as reception-
ists). Bob then delegates his access to Alice’s medical records to only the medical staff
on his team—that is, people on his team who are also on the medical staff, as opposed
to, for example, administrative staff.

Suppose further that Bob consults with another doctor, Carol, on Alice’s condition.
Bob modifies his policy to add Carol temporarily to his team. Carol orders some blood
tests that are then analyzed by Dave, a lab technician and one of Carol’s support people.
The policy described allows Dave to access Alice’s medical records, for example to input
the test results.

Dave signs the test results when he uploads them to the hospital database. He also
includes appropriate credentials so that the database will authorize his access. The
precise credentials needed depend on the trust management system in use and on
the way credentials and policy statements are distributed and located by that system,
however we imagine that these credentials should be able to express the following
relations in some form:

—Bob has delegated his access to Alice’s medical records to people on his team who are
members of the medical staff.

—Carol is on Bob’s team.
—If someone is on Bob’s team, than any person on their support staff is also on Bob’s

team.
—Dave is one of Carol’s support people.
—Dave is a member of the hospital’s medical staff.

On the basis of these relations, one may deduce that Dave has access to Alice’s medical
records. Realistically, Dave may not know to submit all of this information, or have any
knowledge of Bob’s policy. If the trust management system used by the hospital supports

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:9

distributed credential chain discovery, the hospital database would locate Bob’s policy
automatically in order to complete the authorization decision.

Complex access control scenarios such as this are difficult to express using traditional
methods. Neither Alice nor Bob realize that Dave needs to be granted access to Alice’s
medical records. Although Dave’s role as one of Carol’s support people might be enough
to grant him access to the records of Carol’s patients, Dave’s relationship to Bob, and
hence to Alice, is indirect; it is Bob’s act of adding Carol to his team that causes Dave
to gain access to Alice’s records. Observe also that Bob’s team policy is recursive. A
primary purpose of trust management systems is to provide language features and
authorization semantics that support such complex policies.

3. FEATURES OF TRUST MANAGEMENT SYSTEMS

In this section we describe and discuss features relevant to trust management. We do
not intend this listing to be exhaustive, rather we intend to focus on features that are
generally considered important for trust management applications. Our goal is to more
deeply characterize trust management systems, and to provide a means for comparison
of various systems later in the paper.

We name and discuss features in the following, commenting on their relevance to
trust management and noting important implementation issues. Particular trust man-
agement systems will be discussed in detail in Section 5, but in anticipation of that
and in order to provide a thumbnail reference, Table I and Table II summarize feature
sets for the collection of trust management systems we survey. Recall from the previous
section that we understand trust management systems to include more than just the
core authorization semantics, but also ancillary components such as translation from
certificates to credentials. Thus, some systems are said to possess features that are re-
alized in ancillary components instead of the core semantics. Also, while some systems
are not explicitly designed to support certain features, their semantics is sufficiently
expressive to simulate them, and such instances are listed in the table. The order in
which the systems are listed is intended to follow an approximate chronological order
of their development. The order is approximate because some of the systems were de-
veloped over a considerable span of time and it is difficult to specify precisely when
they reached a mature state.

3.1. Discussion of Features

We now briefly describe trust management features at a conceptual level. Specific ex-
amples of these features in systems are given in Section 5.

3.1.1. Formal Foundation. Since authorization systems are used in security-sensitive
contexts, mathematically precise descriptions of their behavior and formal assurances
of their correctness is essential. A variety of formalisms serve as effective foundations
for the definition of trust management authorization semantics. As we describe later in
this survey, these can be divided into three main categories: logics, database formalisms,
and graph theory.

In the case of trust management systems based on logic, the authorization problem
is expressed in terms of finding a proof of a particular formula representing successful
resource access, with a collection of suitable axioms representing policy. Credentials
relevant to a particular decision become additional hypotheses to be used in the proof.
Trust management systems based on database formalisms (e.g., relational algebra) see
the authorization decision as a query against a distributed database. The certificates
issued by a principal contain, in effect, tuples from relations that a principal controls.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:10 P. C. Chapin et al.

T
a

b
le

I.
S

u
m

m
a

ry
o

f
Tr

u
s
t

M
a

n
a

g
e

m
e

n
t

S
y
s
te

m
s,

P
a

rt
I

P
ol

ic
yM

ak
er

K
ey

N
ot

e
S

P
K

I/
S

D
S

I
R

E
F

E
R

E
E

Q
C

M
O

A
S

IS
F

or
m

al
F

ou
n

da
ti

on
G

ra
ph

th
eo

ry
G

ra
ph

th
eo

ry
S

et
th

eo
ry

.
F

ir
st

-o
rd

er
lo

gi
c

N
ot

fo
rm

al
iz

ed
R

el
at

io
n

al
al

ge
br

a
F

ir
st

-o
rd

er
lo

gi
c

A
u

th
or

iz
at

io
n

P
ro

ce
du

re
G

ra
ph

se
ar

ch
G

ra
ph

se
ar

ch
T

u
pl

e
re

du
ct

io
n

A
rb

it
ra

ry
D

is
tr

ib
u

te
d

da
ta

ba
se

qu
er

y
U

n
sp

ec
ifi

ed

A
u

th
or

iz
at

io
n

C
om

pl
ex

it
y

U
n

de
ci

da
bl

e
U

n
de

ci
da

bl
e

P
ol

yn
om

ia
l

P
ot

en
ti

al
ly

u
n

de
ci

da
bl

e
U

n
pu

bl
is

h
ed

U
n

de
ci

da
bl

e

P
u

bl
ic

K
ey

In
fr

as
tr

u
ct

u
re

E
xt

er
n

al
E

xt
er

n
al

E
xt

er
n

al
In

te
rn

al
In

te
rn

al
E

xt
er

n
al

(u
n

de
fi

n
ed

)
T

h
re

sh
ol

d
P

ol
ic

ie
s

Y
es

Y
es

Y
es

N
o

N
o

N
o

L
oc

al
N

am
e

S
pa

ce
s

C
an

be
si

m
u

la
te

d
N

o
Y

es
N

o
Y

es
Y

es
R

ol
e-

B
as

ed
A

cc
es

s
C

on
tr

ol
C

an
be

si
m

u
la

te
d

C
an

be
si

m
u

la
te

d
Y

es
C

an
be

si
m

u
la

te
d

Y
es

Y
es

D
el

eg
at

io
n

of
R

ig
h

ts
Y

es
Y

es
Y

es
(b

oo
le

an
de

pt
h

)
Y

es
N

o
Y

es

C
er

ti
fi

ca
te

V
al

id
it

y
D

ep
en

ds
on

as
se

rt
io

n
la

n
gu

ag
e

In
te

rn
al

E
xt

er
n

al
In

te
rn

al
E

xt
er

n
al

In
te

rn
al

C
re

de
n

ti
al

N
eg

at
io

n
N

o
N

o
N

o
Y

es
N

o
N

o

C
re

de
n

ti
al

R
ev

oc
at

io
n

E
xt

er
n

al
E

xt
er

n
al

O
n

li
n

e
re

vo
ca

ti
on

ch
ec

k
E

xt
er

n
al

In
te

rn
al

In
te

rn
al

D
is

tr
ib

u
te

d
C

h
ai

n
D

is
co

ve
ry

N
o

N
o

N
o

Y
es

Y
es

N
o

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:11

T
a

b
le

II
.

S
u

m
m

a
ry

o
f

Tr
u

s
t

M
a

n
a

g
e

m
e

n
t

S
y
s
te

m
s,

P
a

rt
II

P
C

A
T

P
L

S
D

3
B

in
de

r
R

T
C

as
sa

n
dr

a
P

R
O

T
U

N
E

F
or

m
al

F
ou

n
da

ti
on

H
ig

h
er

-o
rd

er
lo

gi
c

P
ro

lo
g

D
at

al
og

D
at

al
og

S
et

th
eo

ry
.

D
at

al
og

C

D
at

al
og

C
S

tr
at

ifi
ed

lo
gi

c
pr

og
ra

m
s

A
u

th
or

iz
at

io
n

P
ro

ce
du

re
N

on
e

N
ot pu

bl
is

h
ed

D
at

al
og

qu
er

y
D

at
al

og
qu

er
y

G
ra

ph
se

ar
ch

.
D

at
al

og
qu

er
y

M
od

ifi
ed

S
L

G
re

so
lu

ti
on

L
og

ic
pr

og
ra

m
ev

al
u

at
io

n
A

u
th

or
iz

at
io

n
C

om
pl

ex
it

y
D

ec
id

ab
le

pr
oo

f
ch

ec
ki

n
g

U
n

de
ci

da
bl

e
P

ol
yn

om
ia

l
P

ol
yn

om
ia

l
P

ol
yn

om
ia

l
D

ep
en

ds
on

co
n

st
ra

in
t

do
m

ai
n

P
ot

en
ti

al
ly

u
n

de
ci

da
bl

e

P
u

bl
ic

K
ey

In
fr

as
tr

u
ct

u
re

In
te

rn
al

E
xt

er
n

al
E

xt
er

n
al

E
xt

er
n

al
E

xt
er

n
al

E
xt

er
n

al
In

te
rn

al

T
h

re
sh

ol
d

P
ol

ic
ie

s
N

o
C

an
be

si
m

u
la

te
d

N
o

N
o

Y
es

(R
T

T
)

Y
es

C
an

be
si

m
u

la
te

d
L

oc
al

N
am

e
S

pa
ce

s
C

an
be

si
m

u
la

te
d

N
o

Y
es

Y
es

Y
es

Y
es

C
an

be
si

m
u

la
te

d
R

ol
e-

B
as

ed
A

cc
es

s
C

on
tr

ol
C

an
be

si
m

u
la

te
d

Y
es

C
an

be
si

m
u

la
te

d
C

an
be

si
m

u
la

te
d

Y
es

Y
es

C
an

be
si

m
u

la
te

d
D

el
eg

at
io

n
of

R
ig

h
ts

C
an

be
si

m
u

la
te

d
Y

es
(i

n
te

ge
r

de
pt

h
)

C
an

be
si

m
u

la
te

d
C

an
be

si
m

u
la

te
d

Y
es

(R
T

D
)

Y
es

C
an

be
si

m
u

la
te

d
C

er
ti

fi
ca

te
V

al
id

it
y

In
te

rn
al

E
xt

er
n

al
E

xt
er

n
al

E
xt

er
n

al
E

xt
er

n
al

In
te

rn
al

In
te

rn
al

C
re

de
n

ti
al

N
eg

at
io

n
N

o
Y

es
N

o
N

o
N

o
N

o
M

on
ot

on
ic

C
re

de
n

ti
al

R
ev

oc
at

io
n

M
on

ot
on

ic
re

vo
ca

ti
on

In
te

rn
al

E
xt

er
n

al
E

xt
er

n
al

E
xt

er
n

al
In

te
rn

al
E

xt
er

n
al

D
is

tr
ib

u
te

d
C

h
ai

n
D

is
co

ve
ry

N
o

Y
es

(a
d

h
oc

)
Y

es
N

o
Y

es
Y

es
Y

es

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:12 P. C. Chapin et al.

Trust management systems based on graph theory define the authorization decision
in terms of finding a path through a graph. The request is represented by a particular
node in the graph. Principals are also graph nodes and the certificates they issue denote
edges.

It is not unusual for a particular trust management system to be described by more
than one formalism. In fact, some aspects of trust management are more naturally
expressed using one formalism or another. Also, Datalog serves as both a database
formalism and a programming logic, and several trust management systems have been
specified in Datalog.

3.1.2. Authorization Procedure. Authorization Complexity. Trust management systems dif-
fer in exactly how the authorization decision is implemented. In a broad sense this is
due to differences in the way the systems are described; systems using the same style
of formalization tend to use similar authorization procedures. This is particularly evi-
dent among the systems using programming logics such as Datalog as both their formal
foundation and implementation. However, some differences between systems result in
significant differences in how authorization is computed even when the underlying for-
malism is the same, if certificate revocation is present in one system but not another for
example. In some cases no authorization procedure is given; the details of computing
authorization is entirely left to the implementors.

The computational complexity of the authorization decision is clearly of practical
interest. Authorization should be decidable and tractable, but there is a trade off be-
tween the expressiveness of the certificate and policy language and the complexity of
the authorization decision. For example, the systems that use Datalog with constraints
(DatalogC) can have various levels of computational complexity depending on the con-
straint domain used [Li and Mitchell 2003a]. Yet even trust management systems with
undecidable decision procedures can be potentially useful; realistic policies may be
decidable even if the general policy language is not.

3.1.3. Public Key Infrastructure (PKI). It is common for trust management systems to
treat keys directly as principals. This creates a conceptually clean design. In contrast
some systems regard the human or machine participants as the principals and encode a
relationship between principals and the keys that identify them. In the former case key
bindings are not represented in the authorization semantics, where in the latter case
they are. Although PKIs underpin the implementation of trust management systems,
the question here is: to what extent does a particular trust management system directly
concern itself with the details of key management.

3.1.4. Threshold and Separation of Duty Policies. Many systems support threshold poli-
cies, where at least k out of a set of n entities must agree on some point in order to
grant access. Threshold policies are appealing since agreement provides confidence in
situations wherein no single authority is trusted by itself. The concept of separation of
duty is related to threshold policies. In the case of a separation of duty policy entities
from different sets must agree before access is granted.

For example a bank might require that two different cashiers approve a withdrawal
(same set—threshold policy). The bank might also require that a cashier and a manager,
who are not the same person, approve a loan (different sets—separation of duty policy).
In general threshold policies and separation of duty policies cannot be implemented
in terms of each other, although some trust management systems provide support for
both [Li et al. 2002].

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:13

3.1.5. Local Name Spaces. It is desirable for trust management systems to allow each
administrative domain to manage its own name space independently. Requiring that
names be globally unique is problematic and, in general infeasible. Although there
have been attempts at creating a global name space [International Telecommunications
Union 2001], these attempts have at best only been partially successful. The ability to
reference non-local name spaces is also a keystone of modern trust management, in
that it allows local policy to consider requesters that may not be directly known to the
local system.

3.1.6. Role-Based Access Control. In a large system with many principals it is often
convenient to use role based access control (RBAC) [Ferraiolo and Kuhn 1992; Sandhu
et al. 1996]. In such a system roles are used to associate a group of principals to a set of
permissions. The use of roles simplifies administration since the permissions granted to
a potentially large group of principals are defined in a single place. RBAC is a conceptual
foundation of modern authorization technologies, so many trust management systems
provide features to support RBAC policies.

3.1.7. Delegation of Rights. All trust management systems allow an authorizer to del-
egate authority. In other words, an authorizer can specify third parties that have the
authority to certify particular attributes. We take this as one of the defining character-
istics of a trust management system. In many applications a requester will also want
to delegate some or all of his or her rights to an intermediary who will act on that
requester’s behalf.

Delegation of rights is important in a distributed environment. For example a re-
quest may be made to an organization’s front end system that accesses internal servers
where the request is ultimately processed. The classic three-tier architecture of web
applications follows this approach. In many environments the back end servers may
have their own access control requirements, in which case the requester will need to
delegate his or her rights to the front end system for use when making requests to the
internal servers.

Trust management systems differ in their support for rights delegation. Delegation
certificate forms may be formally provided, or delegation can be simulated via more
primitive forms. Also, delegation depth can be modulated in some systems—rather
than being purely transitive, delegation of rights may only be allowed to be transferred
between fixed n principals. In some cases rights can be delegated arbitrarily or not at
all. A system that has this latter feature is said to support boolean delegation depth.

3.1.8. Certificate Validity. Since an authorizer receives certificates from unknown and
potentially untrustworthy entities, the validity of those certificates must be checked.
Usually, signatures must be verified and the certificate must not have expired, since in
practice certificates will almost always have a finite lifetime to ensure that obsolete in-
formation cannot circulate indefinitely. In some systems certificate validity is explicitly
treated as part of the structure of the trust management authorization semantics—
the component L described in Section 2.3. In such cases sufficient expressivity may
exist in the policy language to specify authentication policies [Abadi et al. 1993], or,
in a simpler (and currently more popular) scenario, certificate lifetimes can be directly
represented in credentials and taken into account in policy [Bauer et al. 2002; Li and
Feigenbaum 2002; Skalka et al. 2007]. In other systems, certificate validity is defined
externally and checked as part of the translation of certificates into credentials—the
component TC—and not formally reflected in the authorization semantics [Ellison et al.
1999]. We note that it is a topic of lively debate whether authorizers [Rivest 1998] or

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:14 P. C. Chapin et al.

certificate authorities [McDaniel and Rubin 2001] should determine validity intervals
for authorization decisions.

3.1.9. Credential Negation. Policy languages sometimes allow policy makers to spec-
ify that a credential not be held. For example, access to a resource may require that
requesters not possess a credential endowing them with a felon role. In systems using
logic as a foundation for the semantics of authorization, this is expressed as creden-
tial negation. That is, authorization is predicated on the negation of a role attribute
expressed as a credential. Note that this makes the semantics nonmonotonic– as more
credentials (facts) are added to the system, it is possible that fewer authorizations suc-
ceed. As noted in Seamons et al. [2002], this makes credential negation a generally
undesirable feature, since nonmonotonic systems are potentially unsound in practice.
For example, if a certificate is not discovered due to a network failure, access might be
granted that would otherwise have been denied.

3.1.10. Certificate Revocation. Certificate revocation is similar to credential negation,
but allows previously granted access rights to be explicitly eliminated [Rivest 1998].
Like certificate validity, this can be implemented in the translation TC from certificates
to credentials. For example, in SPKI/SDSI [Ellison et al. 1999] online revocation lists
can be defined that filter out revoked certificates prior to embedding as credentials
for the authorization decision. At first glance it may appear that certificate revoca-
tion entails nonmonotonicity, as does credential negation. However, it has been demon-
strated that certificate revocation can encoded monotonically in both the Proof Carrying
Authorization framework [Bauer et al. 2002] and a logic-based PKI infrastructure [Li
and Feigenbaum 2002]; we describe how in Section 5.4.5. The technique points out a
relation between certificate revocation and certificate validity, in that monotonic re-
vocation can be based on lifetimes and the requirement to renew certificates. Various
high-level approaches to and nuances of certificate revocation are discussed in [Rivest
1998].

3.1.11. Distributed Certificate Chain Discovery. Where do certificates for a particular ac-
cess request come from? In the example in Section 2.5, it was assumed that the requester
presents all relevant certificates upon access request. It is also easy to imagine settings
in which authorizers maintain local databases of certificates. More generally, certifi-
cates could be stored anywhere in the network, as long as the local system has some way
of finding them. Of course, given the potentially enormous number of certificates on the
network, it is necessary to define some means of selectively retrieving only certificates
that might pertain to a particular authorization decision. This problem is sometimes
called distributed certificate chain discovery [Li et al. 2003] or policy directed certificate
retrieval [Gunter and Jim 2000b]. In both of these approaches the process of obtaining
certificates is formally well founded and not left to ad hoc techniques.

4. FOUNDATIONS OF AUTHORIZATION

Although trust management systems comprise a number of components as discussed
in Section 2.3, the heart of any system is its authorization semantics, denoted L in
Figure 1, where the authorization decision is realized. The semantic foundations of
authorization are well studied, having evolved from logical formalisms originally de-
veloped for verifying distributed authentication protocols [Burrows et al. 1990; Abadi
et al. 1993], and early work on access control as a distinct concern in distributed sys-
tems [Woo and Lam 1993]. While formalisms other than logic have been used to specify
authorization semantics, notably graph theory and relational algebra as discussed at

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:15

various points in this paper, logic is probably the most popular, and logical approaches
have had a broad impact on the foundations and practice of authorization and security
[Bonatti and Samarati 2003]. Thus, a review of logical foundations provides historical
perspective and insight into standard features and themes of authorization. To this end
we now review BAN [Burrows et al. 1990] logic, the so-called logic of authentication
[Abadi et al. 1993] which is commonly abbreviated ABLP, and aspects of programming
logics such as Prolog and Datalog that are relevant to the issue.

4.1. BAN Authentication Logic

The first thorough study of a logic for specifying and verifying security protocols was
presented in Burrows et al. [1990] where a logic, commonly called BAN logic, was in-
troduced. In that paper the authors analyze several authentication protocols, including
Kerberos, Andrew Secure RPC, Needham-Schroeder Public-Key, and X.509. Although
BAN was not intended as a foundation for authorization semantics, it is instructive
to observe how it became so. From an authorization perspective, BAN is historically
and technically significant because it introduces the ideas of representing beliefs, state-
ments, and capabilities of participants in a distributed protocol using a formal logical
framework.

BAN logic is a many-sorted modal logic that distinguishes between atomic principals
P and encryption keys K . Formulae are created from propositional conjunction along
with several additional constructs. These constructs include the following forms.

— P believes X : principal P might act as if statement X were true.
— P sees X : principal P has received a message containing statement X .
— P said X : at some point in the past (not necessarily during the current authenti-

cation session) principal P sent a message containing statement X .
— P controls X : principal P is an authority over X and should be trusted on it.
— fresh(X): statement X is fresh. It has not been asserted during any previous au-

thentication session.

— P
K←→ Q : principals P and Q can communicate using the shared key K .

—
K�−→ P : principal P has public key K . The private key corresponding to K is called

K −1.
— {X }K : statement X is encrypted under key K . A statement encrypted under a private

key is a signed statement.

BAN logic allows representation of statements a given principal says and believes as
well as statements over which a principal has authority; these same ideas are used in
authorization logics as well. In addition BAN logic allows one to talk about encryption
keys, incorporating key security into the logic.

Inference rules formally specify the proof theory of BAN language constructs. A sam-
pling of these inference rules is given in Figure 2.1 For example MESSAGE-MEANING-1 says
that if P shares a key K with Q , and P receives a message encrypted with K , then
P can conclude Q is the source of the message. The MESSAGE-MEANING-2 rule allows a
similar inference for signed messages. These rules form the connection between the
principals and the keys they use. Later authorization logics that consider interactions
of principals and keys use similar rules to characterize these interactions.

The JURISDICTION rule formalizes a notion of delegation of authority, an essential in-
gredient in all trust management systems. The rule says that if P regards Q as an

1The rule names in Figure 2 and Figure 3 have been made up by us to ease discussion.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:16 P. C. Chapin et al.

Fig. 2. Some inference rules of BAN logic.

authority over X and P believes Q is asserting X , then P will accept Q ’s authority
and believe X as well.

The SIGNATURE-CHECK rule encodes signature authentication and message encryption,
allowing one to unwrap a signed message. If P believes key K is Q ’s public key and
K successfully checks the signature on {X }K −1 , then P sees the message content X .
A similar rule exists for extracting the message content of a symmetrically encrypted
message {X }K . Inference rules that accept a message that P sees as a premise require
that message to be signed or encrypted. Since the details of key signatures and encryp-
tion are generally hidden from the authorization component of most trust management
systems as discussed in Section 1, these features of BAN make it more appropriate as
a logic of authentication.

As an example of representations in BAN logic, the statement:

A believes (A
Kas←→ S)

expresses A’s belief that she shares a key Kas with some authentication server S. The
statement:

A sees {A
Kab←→ B}Kas

represents a message sent to A containing a key intended to be shared between A and
B and encrypted using a key shared between A and some authentication server S. The
goal of the analysis might be to prove a formula such as

(A believes (A
K←→ B)) ∧ (B believes (A

K←→ B))

for some key K . Such a formula asserts that both A and B believe they have a key they
share with each other.

4.2. ABLP Distributed Authorization Logic

The logical basis of many trust management systems is due to a general calculus for
distributed access control called the logic of authentication and commonly abbreviated
ABLP logic [Abadi et al. 1993]. (ABLP is an acronym for the author list of the seminal
paper that develops the logic [Abadi et al. 1993]). ABLP develops many ideas introduced
with BAN logic, but is intended less as a low-level specification language for authenti-
cation protocols, and more as a logic for reasoning about access control in general. As
the authors discuss, this includes authorization issues—groups, roles, delegation, etc.
Hence, ABLP logic formalizes a rich authorization semantics, and has inspired much
subsequent development in trust management.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:17

Fig. 3. Some inference rules and axioms of ABLP logic.

Full ABLP logic is sufficiently expressive to be undecidable. However, Abadi et al.
[1993] describe a number of restrictions to ABLP logic that allow for decidable access
control decisions while still retaining enough expressivity to be useful. In practice, it
has been used to support access control in the Taos operating system [Wobber et al.
1993].

In ABLP logic principals P can be users, roles, machines, I/O channels, encryption
keys or any other convenient abstraction. In addition to atomic principals, denoted
A, B, C, etc., compound principals can constructed with the use of connectives:

—A ∨ B: this principal represents the group containing A and B.
—A ∧ B: this principal issues statements signed jointly by A and B.
—A|B: pronounced “A quoting B,” this principal issues statements said by A to origi-

nate from B.
—A forB: this principal represents A speaking on behalf of B, which is a stronger

notion than A|B.
—A asR: this principal represents A assuming the role R.

ABLP formulae s are then built from principals, standard logical connectives, and spe-
cial connectives for representing authorization concepts:

—p, ¬s, s ∧ s, s ⊃ s: propositional atoms, negation, conjunction, and implication.
—P1 ⇒ P2: pronounced “P1 speaks for P2”, this denotes that P1 speaks with all the

authority of P2.
—P says s: this denotes that P has uttered the statement s.

In addition to the usual inference rules of propositional logic, inference rules and
axioms are provided for the authorization-specific connectives, including those defined
in Figure 3. Notably, rule SPEAKSFOR says that if A speaks for B and A has asserted
some s, then implicitly B has also asserted s. Rule AS establishes that the principal
connective as can be defined as a derived form of (|). These rules together comprise a
proof theory, where consequences can be deduced from assumptions.

In particular, resources can be represented as atomic propositions priv, and access
to the resource can be granted if the associated proposition can be proved given as-
sumptions about policy and credentials. For example, with A controls s defined as
syntactic sugar for (A says s) ⊃ s, access control lists may be modeled as conjunctions
of assertions A controls priv. An access request for priv by A is represented as the
assumption � A says priv. Observe that assumptions � A says s and � A controls s
together imply � priv by modus ponens, allowing access to the denoted resource.

The ABLP formula language can express a rich collection of authorization features.
In addition to access control list encodings as described above, role membership can be
modeled. To specify that A is a member of a role R, policy can include the assumption
� A ⇒ R. Then, when A assumes the role R to make an assertion s, represented
as assumption � A as R says s, rules AS, SPEAKSFOR, and QUOTING allow deduction of

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:18 P. C. Chapin et al.

� A says R says s, from which can be derived � R says R says s by SPEAKSFOR, hence
� R|R says s by QUOTING, and finally R says s follows by assuming idempotence of (|)
for roles [Abadi et al. 1993]. Note that ACL representations in this model need only
take into account roles; for example, R controls priv allows any specified member of R
to gain access to priv.

A variety of delegation idioms can also be modeled [Abadi et al. 1993]. An assertion of
the form A for B says s means that A has asserted s on behalf of B, and denotes that B
has delegated the assertion of s to A. In contrast, A says B says s merely represents A’s
claim that B asserts s, and requires no verification of the statement. The meaning of
A for B can be altered according to desired delegation policies, for example A for B says s
can be taken as syntactic sugar for the formula A ∧ D says s, where D represents a
delegation server.

4.3. Programming Logics

Programming logics such as Prolog and Datalog have played an important role in the
development of trust management systems. As discussed above, logics provide useful
abstractions for authorization semantics, furthermore specifications in executable pro-
gramming logics provide prototype implementations for free. Programming logics have
served as target languages for the compilation of higher-level authorization languages
[Li and Mitchell 2003a; Woo and Lam 1993], have served as the foundation for en-
riched authorization languages [Li and Mitchell 2006; Jim 2001; DeTreville 2002a; Li
et al. 2002; Li et al. 2003], and have been used for the formalization and study of trust
management systems [Li and Mitchell 2006; Polakow and Skalka 2006].

Both Prolog and Datalog are Horn-Clause logics, in which all formulae are restricted
to the form head ← body, where ← is a right-to-left implication symbol, head is a
proposition, and body is a conjunction of propositions. If variables X appear in a rule,
the rule is implicitly universally quantified over those variables. The head of each rule
is the consequent of the body. If body is empty then the rule is a fact.

As a simple example of how logics can apply in a trust management framework,
imagine that delegation should be transitive. Suppose that delegation(X , Y) is defined
to mean that the rights of X have been delegated to Y . Suppose also that cert(X , Y)
represents a delegation certificate passing rights directly from X to Y . The following
Horn clauses obtain transitivity of delegation:

delegation(X , Y) ← cert(X , Y)
delegation(X , Y) ← cert(X , Z), delegation(Z , Y).

Letting a, b, c, . . . denote constants, the following represents a collection of delegation
certificates:

cert(a, b) cert(b, c) cert(b, d) cert(c, e).

From these facts and the definition of delegation, the query delegation(a, e) will succeed
while delegation(d , e) fails.

Datalog was developed as a query language for databases. It is not a full program-
ming language. In contrast, Prolog is Turing complete and thus more expressive than
Datalog. This extra expressivity is useful in certain contexts. For example, a full-
featured authorization logic called Delegation Logic has been defined as a strict ex-
tension of Datalog at a high level, that is ultimately compiled to Prolog for practical
implementation [Li et al. 2003]. However, Datalog has certain advantages in the au-
thorization setting: the combination of monotonicity, a bottom-up proof strategy, and

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:19

Datalog’s safety condition (any variable appearing in the head of a rule must also appear
in the body) guarantee program termination in polynomial time. In contrast, Prolog’s
top-down proof search can cause nontermination in the presence of cyclic dependen-
cies. For example, if we added the certificate cert(e, b) to the above fact set, some queries
would not terminate. This problem is resolved by tabling as in XSB [XSB Inc. 2006], but
it has been argued that this solution adds too much size and complexity to the imple-
mentation for authorization decisions [Li et al. 2002]. And while Datalog is not capable
of expressing structured data, Datalog with constraints (DatalogC), a restricted form
of constraint logic programming [Jaffar and Maher 1994], has been shown sufficiently
expressive for a wide range of trust management idioms [Li and Mitchell 2003a].

Prolog is able to express negation-as-failure, and so-called Disjunctive Datalog is
likewise able to express a restricted form of negation [Eiter et al. 1997]. Therefore
nonmonotonic authorization features such as credential negation can be provided in
systems where programming logics are intended to serve as a basis for semantic inter-
pretation or implementation [Woo and Lam 1993; Bonatti and Samarati 2003]. How-
ever, as discussed in Section 3, nonmonotonicity in authorization semantics is generally
considered undesirable, since it introduces the possibility of unsoundness in practice
[Seamons et al. 2002]. Also, while certificate revocation seems at first blush to entail
nonmonotonicity, it has been shown to be definable monotonically with appropriately
constructed logical inference rules [Li and Feigenbaum 2002; Bauer et al. 2002]. Or, as
discussed in Section 3, revocation can be handled by components external to the autho-
rization semantics (via component TC in Figure 1), for example by filtering certificates
through certificate revocation lists prior to authorization decisions as in SPKI/SDSI.
For these reasons previous authors have argued that monotonic (subsets of) program-
ming logics are adequate foundations for trust management applications, such as safe
Datalog with constraint domains [Li and Mitchell 2003a].

Recently, more expressive programming logics have been proposed to address re-
strictions in the Horn-clause formula languages of Datalog and Prolog. Relevant work
has proposed use of the higher-order linear logic programming language LolliMon as
a foundation for trust management systems [Polakow and Skalka 2006]. LolliMon is
not restricted to a Horn-clause form, and the availability of hypothetical (vs. strictly
literal) subgoals and linear assumptions in particular allow the formal modeling of dis-
tributed certificate chain discovery (component D in Figure 1), as interleaved with the
authorization semantics of a trust management system.

5. REVIEW OF TRUST MANAGEMENT SYSTEMS

In this section we review a collection of trust management systems. We cover three
systems in depth—SPKI/SDSI, QCM and its successor SD3, and RT—and more briefly
summarize a number of others. We focus on SPKI/SDSI, RT, and QCM and SD3 because
together they represent a fairly encompassing variety of approaches to trust manage-
ment. Our entire review is not intended to be exhaustive, but rather representative of
the breadth of trust management systems.

For each of the three systems we cover in depth, we begin by providing a summary
overview of that system. We then describe the system’s features, as enumerated in
Table I and Table II, with an emphasis on those features that are unique to the system
or otherwise worthy of attention. We then express the running example introduced in
Section 2, in terms of the system’s facilities. We follow this with a discussion of
the semantics of the system’s core logic and finally observations about system
implementations.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:20 P. C. Chapin et al.

5.1. SPKI/SDSI

The Simple Distributed Security Infrastructure (SDSI) [Rivest and Lampson
1996a,1996b] is a system for managing distributed name spaces. In addition to global
names, a primary contribution of SDSI is linked local name space management, where
name spaces are defined and structured locally, but can be referenced non-locally. An
authorizer associates access rights with a particular local name, and any principals
bound to that name by SDSI name certificates are authorized for access. By signing
access requests with names, an authorization logic is obtained based on name-to-key
bindings, and linking relations between names.

The Simple Public Key Infrastructure (SPKI) was developed concurrently with SDSI
to provide more complex authorization policies in distributed systems without the need
for managing identities. These technologies merged into SPKI/SDSI version 2.0 [Ellison
et al. 1999]. SPKI adds to SDSI the ability to directly bind a capability, called an
authorization certificate, to a name or key. Such bindings are only meaningful if the
issuing principal has a superset of the capabilities being bound. Thus SPKI/SDSI allows
a principal to explicitly delegate a subset of his or her rights to another principal or to a
name representing a collection of principals, resulting in a rich authorization language.

5.1.1. Features of SDSI. In SDSI public keys have the status of principals, and there is
no attempt to associate public keys with individual people, machines, or other entities,
this being regarded as an external consideration. When discussing SPKI/SDSI we use
the terms “principal” and “public key” interchangeably. The system implicitly assumes
that private keys are secure and that statements signed by those keys reflect the in-
tentions of the corresponding principal. Thus the SDSI authorization semantics does
not concern itself with certificate signature checking, rather such checking is handled
entirely by the processing of certificates prior to authorization (that is, by component
TC in Figure 1).

In SDSI each principal defines a structured name space local to that principal by
issuing name certificates, binding names to principals in a manner that confers the
rights of the name to the principal. A SDSI name is of the form K A, where K is a
key identifying a name space and A fully qualifies the name. Intuitively, we may read
K A as “K ’s A”, that is, a local name A in K ’s name space. In addition, SDSI provides
extended names of the form K A1 · · · An that allows linkage to non-local name spaces as
discussed below. A name certificate is abstracted as a 4-tuple of the form (K , A, S, V)
[Ellison et al. 1999] where:

—K is the principal issuing the certificate.
—A is the name in K ’s name space being defined.
—S is the subject of the certificate (the name being bound to A).
—V is certificate validity information.

Certificate subjects S can be other principals, names, or linked names. The certificate
validity field V contains expiration times or information about where to obtain revoca-
tion or revalidation information online. An authorizer can use this information to check
if a certificate has been revoked in real time. A SDSI system disregards any certificates
that are expired or have been revoked so validity information does not play a direct
role in authorization decisions.

Since validity information V is not relevant to the SDSI authorization semantics,
the following useful syntactic sugar can be defined for the consideration of SDSI au-
thorization logic:

K A → S def= (K , A, S, V) V is valid

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:21

Informally this means that the name A in K ’s name space is being defined as a local
name for the subject S. For example, the certificate Ka robert → Kb indicates that
Kb is bound to Ka ’s robert.

The meaning of a SDSI name is the set of principals bound to that name by valid name
certificates. Using only the above certificate, the meaning of Ka ’s robert is the set {Kb}.
SDSI specifically allows multiple name certificates to define the same name, so if Ka
issued a second name certificate asserting Ka robert → K B′ then the meaning of Ka ’s
robertwould be the set {Kb, K B′ }. Thus SDSI names are essentially group names. When
an authorizer associates access rights to a local name, that name behaves similarly to
a role as defined by the role-based access control (RBAC) community [Ferraiolo and
Kuhn 1992]. In this way SDSI provides support for RBAC.

An important aspect of SDSI is that it allows certificate subjects to refer to nonlocal
names. This can be done via a certificate of the form K1 A1 → K2 A2 denoting that the
meaning of K1 A1 subsumes that of K2 A2, i.e. all names bound to K2 A2 are also bound
to K1 A1. Certificate subjects can also be an extended name K A1 · · · An. For n = 2,
the extended name K A1 A2 has a meaning that is based on the meaning of K A1: it is
the set of all names bound to Kx A2 such that Kx is bound to K A1. Iterating this idea
obtains meaning for extended names with higher values of n.

5.1.2. Running Example (SDSI). Here we show how to encode the policies described in
the medical records example in Section 2.5 using SDSI. Assuming that Ka, Kb, Kc, and
Kd are Alice, Bob, Carol, and Dave’s keys respectively, Alice’s policy is expressed as:

—Ka records → Kb

—Ka records → Kb alice delegates

Although the original SDSI definitions provided a way to define groups of principals
using set intersections, SDSI version 2.0 lacks this facility. This presents a problem in
the example as originally stated since Bob would then be forced to grant his entire team,
including non-medical personnel, access to Alice’s medical records. To work around this
Bob can distinguish between his overall team and his medical team, so his policy is:

—Kb medical team → Kb medical team support

—Kb alice delegates → Kb medical team

—Kb medical team → Kc

Carol’s policy includes Kc support → Kd defining Dave as a member of her support
staff. Again because SDSI 2.0 lacks intersections the hospital’s assertion that Dave is
a medical staff member is not used; we must presume that Carol will only add medical
staff members to her support staff. In a more realistic situation Carol may want to
distinguish between her medical support staff and her nonmedical support staff by
using two distinct names.

5.1.3. Features of SPKI. SPKI extends the SDSI framework with authorization certifi-
cates, allowing authorization rights to be delegated from principal to principal. Such
certificates have the form of a 5-tuple, (K , S, D, T, V) where:

—K is the principal issuing the certificate.
—S is the subject of the certificate.
—D is a boolean delegation flag.
—T is the authorization tag.
—V is certificate validity information.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:22 P. C. Chapin et al.

The K , S, and V fields are the same as for SDSI name certificates. The T field of the
certificate is the authorization tag. It is formatted as an s-expression with specific rules
regarding its structure. The meaning of the tag is left undefined by SPKI and is applica-
tion specific. For example a tag such as (http (port 8080) (read (url /downloads)))
might represent the capability of being able to read from the downloads directory on
the HTTP server at port 8080. In this way, SPKI authorization tags provide a way to
make statements about structured resources.

The D field of the certificate is the delegation flag. If set the subject is allowed to
further delegate the authorization to others by issuing new authorization certificates
as appropriate. SPKI provides only boolean delegation control where authorizations
can be delegated arbitrarily or not at all. SPKI’s design does not allow a principal
to specify an integer delegation depth because of the inherent difficulty in specifying
an appropriate depth. The argument for this is that in general principals can’t easily
know how many levels of delegation an authorization might reasonably need. Also since
controlling the depth of delegation does not restrict the width of the delegation tree, a
limited depth does not necessarily prevent rampant delegation [Ellison et al. 1999].

5.1.4. Running Example (SPKI). In the SDSI example above, a request signed by a key
K is granted access to Alice’s records if the name Ka records can be resolved to K .
SPKI/SDSI version 2.0 contains SDSI and so this approach would apply in a SPKI/SDSI
setting as well. However, SPKI also provides authorization certificates.

So far the example has treated Alice’s medical records as a single entity. If access
is granted to any part of Alice’s records, access is granted to all of Alice’s records. If
Alice’s medical records contain many components one could assert access control over
each component individually using separate names to represent the different compo-
nents. However, for indefinitely large structured resources such an approach is infea-
sible. SPKI authorization tags allow an indefinite subset of a structured resource to
be specified and thus offers a granularity of control that is not possible using SDSI
alone.

For example, Alice might issue a SPKI authorization certificate that grants Bob access
to her medical records (or some portion thereof) and the power to delegate that access
to others. Such a certificate might look like:

(Ka, Kb, true, (records Alice (rw *))).

Here the authorization tag (records Alice (rw *)) is assumed to convey full (read
and write) access to all of Alice’s records. Although the precise format of this string
is application dependent, as long as the hospital database acting on behalf of Alice
understands its meaning, authorizations will only be carried out according to Alice’s
wishes.

Bob could delegate the authorization he received from Alice to his medical team by
issuing another authorization certificate:

(Kb, Kb medical team, false, (records Alice (rw *))).

Here Bob prevents further delegations of the authorization. In this example, Bob passes
his entire set of permissions to his medical team. Assuming Bob understands the format
of the authorization tag, he could optionally pass a subset of his permissions to his team.
When a request is made the hospital database would intersect the authorization tags
to find the overall set of permissions allowed in the request.

In this example, no further authorization certificates are necessary. When Dave sub-
mits his test results to the hospital database, he must sign his request with his key and
provide SDSI name certificates to prove his key’s association with Kb medical team.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:23

He must also provide the two authorization certificates showing that Kb medical team
is authorized to access Alice’s medical records. Notice that one of these authorization
certificates is signed by Alice and thus authority over her records ultimately comes
from her.

5.1.5. Semantics. The original presentations of SPKI and SDSI [Rivest and Lampson
1996a; Rivest and Lampson 1996b; Ellison et al. 1999] provide a thorough informal
specification of its semantics and also sketch an operational meaning of certificates via
rewrite rules as discussed in Section 5.1.6, but a rigorous formal specification has been
a distinct project carried out after the initial development of the system. The problem
is surprisingly subtle, with a number of authors proposing alternate solutions.

The semantics proposed by Clarke et al. [2001] is constructed as the least solution of
a system of containment constraints imposed by a given set of certificates. Let K be the
set of principals mentioned in a given collection of name certificates C. Let NL be the
set of local names of the form K A where K ∈ K, and A is one of the name identifiers
mentioned in C. Let NE be the set of extended names of the form K A1 A2 . . . An, n ≥ 2
where K ∈ K and the A1, A2, . . . , An are all name identifiers mentioned in C. Finally
let T = K∪NL ∪NE be the set of all terms that can be formed using the principals and
name identifiers in C. Then the semantics of name spaces is defined via the valuation
function V : T → P(K) satisfying the equations:

V(K) = {K } for all K ∈ K
V(K A1 A2 . . . An) =

⋃

K ′∈V(K A1)

V(K ′ A2 A3 . . . An).

Furthermore, V is defined to be the least function satisfying the above equalities and
the following system of inequalities:

V(K A) ⊇ V(S) (K , A, S, V) ∈ C.

This is a succinct and intuitive description, well-suited to modeling the meaning of
name certificates.

In contrast to this approach, Abadi developed a logic of SDSI’s linked local names
[Abadi 1998]. The model theory of the logic plays a role similar to that of Clarke’s
semantics, but the proof theory is technically closer to the certificate rewrite rules
proposed in RFC-2693 [Ellison et al. 1999], allowing characteristics of names such
as associativity to be clarified, and relations between the rewrite rules and seman-
tic model to be drawn more easily. In particular, Abadi shows the rewrite rules
are sound with respect to the logic. However, Abadi’s logic does allow conclusions
about names to be drawn that would not be possible in Rivest and Lampson’s
Scheme.

Abadi uses the notation n �→ v to indicate a binding (aka mapping) of name n to the
value v in the name space of some current principal. Intuitively n �→ v means “v speaks-
for n”: any statement asserted by v is implicitly a statement asserted by n, a relation
similar to ⇒ in ABLP logic (Section 4). Here values are terms consisting of local names,
public keys aka global names, and extended names. Some bindings are published by
the assumed current principal as signed certificates. For example a binding such as
alice �→ (bob mother) maps the current principal’s local name alice to the extended
name (bob mother). Abadi also extends the notion of mapping so that arbitrary principal
expressions can map to other arbitrary principal expressions. For example (n1 n2) �→ K
conveys that the extended name n1 n2 is bound to the key K .

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:24 P. C. Chapin et al.

Fig. 4. Axioms of Abadi’s logic for SDSI names.

Abadi’s logic for SDSI names is a modal logic with an obvious debt to ABLP logic.
Formulae of the form p says s formalize certificates asserting proposition s that are
signed by p. The standard axioms and rules of inference from propositional logic and
modal logic are then extended to include the axioms in Figure 4. Sets of certificates are
represented as logical assumptions, and name-to-key bindings n �→ v are considered
valid iff they can be deduced from these assumptions given the rules of inference. Abadi
shows that the rules of deduction required to simulate the name resolution algorithm
given by Rivest and Lampson are sound in this setting.

However, Abadi’s general logic is more powerful than the name resolution rules allow.
Consider the following example given by Abadi where f1, f2, and h are global names
(keys). The assumptions are

m �→ f1 m �→ f2 f1 says (n1 �→ n2) f2 says (n2 �→ h)

The logic allows one to deduce (m n1) �→ h whereas this result can not be obtained by
the name resolution rules. Abadi suggests that such results may not be harmful.

Halpern and van der Meyden present an alternative to Abadi’s logic [Halpern and
van der Meyden 1999] that attempts to avoid some of the surprising conclusions in
Abadi’s logic while maintaining the correspondence between name resolution and proof.
In the logic of Halpern and van der Meyden formulae of the form p �→ q intuitively
express the idea that all keys bound to q are also bound to p. This intuition is very
similar to that expressed by the valuation function V described in Clarke et al. [2001].
Halpern and van der Meyden avoid using “q speaks for p” as an intuitive explanation for
p �→ q, regarding such a meaning as one about delegation and thus outside the scope
of their study. Halpern and van der Meyden distinguish between general principal
expressions and keys, restricting some of Abadi’s axioms to operate only over keys
rather than general principal expressions. These authors later accounted for additional
features in SPKI/SDSI [Halpern and van der Meyden 2001], including authorization
certificates and certificate lifetime and revocation issues. Howell and Kotz also provide
a logical accounting of SPKI/SDSI [Howell and Kotz 2000; Howell 2000] building on
Abadi’s concepts for SDSI names but with a restricted speaks-for relation.

Li provides yet another formulation of the logic of SDSI local names [Li 2000], but
based on general purpose programming logics rather than special purpose authoriza-
tion logics. Li regards the handling of �→ in Abadi as too general and observes that even
under the more restricted axioms of Halpern and van der Meyden there are some un-
desirable consequences. Instead Li presents the Prolog logic program in Figure 5 that
performs SDSI name resolution. In this program an extended SDSI name (am1
m2 . . . mk) is represented by a list [a, m1, m2, . . . , mk]2. Name certificates are

2Note that the Prolog syntax [X , Y |T] represents a list whose first and second elements are X and Y
respectively, and T is the rest (the tail) of the list.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:25

Fig. 5. Li’s Logic Program for SDSI Name Resolution.

translated into facts using the includes predicate, such that K A → S becomes
includes([K , A], [S]). In related work Li and Mitchell show the equivalence of a logic
programming semantics for SPKI/SDSI and a set-theory semantics in the style of Clarke
[Li and Mitchell 2006].

Jha and Reps [2002] describe a connection between SPKI/SDSI and pushdown sys-
tems and show how to use model checking techniques to compute a proof of autho-
rization. Existing model checking algorithms allow a variety of other questions to be
answered as well, for example given a resource one might ask what names are able to
access that resource.

5.1.6. Implementation. RFC-2693 [Ellison et al. 1999] defines a 4-tuple reduction rule
that can be used to combine two related name certificates into a third certificate. This
rule involves replacing a local name in one certificate with a key binding established
by another. So, letting ◦ be an infix denotation of the rewrite operation, we have that:

K1 A → K2 B1 B2 B3 ◦ K2 B1 → K3

results in:

K1 A → K3 B2 B3

A similar reduction is defined for authorization certificates, describing how an autho-
rization is explicitly delegated from one subject to the next. For example:

(K1, S1, true, T1, V1) ◦ (S1, S2, D2, T2, V2)

results in:

(K1, S2, D2, AI (T1, T2), VI (V1, V2))

where AI computes the intersection of the two authorizations and VI computes the
intersection of the two validity conditions. Rules for computing these intersections are
given in RFC-2693. Finally a similar reduction rule describes how the subject of an
authorization can be rewritten according to bindings specified in a name certificate.

Note that RFC-2693 does not give a specific algorithm for finding which reductions
should be used, given a set of certificates for a particular access request. Instead the
requester is required to send the appropriate certificates in the correct order. This
puts the burden of constructing the proof of authorization on the requester; the au-
thorizer merely checks this proof. This general concept is extended in Proof Carrying
Authorization which we discuss in more detail in Section 5.4.5.

To relieve the access requester of the burden of proof, Clarke et al. describe a creden-
tial chain discovery algorithm, that will automatically check for authorization given
a set of certificates and a particular request [Clarke et al. 2001]. The algorithm uses
a graph construction to search for a particular sequence of reductions to a certificate
delegating the requested permission from the local name space to the requester. This
algorithm runs in O(n3L) time (worst case) where n is the number of input certificates
and L is the length of the longest extended name in any of the certificates.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:26 P. C. Chapin et al.

In both Clarke et al.’s scheme and that proposed by RFC-2693, it is assumed
that all certificates are on hand when the authorization decision is made. To our
knowledge no method for retrieving nonlocal SPKI/SDSI certificates dynamically has
been described in the literature, in other words there are no distributed certifi-
cate chain discovery techniques developed for SPKI/SDSI in the sense described in
Section 2.3.

5.2. RT

The RT trust management framework is not a single trust management system but
rather a collection of trust management systems with varying expressiveness and
complexity [Li et al. 2002; Li et al. 2003; Li and Mitchell 2003b]. The base system,
RT0, is similar to SDSI except that it limits extended names to one level of indirection
and provides intersection roles. The limitation of linked roles to one level of indirection
does not reduce the expressiveness of the language since additional indirections are
possible by introducing intermediate roles.

RT1 is an extension of RT0 providing parameterized roles. RT C
1 further extends RT1

to allow for the description of structured resources [Li and Mitchell 2003a; Li and
Mitchell 2003b]. The system RTD provides a mechanism to describe the delegation of
rights and role activations, and RTT provides support for threshold and separation
of duty policies. RTT and RTD can be used in combination with RT0, RT1, or RTC

1 to
create trust management systems such as RTT

0 , RTT D
1 , and so forth. A rich complexity

analysis has also been developed for the RT framework for problems beyond simple
authorization, e.g. role inclusion and role membership bounds [Li et al. 2005].

5.2.1. Features. Like SPKI/SDSI, the RT framework represents principals as public
keys and does not attempt to formalize the connection between a key and an individual.
The RT literature usually refers to these principals as entities. Also like SPKI/SDSI,
the RT framework allows each entity to define roles in a name space that is local to that
entity. An authorizer associates permissions with a particular role; to access a resource
a requester must prove membership in the role. In this way the RT framework provides
role based access control.

To define a role, an entity issues credentials that specify the role’s membership. Some
of these credentials may be a part of private policy, others may be signed by the issuer
and made publicly available as certificates. The overall membership of a role is taken
as the union of the memberships specified by all the defining credentials.

Let A, B, C, . . . range over entities and let r, s, t, . . . range over role names. A role r
local to an entity A is denoted by A.r. RT0 credentials are of the form A.r ←− f , where
f can take on one of four forms to obtain one of four credential types:

(1) A.r ←− E
This form asserts that entity E is a member of role A.r.

(2) A.r ←− B.s
This form asserts that all members of role B.s are members of role A.r. Credentials
of this form can be used to delegate authority over the membership of a role to
another entity.

(3) A.r ←− B.s.t
This form asserts that for each member E of B.s, all members of role E.t are mem-
bers of role A.r. Credentials of this form can be used to delegate authority over the
membership of a role to all entities that have the attribute represented by B.s. The
expression B.s.t is called a linked role.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:27

(4) A.r ←− f1 ∩ · · · ∩ fn
This form asserts that each entity that is a member of all roles f1, . . . , fn is also a
member of role A.r. The expression f1 ∩ · · · ∩ fn is called an intersection role.

For all credential forms A.r ←− f , the principal A is called the issuer of the credential.
RT1 enhances RT0 by allowing roles to be parameterized. For example, the second

credential form above is extended to A.r(h1, h2, . . . , hn) ←− B.s(k1, k2, . . . , km) where
the hi and k j are parameters. Role parameters are typed and can be integers, floating
point values, dates and times, enumerations, or finite sets or ranges of these datatypes.
An RT1 credential is well formed if the parameters given to the roles have the right
type and if each variable in the credential appears in the body of that credential.

As an example of an RT1 credential [Li et al. 2002], suppose company A has a policy
that the manager of an entity also evaluates that entity. This can be expressed in RT1
using a policy statement such as

A.evaluatorOf(?Y) ←− A.managerOf(?Y).

This policy can’t be feasibly expressed in RT0 because the role parameters might take
on an arbitrarily large number of values. In RT0 individual credentials would be needed
for each possible value of the role parameter.

RTC
1 further enhances the expressive power of RT1 by allowing structured constraints

to be applied to role parameters. In addition the restriction on variables only appearing
in the body of a rule is lifted [Li and Mitchell 2003a; Li and Mitchell 2003b]. For example,
suppose a host H wishes to grant access to a particular range of TCP ports to those
entities that are employed by the information technology department. The host might
have as its local policy:

Host.p(port ∈ [1024..2048]) ←− IT.employee.

This example assumes that an entity is granted access to a particular TCP port if that
entity is a member of the Host.p role with the port specified as a parameter.

To accommodate threshold structures, representing agreement between a group of
principals, the system RTT interprets roles as sets of sets of entities, called principal
sets. These principle sets can be combined with role product operators � and ⊗. The
features introduced by RTT allow threshold policies and separation of duty policies to
be written [Li et al. 2002].

RTD adds the concepts of role activations and delegations to RT0, via the delegation
credential form A

C as D.r−→ B. In this case A delegates to B the role activation of C as D.r.
Empowered with this role activation B can then access whatever facilities C can access
from role D.r. This presupposes that A has been delegated the activation C as D.r,
which holds when A = C and A is a member of role D.r in the basic case. Hence,
delegated activations do not carry any authority unless there is a chain of delegation
credentials where the credential at the head of the chain was issued by the entity
mentioned in the role activation.

While the original RT framework does not support revocation in its policy language,
it is proposed to incorporate revocation [Li et al. 2002] by leveraging a monotonic ap-
proach developed in [Li and Feigenbaum 2002] based on certificate lifetimes. While
lifetimes and the requirement for freshness are encoded logically, the proposal sug-
gests the use of external certificate revocation lists to implement verification; this is an
interesting example of the possible interplay between the semantics of authorization
per se and components external to them. In addition, a variant of the RT framework
has been developed that associates risk values with credentials [Skalka et al. 2007].
These risks are tracked through the authorization process so that the role membership

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:28 P. C. Chapin et al.

is parameterized by the total membership risk. The set of risks and their ordering is
left abstract, and can be specialized to a number of applications, for example, risk can
be defined as remaining certificate lifetime, so that role membership is parameterized
by the minimal lifetime of certificates used for authorization.

5.2.2. Running Example. To express the medical records example using RT, only the
facilities of RT0 are necessary. Alice defines a role records whose members are able to
access her medical records. She creates the policy

—Alice.records ← Bob

—Alice.records ← Bob.alice delegates

The first rule grants her doctor, Bob, access to her records. The second rule allows Bob
to further delegate that access by defining the membership of an alice delegates role.

Bob’s standing policy is

—Bob.team ← Bob.team.support

—Bob.alice delegates ← Hospital.medical staff ∩ Bob.team

The first rule defines Bob’s team as including all the support personnel specified by the
members of his team. In the second rule, Bob uses an intersection role to specify that
only the medical personnel on his team should have access to Alice’s medical records.

When Bob consults with Carol he adds Bob.team ← Carol to his policy to add Carol,
and indirectly all of Carol’s support people, to his team.

The only part of Carol’s policy relevant to this example places Dave in her support
role: Carol.support ← Dave. Finally Dave has a credential from the hospital asserting
his membership in the medical staff role. RT0 can use these credentials to prove that
Dave is a member of Alice.records and thus able to access Alice’s medical records.

5.2.3. Semantics. The original formal semantics of RT is based on Datalog [Li et al.
2002]. Specifically each RT credential is translated into a Datalog rule. The meaning
of a collection of RT credentials is defined in terms of the minimum model of the cor-
responding Datalog program. In the case of the RTC

1 , Datalog with constraints is used
[Li and Mitchell 2003a].

The translation from RT0 to Datalog requires only a single predicate isMember to
assert when a particular entity is a member of a particular role. The translation rules
are shown below where Datalog variables are shown prefixed with ? to distinguish them
from constants.

(1) A.r ←− E
isMember(E, A, r).

(2) A.r ←− B.s
isMember(?x, A, r) ← isMember(?x, B, s).

(3) A.r ←− B.s.t
isMember(?x, A, r) ← isMember(?y, B, s), isMember(?x, ?y, t).

(4) A.r ←− B1.s1 ∩ · · · ∩ Bn.sn
isMember(?x, A, r) ← isMember(?x, B1, s1), . . . , isMember(?x, Bn, sn).

The authorizer associates a permission with a particular role, say A.g , called the gov-
erning role. Access is granted to an entity E iff the Datalog query isMember(E, A, g)
succeeds.

An alternative set-theory semantics has also been defined for RT0 [Li et al. 2003].
In this semantics each role A.r is represented as a set of entities rmem(A.r) that are

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:29

members of that role. For a given set of credentials C these sets are the least sets
satisfying the set of inequalities

{rmem(A.r) ⊇ expr[rmem](e) | A.r ←− e ∈ C}

where expr[rmem](e) is the set of entities in a particular role expression e. A role ex-
pression includes both linked roles and intersection roles. In particular:

expr[rmem](B) = {B}
expr[rmem](A.r) = rmem(A.r)

expr[rmem](A.r1.r2) =
⋃

B∈rmem(A.r1)

rmem(B.r2)

expr[rmem](f1 ∩ · · · ∩ fk) =
⋂

1≤ j≤k

expr[rmem](f j)

The set-theory semantics for RT0 was developed primarily to provide theoretical sup-
port for a distributed credential chain discovery algorithm [Li et al. 2003]. The set-
theory semantics facilitate proving soundness and completeness of that algorithm.

Another approach to the semantic specification of RT is taken by Polakow and Skalka,
who propose the LolliMon linear logic programming language as a foundation [Polakow
and Skalka 2006]. Like the set-theoretic specification, this approach has the advantage
of being easily extended to the problem of distributed certificate chain discovery, while
enjoying the additional benefit of scalability to the full RT framework. The encoding
closely resembles the original Datalog isMember predicate defined above, and the logic
of certificate discovery can be expressed by additional clauses in LolliMon’s rich formula
language.

5.2.4. Implementation. Li et al. [2003] describe an implementation strategy for RT0 in
terms of a construct called a credential graph GC . Each node in GC represents a role
expression with directed edges corresponding to each credential. In addition, derived
edges are added to represent the indirect relationships between roles that are intro-
duced by linked roles and intersections. An entity is a member of a role iff there exists
a path from the entity to the role in GC . Li et al. prove that credential graphs are sound
and complete with respect to the set-theory semantics of RT0.

In addition Li et al. [2003] describe a distributed credential chain discovery algorithm
that finds a path in GC given initially incomplete credentials. The algorithm assumes
that either the issuer or subject of a credential can be contacted on-line and queried for
more credentials on demand. In this way missing credentials can be found as needed
to complete a proof of authorization. The algorithm can work either backward, start-
ing at the governing role and following credentials from issuer to subject, or forward,
starting at the entity representing the requester and following credentials from subject
to issuer. In general both approaches are useful. In some cases a certificate authority
will maintain a database of all credentials issued, making the backward discovery al-
gorithm effective. In other cases credentials will be held by the subjects, making the
forward discovery algorithm more appropriate. To ensure that searches always succeed
when possible, a type system can be used to assign appropriate types to role names.
These types restrict the way credentials can be formed and specify where credentials
must be stored [Li et al. 2003].

The complexity of credential chain discovery in RT0 has been shown to be log-space
P-complete using a reduction from the monotone circuit value problem [Li et al. 2003].

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:30 P. C. Chapin et al.

5.3. QCM and SD3

Many trust management systems have focused on authorization decisions while set-
ting aside issues of certificate storage and retrieval. In contrast, Query Certificate
Manager (QCM) [Gunter and Jim 1997; Gunter et al. 1997; Gunter and Jim 2000b]
and its successor Secure Dynamically Distributed Datalog (SD3) [Jim 2001; Jim and
Suciu 2001] address the issue head-on, by treating trust management as essentially
a distributed database problem. An advantage of their approach is that well-studied
database techniques and abstractions can be leveraged. In particular, the system pro-
vides applications programmers with high-level database query languages for defining
authorization policy over a transparent PKI infrastructure, where authorization is im-
plemented as a query processed automatically over a distributed database. Among the
implementation benefits of their distributed database approach are a variety of op-
timization techniques and a natural incorporation of distributed certificate retrieval.
SD3 also introduces a novel certified evaluation mechanism that reduces the size of its
trusted computing base.

5.3.1. Features. QCM hides from end-users the complexity of distributed query eval-
uation and certificate retrieval. Instead it presents a high level abstraction of a secure,
local database. The original presentation of QCM proposed a policy language based on
relational algebra Gunter and Jim [1997]. Consider the following example of a web page
content filtering application taken from Gunter and Jim [1997]. Here a ratings server
r1 maintains a relation ratings containing rating information for a large collection of
web pages. An independent server r2 maintains a similar relation. A web browser then
defines a local relation in terms of these other two using relational algebra expressions:

ratings = r1. ratings ∩ r2. ratings
ok = πhash(σrating=G ratings)

The browser will only accept ratings for which the two rating servers agree. In addition,
the browser’s ok table contains only the page hashes for the pages with a G rating.

Now, suppose that the browser was governed by the policy that it would only display
web pages with a G rating. Formally, assuming that h is the hash of a web page, it
would only be displayed if σhash=h ok is not null. In the simplest scenario, the browser
could enforce this by submitting the query σhash=h ok to a local QCM processor, and
the processor would in turn query r1 and r2 remotely. However, a more efficient and
flexible scheme is allowed in QCM– tuples in a database relation can be certified by the
relation authority, and distributed as certificates. Such certificates, called inclusions,
are denoted via an ABLP-style says connective. For example, the web server that hosts
a page with hash h can obtain certificates from the rating servers for that page. Each
certificate is signed by the corresponding rating server:

r1 says r1. ratings ⊇ {(hash : h, rating : G)}
r2 says r2. ratings ⊇ {(hash : h, rating : G)}

When the page is requested by a browser, the two certificates are sent as well, and from
there to the local QCM processor along with the query σhash=h ok. Now the processor
does not need to contact the remote servers because the certificates contain enough
information to answer the query directly, and can even cache the certificate contents
for future use. This scheme is clearly more efficient, and has the additional benefit that
not all relation authorities need to be online during authorization.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:31

Also notable is QCM’s support for certificate revocation [Gunter and Jim 2000a]. This
is done by allowing a set of revoked tuples to be subtracted from a set of otherwise poten-
tially useful tuples. QCM provides for explicit nonmembership certificates that can be
used to assert that a tuple is not an element of the revoked set. This later work adopts a
set-theoretic model of the QCM database to accommodate the notion of nonmembership,
and a new language of set comprehension is defined for QCM programming.

As an example of this set comprehension language, consider the earlier exam-
ple of web page content filtering. Rating server r1 maintains a relation that binds
page hashes to rating values r1. ratings(hash, rating), and similarly for rating server
r2. The browser’s policy then defines a set ok of acceptable page hashes with the
statement

ok = {h | 〈hash = h, rating = G〉 ← r1. ratings,
〈hash = h, rating = G〉 ← r2. ratings }.

This defines a set of hash values for pages that both ratings servers agree are G rated.
Queries also have the form of set expressions. When the browser retrieves a page it
asks its local QCM processor to evaluate the query {p | p ← ok, p = h} where h is the
hash of the retrieved page. If this set evaluates to the singleton {h} then the browser
can display the page as G rated.

Secure Dynamically Distributed Datalog (SD3) is the successor of QCM. It adds to
QCM an extended version of Datalog as its policy and credential language, allowing
recursive policies to be defined. In SD3 predicates are scoped by public keys; rules
can refer to predicates in other name spaces by prepending the key to the predicate
name. For example, suppose that the predicate E under control of key K defines the
edge relation of a particular graph. The following SD3 program computes the transitive
closure of that graph.

T (X , Y) ← K $E(X , Y).
T (X , Y) ← T (X , Z), T (Z , Y).

SD3 also adds other notable implementation features, including intentional responses
and certified evaluation, discussed below.

5.3.2. Running Example. Here we demonstrate how SD3 would express the medical
records example. We need to first express the information to be processed as a collection
of relations. Alice maintains a one-place relation records with tuples storing the keys
of those principals who can access her medical records. We can then represent Alice’s
policy as the following two SD3-style Datalog rules.

—Ka$records(Kb)

—Ka$records(X) ← Kb$alice delegates(X)

Datalog has no problems expressing either recursion or intersections (conjunctions).
Bob’s policy becomes

—Kb$team(X) ← Kb$team(Y), Y$support(X)

—Kb$alice delegates(X) ← Kh$medical staff(X), Kb$team(X)

—Kb$team(Kc)

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:32 P. C. Chapin et al.

The remaining assertions made by the hospital and by Carol are

—Kh$medical staff(Kd)

—Kc$support(Kd)

This example only hints at the expressivity of the general SD3 policy language.
SD3 distinguishes between global names that are key-qualified and local names that

are not. In this way SD3 supports multiple, independent name spaces. If the hospital
database evaluates Dave’s request to update Alice’s medical records in the context of
Alice’s name space, then the Ka prefix on Alice’s policy is superfluous. The tuples from
relations in other name spaces would be signed by the corresponding key and obtained
from some source external to Alice’s name space.

5.3.3. Semantics. The authors of QCM and SD3 have used a variety of formal se-
mantics for different aspects and versions of the system. In the original presenta-
tion of QCM [Gunter and Jim 1997], the core authorization semantics are the se-
mantics of the relational algebra. Additionally, an I/O automata model of network
communication is developed to verify that certain checks during updates guarantee
data consistency [Gunter et al. 1997]. In this model each QCM node maintains a
set of pending queries, a set of inclusions that it accepts (initialized to the defini-
tions known directly by the node), and a set of requests that the node has made.
The automaton specifies how this state changes for each possible input or output ac-
tion. A corresponding automaton models the network itself. This allows different net-
work models, including potentially hostile models, to be studied in a straight forward
way.

In later work that addresses certificate revocation, a set-theoretic model of the more
recent QCM language of set comprehension is developed as a denotational semantics
[Gunter and Jim 2000a]. QCM expressions are interpreted as set operations in a uni-
verse of QCM values, which include numbers, strings, keys, and finite and cofinite
sets of values. An operational semantics describing the behavior of QCM evaluation
is defined, and is shown to be sound with respect to the denotational semantics. It is
important for the operational semantics that QCM objects are only modeled as single
values or finite or cofinite sets, since this means that they can be finitely represented.

The semantics of SD3 are based on the semantics of Datalog in a fairly straightfor-
ward manner; the only complication is the interpretation of key-qualifiers on predicate
names. To describe the semantics of a distributed SD3 program, first a global Datalog
program is constructed from a given SD3 program by replacing each n-ary predicate
R with an (n + 1)-ary predicate R g , and each atom of the form s$R(t1, . . . , tn) with an
atom of the form R g (s, t1, . . . , tn). The semantics of an SD3 program is the minimum
model of the resulting Datalog program [Jim and Suciu 2001].

While the formal meaning of QCM and SD3 programs has evolved throughout devel-
opment of these systems, the authors argue that their interpretation has been essen-
tially consistent, since relational algebra, set comprehension, and Datalog are “roughly
equivalent by variations of Codd’s Theorem” [Jim 2001].

5.3.4. Implementation. Algorithms for query processing in the QCM and SD3 systems
has been defined and proven correct [Gunter and Jim 2000a; Jim 2001] with respect
to a number of safety and security requirements, for example, soundness of the algo-
rithms with respect to the denotational meaning of programs. The distributed database
approach also allows a number of standard optimization techniques to be applied, no-
tably magic set rewriting [Jim and Suciu 2001]. Beyond this, QCM and SD3 also offer
several novel implementation features.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:33

When a QCM node is queried the result is a collection of signed tuples, possibly
obtained indirectly from other nodes, forming an extensional response to the query. SD3
extends this by allowing a node to instead return an intensional response consisting
of one or more rules, perhaps in terms of relations held by other nodes, that define the
result of the query. In such a case the query originator could contact the other nodes if
necessary to obtain the information needed to fully evaluate the query.

An example from Jim and Suciu [Jim and Suciu 2001] illustrates this distinction.
Suppose that an SD3 server has the rule R(x, y) :- E(x, w, z), w$R(z, y) and it re-
ceives from the client the query R(1, y). Suppose also that the server has the tuples
E(1, s2, 2) and E(1, s3, 3) in its local table. The server could return the intensional
response of

R(1, y) :- s2$R(2, y)
R(1, y) :- s3$R(3, y).

The client could then contact sites s2 and s3 to complete the query based on these rules.
Jim describes a prototype SD3 system that implements the DNSSEC protocol [Jim

2001]. In order to obtain the performance needed in DNS applications, Jim’s imple-
mentation uses a number of elaborate optimization techniques. These optimizations
add complexity to the implementation and increase the size of the trusted computing
base. To deal with this Jim’s implementation uses certified evaluation. The output of
the SD3 query evaluator is checked by a relatively simple proof checker. If the check
fails, the results of the query are considered erroneous. Since proof checking is easier
than proof construction, the proof checker can be small and simple, thus reducing the
size of the trusted computing base.

QCM supports distributed credential chain discovery, which the QCM authors re-
fer to as policy-directed certificate retrieval [Gunter and Jim 2000b]. Such distributed
queries are satisfied extensionally. For example if a QCM node a defines a relation
ratings = b.ratings that node would answer queries about the membership of ratings
by querying b. If b defined its ratings relation in some complex way it might query other
nodes as appropriate. However, node b would return signed tuples from its ratings re-
lation rather than a signed policy rule.

QCM’s system of distributed credential chain discovery should be contrasted with
that described earlier for RT0. In the RT0 case distributed queries are satisfied inten-
tionally: policy rules are passed back to the authorizing node where the entire credential
chain is computed. This allows RT0 to make direct use of credentials provided with the
request without having to transmit those credentials to other nodes.

5.4. Other Trust Management Systems

In this section we review several other trust management systems more briefly, high-
lighting their most significant features and contributions.

5.4.1. PolicyMaker. Blaze et al. [1996] first introduced trust management systems
per se as a subject of study, by presenting the PolicyMaker system. In PolicyMaker,
policies, credentials, and trust relationships between principals are implemented as
arbitrary programs in a suitable safe programming language. In this context “safe”
means that the interpreter for the language is restricted in terms of the I/O operations
and resource consumption permitted. Such restrictions are necessary to prevent attacks
against the authorization mechanism and to ensure that the authorization decision will
terminate.

PolicyMaker statements, called assertions, have the form: Source ASSERTS Author-
ity WHERE Filter. Here Source and Authority are public keys and Filter is a program

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:34 P. C. Chapin et al.

taking an application specific “action string” as a parameter and returning a boolean
result. Policy statements have the same form except that Source is replaced by the
keyword POLICY to indicate that the assertion is not a signed credential but rather
locally trusted policy. More complex Authority structures are also possible, allowing one
to express threshold policies.

The semantics of PolicyMaker is graph theoretic. Each assertion is represented as a
labeled edge in directed graph G where the vertexes of G are public keys or POLICY.
There is an edge v1 → v2 labeled with f in G iff there is an assertion where Source
corresponds to v1, Authority corresponds to v2 and Filter corresponds to f . An access
request in PolicyMaker has the form: key REQUESTS ActionString. Authorization
requires to find a path in the graph G that starts at POLICY, ends at the vertex
corresponding to key, and for which f (ActionString) returns true on every edge in the
path.

The form and meaning of the action strings are not defined by PolicyMaker but must
be agreed upon by the authorizer and the requester. For example, an action string
might describe a particular operation, such as read or write, on a particular file. Each
assertion either allows or rejects the action according to the program contained in its
filter. If the action is allowed, authority for that action is passed from the Source key
to the Authority key. If there is a path in G that passes rights from POLICY to the
requesting key, those rights are granted.

Blaze et al. [1998] formalized the PolicyMaker authorization decision and analyzed
its computational complexity in later work. The general system is undecidable since
the programs contained in the assertions can be written in a Turing complete language.
However, Blaze et al. consider several restrictions on the system. With suitable restric-
tions, the authorization algorithm has polynomial complexity while retaining enough
expressiveness to be useful.

5.4.2. KeyNote. KeyNote [Blaze et al. 1999a; Blaze et al. 1999b] is a direct de-
scendant of PolicyMaker. In KeyNote principals are either public keys or opaque
principal identifiers with an application-defined meaning. In KeyNote the authoriza-
tion mechanism is given a collection of assertions together with the key or identi-
fier of the requester. The authorization mechanism returns an application defined
policy compliance value representing the degree to which the request complies with
policy.

Each KeyNote assertion specifies an authorizer and a licensee. As with PolicyMaker,
the assertion represents a transfer of authority from the authorizer to the licensee.
However, unlike PolicyMaker where the language used in the assertions is left open,
KeyNote defines a specific language. This language includes support for simple math-
ematical computations and string matching via regular expressions.

Although there is no formal description of KeyNote in the original presentation [Blaze
et al. 1999a], KeyNote has been formally analyzed [Weeks 2001; Li and Mitchell 2003a].
Using Datalog with constraints Li and Mitchell find that KeyNote’s assertion language
is, in some respects, too expressive. To capture KeyNote’s computational ability, a rich
constraint domain is necessary. As a result, certain authorization problems are undecid-
able, such as determining the set of all requests that a collection of KeyNote assertions
authorize.

It is instructive to consider our running example (Section 2.5) in KeyNote. Here the
hospital database could write a policy assertion that grants all rights to Alice’s medical
records to Alice’s key. Such an assertion might look like3:

3In this example keys and signatures are abbreviated for easy presentation.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:35

Authorizer: POLICY
Licensees: "RSA:123abc" # Alice’s key.
Conditions: (name == "Alice")

A KeyNote application passes a collection of name, value pairs called action attributes
containing information about the context of the request to the authorization mecha-
nism. In this case, we assume the hospital database application will pass a “name”
attribute identifying whose records are being accessed. It is likely that the application
would pass additional attributes to KeyNote as well that provide more specific infor-
mation about the request. In the KeyNote assertion above, the hospital is authorizing
all requests made by Alice’s key for which the name attribute is “Alice.” This policy
gives Alice total control over her own medical records. A more realistic policy might
restrict Alice in certain ways by using more complicated conditions involving more
action attributes.

Alice passes her authority over her medical records to her physician Bob by issuing
(and signing) a credential such as:

Authorizer: "RSA:123abc" # Alice’s key.
Licensees: "RSA:456def" # Bob’s key.
Conditions: (name == "Alice")
Signature: "DSA-SHA1:8912aa"

Again, in a more realistic situation, Alice might wish to pass only a portion of her
authority to Bob.

The limitations of KeyNote (and also PolicyMaker) become apparent when Bob tries
to delegate access to Alice’s records to his medical team. KeyNote does not provide
a language for defining and manipulating groups of principals. Thus Bob is forced to
explicitly list all the keys corresponding to his medical team in the Licensees field of
any assertion he writes. Without the indirection made possible by roles, policy admin-
istration in KeyNote is much more difficult than in SPKI/SDSI or RT, for example. Fur-
thermore, when Bob consults with Carol about Alice’s condition, Bob can easily write
an assertion conveying his access to Alice’s records to Carol. However, Carol must now
write a new assertion of her own conveying that access on to Dave, her lab technician.
Linked names in SDSI or linked roles in RT allow policies where this last step happens
automatically; under those systems, once Carol has been granted access, she need not
do anything in order for her technicians to also access Alice’s records.

5.4.3. REFEREE. The REFEREE system [Chu et al. 1997] was originally considered
as a trust management language by the World Wide Web Consortium’s PICS (Platform
for Internet Content Selection) working group [Resnick and Miller 1996] for possible use
in content selection applications. The PICS effort is now subsumed by RDF (Resource
Description Framework).

Like PolicyMaker, policies and credentials in REFEREE contain executable pro-
grams. However, REFEREE differs from PolicyMaker in that the execution of policies
and credentials is itself put under the control of policy. In this manner REFEREE at-
tempts to mitigate the risks associated with executing arbitrary programs as part of
the authorization decision. The policy can prohibit the execution of credentials from
untrustworthy sources. In addition REFEREE places signature verification and the
fetching of remote credentials under policy control as well. The idea is that such ac-
tions are potentially dangerous, or at least require a certain amount of trust, and thus
should be explicitly governed by the authorizer’s policy. In this respect REFEREE rep-
resents some of the earliest work in automated trust negotiation, although it wasn’t
called that at the time.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:36 P. C. Chapin et al.

Policy programs in REFEREE can return one of “yes,” “no,” or “unknown.” An affir-
mative value implies that the policy is definitely satisfied. A negative value implies
that the policy is definitely not satisfied. An “unknown” value implies that there is in-
sufficient information to decide compliance with the policy. In this way REFEREE does
not automatically deny a request when the compliance with policy is ambiguous. The
application must decide how to react to an “unknown” result. Although a high security
application might want to grant access only if the policy program returns an affirma-
tive result, the web applications for which REFEREE is targeting might want a more
flexible approach to ambiguous requests.

Unlike PolicyMaker, REFEREE lacks a formal specification and does not appear to
have been formally analyzed in the literature. Its model of evaluation is different than
PolicyMaker’s in that assertions can directly invoke each other rather than executing in
isolation. This allows for more complex interactions between the assertions and makes
the graph-theory explanation used with PolicyMaker inapplicable.

5.4.4. OASIS. In OASIS [Hayton et al. 1998; Hine et al. 2000; Bacon et al. 2002;
Dimmock et al. 2004] clients are classified into named roles by appropriate certificate
authorities. An authorizer uses membership in a particular role as the basis for de-
ciding access. The client collects role membership certificates from various certificate
authorities ahead of time. To obtain such a certificate the client must show compliance
with the authority’s policy for role membership. This might require the use of previ-
ously obtained certificates or a proof of identity by way of some authentication protocol,
or both. Once an appropriate role membership certificate has been obtained no further
authorization computations need to be done. The authorizer simply checks the validity
of the role membership certificate and grants access accordingly. Thus OASIS effec-
tively moves the authorization computation off-line and distributes it to the various
certificate authorities.

A certificates may become invalid because a certificate authority’s policy might
change. Alternatively the client might no longer have the necessary characteristics
to be eligible for membership in a critical role. To deal with this OASIS requires that
servers maintain information about every place where their certificates are used. If a
certificate needs to be revoked later, the issuing server proactively contacts all servers
using the certificate to inform them. In this way OASIS provides rapid response to
changing conditions.

OASIS uses appointment certificates to provide delegation of authority and delegation
of rights. A principal issues an appointment certificate to allow another principal the
ability to activate a role. For example, a principal who can activate a role r can delegate
the rights implied by r to another principal by issuing an appointment certificate that
allows that other principal to also activate r. OASIS appointments are a generalization
of normal role delegation because the issuer can appoint a subject to a role that the
issuer can not activate. For example, a human resources director at a hospital can
appoint a doctor without having the privileges of a doctor.

OASIS also allows arbitrary environmental constraints to be used in rules for en-
abling role activations and for maintaining role membership. The logical core of OASIS
treats environmental constraints as atomic propositions. They are intended to allow
the expression of policies based on time of day, local machine identity, or other similar
factors. Since the environmental constraints are left unspecified, arbitrary amounts
of computation could be done to evaluate them. As a consequence, the question of the
tractability of access control decisions under OASIS can’t be definitively answered with-
out first making some assumptions about the nature of the environmental constraints
being used.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:37

Role activation and role maintenance rules in OASIS are definite Horn clauses and
thus represent a subset of first order logic. In particular, role activation rules have
the form � � r where r is the role that may be activated and the conditions in � are
elements in the union of roles, appointment certificates, and environmental constraints.
All of the components of a rule can be parameterized. In the case of role activation such
a rule means that a principal may activate role r if that principal has activated all of
the roles in �, holds all the appointment certificates in �, and if all the environmental
constraints in � are satisfied. In the case of role maintenance, such a rule means
that a principal may remain in role r as long as all the conditions in � are satisfied.
The requirements for maintaining a role activation may be less stringent than the
requirements for activating the role in the first place.

OASIS does not provide a language for specifying appointments, leaving that instead
to individual applications. The presumption is that a principal should have to be in a
particular role to issue particular appointments but OASIS does not describe how to
express that detail. For example the human resources director at a hospital would first
have to activate a special role that allows her to appoint doctors. Most likely, she would
be able to activate this role due to an appointment certificate she has been given by
the hospital administration. However, OASIS does not provide a way to specify what
appointments a principal can make in terms of the roles that principal has activated.

To encode the running example of Section 2.5 in OASIS one must presuppose the ex-
istence of a policy outside of the OASIS system that defines the conditions under which
appointment certificates can be issued. For example, the hospital database might spec-
ify an OASIS rule such as records user(X) � records(X) allowing any entity with
an appointment certificate records user(X) for patient X to activate a role providing
access to X ’s medical records. The hospital can then define a policy allowing Alice to
issue appointment certificates of the form records user(Alice), although OASIS does
not define what this policy would look like. Alice would use this ability to issue an ap-
pointment certificate for Bob who could then use the appointment certificate to activate
the records(Alice) role when necessary. In order for Bob to delegate his access to Carol,
Bob would need to be able to create an appointment certificate records user(Alice)
that Carol can use. His ability to do this depends on the hospital’s policy regarding the
creation of appointment certificates.

5.4.5. PCA. Proof Carrying Authorization (PCA) uses a higher order logic to specify
both policy and credentials [Appel and Felten 1999; Bauer et al. 2002; Bauer 2003].
This logic is, in general, undecidable. However, this does not cause a problem for the
authorizer because in PCA it is the requester who must construct a proof of authoriza-
tion. The authorizer only needs to check this proof, something that is both decidable
and tractable, to verify that the requester does have the requested access. PCA thus
borrows concepts from proof carrying code [Necula 1997] where untrusted code must
be accompanied by a safety proof that is checked by the consumer of that code.

This approach seems to put a significant burden on requesters. However, each re-
quester normally only needs to work with a subset of the full logic. For any particular
application, an application-specific logic can be defined where the rules of inference in
that logic are lemmas in the general higher order logic. The requester can construct
a proof using this limited logic but the authorizer does not need to be aware of the
particular application-specific logic being used. The requester provides proofs of the
necessary application-specific lemmas as part of the proof of authorization.

Many application-specific logics are possible. Other trust management systems such
as SPKI can be encoded as an application-specific logic for use with PCA. Thus a PCA
authorizer is able to work with requesters using a variety of trust management methods

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:38 P. C. Chapin et al.

Fig. 6. Some inference rules of PCA logic.

in a uniform way. In this respect PCA is a generalization of the other systems reviewed
here.

Principals in PCA are modeled as sets of formulae the principal regards as true and
thus can be represented as a higher order predicate taking a formula as an argument.
P is a principal if both ∀F.F ⊃ P (F) and ∀F1∀F2.(P (F1) ∧ P (F1 ⊃ F2)) ⊃ P (F2). In
other words, P is a principal if P admits true statements and any statement that is
implied by other statements P admits.

The logic contains a primitive signed connective used to represent digitally signed
statements, and constants used to represent keys. As an example, consider the following
three formulae.

(1) K ca signed (∀F.(Ka signed F) ⊃ (Alice(F)))
(2) ∀F.(K ca signed F) ⊃ CA(F)
(3) ∀k.∀p.CA((∀S.(k signed S) ⊃ p(S))) ⊃ ∀S.(k signed S) ⊃ p(S)

The first formula describes the binding of the key Ka to the principal Alice made by
an authority with key Kca. It asserts that any formula signed by Ka is admitted by
the principal Alice. This formula plays the role of an identity certificate. The second
formula is part of the authorizer’s policy. It asserts that any formula signed by Kca
can be attributed to the CA principal. In other words, Kca is the correct key. The final
formula is how the authorizer delegates authority to CA. It asserts that if the certificate
authority asserts that k is principal p’s key, then the authorizer will take any statement
signed by k as a statement admitted by p.

The beauty of the PCA system is that formula such as the ones above are not built
into the system but instead are constructed to suit the needs of a particular application.
For this reason most of the features we describe for trust management systems are
supported by PCA indirectly.

The inference rules of PCA those of higher order logic along with a few additional
rules that talk about keys and digital signatures. These additional rules are shown
in Figure 6. The function N takes a string, for example a public key, and returns
the principal corresponding to that key. The NAME I and NAME IMP E rules embody the
definition of a principal mentioned above. The SIGNED rule says that a formula signed
by key k is a statement admitted by principal N (k).

PCA uses an interesting mechanism to handle certificate revocation [Bauer 2003],
that is an example of how this feature can be handled while preserving monotonicity;
their approach is inspired by previous work [Li and Feigenbaum 2002] proposed for use
in the RT framework [Li et al. 2002].

In particular, a PCA implementation treats a certificate as valid only if there is
an appropriate certificate revocation list available. The presence of a revocation list
does not remove a previously valid certificate, rather it enables a certificate that was
previously invalid to be used. The relevant inference rule is as follows, though the PCA
authors note that this rule is derivable as a theorem:

CERT-E

cert(A, F, N) A signed(revlist(T1, T2, L)) localtime < T2 N /∈ L
A says F

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:39

Fig. 7. Example TPL policy statement.

This rule states that principal A says F provided there is a certificate asserting it and a
revocation list signed by A that is currently valid and does not include the certificate’s
serial number. If the revocation list is not available, A says F can not be deduced from
the certificate alone.

5.4.6. TPL. In Trust Policy Language (TPL) [Herzberg et al. 2000] the policy lan-
guage and the certificate language are distinct. Certificates bind attributes to public
keys and can be translated from other certificate formats, such as X.509v3. The pol-
icy language allows authorizers to define rules, based on certificate attribute values,
by which an entity, represented by a public key, can enter a role. As with RT but
unlike SPKI, the system does not directly express authorizations. Instead only role
memberships are computed. The permissions granted to an entity depend on the re-
sulting role memberships and are defined externally.

TPL uses an XML syntax for its policy language. The example in Figure 7 [Herzberg
et al. 2000] illustrates a policy statement that defines the members of a group (or role)
named “Hospitals.” In such statements multiple rules are allowed; if any of the rules
are satisfied then the policy is satisfied. A rule contains one or more INCLUSION
elements, each of which represents a certificate or, if the REPEAT attribute is present,
multiple certificates. In the example a subject is a member of the Hospitals group if
that subject has been recommended by two other hospitals. The FUNCTION element
describes additional conditions on the various certificates in the rule. In the example,
the recommendation certificates must have a “Level” field with a value greater than one.

TPL policies can be compiled to Prolog, using appropriate functions in Prolog to cap-
ture the full expressiveness of the policy language. However the implementation does
not use Prolog directly but instead provides its own policy engine. Unlike an ordinary
Prolog theorem prover, this engine is capable of fetching remote certificates as needed
and thus provides a form of distributed chain discovery. For example, suppose X issues
a certificate about some subject Y . The certificate contains an issuerCertRepository field
where the policy engine can find more information about X (for example, the groups
of which X is a member) and a subjectCertRepository field where the policy engine can
find more information about Y (for example, the groups defined by Y).

The general form of TPL allows for credential negation and is therefore nonmonotonic.
Since the requester cannot be expected to willingly provide information that would deny
access, such certificates are fetched from repositories defined by the authorizer, instead
of by the issuer or subject.

5.4.7. Binder. Like SD3, Binder [DeTreville 2002a; DeTreville 2002b] uses an ex-
tended version of Datalog as its foundation. The authorizer writes Datalog rules and

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:40 P. C. Chapin et al.

facts to describe the local policy. These rules and facts exist in a context that is associ-
ated with a public/private key pair. Rules and facts can be exported from a context by
signing them. Thus signed Datalog statements form the credentials in the Binder sys-
tem. An importing context quotes the credentials using says in a way similar to other
ABLP inspired logics. Special rules in the policy must be provided to relate quoted
predicates to local predicates.

The following example [DeTreville 2002a] allows all members of bigco to read re-
source r. The authorizer’s local policy is

can(X , read, resource r) ← employee(X , bigco).
employee(X , bigco) ← Kb says employee(X , bigco).

This policy grants read access to all objects X for which the local predicate employee-
(X , bigco) is true. The policy then connects the predicate employee in the context
controlled by key Kb to the local predicate with the same name. When a signed creden-
tial Kb says employee(john, bigco) is presented to the authorizer, the authorizer can
then compute that can(john, read, resource r).

In effect Binder distributes a large Datalog program over many contexts and allows
each context to explicitly decide which statements from other contexts it will accept.
Like SD3 this gives Binder the full expressivity of Datalog.

Binder makes no attempt to treat negative information and revocation is handled
in TC (Figure 1) by controlling certificate lifetimes or by requiring the use of online
revocation checks. In addition an authorizer’s policy can be, at least potentially, signed
and published. Thus a Binder based system could require clients to find the neces-
sary proofs with the authorizer simply checking the results as is done with PCA.
This can help off-load work from the authorizer but the technique is not specific to
Binder.

5.4.8. Cassandra. Cassandra [Becker and Sewell 2004a; Becker and Sewell 2004b;
Becker 2005] uses a semantics based on Datalog with constraints but allows the con-
straint domains to be selected independently of the base system. This allows an ap-
plication to tune Cassandra by trading off expressiveness in the policy language for
computational efficiency without having to modify the core implementation.

In a Cassandra system, each host runs a Cassandra service. In addition to requesting
access to resources, clients of the service can activate or deactivate roles in that service
as well as request credentials for use with Cassandra services on other nodes. Each
Cassandra service runs an authorization mechanism that consults local policy and
that also makes remote queries to other Cassandra services to obtain relevant policy
information. Information about where remote credentials can be found is encoded in
the rules themselves; credential chain discovery is not completely automatic.

Cassandra is role based and allows roles and actions (permissions) to be
parameterized. The base system uses only a few predicates including: permits(entity,
permission), canActivate(entity, role), and hasActivated(entity, role). Users
are able to introduce application specific predicates as well. Whenever a role is acti-
vated in a particular Cassandra service, that service adds an appropriate hasActivated
fact to its policy. Thus the set of policy rules available to the authorization mechanism
varies as roles are activated and deactivated.

The predicates in a rule can be annotated with information about the location where
specific certificates can be obtained. These annotations can be variables that are in-
stantiated during the evaluation process. Using side-effect free functions in an integer
order constraint domain, Cassandra can directly express rules regarding credential

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:41

validity. For example:

canActivate(X , Doc()) ←
canActivate(X , CertDoc(T)), CurTime() − Years(1) ≤ T ≤ CurTime()

This rule says that X can activate the doctor role provided that X was certified at time
T (X can activate the CertDoc role for T), and that T is not more than one year old. In
this case the authorizer defines a validity period on X ’s certification and won’t accept
certifications that are too old. Notice that in most systems the lifespan of a certificate
is set by the issuer. However, since the authorizer is the principal assuming the risk of
using an invalid certificate it makes sense in many applications for the authorizer to
define the acceptable lifespans [Rivest 1998].

Cassandra uses an authorization procedure that is a variation of Toman’s memoing
algorithm for Datalog with constraints [Toman 1997]. This approach is based on SLG
resolution and is goal oriented (top down) while avoiding the non-termination problems
that might arise using a traditional SLD style evaluation.

6. OTHER COMPONENTS: TRUST NEGOTATION

In this survey we have focused specifically on authorization in trust management. How-
ever, modern trust management systems include other major components, to address
problems other than the semantics of authorization. While space considerations pre-
vent a complete review of issues and approaches, in this section we provide a brief
overview of trust negotiation, which is a topic of considerable interest in modern trust
management research. Along with providing a more complete view of trust manage-
ment, the purpose of this section is to provide a better practical context for the topics
covered in this survey, and a better picture of current research directions.

When considering the semantics of authorization, it is simplest to assume that re-
questers’ credentials are publicly available, so that authorizers have full access to them
as well as their own policy. We call this the basic model, and it is typically assumed
in most of the systems we survey here for the initial development of an authorization
semantics. In the basic model authorizers do not directly disclose their policy to any
requester while requesters are assumed to disclose their credentials freely. Requesters
either send their credentials with each request or, in some cases, make their creden-
tials available on public servers where authorizers can locate them using some form of
credential chain discovery.

Furthermore, the result of the authorization decision in the basic model is a simple
boolean value specifying if access is allowed or not. If access is allowed the requester
does not know which credentials were actually necessary to gain that access. If access is
denied the requester does not know why the denial occurred and has no way of knowing
how to obtain missing credentials.

However, in practice the basic model is not always sufficient. For example, rather
than expending overhead on distributed chain discovery, an authorizer may associate
additional information with credentials that associates them with particular resources,
so requesters can supply a subset of their credentials in an informed manner. But
a deeper issue is that a requester may regard some of her credentials as sensitive
and have a complex access policy for them. The requester may require an authorizer
comply with that policy before she is willing to disclose those credentials. In addition the
authorizer may wish to control access to his resource access policy, allowing some or all
of that policy to be disclosed to suitable requesters. In this situation, the requester and
authorizer can engage in a process called trust negotiation during which credentials

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:42 P. C. Chapin et al.

and policy statements are shared incrementally between the authorizer and requester
as the parties gain increasing trust in each other.

An example in [Seamons et al. 2002] illustrates the concepts. Alice, a university
student, orders her textbooks from an online bookstore. She requests a student discount
not knowing what credentials the bookstore will require. In response the bookstore asks
to see her digital student ID and her digital credit card. Alice is willing to disclose her
ID but will only disclose her credit card to Web sites that have been certified by the
Better Business Bureau; accordingly she requests this credential from the bookstore
site. Once the bookstore discloses its Better Business Bureau credential, Alice’s access
policy on her credit card is satisfied and she discloses her credentials as well.

Many trust negotiation systems have been described in the literature [Winslett
et al. 2002; Gavriloaie et al. 2004; Bonatti and Olmedilla 2005b]. Some, such as
PeerTrust [Gavriloaie et al. 2004], are extensions of other trust management systems,
including systems we have surveyed here. For example, PeerTrust extends SD3 with
trust negotiation, and a trust negotiation framework has been developed for the RT
system [Winsborough and Li 2002]. In other cases, such as with Protune [Bonatti and
Olmedilla 2005b], support for trust negotiation and trust management were designed
together from scratch. In either case trust negotiation systems build on trust manage-
ment concepts and thus have many overlapping concerns.

In a survey of trust negotiation systems a list of requirements on trust negotiation
policy languages is given in [Seamons et al. 2002]. Because trust negotiation systems
include trust management functionality that we survey here, many of the these policy
language requirements overlap with or are embedded in our list of trust management
features. For example, Seamons et al. note the importance of using languages with
well defined semantics, and discuss features such as monotonicity, credential chains,
delegation depth, and local name spaces. However, Seamons et al. also require trust
negotiation policy languages to have the power to express access control information
on the policies themselves. This is the essence of trust negotiation.

In addition Seamons et al. [2002] gives requirements on compliance checkers. In a
trust negotiation context compliance checkers can no longer return a simple yes/no re-
sult. If the request for access fails, the checker must provide information about what
additional credentials are needed to gain that access. The authorizer can use this in-
formation to request those credentials from the requester. Furthermore the requester
uses a compliance checker to control access to her credentials, and in some cases to
locally process policy information provided by the authorizer to determine which of her
credentials might be relevant to a particular request.

Some of the earliest work on trust negotiation focused on how the requester could
select precisely the credentials necessary for the desired access and thus avoid sending
sensitive credentials unnecessarily. In Seamons et al. [1997] credential acceptance poli-
cies written in a restricted form of Prolog are downloaded from the authorizer by the
requester and then executed with the requester’s database of credentials as part of the
collection of facts available to the Prolog program. The result is a list of required cre-
dentials that the requester must send to the authorizer to gain access to the protected
resource. The authorizer executes essentially the same program to check the access
request.

Later work generalizes this process by allowing the requester to assign credential
access or credential disclosure policies to control the conditions under which those cre-
dentials can be revealed [Winsborough et al. 2000; Yu et al. 2000]. In addition autho-
rizers might want to control the disclosure of their access policies as well [Seamons
et al. 2001]. When a negotiating party sends all the credentials or policy statements for
which the access policy has been met, that party is said to follow an eager strategy. On
the other hand, if the negotiating party only sends a more narrowly focused collection

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:43

of credentials in response to specific requests from the negotiating partner, that party
is said to follow a parsimonious strategy. In this later case, however, a negotiating party
can inadvertantly reveal sensitive information about her credentials indirectly by way
of her reactions to specific requests [Winsborough et al. 2000; Winsborough and Li
2002,2004]. Fundamentally this problem arises because credential access policies are
associated only with credentials a negotiating party actually has. To address this issue
ack policies can be created that cause a negotiating party to enter into a negotiation
about attributes she considers sensitive even if she lacks any specific credentials about
those attributes [Winsborough and Li 2002,2004].

The PeerTrust system is an example of a fully developed trust negotation policy
system. PeerTrust extends SD3 to provide trust negotiation [Gavriloaie et al. 2004].
The Horn clauses used in SD3 are enhanced to allow guards. Essentially the body of a
clause is broken into sections where the successful evaluation of one section is required
before the evaluation of the next section is allowed to begin. An example in Gavriloaie
et al. [2004] shows a rule Alice might use to specify that she will only reveal her signed
credential that she is a California state police officer to Web sites that are members of
the Better Business Bureau:

policeOfficer(alice) @ CSP ←
member(Requester) @ BBB @ Requester | signedBy[CSP].

In this rule the “@” is used to indicate a nonlocal predicate. The ability to evaluate non-
local predicates nests so that, for example, “member(Requester) @ BBB @ Requester”
means that the requester must show that he is a member of the Better Business Bureau.
In this context the requester is a Web server asking Alice if she is a police officer. This
predicate must be validated before the evaluation of the rule can proceed beyond the
“|” and Alice can send the necessary signed certificate to the web server.

For another example, PROTUNE is a particularly rich trust negotiation system provid-
ing support for authentication, policy rules with actions and side effects (provisional
rules), as well as hierarchical services and credentials [Bonatti and Samarati 2000; Bon-
atti and Samarati 2002; Jajodia et al. 2001; Bonatti and Olmedilla 2005b]. Metapolicies
are used to arbitrate trust negotiation; as credentials are gathered a negotiating party’s
metapolicies activate new policy rules as appropriate. PROTUNE has also been extended
to provide support for advanced queries allowing users to ask high level questions
about authorization decisions such as, for example, why?, what if?, and how to? queries
[Bonatti et al. 2006].

While PROTUNE provides extensive support for trust negotiation, at its core it also
contains support for many of the authorization features we discuss in this work.
PROTUNE libraries can be created that simulate the semantics of other trust manage-
ment systems. For example, PROTUNE can encode the four credential forms of RT0 [Bon-
atti and Olmedilla 2005a], thus providing all the capabilities of that system such as
local name spaces, role-based access control, and delegation of rights. In addition PRO-
TUNE’s features can be used to encode a public key infrastructure [Bonatti and Samarati
2000,2002] and distributed chain discovery [Bonatti and Olmedilla 2005a]. The last col-
umn in Table II compares PROTUNE with the other systems we review in terms of its
authorization semantics.

7. CONCLUSION

Trust management technology responds to the security demands of modern distributed
systems—or in the words of previous authors [Blaze et al. 1999b], “the trust man-
agement approach to distributed system security was developed as an answer to the

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:44 P. C. Chapin et al.

inadequacy of traditional authorization mechanisms.” Compared to other simpler sys-
tems such as identity- or role-based access control, trust management systems provide
modern distributed applications programmers a more effective and scalable means of
specifying and enforcing authorization policies. At the heart of any trust management
system is a language for expressing policy and access rights, comprising a mixture of
features that address the character and requirements of modern distributed security.
We have reviewed a number of language features, and summarized which systems pos-
sess which features (see especially Tables I and II). Overall, we conclude that a subset
of them are fundamental to any trust management system:

Linked Local Namespaces. No single, monolithic namespace exists on the Internet.
Instead, distinct security domains define their own namespaces. Any trust management
system language must provide some means to refer to non-local namespaces, within
the local namespace.

Roles. Role membership is a fundamental abstraction in trust management systems.
The specification of authorization via roles allows policies to be defined independently
of identities, so that addressing the needs of unknown future users does not require
policy to be rewritten.

Delegation of Authority. No single, monolithic policy authority exists on the Internet.
Rather, distinct security domains define their own local policies, and security domains
commonly delegate authority over local policy to trusted nonlocal authorities; any trust
management system language must provide some way to express this.

Delegation of Rights. In many cases, the users of a system desire to delegate their ac-
cess rights to other entities, to act on their behalf. trust management system languages
should address this need, including important nuances such as whether certain rights
should be specified as undelegatable by local authorities.

Certificate Revocation. Access rights should never be permanently granted, rather
authorities should be able to revoke them or set finite lifetimes for their use. While
certificate revocation appears to be an essentially nonmonotonic feature, this has been
disproven, as the authors of both PCA [Bauer 2003] and RT [Li and Feigenbaum 2002]
have developed monotonic inference rules for incorporating revocation in authoriza-
tion. Some systems such as SPKI/SDSI offer a simpler implementation-based solution
[Ellison et al. 1999], where revocation is not featured in the authorization language but
processed during the parsing of certificates into credentials.

At a higher level, we argue that rigorous formal foundations are a necessary design
feature of trust management systems, since they allow rigorous guarantees of security.
We have shown that graph theories, logics, and database formalisms are the most com-
mon formalisms for trust management system design, though logic stands out as the
most popular. Indeed, previous authors have argued that monotonic programming log-
ics are uniquely well-suited as trust management languages [Li and Mitchell 2003a],
and in general the rich semantic domains available in logic provide a great deal of flex-
ibility and scalability in trust management system applications [Polakow and Skalka
2006]. A variety of trust management system foundations use domain-specific logi-
cal constructs originally developed for authentication settings [Burrows et al. 1990],
witnessing the evolution of authorization systems from earlier access control systems
based mainly on authentication.

Many of the systems surveyed in this paper exist primarily in theory, and have not
yet been deployed. As trust management systems become more commonplace, and
theory develops into practice, we believe a major challenge will be whole-system as-
surances. As we have discussed, trust management systems comprise more than just
a semantics for their core authorization language, including a collection of features

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:45

for storing, collecting, and processing certificates. Significantly, some trust manage-
ment system features are sometimes implemented in these other components, such
as when certificate revocation or expiration is realized during certificate parsing. And
of course, correctness of an entire system depends on correctness of all of its com-
ponents, as well as their interaction. Thus, formalisms for assurances of correctness
of systems must transcend the core authorization semantics, and address the myr-
iad components of trust management systems. In many ways QCM and SD3 set the
standard in this regard [Gunter and Jim 1997; Jim 2001], by using database the-
ory and technology as a uniform setting for implementing certificate storage and re-
trieval, defining the semantics of authorization, and formally modeling systems. As
trust management systems mature into vital components of Internet communications
and commerce, a holistic formal view that takes into account the variety of trust
management system components will be essential to coherence and reliability of these
systems.

REFERENCES

ABADI, M. 1998. On SDSI’s linked local name spaces. J. Comput. Secur. 6, 1–2, 3–21.
ABADI, M. 2003. Logic in access control. In Proceedings of the 18th IEEE Symposium on Logic in Computer

Science.
ABADI, M., BURROWS, M., LAMPSON, B., AND PLOTKIN, G. 1993. A calculus for access control in distributed

systems. ACM Trans. Program. Lang. Syst. 15, 4, 706–734.
AJMANI, S., CLARKE, D. E., MOH, C.-H., AND RICHMAN, S. 2002. ConChord: Cooperative SDSI certificate storage

and name resolution. In International Workshop on Peer-to-Peer Systems.
APPEL, A. W. AND FELTEN, E. W. 1999. Proof-carrying authentication. In Proceedings of the 6th ACM Con-

ference on Computer and Communications Security. ACM Press, 52–62.
BACON, J., MOODY, K., AND YAO, W. 2002. A model of OASIS role-based access control and its support for

active security. ACM Trans. Inform. Syst. Secur. 5, 4, 492–540.
BAUER, L. 2003. Access control for the web via proof-carrying authorization. Ph.D. thesis, Princeton

University.
BAUER, L., SCHNEIDER, M. A., AND FELTEN, E. W. 2002. A general and flexible access-control system for the

Web. In Proceedings of the 11th USENIX Security Symposium. 93–108.
BECKER, M. Y. 2005. Cassandra: Flexible trust management and its application to electronic health records.

Tech. rep. 648, University of Cambridge.
BECKER, M. Y. AND SEWELL, P. 2004a. Cassandra: Distributed access control policies with tunable expres-

siveness. In Proceedings of the 5th IEEE International Workshop on Policies for Distributed Systems and
Networks.

BECKER, M. Y. AND SEWELL, P. 2004b. Cassandra: Flexible trust management, applied to electronic health
records. In Proceedings of the 17th IEEE Computer Security Foundations Workshop.

BERTINO, E., CATANIA, B., FERRARI, E., AND PERLASCA, P. 2003. A logical framework for reasoning about access
control models. ACM Trans. Inform. Syst. Secur. 6, 1, 71–127.

BLAZE, M., FEIGENBAUM, J., IOANNIDIS, J., AND KEROMYTIS, A. D. 1999a. RFC-2704: The keyNote trust-
management system version 2. Internet Engineering Task Force.

BLAZE, M., FEIGENBAUM, J., IOANNIDIS, J., AND KEROMYTIS, A. D. 1999b. The role of trust management in
distributed systems security. In Secure Internet Programming: Security Issues for Mobile and Distributed
Objects. Springer-Verlag, 185–210.

BLAZE, M., FEIGENBAUM, J., AND LACY, J. 1996. Decentralized trust management. In Proceedings of the IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, 164–173.

BLAZE, M., FEIGENBAUM, J., AND STRAUSS, M. 1998. Compliance checking in the policymaker trust man-
agement system. In Proceedings of the 2nd International Conference on Financial Cryptography.
Springer-Verlag, 254–274.

BLAZE, M., IOANNIDIS, J., AND KEROMYTIS, A. D. 2002. Trust management for IPsec. ACM Trans. Inform. Syst.
Secur. 5, 2, 95–118.

BLAZE, M., IOANNIDIS, J., AND KEROMYTIS, A. D. 2003. Experience with the keynote trust management sys-
tem: Applications and future directions. In Proceedings of the 1st International Conference on Trust
Management. Springer-Verlag, 284–300.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:46 P. C. Chapin et al.

BONATTI, P. AND OLMEDILLA, D. 2005a. Policy language specification. REWERSE Deliverable I2-D2,
http://rewerse.net/deliverables.html.

BONATTI, P. AND SAMARATI, P. 2000. Regulating service access and information release on the Web. In
Proceedings of the 7th ACM Conference on Computer and Communications Security. ACM Press, 134–
143.

BONATTI, P. AND SAMARATI, P. 2002. A unified framework for regulating access and information release on
the Web. J. Comput. Secur. 10, 3, 241–272.

BONATTI, P. AND SAMARATI, P. 2003. Logics for authorizations and security. In Logics for Emerging Applica-
tions of Databases, J. Chomicki, R. van der Meyden, and G. Saake, Eds. Springer-Verlag.

BONATTI, P. A. AND OLMEDILLA, D. 2005b. Driving and monitoring provisional trust negotiation with
metapolicies. In IEEE 6th International Workshop on Policies for Distributed Systems and Networks.
Stockholm, Sweden.

BONATTI, P. A., OLMEDILLA, D., AND PEER, J. 2006. Advanced policy queries. In Proceedings of the 17th
European Conference on Artificial Intelligence. IOS Press, 200–204.

BURROWS, M., ABADI, M., AND NEEDHAM, R. M. 1990. A logic of authentication. ACM Trans. Comput. Syst. 8, 1,
18–36.

CHU, Y.-H., FEIGENBAUM, J., LAMACCHIA, B., RESNICK, P., AND STRAUSS, M. 1997. REFEREE: Trust manage-
ment for Web applications. World Wide Web J. 2, 3, 127–139.

CLARKE, D., ELIEN, J.-E., ELLISON, C., FREDETTE, M., MORCOS, A., AND RIVEST, R. L. 2001. Certificate chain
discovery in SPKI/SDSI. J. Comput. Secur. 9, 4, 285–322.

DETREVILLE, J. 2002a. Binder, a logic-based security language. In Proceedings of the IEEE Symposium on
Security and Privacy. IEEE Computer Society.

DETREVILLE, J. 2002b. Making certificates programmable. In Proceedings of the 1st Annual PKI Workshop.
Hanover, NH.

DIMMOCK, N., BELOKOSZTOLSZKI, A., EYERS, D., BACON, J., AND MOODY, K. 2004. Using trust and risk in role-
based access control policies. In Proceedings of the 9th ACM Symposium on Access Control Models and
Technologies. ACM Press, 156–162.

EITER, T., GOTTLOB, G., AND MANNILA, H. 1997. Disjunctive datalog. ACM Trans. Datab. Syst. 22, 3, 364–418.
ELLISON, C., FRANTZ, B., LAMPSON, B., RIVEST, R., THOMAS, B., AND YLONEN, T. 1999. RFC-2693: SPKI certificate

theory. Internet Engineering Task Force.
FERRAIOLO, D. AND KUHN, R. 1992. Role-based access controls. In 15th NIST-NCSC National Computer

Security Conference. 554–563.
GAVRILOAIE, R., NEJDL, W., OLMEDILLA, D., SEAMONS, K. E., AND WINSLETT, M. 2004. No registration needed:

How to use declarative policies and negotiation to access sensitive resources on the semantic Web.
In Proceedings of the 1st European Semantic Web Symposium. Lecture Notes in Computer Science,
vol. 3053. Springer, 342–356.

GUNTER, C. A. AND JIM, T. 1997. Design of an application-level security infrastructure. In Proceedings of
the DIMACS Workshop on Design and Formal Verification of Security Protocols.

GUNTER, C. A. AND JIM, T. 2000a. Generalized certificate revocation. In Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 316–329.

GUNTER, C. A. AND JIM, T. 2000b. Policy-directed certificate retrieval. Softw. Prac. Exper. 30, 15, 1609–1640.
GUNTER, C. A., JIM, T., AND WANG, B.-Y. 1997. Authenticated data distribution using query certificate man-

agers. unpublished extended abstract.
HALPERN, J. AND VAN DER MEYDEN, R. 1999. A logic for SDSI’s linked local name spaces. In Proceedings of the

12th IEEE Computer Security Foundations Workshop. 111–122.
HALPERN, J. Y. AND VAN DER MEYDEN, R. 2001. A logical reconstruction of SPKI. In Proceedings of the 14th

IEEE Computer Security Foundations Workshop. 59–70.
HAYTON, R. J., BACON, J. M., AND MOODY, K. 1998. OASIS: Access control in an open distributed environment.

In Proceedings of the IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 3–14.
HERZBERG, A., MASS, Y., MICHAELI, J., NAOR, D., AND RAVID, Y. 2000. Access control meets public key in-

frastructure, or: Assigning roles to strangers. In Proceedings of the IEEE Symposium on Security and
Privacy.

HINE, J. A., YAO, W., BACON, J., AND MOODY, K. 2000. An architecture for distributed OASIS services. In
Proceedings of IFIP/ACM International Conference on Distributed Systems Platforms (Middleware’00).
Springer-Verlag, 104–120.

HOWELL, J. 2000. Naming and sharing resrouces across administrative boundaries. Ph.D. thesis,
Dartmouth College.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

Authorization in Trust Management: Features and Foundations 9:47

HOWELL, J. AND KOTZ, D. 2000. A formal semantics for SPKI. Tech. rep. 2000-363, Dartmouth College.
International Telecommunications Union. 2000. Information Technology—Open Systems

Interconnection—The Directory: Public Key and Attribute Certificate Frameworks. International
Telecommunications Union.

International Telecommunications Union 2001. Information Technology—Open Systems
Interconnection—The Directory: Overview of Concepts, Models, and Services. International Telecommu-
nications Union.

JAFFAR, J. AND MAHER, M. J. 1994. Constraint logic programming: A survey. J. Logic Program. 19/20, 503–
581.

JAJODIA, S., SAMARATI, P., SAPINO, M. L., AND SUBRAHMANIAN, V. S. 2001. Flexible support for multiple access
control policies. ACM Trans. Datab. Syst. 26, 2, 214–260.

JHA, S. AND REPS, T. 2002. Analysis of SPKI/SDSI certificates using model checking. In Proceedings of the
15th IEEE Computer Security Foundations Workshop. IEEE Computer Society, 129.

JIM, T. 2001. SD3: A trust management system with certified evaluation. In Proceedings of the IEEE
Symposium on Security and Privacy. IEEE Computer Society.

JIM, T. AND SUCIU, D. 2001. Dynamically distributed query evaluation. In Proceedings of the 20th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. ACM Press, 28–39.

LI, N. 2000. Local names in SPKI/SDSI. In Proceedings of the 13th IEEE Computer Security Foundations
Workshop. IEEE Computer Society Press, 2–15.

LI, N. AND FEIGENBAUM, J. 2002. Nonmonotonicity, user interfaces, and risk assessment in certificate revo-
cation. In Proceedings of the 5th International Conference on Financial Cryptography. Springer-Verlag,
166–177.

LI, N., GROSOF, B. N., AND FEIGENBAUM, J. 2003. Delegation logic: A logic-based approach to distributed
authorization. ACM Trans. Inform. Syst. Secur. 6, 1, 128–171.

LI, N. AND MITCHELL, C. 2006. Understanding spki/sdsi using first-order logic. Int. J. Inform. Secur. 5, 1,
48–64.

LI, N. AND MITCHELL, J. C. 2003a. Datalog with constraints: A foundation for trust management languages.
In Proceedings of the 5th International Symposium on Practical Aspects of Declarative Languages.

LI, N. AND MITCHELL, J. C. 2003b. RT: A role-based trust-management framework. In Proceedings of the 3rd
DARPA Information Survivability Conference and Exposition. IEEE Computer Society Press, 201–212.

LI, N., MITCHELL, J. C., AND WINSBOROUGH, W. H. 2002. Design of a role-based trust-management framework.
In Proceedings of the IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 114–
130.

LI, N., MITCHELL, J. C., AND WINSBOROUGH, W. H. 2005. Beyond proof-of-compliance: Security analysis in
trust management. J. ACM 52, 3, 474–514.

LI, N., WINSBOROUGH, W. H., AND MITCHELL, J. C. 2003. Distributed chain discovery in trust management.
J. Comput. Secur. 11, 1, 35–86.

LIU, Y. D. AND SMITH, S. 2002. A component security infrastructure. In Proceedings of the Foundations of
Computer Security Workshop.

MCDANIEL, P. AND RUBIN, A. D. 2001. A response to “can we eliminate certificate revocation lists?”. In
Proceedings of the 4th International Conference on Financial Cryptography. Springer-Verlag, 245–258.

NECULA, G. C. 1997. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. ACM Press, 106–119.

NIKANDER, P. AND VILJANEN, L. 1998. Storing and retrieving internet certificates. In Proceedings of the 3rd
Nordic Workshop on Secure IT Systems.

OASIS. 2006a. OASIS eXtensible access control markup language technical committee. http://www.
oasis-open.org/committees/tc_home.php?wg_abbrev=xacml.

OASIS. 2006b. OASIS security services technical committee. http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=security.

OASIS. 2006c. OASIS Web services security technical committee. http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wss.

OFFICE OF TECHNOLOGY ASSESSMENT. 1993. Protecting Privacy in Computerized Medical Information.
OTA-TCT-576. U.S. Government Printing Office.

POLAKOW, J. AND SKALKA, C. 2006. Specifying distributed trust management in LolliMon. In Proceedings of
the ACM Workshop on Programming Languages and Analysis for Security.

RESNICK, P. AND MILLER, J. 1996. PICS: Internet access controls without censorship. Comm. ACM 39, 10,
87–93.

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

9:48 P. C. Chapin et al.

RIVEST, R. L. 1998. Can we eliminate certificate revocation lists? In Proceedings of the 2nd International
Conference on Financial Cryptography. Springer-Verlag, 178–183.

RIVEST, R. L. AND LAMPSON, B. 1996a. SDSI—A simple distributed security infrastructure. version 1.0. http:
//theory.lcs.mit.edu/~rivest/sdsi10.html.

RIVEST, R. L. AND LAMPSON, B. 1996b. SDSI—A simple distributed security infrastructure. version 1.1. http:
//theory.lcs.mit.edu/~rivest/sdsi11.html.

SANDHU, R. S., COYNE, E. J., FEINSTEIN, H. L., AND YOUMAN, C. E. 1996. Role-based access control models.
Computer 29, 2, 38–47.

SEAMONS, K., WINSBOROUGH, W., AND WINSLETT, M. 1997. Internet credential acceptance policies. In Proceed-
ings of the Workshop on Logic Programming for Internet Applications. Leuven, Belgium.

SEAMONS, K., WINSLETT, M., AND YU, T. 2001. Limiting the disclosure of access control policies during auto-
mated trust negotiation.

SEAMONS, K., WINSLETT, M., YU, T., SMITH, B., CHILD, E., JACOBSON, J., MILLS, H., AND YU, L. 2002. Requirements
for policy languages for trust negotiation. In Proceedings of the 3rd International Workshop on Policies
for Distributed Systems and Networks. IEEE Computer Society, 68.

SIMON, R. T. AND ZURKO, M. E. 1997. Separation of duty in role-based environments. In Proceedings of the
10th IEEE Computer Security Foundations Workshop. IEEE Computer Society Press, 183–194.

SKALKA, C., WANG, X. S., AND CHAPIN, P. 2007. Risk management for distributed authorization. J. Comput.
Secur. 15, 4, 447–489.

STUBBLEBINE, S. 1995. Recent-secure authentication: Enforcing revocation in distributed systems. In Pro-
ceedings of the 1995 IEEE Symposium on Security and Privacy. IEEE Computer Society, 224–235.

STUBBLEBINE, S. G. AND WRIGHT, R. N. 1996. An authentication logic supporting synchronization, revocation,
and recency. In Proceedings of the 3rd ACM Conference on Computer and Communications Security. ACM
Press, 95–105.

TOMAN, D. 1997. Memoing evaluation for constraint extensions of datalog. Constraints 2, 337–359.
WEEKS, S. 2001. Understanding trust management systems. In Proceedings of the IEEE Symposium on

Security and Privacy. IEEE Computer Society, 94.
WINSBOROUGH, W. H. AND LI, N. 2002. Towards practical automated trust negotiation. In Proceedings of the

IEEE 3rd International Workshop on Policies for Distributed Systems and Networks. IEEE Computer
Society.

WINSBOROUGH, W. H. AND LI, N. 2004. Safety in automated trust negotiation. In Proceedings of the IEEE
Symposium on Security and Privacy. IEEE Computer Society, 147.

WINSBOROUGH, W. H., SEAMONS, K. E., AND JONES, V. E. 2000. Automated trust negotiation. In Procedings
of the DARPA Information Survivability Conference and Exposition. Vol. 1. IEEE Computer Society,
88–102.

WINSLETT, M., CHING, N., JONES, V., AND SLEPCHIN, I. 1997. Assuring security and privacy for digital library
transactions on the Web: Client and server security policies. In Proceedings of the IEEE International
Forum on Research and Technology Advances in Digital Libraries. IEEE Computer Society, 140–151.

WINSLETT, M., YU, T., SEAMONS, K. E., HESS, A., JACOBSON, J., JARVIS, R., SMITH, B., AND YU, L. 2002. Negotiating
trust on the Web. IEEE Intern. Comput. 6, 6, 30–37.

WOBBER, E., ABADI, M., BURROWS, M., AND LAMPSON, B. 1993. Authentication in the TAOS operating system.
SIGOPS Operat. Syst. Rev. 27, 5, 256–269.

WOO, T. Y. C. AND LAM, S. S. 1993. Authorizations in distributed systems: A new approach. J. Comput.
Secur. 2, 2-3, 107–136.

XSB INC. 2006. XSB home page. http://xsb.sourceforge.net.
YU, T., MA, X., AND WINSLETT, M. 2000. PRUNES: An efficient and complete strategy for automated trust ne-

gotiation over the internet. In Proceedings of the 7th ACM Conference on Computer and Communications
Security. ACM Press, 210–219.

YU, T., WINSLETT, M., AND SEAMONS, K. E. 2001. Interoperable strategies in automated trust negotiation.
In Proceedings of the 8th ACM Conference on Computer and Communications Security. ACM Press,
146–155.

Received August 2006; revised April 2007, September 2007; accepted October 2007

ACM Computing Surveys, Vol. 40, No. 3, Article 9, Publication date: August 2008.

